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Abstract. We develop a spectral sequence of Eilenberg-Moore
type to compute Bredon Cohomology of spaces with an action of
a group given as a pullback.

Using several other spectral sequences, and positive results on
the Baum-Connes Conjecture, we are able to compute Equivari-
ant K-Theory and K-homology of the reduced C∗-algebra of a
6-dimensional crystallographic group Γ introduced by Vafa and
Witten. We also use positive results on the Farrell-Jones conjec-
ture to give a vanishing result for the algebraic K-theory of the
group ring of the group Γ in negative degrees.

1. Introduction

We develop a method to compute Bredon Cohomology and equivari-
ant (co)-homology theories of spaces with an action of a discrete group
Γ obtained as a pullback of discrete groups over a finite group.

Condition 1.1. Let Γ be a group which is obtained as a pullback
diagram

Γ
p2
//

p1
��

H

π2
��

G π1
// K

where K is a finite group.

Given such a pullback diagram, the group Γ can be viewed as a
subgroup of G × H, namely Γ = {(g, h) ∈ G × H | π1(g) = π2(h)}.
When the maps in the pullback are clear from the context, we denote
this pullback by G×K H. We develop a spectral sequence in Theorem
2.19 converging to Bredon cohomology groups of spaces with a Γ-action
when Γ is defined as a pullback as in condition 1.1.
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Theorem. 2.19 [Eilenberg-Moore spectral sequence for Bredon coho-
mology] Let Γ be a group as in 1.1. Assume that X is a G-CW complex
with isotropy in a family F of finite subgroups of G and Y is an H-
CW complex with isotropy in a family F ′ of finite subgroups of H.
Let M be a Bredon coefficient system, which we suppose endowed with
a Green functor structure. Assume that M satisfies the projectivity
condition 2.9. Then, there is a spectral sequence with E2 term given
by

Torp,qM(K/K)(H
∗
F(X,M), H∗F ′(Y,M))

which converges to

Torp,qM(K/K)(C
∗
G(X,M),C∗H(Y,M)).

The groups H∗F ′(Y,M) denote Bredon co-homology with coefficients
in the contravariant functor M , defined on a family F ′ containing the
isotropy groups of Y . The groups C∗G(X,M) denote Bredon cochain
complexes with a differential graded structure explained in detail in
Section 2. The groups Torp,qM(K/K)( , ) are derived functors of differential

graded algebras and modules.
The spectral sequence gives a method to compute Γ-equivariant Bre-

don cohomology groups out of the (potentially easier to calculate)
G- respectively, H-equivariant cohomology groups of X and Y , to-
gether with knowledge about their structure as modules over the ring
M(K/K).

The pullback structure in 1.1 appears in the computations of Bredon
cohomology of crystallographic groups Γ with a given (finite) point
group K. These groups are given as an extension

(1.2) 1→ Zn → Γ→ K → 1

where K is finite and the conjugation action on Zn is given by a rep-
resentation ρ : K → Gln(Z). In this situation, the space Rn with the
induced action is a model for EΓ. This is a consequence of Proposition
1.12, page 30 in [CK90].

Splitting the representation ρ : K → Gln(Z) gives a pullback struc-
ture on Γ. More precisely, assume that Zn with the action given by ρ
has a K-invariant decomposition Zn = A⊕B.

Denote by G the semidirect product AoK and by H the semidirect
product B o K. Then, the group Γ is isomorphic to the pullback
G×K H. See Remark 2.24 for details on this.

The main application of Theorem 2.19 will be a method for the com-
putation of equivariant (co)-homology theories evaluated on classifying
spaces for families of subgroups of Γ as in Theorem 3.18.
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The interest in these computations comes from the fact that the
assembly maps in the Baum-Connes conjecture [BCH94]

(1.3) KΓ
∗ (EΓ)→ K∗(C

∗
r (Γ))

and in the Farrell-Jones Conjecture [DL98]

(1.4) HΓ
∗ (EVC(Γ),K−∞(R))→ K∗(RΓ)

involve equivariant homology theories evaluated on these spaces. Com-
putations of Bredon (co)-homology groups associated to these (co)-ho-
mology theories give inputs to a spectral sequence of Atiyah-Hirze-
bruch type [DL98], abutting to the relevant equivariant (co)-homology
groups.

Until now, the methods developed for the computation of K-theory
and K-homology groups of extensions Γ as in 1.2 include assumptions
on the maximality of finite, respectively virtually cyclic subgroups rel-
evant to the computation, as well as strong hypotheses on their nor-
malizers. This concerns particularly conditions M and NM in [LS00],
[DL13], or explicit computations related to the Weyl groups of them,
as in [LL12]. All of them restrict the class of extensions to those arising
from conjugation actions which are free outside of the origin.

In another direction, extensive knowledge of models for both spaces,
using the classification of crystallographic groups in a given dimen-
sion also gives information about the homology groups relevant to the
Farrell-Jones Conjecture, as it is done in [FO12].

The methods derived from the spectral sequence in Theorem 2.19
rely neither on the dimension, as the use of specific models in [FO12],
nor on freeness of the conjugation action as in [LL12], [LS00], [DL13]
and the existence of a unique maximal finite subgroup.

To illustrate our method, we concentrate in a group extension

1→ Z6 → Γ→ Z/4Z→ 1,

which gained interest in theoretical physics [VW95].

Example 1.5. [The 6- dimensional Vafa-Witten toroidal orbifold quo-
tient] Consider the action of Z/4Z on Z⊕6 induced from the action of
Z/4Z on C3, given by

k(z1, z2, z3) = (−z1, iz2, iz3).

The associated semidirect product

(1.6) 1→ Z6 → Γ→ Z/4Z→ 1

will be called the Vafa-Witten group, this splits as a multiple pullback

(Z o Z/4Z)×Z/4Z (Z o Z/4Z)×Z/4Z (Z2 o Z/4Z)×Z/4Z (Z2 o Z/4Z).
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Where the first two semidirect products are taken with respect to the
representation −1 : Z/4 → Gl1(Z) given by scalar multiplication by
−1, and the two last ones are given by the representation i : Z/2→ Z2

given by complex multiplication by i. Notice that the action deter-
mined by Γ in EΓ, and more specifically, the one coming from the
block given by the action Z o Z/4Z is not free outside of the origin.
Condition M of [Lüc05] is not satisfied in this case, because if we denote
by 1 the generator of Z and by t a generator of Z/4Z, we have that the
group 〈(0, t2)〉 ∼= Z/2Z is contained in two maximal finite subgroups
namely 〈(0, t)〉 and 〈(1, t)〉, although our methods readily apply to this
situation.

For the group described in Example 1.5, we show that the spectral
sequence from Theorem 2.19 collapses at the E2-term for the specific
choice of the complex representation ring as a Bredon coefficient sys-
tem. With the use of a Universal Coefficient Theorem for Bredon
Cohomology, Theorem 1.13 in [BV14], completely determines the equi-
variant K-Homology of the classifying space for proper actions.

Theorem. 3.18 [Topological K-Theory] Let Γ be the group Z6oZ/4Z
acting on R6 as in 1.5. The topological K-theory of the reduced C∗-
algebra of Γ is as follows:

• K0(C∗r (Γ)) ∼= KΓ
0 (EΓ) ∼= Z⊕47 and

• K1(C∗r (Γ)) ∼= KΓ
1 (EΓ) = 0.

The ideas developed in Theorem 2.19 and subsequent computations
are particularly well-suited to families of subgroups which are well-
behaved under products. The example for such a family is, notably,
the family of finite subgroups. Although the Eilenberg-Moore method
2.19 does not transfer directly to the family of virtually cyclic subgroups
due to its bad behaviour under products, we are able to deduce using
positive results on the Farrell-Jones Conjecture [Tsa95], [JP03], [FJ]
and computations of lower algebraic K-Theory [Cara], [Carb], the fol-
lowing result, computing the negative algebraic K-theory of the group
ring RG.

Theorem. 3.22 [Negative algebraic K-Theory] Let Γ be the group
determined by the extension 1.6. Let R be a ring of algebraic integers.
Then,

Ki(RΓ) = 0, for all i < 0.

This paper is organized as follows:
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2. The Eilenberg-Moore spectral sequence and Bredon
Cohomology

Definition 2.1. Recall that a G-CW complex structure on the pair
(X,A) consists of a filtration of the G-space X = ∪−1≤nXn with X−1 =
∅, X0 = A and every space is inductively obtained from the previous
one by attaching cells with pushout diagrams∐

λ S
n−1 ×G/Hλ

//

��

Xn−1

��∐
λD

n ×G/Hλ
// Xn

Definition 2.2. Let F be a family of subgroups which is closed under
subgroups and conjugation. A model for the classifying space for the
family F is a G-CW complex X satisfying

• All isotropy groups of X lie in F .
• For any G-CW complex Y with isotropy in F , there exists up

to G-homotopy a unique G-equivariant map f : Y → X.

A model for the classifying space of the family F will be usually
denoted by EF(G).
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Particularly relevant is the classifying space for proper actions, the
classifying space for the family FIN of finite subgroups, denoted by
EG and the space EVC(G) for the family VC of virtually cyclic sub-
groups.

Let X be a G-CW-complex. The Bredon chain complex is de-
fined as the contravariant functor to the category of chain complexes
CG
∗ (X) : OrF(G)→ Z− CHCOM which assigns to every object G/H

the cellular Z-chain complex of the H-fixed point complex C∗(X
H) ∼=

C∗(MapG(G/H,X)) with respect to the cellular boundary maps ∂∗.
The n-chains of the Bredon chain complex evaluated on an object
G/K of the orbit category, consist of elements of free abelian groups⊕

λ Z[eλ], where eλ denotes the cell orbits of type Dn × G/K in the
cell decomposition above and Z[eλ] denotes the free abelian group gen-
erated by eλ.

Let G be a discrete group, let Or(G) be the orbit category of G,
where objects are homogeneous setsG/H and morphisms areG-equivariant
maps.

Convention 2.3. Let R be a ring and F be a family of groups. Recall
that a contravariant Bredon functor M with values on R-modules is
a contravariant functor defined on the full subcategory Or(G,F) con-
sisting of homogeneneous spaces G/H, where H ∈ F . In this paper we
suppose that Bredon functors are endowed with a representable Green
functor structure. For a definition of Green functors see [Bou97].

Definition 2.4 (Bredon cochain complex). Given a contravariant Bre-
don functor M , the Bredon cochain complex C∗G(X;M) is defined as
the abelian group of natural transformations of functors defined on the
orbit category C∗G(X)→M . In symbols,

Cn
G(X;M) = HomOrF(G)

(CG
n (X),M),

where F(G) is a family containing the isotropy groups of X.
Given a set {eλ} of representatives of the orbits of n-cells of the G-

CW complex X, and isotropy subgroups Pλ of the cells eλ, the abelian
groups Cn

G(X,M) satisfy:

Cn
G(X,M) =

∏
λ

HomZ(Z[eλ],M(G/Pλ))

with one summand for each orbit representative eλ. They afford a
differential δn : Cn

G(X,M)→ Cn+1
G (X,M) determined by ∂∗ and maps

M(φ) : M(G/Pξ)→M(G/Pλ) for morphisms φ : G/Pλ → G/Pξ.
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Given a Bredon functor M , the Bredon cochain complex has cup
products

∪ : Cm
G (X,M)⊗ Cn

G(X,M)→ Cn+m
G (X,M).

See [Bre67], Chapter I.8 in pages 19-20.
We will list now some algebraic definitions.

Definition 2.5 (Differential Graded Algebra). Let A be a graded alge-
bra. A is said to be a differential graded algebra (DGA) if there exists
a group homomorphism d : A→ A of degree +1 satisfying

(i) d2 = 0
(ii) d(ab) = d(a)b + (−1)|a|ad(b) where | a | is the degree of the

element a ∈ A.

Definition 2.6 (Differential Modules over a Differential Graded Alge-
bra). Let (A, dA) be a differential graded algebra. A differential graded
module over A is a graded A-moduleM together with differentials dM
satisfying dM(am) = dA(a)m+ (−1)|m|adM(m)

Remark 2.7 (DGA Associated to a Bredon Module). Let M be a
contravariant Bredon functor. The differential graded algebra C∗G(M)
is defined as the inverse limit

C0
G(M) = lim

G/P∈F
M(G/P )

where the limit is taken in the category of commutative rings with 1,
Ci
G(M) = 0 for i 6= 0, and di = 0 for all i. Note that if the group G is

finite, and F is the family of finite subgroups, C0
G(M) = M(G/G).

The full Bredon cochain complex
⊕

nC
n
G(X,M) together with the

differential graded C∗G(M)-module structure will be denoted by C∗G(X,M).

Definition 2.8 (Bredon cohomology). The Bredon cohomology groups
with coefficients in M , denoted by H∗G(X,M) are the cohomology
groups of the cochain complex

(
C∗F(X,M), δ∗

)
.

We will now assume the following condition, which simplifies the
differential graded structure involved in the cochain complexes.

Condition 2.9 (Condition P). We will assume that Γ fits in a pullback
diagram as in condition 1.1.

Consider a contravariant Bredon functor M defined on the orbit
categories Or(Γ,F), Or(G, p1(F)) and Or(H, p2(F)). Given elements
G/P and H/Q in Or(G, p1(F)), respectively Or(H, p2(F)),

• The maps π∗1 : M(K/π1(P ))→M(G/P ), π∗2 : M(K/π2(P ))→
M(H/Q) furnish M(G/P ) and M(H/Q) with structure of pro-
jective modules over the ring M(K/π1(P )) = M(K/π2(P )).
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The following fact is crucial for our computations related to the
family of finite subgroups.

Lemma 2.10 (Structure Lemma for families of finite subgroups). Let
Γ be a group given as a pullback as in 1.1.

• The structure maps p1 and p2 give a bijective correspondence
between the elements of the family FIN (Γ) and the family
FIN (G) ×K FIN (H) = {(P ×π1(P ) Q) | P ∈ FIN (G), Q ∈
FIN (H)}.
• Let X and Y be proper G-, respectively H-CW-complexes. Then,

the isotropy groups of the action of G×KH in X×Y are con-
tained in the family FIN (G)×K FIN (H).

Proposition 2.11. Given a pullback diagram as in condition 1.1, and
a restriction of the pullback to finite subgroups

Γ1
p2

//

p1

��

Q

π2
��

P
π1
// π1(P )

there is a natural isomorphism of M(K/π1(P ))-modules

M(Γ/Γ1) ∼= M(G/P )⊗M(K/π1(P )) M(H/Q).

Where the M(K/π1(P ))-module structure in both sides is given by the
pullback diagram.

Proof. As the functor M is representable it preserve colimits, then it
sends a pullback diagram 1.1 in a pushout diagram

M(Γ/Γ1) M(H/Q)
p∗2

oo

M(G/P )

p∗1

OO

M(K/π1(P )).
π∗1

oo

π∗2

OO

On the category of algebras, pushouts corresponds to tensor products,
then one have M(Γ/Γ1) ∼= M(G/P )⊗M(K/π1(P )) M(H/Q). �

Definition 2.12. Let Γ be a group given as a pullback as in Condition
1.1. Let M be a contravariant Bredon functor defined on the orbit
categories Or(Γ,F), Or(G, p1(F)) and Or(H, p2(F)). We will denote
by MG = M | Or(G, p1(F)), respectively MH = M | Or(H, p2(F)).

Consider the category Or(G,FIN )×Or(H,FIN ) and consider the
functor defined on its objects G/R×H/Q as M(G/R)⊗ZM(H/Q) and
its morphism in a similar way. We will denote the restriction of this
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functor to Or(G×K H,FIN ) by MG ⊗Z M
H . This functor is defined

on each object G×K H/P ×π1(P ) Q as,

MG ⊗Z M
H :OrF×KF ′(G×K H) → RINGS

(G×K H)/(P ×π1(P ) Q) 7→M(G/P )⊗Z M(H/Q).

Convention 2.13. We can define a further equivalence relation over
the restriction of this tensor product, we say α · ρ1 ⊗ ρ2 ∼ ρ1 ⊗ α · ρ2,
where α ∈M(G/π1(P )) and the products in both sides are defined via
the maps π∗1 and π∗2. Denote the quotient by (MG ⊗MK MH).

Lemma 2.14. The isomorphism in Proposition 2.11 can be promoted
to a natural equivalence between the functors MΓ and (MG⊗MK MH).

Proof. Given a G-map

G×K H/P ×π1(P ) Q→ G×K H/P ′ ×π1(P ′) Q
′,

this map is characterized by an element in G ×K H that conjugates
P ×π1(P ) Q to a subgroup of P ′ ×π1(P ′) Q

′. Now, taking the restriction
to subconjugate subgroups commutes with taking the pullbacks with
respect to p1 and p2 due to the Structure Lemma 2.10. �

Taking the associated differential algebra structure, one obtains:

Proposition 2.15. Under the assumptions of lemma 2.10, there is a
natural isomorphism of differential graded algebras

C∗G(M)⊗C∗K(M) C
∗
H(M)→ C∗G×KH(M).

Proof. As the differential map is zero on C∗G×KH(M) it is a consequence
of Lemma 2.14. �

Note that if X is a proper G-CW-complex and Y is a proper H-CW-
complex, the product X × Y has a natural structure of (G×H)-CW-
complex (the cells correspond to product of cells of X and Y ). From
this structure we can construct a (G×K H)-CW-complex structure in
X × Y . Given a (G×H)-equivariant cell eλ = Dn × (G×H/P ×Q),
set

eλ,t = Dn × (G×K H/P ×π1(P ) Q)

for t ∈ (G×H/G×KH)/(P ×Q/P ×HQ). Notice that CG×KH
∗ (X×Y )

can be obtained as the composition

OrF×KF ′(G×K H)
i]−→ OrF×F ′(G×H)

CG×H∗ (X×Y )−−−−−−−−→ Z− CHCOM

where i] is the map induced by the inclusion

i : G×K H → G×H.
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Proposition 2.16. There is an isomorphism of OrF×KF ′(G ×K H)-
chain complexes

CG×KH
∗ (X × Y ) ∼= i](C

G
∗ (X)⊗ CH

∗ (Y )).

Moreover, the isomorphism is compatible with the Differential Graded
Algebra structure.

Proof. The identification of the isotropy groups of the second part of
Lemma 2.10, and the usual Eilenberg-Zilber argument identify up to
chain homotopy eqivalence the chain complexes over the orbit category

CG×H
∗ (X × Y ) ∼= CG

∗ (X)⊗ CH
∗ (Y )

as OrF×F ′(G×H)-chain complexes.
The differential graded structure is preserved since the differential

graded algebra C∗K(M) is concentrated in degree zero and the cup
product agrees with the module structure over the commutative ring
M(K/K).

�

We can refine Proposition 2.11 to an isomorphism of differential
graded algebras:

Proposition 2.17. There is an isomorphism of differential graded al-
gebras

Hom(i](C∗(X)⊗ C∗(Y )), C∗G(M)⊗C∗K(M) C
∗
H(M))

∼=−→
C∗G(X,M)⊗C∗K(M) C

∗
H(Y,M).

Proof. Notice that in degree n the left hand side cochain complex is⊕
λ,µ

HomZ(Z[eλ]⊗Z Z[fµ],M(G/Pλ)⊗M(K/π1(Pλ)) M(H/Qµ)),

where eλ denotes a cell in X with isotropy group Pλ and fµ denotes a
cell in Y with isotropy group Qµ, and the sum is taken over the pairs
λ and µ such that dim(eλ) + dim(fµ) = n. Note that Z[eλ]⊗Z Z[fµ] is
isomorphic as abelian group to Z. Then, each summand in the direct
sum is isomorphic to

M(G/Pλ)⊗M(K/π1(Pλ)) M(H/Qµ),

and the left hand side cochain complex in degree n is isomorphic to⊕
λ,µ

M(G/Pλ)⊗M(K/π1(Pλ)) M(H/Qµ).
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The right hand side cochain complex in degree n is⊕
λ

HomZ(Z[eλ],M(G/Pλ))⊗M(K/π1(Pλ)) HomZ(Z[fµ],M(H/Qµ)).

Using 2.16, this term is isomorphic to M(G/Pλ)⊗M(K/π1(Pλ))M(H/Qµ)
and a straightforward calculation shows that the isomorphism are com-
patible with the coboundary maps. �

Recall the construction of the Eilenberg-Moore spectral sequence,
page 241 in Chapter 7 of [McC01].

Theorem 2.18 (First Eilenberg-Moore Theorem). Let A be a differen-
tial graded algebra over the ring R, let M and N be differential graded
A-modules. Assume A and the graded R-Module given by the homology
of A (denoted by H(A)), are flat modules over R. Then, there is a
second quadrant spectral sequence with

Ep,q
2 = Torp,qH(A)(H(M), H(N))

converging to Torp,qA (M,N).

Specializing to the Bredon cochain complex and the differential graded
module structure, we have

Theorem 2.19. Let Γ = G×K H be a group satisfying condition 1.1.
Let M be a contravariant Bredon Functor taking values on the category
of commutative rings. Assume that X is a proper G-CW complex and
Y is a proper H-CW complex. Then, there is a spectral sequence with
E2 term given by

Torp,qH(C∗K(M))(H
∗
F(X,M), H∗F ′(Y,M))

which converges to

Torp,qC∗K(M)(C∗G(X,M),C∗H(Y,M)).

Notice that, as the differential graded algebra C∗K(M) is concentrated
in degree 0 and has no differentials, the E2 term can be identified with

Torp,qC∗K(M)(H
∗
F(X,M), H∗F ′(Y,M)).

Proposition 2.20. Denote by R the Bredon functor given by the rep-
resentation ring. Then, C∗G(X,R) is a C∗G(R)-projective module.

Proof. The cochain complex Cn
G(X,R) in degree n is isomorphic to a

module of the form

Hom(
⊕
λ

Z[eλ],R),
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where eλ is an orbit cell of the type G/Hλ × Dn. Using the Yoneda
lemma, this is isomorphic to colimHλR(G/Hλ), where the limit is taken
with respect to G-maps G/H → G/K. Since the representation ring
is semisimple due to the Schur-Artin-Wedderburn theorem, this is a
projective module over C∗G(R). �

If conditions 2.9 are satisfied, C∗G(X,M) is a projective C∗K(M)-
module. Moreover if H∗G(X,M) is a projective C∗K(M)-module, then by
Lemma 7.3 in [McC01] the spectral sequence of Theorem 2.19 collapses
at level 2 with

Torp,qC∗K(M)(H
∗
F(X,M), H∗F ′(Y,M)) ∼= Hp

F(X,M)⊗C∗K(M) H
q
F ′(Y,M)),

and

Torp,qC∗K(M)(C
∗
G(X,M), C∗H(Y,M)) ∼= Hp(C

∗
G(X,M))⊗C∗K(M) C

q
H(Y,M)).

Proposition 2.15, 2.16, and 2.17 yield

Theorem 2.21 (Bredon cohomology of pullbacks). If conditions 2.9
are satisfied and H∗G(X,M) is a projective C∗K(M)-module, there is an
isomorphism of C∗K(M)-modules

H∗F×KF ′(X × Y,M) ∼= H∗F(X,M)⊗C∗K(M) H
∗
F ′(Y,M).

When we take rational coefficients, the spectral sequence constructed
above collapses and we obtain a Künneth formula. Let MQ(?) be the
functor M with rational coefficients i.e. MQ(G/H) = M(G/H)⊗Z Q.

Corollary 2.22 (Rationalized Bredon cohomology of pullbacks). There
is an isomorphism of MQ-modules

H∗F×KF ′(X × Y,M
Q) ∼= H∗F(X,MQ)⊗MQ(K/K) H

∗
F ′(Y,M

Q).

In order to apply Theorem 2.21 in the following section, we will need
the following elementary lemma.

Lemma 2.23. Let

0→ A→ B → C → 0

be an exact sequence of projective R-modules and Ibe an ideal in R,
then, the sequence

0→ A/I → B/I → C/I → 0

is exact.
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Bredon cohomology of Crystallographic groups of arbitrary
dimension with a given point group.

Remark 2.24. Let Γ be a group extension

1→ Zn → Γ→ K → 1

given by the conjugation action of a representation ρ : K → Gln(Z) of
a finite group K. Then,

• The space Rn with the induced action is a model for EΓ. This
is a consequence of Proposition 1.12, page 30 in [CK90].
• Let 1→ Zn → Γ→ K → 1 be a group extension coming from

a representation of a finite group ρ : K → Gln(Z). Assume
that Zn with the action given by ρ has a K-invariant decom-
position Zn = A ⊕ B. Denote by G the semidirect product
A o K and by H the semidirect product B o K. Then, the
group Γ is isomorphic to the pullback G ×K H, as it can be
readily seen from the following diagram,

Γ //

��

G

��

H // K

Here, the maps Γ → H and Γ → G are determined by
the projections onto the invariant K-submodules Zn → A and
Zn[ρ] → B, which in turn induce group homomorphisms Γ =
Zn oK → G = AoK, Γ = Zn oK → G = B oK giving the
relevant group homomorphisms out of Γ.

The spectral sequence constructed in Theorem 2.19 suggests a method
to compute the Bredon cohomology groups H∗Γ(EΓ,M):

• Decompose the representation ρ as direct sum ρ = ⊕niρi of
indecomposable representations ρi : K → Glni(Z) .
• Consider the group extensions

1→ Zni → Γi → K → 1

• Compute the (potentially easier) Bredon cohomology groups
H∗Γi(EΓi,M)
• Feed the spectral sequence 2.19 with the cohomology groups.
• Establish the relevant differential graded module structures

and obtain information about H∗Γ(EΓ,M).

For finite groups K for which any prime p, the p-Sylow subgroup
is of order less than p3, there is a finite number of irreducible such
representations ρi [HR62].
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We will specialize in crystallographic groups with point group Z/4Z
for an specific example and carry out this program obtainting complete
integral information in the next section.

3. Computations for the Vafa-Witten group Γ.

Consider the action of Z/4Z on Z⊕6 induced from the action of Z/4Z
on C3, given by

k(z1, z2, z3) = (−z1, iz2, iz3).

The associated semidirect product

1→ Z6 → Γ→ Z/4Z→ 1

will be called the Vafa-Witten Group and splits as a multiple pullback

(3.1) (ZoZ/4Z)×Z/4Z(ZoZ/4Z)×Z/4Z(Z2oZ/4Z)×Z/4Z(Z2oZ/4Z).

The first two semidirect products are taken with respect to the of Z/4
on Z given by scalar multiplication with −1, and the two last ones are
given by the action on Z2 given by complex multiplication by i.

First we will apply the Spectral sequence constructed in previous
sections to compute the equivariant K-Theory and K-homology of the
classifying space EΓ. Using the universal coefficient Theorem 1.13 in
[BV14] and the Atiyah-Hirzebruch spectral sequence, we obtain the
equivariant K-homology groups relevant to the Baum-Connes conjec-
ture.

Finally, we classify the virtually cyclic subgroups appearing in Γ,
and using results on the algebraic K-theory in degrees lower than −1,
we wil conclude the vanishing result.

Topological K-theory and K-homology. We begin with a recol-
lection of the building blocks of the action, as well as their Bredon
Cohomology groups.

R with the action of ZoZ/4Z. Let X = R with the action of the group
G = Z o Z/4Z where the semidirect product is taken with respect to
the action given by multiplication with −1, −1 : Z/4Z → Z. Notice
that X is a model for EG.

The space X has a G-CW-complex structure with two 0-cell orbits
{0, 1/2} both with isotropy groups isomorphic to Z/4Z and one 1-cell
orbit [0, 1/2] with isotropy group Z/2Z. The Bredon cellular complex
takes the form

0→ R(Z/4Z)⊕R(Z/4Z)→ R(Z/2Z)→ 0.
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Where R(Z/4Z) is the representation ring of the finite cyclic group of
order 4, (Z/4Z). This is a polynomial algebra isomorphic to Z[η]/η4−1,
where η is the generator.

The Bredon cohomology groups of X with respect to the family of
finite subgroups FIN (Z o Z/4Z) (we denote by F) with coefficients
in representations can be easily calculated from it and they are con-
centrated in degree 0, with H0

F(X,R) = Z⊕6. We calculate also some
quotients of H0

F(X,R) that we need in the following. From the calcu-
lations of the cohomology groups of X we know that we have an exact
sequence of projective R(Z/4Z)-modules

0→ H0
F(X,R)→ (R(Z/4Z))2 → R(Z/2Z)→ 0.

As all R(Z/4Z)-modules in the above exact sequence are projective,
hence we can apply Lemma 2.23 with the ideal I = 〈η2 − 1〉 contained
in R(Z/4Z) = Z[η]/〈η4 − 1〉, obtaining the exact sequence

0→ H0
F(X,R)/I·H0

F(X,R)→
(R(Z/4Z))2/I · (R(Z/4Z)2)→ R(Z/2Z)→ 0.

From the last exact sequence counting ranks we obtain

H0
F(X,R)/I ·H0

F(X,R) ∼= Z⊕2.

Finally, if we denote by J the ideal 〈η− 1〉, as X/G is path-connected,

H0
F(X,R)/J ·H0

F(X,R) ∼= Z.

R2 with the action of Z2 o Z/4Z. Let Y = R2 with the action of the
group H = Z2 o Z/4Z where the semidirect product is taken with
respect to the action i : Z/4Z → Gl2(Z) given by multiplication by i.
Note that Y is a model for EH. Y is an H-CW-complex with three
0-cell orbits (0, 0), (1/2, 0) and (1/2, 1/2), two 1-cell orbits a0 and a1

and one 2-cell orbit T .
The Bredon cellular chain complex takes the form

0→ R(Z/4Z)⊕R(Z/4Z)⊕R(Z/2Z)→ Z⊕ Z→ Z→ 0.

Or in an equivalent way

0→R(Z/4Z)⊕R(Z/4Z)⊕R(Z/4Z)/I →
R(Z/4Z)/J ⊕R(Z/4Z)/J → R(Z/4Z)/J → 0.

The Bredon cohomology groups of Y respect to the family of finite
subgroups FIN (ZoZ/4Z) (we denote by F ′) with coefficients in rep-
resentations are concentrated in degree 0 and 2, with H0

F ′(Y,R) = Z⊕8

and H2
F ′(Y,R) = Z. Note that it is compatible with the results in
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[Lüc05] in section 2, since the group Z2 oiZ/4Z satisfies hypotheses M
and NM (Lemma 2.2 in page 1648).

From the calculations of the cohomology groups of Y we know that
there is an exact sequence of projective R(Z/4Z)-modules

0→ H0
F ′(Y,R)→ (R(Z/4Z))2 ⊕R(Z/2Z)→ Z2 → 0.

As we do for X, we calculate also the quotients H∗F ′(Y,R)/I ·H∗F ′(Y,R).
Taking the quotient by I from the last exact sequence we obtain

0→ H0
F ′(Y,R)/I·H0

F ′(Y,R)→
(R(Z/4Z))2/I · (R(Z/4Z)2)⊕R(Z/2Z)→ Z2 → 0.

And counting ranks we have

H0
F ′(Y,R)/I ·H0

F ′(Y,R) ∼= Z⊕2.

As Y/H is path-connected

H0
F ′(Y,R)/J ·H0

F ′(Y,R) ∼= Z.

Finally, since η2 − 1 = 0 and η − 1 = 0 in H2
H(Y,R) we obtain

H2
F ′(Y,R)/I ·H2

F ′(Y,R) ∼= H2
F ′(Y,R)/J ·H2

F ′(Y,R) ∼= Z.

R6 with the action of Z6 oZ/4Z. We proceed to calculate the Bredon
cohomology groups of the space X2 = X × X with the action of the
group G×Z/4Z G. Theorem 2.21 gives us an isomorphism

H0
F×Z/4ZF(X2,R) ∼= H0

F(X,R)⊗R(Z/4Z) H
0
F(X,R).

From the calculations of the cohomology groups of X, we know that
we have an exact sequence of projective R(Z/4Z)-modules

(3.2) 0 → H0
F(X,R) → (R(Z/4Z))2 → R(Z/2Z) → 0,

as R(Z/2) ∼= R(Z/4)/I by tensoring this sequence with H0
F(X,R) we

obtain the exact sequence

(3.3) H0
F(X,R)⊗R(Z/4Z) H

0
F(X,R)→ (H0

F(X,R))2 →
H0
F(X,R)/I ·H0

F(X,R)→ 0.

The rank of (H0
F(X,R))2 is 12, as can be seen from counting ranks

in sequence 3.2
and the rank of H0

F(X,R)/I ·H0
F(X,R) is 2 then

H0
F(X,R)⊗R(Z/4Z) H

0
F(X,R) ∼= Z⊕10.
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For simplicity we denote the group H0
F(X,R)⊗R(Z/4Z)H

0
F(X,R) by A.

Dividing the sequence 3.3 by the ideal I, respectively, by J we obtain
A/I · A ∼= Z⊕2 and A/J · A ∼= Z.

We continue calculating

H0
F(X,R)⊗R(Z/4Z) H

0
F(X,R)⊗R(Z/4Z) H

0
F ′(Y,R).

From the calculations of the cohomology groups of Y we know that
there is an exact sequence of projective R(Z/4Z)-modules

(3.4) 0→ H0
F ′(Y,R)→ (R(Z/4Z))2 ⊕R(Z/2Z)→ Z2 → 0.

by tensoring this sequence with A = H0
F(X,R)⊗R(Z/4Z) H

0
F(X,R), we

obtain

(3.5) A⊗R(Z/4Z) H
0
F ′(Y,R)→ A2 ⊕ (A/I · A)→ (A/J · A)2 → 0,

then

(3.6) A⊗R(Z/4Z) H
0
F ′(Y,R) ∼= Z⊕20.

If we divide 3.5 by I, respectively by J , we obtain

(3.7) A⊗R(Z/4Z) H
0
F ′(Y,R)/I · (A⊗R(Z/4Z) H

0
F ′(Y,R)) ∼= Z⊕6

and

(3.8) A⊗R(Z/4Z) H
0
F ′(Y,R)/J · (A⊗R(Z/4Z) H

0
F ′(Y,R)) ∼= Z.

On the other hand as H2
F ′(Y,R) ∼= R(Z/4Z)/J we have

(3.9) H0
F(X,R)⊗R(Z/4Z)H

0
F(X,R)⊗R(Z/4Z)H

2
F ′(Y,R) ∼= A/J ·A ∼= Z.

We continue calculating

H0
F(X,R)⊗R(Z/4Z) H

0
F(X,R)⊗R(Z/4Z) H

0
F ′(Y,R)⊗R(Z/4Z) H

0
F ′(Y,R).

Tensoring the sequence 3.5 with H0
F ′(Y,R) we obtain an exact sequence

(3.10) A⊗R(Z/4Z) H
0
F ′(Y,R)→ A2 ⊕ (A/I · A)→ (A/J · A)2 → 0.

If we tensor this sequence by H0
F ′(Y,R) we obtain

A⊗R(Z/4Z) H
0
F ′(Y,R)⊗2

→ A2 ⊗R(Z/4Z) H
0
F ′(Y,R)⊕ (A/I · A)⊗R(Z/4Z) H

0
F ′(Y,R)

→ (A/J · A)⊗R(Z/4Z) H
0
F ′(Y,R)2 → 0.

On the other hand by 3.6 we know A2 ⊗R(Z/4Z) H
0
F ′(Y,R) ∼= Z⊕40, by

3.7 we know (A/I · A) ⊗R(Z/4Z) H
0
F ′(Y,R) ∼= Z⊕6, and by 3.8 (A/I ×

A)⊗R(Z/4Z)H
0
F ′(Y,R) ∼= Z. Then the exact sequence 3.10 is isomorphic

to
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A⊗R(Z/4Z) H
0
F ′(Y,R)→ Z⊕46 → Z⊕2 → 0,

then we have

H0
F(X,R)⊗R(Z/4Z)H

0
F(X,R)⊗R(Z/4Z)H

0
F ′(Y,R)⊗R(Z/4Z)H

0
F ′(Y,R) ∼= Z⊕44.

Now, Theorem 2.21 implies

(3.11) H0
FIN (Γ)(R6,R) ∼= Z⊕44

On the other hand, Theorem 2.21 gives us an isomorphism

H2
FIN (Γ)(R6,R) ∼=

(H0
F(X,R)⊗R(Z/4Z) H

0
F(X,R)⊗R(Z/4Z) H

0
F ′(Y,R)⊗R(Z/4Z) H

2
F ′(Y,R))2.

Tensoring the sequence 3.10 by H2
F ′(Y,R), we obtain an exact se-

quence

(3.12) A⊗R(Z/4Z) H
0
F ′(Y,R)⊗R(Z/4Z) H

2
F ′(Y,R)→

A2 ⊕ (A/I · A)⊗R(Z/4Z) H
2
F ′(Y,R)→

(A/J · A)2 ⊗R(Z/4Z) H
2
F ′(Y,R)→ 0.

But by 3.9 we have that

A2 ⊗R(Z/4Z) H
2
F ′(Y,R) ∼= (A/J · A)2 ∼= Z⊕2

and

(A/I · A)⊗R(Z/4Z) H
2
F ′(Y,R) ∼= ((A/(J · A)/(I · A)) ∼= A/J · A ∼= Z.

Then the sequence 3.12 is isomorphic to

(3.13) A⊗R(Z/4Z) H
0
F ′(Y,R)⊗R(Z/4Z) H

2
F ′(Y,R)→

Z⊕2 ⊕ Z→ Z⊕2 → 0.

And we obtain

H0
F(X,R)⊗R(Z/4Z) H

0
F(X,R)⊗R(Z/4Z) H

0
F ′(Y,R)⊗R(Z/4Z) H

2
F ′(Y,R) ∼=

∼= A/J · A ∼= Z.
Then,

(3.14) H2
FIN (Γ)(R6,R) ∼= Z⊕ Z.

Finally, Theorem 2.21 gives us an isomorphism

(3.15) H4
FIN (Γ)(R6,R) ∼=

H0
F(X,R)⊗R(Z/4Z) H

0
F(X,R)⊗R(Z/4Z) H

2
F ′(Y,R)⊗R(Z/4Z) H

2
F ′(Y,R).
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Tensoring 3.9 by H2
F ′(Y,R) ∼= R(Z/4Z)/J we obtain

(3.16)

H0
F(X,R)⊗R(Z/4Z)H

0
F(X,R)⊗R(Z/4Z)H

2
F ′(Y,R)⊗R(Z/4Z)H

2
F ′(Y,R) ∼=

A/J · A ∼= Z.
We summarize these results in

Theorem 3.17. Let Γ be the Vafa-Witten Group Z6oZ/4Z 1.6 acting
on R6 as is described in Section 1. The Bredon cohomology groups of
R6 are given as follows:

• H0
FIN (Γ)(R6,R) ∼= Z⊕44,

• H2
FIN (Γ)(R6,R) ∼= Z⊕ Z,

• H4
FIN (Γ)(R6,R) ∼= Z, and

• Hk
FIN (Γ)(R6,R) = 0, for k 6= 0, 2, 4.

Proof. Recall the multiple pullback structure

(Z o Z/4Z)×Z/4Z (Z o Z/4Z)×Z/4Z (Z2 o Z/4Z)×Z/4Z (Z2 o Z/4Z).

The result follows from 3.11, 3.14 and 3.15. �

As the Bredon cohomology groups are concentrated in even degrees
and all differentials in the Atiyah-Hirzebruch spectral sequence are de-
fined from even degrees to odd degrees or from odd degrees to even
degrees one has that all differentials are zero then it spectral sequence
collapses at the E2 term, and we get

Theorem 3.18 (Equivariant K theory of EΓ). Let Γ denote the group
Z6 oZ/4Z acting on the model for EΓgiven by R6 as it is described in
Section 1. The equivariant K-theory groups satisfy

• K0
Γ(EΓ) ∼= Z⊕47 and

• K1
Γ(EΓ) = 0

Recall the universal coefficient theorem for Bredon cohomology with
coefficients in complex representations, Theorem 1.13 in [BV14], which
we quote here for the sake of completeness:

Theorem (Universal Coefficient Theorem for Bredon Cohomology).
Let X be a proper, finite G-CW complex. Let M ? and M? be the com-
plex representation ring with contravariant, respectively covariant func-
toriality. Then, there exists a short exact sequence of abelian groups
involving Bredon Homology with coefficients in M ? and Bredon homol-
ogy with coefficients in M?

0→ ExtZ(HFn−1(X,M?),Z)→ Hn
F(X,M ?)→ HomZ(HFn (X,M?),Z)→ 0
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We conclude that the Bredon homology groups above are isomorphic
on each degree to the equivariant Bredon cohomology groups.

Now consider the Atiyah Hirzebruch spectral sequence for comput-
ing Equivariant K-homology groups. The E2 term consists of the
Bredon cohomology groups HF∗ (X,M?) = H∗F(X,M ?), which are con-
centrated on even degrees. Since all differentials in the (homologi-
cal!) Atiyah-Hirzebruch spectral sequence are zero, the edge homo-
morphism identifies the zeroth equivariant K-homology group with the
sum

⊕
N=0,1,2H

F
2n(X,M?) and the first equivariant K-homology group

with 0.
On the other hand, the Baum-Connes assembly map KΓ

∗ (EΓ) →
K∗(C

∗
r (Γ)) is an isomorphism due to results of Higson-Kasparov [HK01].

Putting all this together, we obtain the following computation of the
reduced C∗-algebra of the group Γ.

Corollary 3.19 (Equivariant K-Homology of EΓ). Let Γ denote the
group Z6oZ/4Z acting on the model for EΓgiven by R6 as is described
in Section 1.

• KΓ
0 (EΓ) ∼= K∗0(C∗r (Γ)) ∼= Z⊕47 and

• KΓ
1 (EΓ) ∼= K∗1(C∗r (Γ)) = 0

Negative Algebraic K-Theory. The success of the Eilenberg-Moore
method in the previous computations of Bredon cohomology with re-
spect to the family of finite subgroups relies on the structure lemma
2.10. For the family of virtually cyclic subgroups, there is no such de-
composition. The following result, however, identifies some restrictions
for a subgroup in Γ in order to be virtually cyclic.

Proposition 3.20. Let Γ be a group obtained as a pullback of the type

Γ p2
//

p1
��

G

π1
��

H π2
// K

,

where p1 and p2 are surjective maps. Given a virtually cyclic subgroup
V ≤ Γ, the groups p1(V ), p2(V ) are virtually cyclic.

We define the following family of subgroups of Γ

VC(G)×K VC(H) =

{V1 ×π1(V1) V2 | V1 ∈ VC(G) and V2 ∈ VC(H)}
The family VC(G)×K VC(H) does not agree with the family of vir-

tually cyclic subgroups of Γ. However, every virtually cyclic subgroup
in Γ is contained in an element of the family.
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Thus, a strategy to the classification of virtually cyclic subgroups
of the Group Γ consists of using the iterated pullback decomposition
3, the several projections to the components, as well as classification
results for the family of virtually cyclic subgroups of the components,
take the pullback family and verify whether the groups appearing there
are virtually cyclic.

Proposition 3.21. The virtually cyclic subgroups of the Vafa-Witten
Group are, up to isomorphism, as follows:

• Finite groups 0, Z/2Z, Z/4Z,
• the infinite cyclic group Z,
• Z/2Z× Z, Z/4Z× Z, and
• Z/4Z ∗Z/2Z Z/4Z, D∞, D∞ × Z/2Z, D∞ × Z/4Z.

Proof. The finite groups are readily realizable. We obtain the groups
Z/2Z× Z, Z/4Z× Z inside the product Z4 o−1 Z/4Z

On the other hand, the infinite virtually cyclic subgroups of the group
Z2 oi Z/4Z have been classified in Lemma 3.7, page 1656 of [Lüc05],
which are either cyclic or D∞.

From the product family for the pullback

Z2 oi Z/4Z×Z/4Z Z4 o−1 Z/4Z,
and from the group

Z o−1 Z/4Z ∼= Z/4Z ∗Z/2Z Z/4Z
we obtain the virtually cyclic subgroups

D∞, D∞ × Z/2Z, D∞ × Z/4Z,
and the group Z o−1 Z/4Z, which is isomorphic to the amalgam

Z/4Z ∗Z/2Z Z/4Z.
�

The validity of the Farrell-Jones isomorphism for Γ is a well estab-
lished fact, see for example [LS00] this means that the assembly map
in 1.4 is an isomorphism. Thus, the algebraic K-theory groups of R[Γ]
are isomorphic to the equivariant homology groups

HΓ
i (EVC(Γ),K−∞(R)) for all i ∈ Z.

In order to compute these groups there is an Atiyah-Hirzebruch, [DL98]
spectral sequence converging to them with second page given by

E2
p,q
∼= Hp(BVC; {Kq(R[V ])}),

where the above are homology groups with local coefficients in the
algebraic K-theory groups of R[V ] and V in the family of virtually
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cyclic subgroups of Γ. Let us analyze the coefficients in the above
homology groups Hp(BVC; {Kq(R[V ])}) for p + q ≤ −1. First observe
that from the work of Carter [Carb, Theorem 1], we have that the
group K−1(Z[G]) vanishes for the finite groups of our list above and by
[Cara, Theorem 3], K−i(Z[G]) = 0 for all i > 1 and all finite groups G.
By the work of T. Farrell and L. Jones [FJ, Theorem 2.1 (b)] and the
generalizations in [JP03], K−1(R[V ]) vanishes for V infinite virtually
cyclic subgroup of our list above and by [FJ, Theorem 2.1 (a)] and the
generalizations in [JP03], K−i(R[V ]) also vanish for i ≥ 2 and for all
virtually cyclic groups V . Hence the above spectral sequences consists
of zero terms in the range p+ q ≤ −1. Hence we have:

Theorem 3.22. Let R be a ring of algebraic integers. Let i ≤ −1.
Then, the algebraic K-Theory groups Ki(RΓ) vanish.
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