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Abstract. We study combinatorial properties of the partial order (Dense(Q),⊆).
To do so we introduce cardinal invariants pQ, tQ, hQ, sQ, rQ, iQ describing proper-

ties of Dense(Q). These invariants satisfy pQ ≤ tQ ≤ hQ ≤ sQ ≤ rQ ≤ iQ. We

compare these invariants with their analogues in the well studied Boolean algebra
P(ω)/fin. We show that pQ = p, tQ = t and iQ = i, whereas hQ > h and rQ > r

are both shown to be relatively consistent with ZFC. We also investigate combi-

natorics of the ideal nwd of nowhere dense subsets of Q. In particular, we show
that non(M) = min {|D| : D ⊆ Dense (R) ∧ (∀I ∈ nwd(R)) (∃D ∈ D) (∩D = ∅)} and

cof(M) = min {|D| : D ⊆ Dense (Q) ∧ (∀I ∈ nwd) (∃D ∈ D) (I ∩D = ∅)}. We use

these facts to show that cof(M) ≤ i, which improves a result of S. Shelah.

0. Introduction

The aim of this paper is to point out the similarities and differences between the

structure of P(ω)/fin and the structure of the collection of dense subsets of the rationals.

Such research was suggested by A. Blass in [Bl] and initiated by J. Cichoń in [Ci]. The

basic object studied here is the set

Dense(Q) = {D ⊆ Q : D is dense}

ordered by inclusion, in comparison with the structure ([ω]ω,⊆). Neither one of them

is a separative partial order. The separative quotient of ([ω]ω,⊆) augmented with the

least element 0 is the well known Boolean algebra P(ω)/fin. The separative quotient

of (Dense(Q),⊆) with added least element is not a Boolean algebra, but just a lattice,
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with two dense sets being in the same equivalence class if and only if their symmetric

difference is a nowhere dense subset of Q. It is convenient not to study the quotients

directly but rather to use a pre-order ⊆∗ in the case of P(ω)/fin and ⊆nwd in the case of

Dense(Q), where nwd denotes the ideal of nowhere dense subsets of Q.

Whereas the structure of P(ω)/fin and related cardinal invariants seem to be now

fairly well understood and certainly well-studied, the same can hardly be said about the

next natural step - the study of combinatorial properties of subsets of rational numbers

Q. The hope is that having at least a basic theory at hand (which this note humbly

presents) new applications will arise.

We consider some cardinal invariants of (Dense(Q),⊆nwd) and compare them with

their P(ω)/fin analogues. Our aim was not to introduce more cardinal invariants, how-

ever; introducing them seemed necessary for understanding the similarities and differ-

ences between the structural properties of P(ω)/fin and Dense(Q).1

1. Basic facts and definitions

The rationals Q were characterized by W. Sierpiński (see [Kr]) as the unique (up to

homeomorphism) countable first countable regular space without isolated points. Con-

sider the set 2<ω of all finite sequences of 0’s and 1’s. The set 2<ω ordered by extension

(reverse inclusion) is a partially ordered set known as Cohen forcing. For our purposes

it will be useful to give 2<ω a structure of Q in the following way: For s, t ∈ 2<ω de-

fine s < t if and only if (t ⊂ s and s(|t|) = 0) or (s ⊂ t and t(|s|) = 1) or (there is

k = min{n ∈ dom(s) ∩ dom(t) : s(n) 6= t(n)} and s(k) = 0). This ordering is a linear

ordering on 2<ω which induces a topology on 2<ω homeomorphic to Q. We will identify

Q with the set 2<ω endowed with this topology. Given s ∈ 2<ω denote by Bs the set

{t ∈ 2<ω : s ⊆ t}.

We will compare the topological structure of Q = (2<ω, <) with the usual partial order

structure (2<ω,⊇). Any mention of antichains in 2<ω refers to antichains in the partial

order (2<ω,⊇).

Fact 1.1. (i) The family {Bs : s ∈ 2<ω} forms a π-base in Q = (2<ω, <).

(ii) D ⊆ 2<ω is dense in Q if and only if D is dense in the partial order (2<ω,⊇), i.e.

1“ . . . People know what they do. They generally know why they do what they do. What they don’t

know is what what they do does. . . . ” (M. Foucault: Dreyfuss and Rabinow)
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for every s ∈ 2<ω there is a t ∈ D, s ⊆ t.

(iii) D ⊆ 2<ω is dense in Q if and only if D =
⋃

n∈ω An, where each An is a maximal

antichain in (2<ω,⊇) such that for every s ∈ An |{t ∈ An+1 : s ⊆ t}| ≥ 2.

(iv) H ⊆ 2<ω is open dense in Q then H contains a subset H ′ which is open dense in

the partial order (2<ω,⊇), i.e. H ′ is dense and for every s ∈ H ′, Bs ⊆ H ′. On the other

hand, if H is open dense in (2<ω,⊇) then H is open dense in Q.

(v) N ⊆ 2<ω is nowhere dense in Q if and only if (∀s ∈ 2<ω)(∃t ⊇ s) Bt ∩N = ∅.

Note that N ⊆ 2<ω is nowhere dense if and only if there is a maximal antichain

A ⊆ 2<ω such that (∀s ∈ N)(∃t ∈ A) s ⊆ t. Moreover, if N ⊆ 2<ω is nowhere dense

then the closure of N under initial segments, i.e. the set {t ∈ 2<ω : (∃s ∈ N) t ⊆ s}, is

a closed nowhere dense set containing N .

There is a natural correspondence between the structure of 2<ω and the topology of

the Cantor space 2ω. For s ∈ 2<ω we denote by 〈s〉 the basic clopen set {f ∈ 2ω : s ⊆ f}

of 2ω. Given a subset X of 2<ω let X̂ = {f ∈ 2ω : (∃∞n ∈ ω) f � n ∈ X}. X̂ is a Gδ

subset of 2ω. For K ⊆ 2ω let K̃ = {f � n : f ∈ K and n ∈ ω}.

Fact 1.2. (i) X ⊆ 2<ω is dense if and only if X̂ is dense Gδ in 2ω.

(ii) If X ⊆ 2<ω is dense open then X̂ is dense open in 2ω.

(iii) Let X ⊆ 2<ω be closed under initial segments. Then, if X ⊆ 2<ω is nowhere dense

then X̂ is closed nowhere dense in 2ω. Moreover, X is an infinite closed nowhere dense

subset of Q if and only if X̂ is a non-empty closed nowhere dense set.

(iv) If Y is a dense Gδ subset of 2ω then there is a (not unique) dense X ⊆ 2<ω such

that Y = X̂.

(v) If K is a closed nowhere dense subset of 2ω then N = K̃ is closed nowhere dense in

Q and K = N̂ .

Proof. All but (iv) are completely straightforward. To prove (iv) write Y as a an in-

tersection of a decreasing sequence of Vn, n ∈ ω, where each Vn is open dense. By

zero-dimensionality of 2ω each Vn can be written as a disjoint union of clopen sets, i.e.

Vn =
⋃
{〈si〉 : i ∈ In}, where An = {si : i ∈ In} is a maximal antichain in 2<ω. Without

loss of generality An+1 refines An. Put X =
⋃
{An : n ∈ ω}. �

Recall the definitions and basic facts about the relevant cardinal invariants of the

continuum (see e.g. [BJ]). The symbol b denotes the unbounding number of (ωω,≤∗)
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and d denotes the dominating number of (ωω,≤∗).

cov(M) is the minimal size of a family of meager subsets of 2ω that cover 2ω and

add(M) stands for the additivity of the meager ideal, i.e. the minimal size of a family

of meager subsets of 2ω whose union is not meager. non(M) is the minimal size of non-

meager subset of 2ω and cof(M) is the minimal size of a cofinal family of meager subsets

of 2ω. It is easy to see that add(M) and cof(M) are uncountable regular cardinals. The

cardinal invariants p, t and h are defined later on in the text.

The following proposition sums up provable relationships between these cardinal in-

variants:

Proposition 1.3. (i) p ≤ t ≤ h ≤ b ≤ d and b ≤ non(M),

(ii) (Piotrowski, Szymański) t ≤ add(M),

(iii) (Truss, Miller) add(M) = min{b, cov(M)},

(iv) (Fremlin) cof(M) = max{d,non(M)}.

The invariants h and add(M) as well as b and cov(M) are in ZFC not provably

comparable. For proofs and additional information consult [BJ] and [BS], see also [Va].

The following reformulation of a result of K. Keremedis ([Ke]) is the key to the study of

the structure of the rationals. For the sake of completeness and also since the published

proofs ([Ke], [BJ]) are quite technical and (at least in our opinion) hard to follow, we

present a direct proof here.

Theorem 1.4. (Keremedis) (i) cov(M) is equal to the minimal size of a family F of

nowhere dense subsets of Q such that for every Y ∈ [Q]ω there is an F ∈ F intersecting

Y in an infinite set.

(ii) add(M) is equal to the minimal size of a family F of nowhere dense subsets of Q

such that for every D ∈ Dense(Q) there is an F ∈ F intersecting D in an infinite set.

Proof. Ad (i). For the purposes of this proof we denote by µ the minimal size of a

family F of nowhere dense subsets of Q such that for every Y ∈ [Q]ω there is an F ∈ F

intersecting Y in an infinite set. We divide the proof into three parts:

(1) cov(M) ≤ µ,

(2) µ ≤ d and

(3) µ ≤ cov(M).
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For (1) fix κ < cov(M) and let {Fα : α < κ} be a family of nowhere dense subsets of

2<ω, closed under initial segments. As κ < cov(M), there is an r ∈ 2ω \
⋃
{F̂α : α < κ}.

Recall that F̂α was introduced in section 1. Put Y = {r � n : n ∈ ω}. Then Y ∩ Fα is

finite for all α < κ.

In order to prove (2), fix Q, D1, D2 three disjoint countable dense subsets of 2ω and a

strictly (not mod fin) dominating family {fα : α < d} in ωω consisting of functions with

non-zero values. Enumerate each Di as {di
n : n ∈ ω}. For α < d put

Oα =
⋃
n∈ω

B(d1
n, 1/fα(n)) ∩

⋃
n∈ω

B(d2
n, 1/fα(n)),

where B(x, 1/n) denotes the ball in 2ω of radius 1/n centered around x. Note that each

Oα is a dense open subset of 2ω; hence Nα = Q \ Oα is a nowhere dense subset of Q.

Aiming toward a contradiction assume that there is Y ∈ [Q]ω intersecting each Nα in

a finite set. Then, obviously any infinite subset of Y has the same property. Pick Y0,

an infinite subset of Y converging to some r ∈ 2ω. Then either r 6∈ D1 or r 6∈ D2, say

r 6∈ D1. The set Y1 = Y0∪{r} is then a compact subset of 2ω disjoint from D1. Consider

the distances of points d1
n to Y1. Obviously all are positive, so there is an α < d such

that dist(d1
n, Y1) ≥ 1/fα(n) for all n ∈ ω. This, however, means that Y0 ⊆ Nα which is

a contradiction.

For (3), fix κ < µ and let {Fα : α < κ} be a family of closed nowhere dense subsets

of 2ω. By Fact 1.2, {F̃α : α < κ} is then a family closed nowhere dense subsets of

Q = (2<ω, <). As κ < µ, there is a set Y ∈ [2<ω]ω having finite intersection with all F̃α.

To finish the proof it suffices to prove the following.

Claim. There is a Y forming a decreasing chain in (2<ω,⊇).

If there were such Y , then the real r =
⋃
{s : s ∈ Y } ∈ 2ω is not covered by⋃

{Fα : α < κ}.

We prove the Claim by contradiction. First notice that if Y is infinite and does not

contain an infinite chain it contains an infinite antichain. Recursively construct an infinite

sequence of antichains An in 2<ω so that:

a) An intersects each F̃α in a finite set,

b) An+1 refines An.

c) For every s ∈ An there are infinitely many t ∈ An+1 such that s ⊂ t.

To start, let A0 be an arbitrary infinite antichain satisfying a). Having constructed

An, look at Bs, for s ∈ An. Bs is an open subset of (2<ω, <) homeomorphic to Q, so by
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the hypothesis, there is an infinite antichain As ⊆ Bs intersecting each F̃α in a finite set.

Set

An+1 =
⋃
{As : s ∈ An}.

Note that, as F̃α is upward closed, F̃α ∩An is finite for every n ∈ ω. Enumerate each An

as {sn
i : i ∈ ω} and let, for α < κ,

gα(n) = min{k ∈ ω : (∀m ≥ k)sn
m 6∈ F̃α}.

As κ < µ ≤ d there is a function g which is not ≤∗-dominated by any gα, α < κ. Now,

recursively construct a decreasing sequence {tn : n ∈ ω} ⊆ 2<ω so that:

d) tn ∈ An,

e) tn = sn
i for some i > g(n).

Now, for each α < κ there is an n ∈ ω such that tn 6∈ F̃α. However, as F̃α is upward

closed, this means that tm 6∈ F̃α for all m ≥ n. So Y = {tn : i ∈ ω} is a decreasing chain

in 2<ω intersecting each F̃α in a finite set, which is a contradiction and the proof of the

Claim is finished.

Ad (ii). Denote by µD the minimal size of a family F of nowhere dense subsets of Q

such that for every D ∈ Dense(Q) there is an F ∈ F intersecting D in an infinite set.

To see that add(M) ≤ µD, fix κ < add(M) and let {Fα : α < κ} be a family of

nowhere dense subsets of Q. Fix also an enumeration {Wn : n ∈ ω} of a basis for the

topology on Q. By part (i) of the theorem and the fact that κ < add(M) ≤ cov(M), for

every Wn there is an infinite set Yn = {yn
i : i ∈ ω} ⊆Wn intersecting each Fα in a finite

set. Put

gα(n) = min{k ∈ ω : (∀m ≥ k)yn
m 6∈ Fα}.

As κ < add(M) ≤ b there is a function g dominating all gα, α < κ. Set D = {yn
m : n ∈ ω

and m ≥ g(n)}. D is obviously a dense set for it intersects each Wn in an infinite set.

Moreover, as g dominates gα, {yn
m : m ≥ g(n)} ∩ Fα = ∅ for all but finitely many n;

hence D ∩ Fα is finite, being a finite union of finite sets.

For the other direction fix κ < µD and let {Nα : α < κ} be a family of closed nowhere

dense subsets of 2ω. The sets Ñα are then nowhere dense in Q = (2<ω, <), so there is a

dense setD ⊆ 2<ω such thatD∩Ñα is finite for every α < κ. Then D̂ is a dense Gδ subset

of 2ω disjoint from all Nα. Therefore
⋃

α<κNα is a meager set, thus κ < add(M). �
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Now we establish results in some sense dual to Keremedis’ Theorem. The equality

cof (M) = cof (nwd) was already proven by Fremlin in [Fr]; we are giving a new and

simpler proof. Before doing so, we can make a simple observation.

Fact 1.5. If X is separable metric space without isolated points, then

cof (nwd (X)) = cof (nwd) .

Indeed, if X is a separable metric space without isolated points and D is a countable

dense subset of X, it is a classical fact that D is homeomorphic to Q. Now, it will suffice

to show that given any closed F ∈ nwd (X), there is N ∈ nwd (D) so that F ⊆ N. Write

F =
⋂

n∈ω Un so that Un is open and Un ⊃ Un+1, for each n ∈ ω. Choosing a maximal

subset of D∩
(
Un \ Un+1

)
such that any two of its elements are at distance at least 1

n+1 ,

for each n ∈ ω, and taking as N the union of those subsets will do the job.

Theorem 1.6. (i) cof (M) = cof (nwd) and they are equal to the minimal size of a family

D of dense subsets of Q such that for every nowhere dense I ⊆ Q there is D ∈ D disjoint

from I.

(ii) non (M) is equal to the minimal size of a family D of dense subsets of R such that

for every nowhere dense I ⊆ R there is D ∈ D disjoint from I.

We will prove both clauses of the theorem almost simultaneously using the following

lemmas. For the purpose of the proof let

µQ=min {|D| : D ⊆ Dense (Q) ∧ (∀I ∈ nwd) (∃D ∈ D) (I ∩D = ∅)} .

and

µR = min {|D| : D ⊆ Dense (R) ∧ (∀I ∈ nwd(R)) (∃D ∈ D) (I ∩D = ∅)} .

Lemma 1.7. Let M be a meager set, let κ < d, and for each α < κ, let Dα be a subset

of R such that Dα ∩M is dense. Then there exists N ⊆M which is nowhere dense and

such that Dα ∩N 6= ∅, for every α < κ.

Proof. Let Um, m ∈ ω be nonempty pairwise disjoint intervals. Note that Dα ∩M is

dense in Um for each α < κ and m ∈ ω. Now, for every m ∈ ω, there are nonempty

nowhere dense sets {Fm
n : n ∈ ω} such that M ∩ Um =

⋃
n∈ω F

m
n . Put Fn =

⋃
m∈ω F

m
n .
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The sets Fn are also nowhere dense and, moreover Fn ∩ Um 6= ∅ for every m,n ∈ ω. For

each α < κ define fα : ω → ω by

fα (n) = min {k ∈ ω : Dα ∩ Un ∩ Fk 6= ∅}+ 1.

As κ < d, there is a g : ω → ω such that g �∗ fα, for every α < κ. Then define

N =
⋃
n∈ω

{Fk ∩ Un : k < g(n)} .

Clearly N is nowhere dense and given α < κ, there is an n ∈ ω such that fα (n) < g (n).

Therefore Dα ∩ Un ∩ Ffα(n) 6= ∅, and so Dα ∩N 6= ∅. �

Lemma 1.8. Let M ⊆ 2ω be a meager set. Then there exists a nowhere dense N such

that N∗ ⊇M , where N∗ = {f ∈ 2ω : (∃g ∈ N) (f =∗ g)} .

Proof. Let M =
⋃

n∈ω Fn, where Fn is nowhere dense subset of 2ω. Consider for each

n ∈ ω, the sequence sn starting with n zeros followed by one 1. Then define F ′n by:

t ∈ F ′n if and only sn ⊆ t ∧
(
∃u ∈ 2n+1

)
(u_t � [n+ 1, ω) ∈ Fn). Then clearly, F ′n is

nowhere dense and if N =
⋃

n∈ω F
′
n, this N is nowhere dense and M ⊆ N∗. �

Lemma 1.9. cof (M) ≤ max {d, µR}.

Proof. Let {Dα : α < µR} be a family of dense subsets of R witnessing the definition of

µR, and let {fβ : β < d} be a ≤-dominating family. Without loss of generality we can

assume that all Dα are countable. Denote by B (x, ε) the ball with centre at x and radius

ε > 0. Fix an enumeration {dα,n : n ∈ ω} of Dα, for each α < µR. Then, for α < µR and

β < d define nowhere dense sets Nα,β by:

Nα,β = R\
⋃
n∈ω

B
(
dα,n,

1
fβ(n)+1

)
.

We claim that the family of all N∗
αβ is cofinal in M. Indeed, if M ⊆ R is a meager set, by

Lemma 1.8, there exists a nowhere dense subset N such that M ⊆ N∗. Thus it suffices

to show that N ⊆ Nα,β , for some α < µR and some β < d, as we will have N∗ ⊆ N∗
α,β .

As N is nowhere dense, there is an α < µR such that Dα ∩N = ∅. Define g : ω → ω

by

g (n) = min
{
k ∈ ω : B

(
dα,n,

1
k+1

)
∩N = ∅

}
.

As {fβ : β < d} is dominating, there is β < d such that (∀n ∈ ω) (g (n) ≤ fβ (n)). Thus

R \Nα,β ⊆ R \N. �
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We can now prove the theorem:

Proof of Theorem 1.6. First we prove that d ≤ µQ. Fix κ < d. Let {Dα : α < κ} be a

family of dense subsets of Q. Take M = Q and apply Lemma 1.7 with this family of

dense subsets and infer the existence of a nowhere dense N ⊆ Q such that Dα ∩N 6= ∅,

for each α < κ. Therefore κ < µQ.

It is trivial that cof (nwd) ≥ µQ. To see that cof (nwd) ≤ µQ proceed as follows. Let

{Dα;α < µQ} be a family of dense subsets of Q witnessing the definition of µQ, each Dα

enumerated as {dα,n : n ∈ ω} and consider a ≤-dominating family {gβ : β < d}; then

define

Nαβ = Q\
⋃
n∈ω

B
(
dα,n,

1
gβ(n)+1

)
.

Nαβ is a nowhere dense subset of Q and since we already know that d ≤ µQ we have

µQ-many such subsets. Moreover, if N is any nowhere dense subset of Q, there is some

α < µQ such that Dα ∩N = ∅. Then define g : ω → ω by

g (n) = min
{
k ∈ ω : B

(
dα,n,

1
k+1

)
∩N = ∅

}
.

There must exists β < d such that g ≤ gβ and it follows that N ⊆ Nαβ . Hence,

{Nαβ : α < µQ ∧ β < d} is a cofinal family in nwd.

Now, by the fact 1.5 together with Lemma 1.8, it follows that cof (M) ≤ cof (nwd).

Likewise, Lemma 1.9 shows that cof (M) ≤ µQ since trivially µR ≤ µQ. This completes

the first part of the theorem.

To see the second part, first notice that

min {d,non (M)} ≤ µR.

This follows from Lemma 1.7. Indeed, assume κ < min {d,non (M)} and let {Dα : α < κ}

be a family of countable dense subsets of R. Then M =
⋃

α<κDα is meager and by

Lemma 1.7 there exists a nowhere dense N ⊆M such that N ∩Dα 6= ∅, for every α < κ.

Thus κ < µR.

Secondly, µR ≤ non (M) For suppose κ < µR and consider X ⊆ R of cardinality

κ. Define Dx = x + Q. The family {Dx : x ∈ X} cannot witness the definition of µR,

therefore there must exists F ∈ nwd (R) such that F ∩Dx 6= ∅, for each x ∈ X. Notice

that F + Q ⊇ X. Thus X is meager, and hence κ < non (M).
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To finish the proof proceed by two cases. If non (M) ≤ d, then it follows that

non (M) ≤ µR ≤ non (M). If it is not the case that non (M) ≤ d, then part (iii) of

Proposition 1.3 implies that cof (M) = non (M) and Lemma 1.9 now reads non (M) ≤

max {d,µR} , which together with µR ≤ non (M) gives again that non (M) = µR. �

2. Dense(Q) and P(ω)/fin seem similar.

In this section we point out the similarities between the structures P(ω)/fin and

Dense(Q). In particular we show that some of their natural cardinal characteristics have

the same value. First recall the following proposition mentioned in the introduction. For

the rest of the paper {Un : n ∈ ω} denotes a fixed enumeration of a basis for the topology

on Q.

Proposition 2.1. The separative modification of the order (Dense(Q),⊆) is the pre-

order (Dense(Q),⊆nwd).

Proof. Note that C,D ∈ Dense(Q) are incompatible in (Dense(Q),⊆) if and only if there

is n ∈ ω such that C ∩D ∩ Un = ∅. It suffices to see that C ⊆nwd D if and only if for

every X ∈ Dense(Q), X∩C ∈ Dense(Q) implies that X∩D ∈ Dense(Q), as the condition

on the right hand side defines the separative modification. Let N = C \D be nowhere

dense in Q. Then, if X ∩C is dense then X ∩D ⊇ (X ∩C) \ (X ∩N) is also dense. On

the other hand, if C \D is not nowhere dense then there is n ∈ ω such that (C \D)∩Un

is dense in Un. Put X = (Un ∩ (C \D)) ∪ (C \ Un). Then X is dense, X ⊆ C and X is

incompatible to D. �

Proposition 2.2. The pre-order (Dense(Q),⊆nwd) has the following properties:

(i) It is homogeneous, i.e. for every D ∈ Dense(Q), Dense(Q) � D is isomorphic to

Dense(Q).

(ii) (Dense(Q),⊆nwd) is σ-closed.

(iii) (Dense(Q),⊆nwd) satisfies the c+-c.c and c-cc fails.

Proof. Ad (i) It follows from Sierpiński’s characterization that D is homeomorphic to Q

for every D ∈ Dense(Q). Moreover, every nowhere dense subset of D is nowhere dense

in Q.
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For (ii) let 〈Di : i ∈ ω〉 be a sequence of elements of Dense(Q) such that Di+1 ⊆nwd Di

for every i ∈ ω. Recursively pick dn ∈ (Un ∩
⋂

i≤nDi) and let D = {di : i ∈ ω}. Then

D ∈ Dense(Q) such that D ⊆∗ Di for every i ∈ ω.

To prove (iii) choose for every s ∈ 2<ω a set Ds ∈ Dense(Q) so that, D∅ = Q and Ds

is a disjoint union of Dsa0 and Dsa1. Then use (ii) to find for every f ∈ 2ω a set Df ∈

Dense(Q) such that Df ⊆∗ Df�n for every n ∈ ω. Let A = {Df : f ∈ 2ω}. Obviously, a

family of incompatible elements can not have cardinality larger than c = |Dense(Q)|. �

Corollary 2.3. The partial order (Dense(Q),⊆nwd) is, as a forcing notion, equivalent

to (Dense(X),⊆nwd) for any separable metric space without isolated points.

Proof. Every separable metric space without isolated points has exactly c many countable

dense sets. There is therefore a maximal antichain A in (Dense(X),⊆nwd) of size c

consisting of countable dense subsets of X. The set H = {C ∈ Dense(X) : (∃D ∈

A) C ⊆ D} is a dense set in the pre-order (Dense(X),⊆nwd) and by Proposition 2.2 it is

isomorphic to a dense subset of the pre-order (Dense(Q),⊆nwd). �

Given a partial (pre-)order P without minimal elements one can be interested in the

‘measure’ of closedness of P. The cardinal characteristic t(P) is defined as the minimal

κ such that P is not κ-closed, i.e. there is a decreasing chain in P of size κ without a

lower bound in P. A related cardinal invariant is p(P) which denotes the minimal size of

a downward directed subset of P without a lower bound in P. t(P) is always a regular

infinite cardinal. For the partial order ([ω]ω,⊆∗) these cardinal invariants are usually

denoted simply by t and p.

It is an open problem whether t and p can be consistently different. As far as we know

there is even no known example of a σ-closed separative homogeneous partial order P

with t(P) and p(P) distinct.

J. Cichoń in [Ci] studied the (non-separative) partial order (Dense(Q),⊆∗) and showed

that t = t(Dense(Q),⊆∗) and p = p(Dense(Q),⊆∗). We will show that the same holds for

the separative modification (Dense(Q),⊆nwd). We denote by tQ the cardinal invariant

t(Dense(Q),⊆nwd) and, similarly, pQ = p(Dense(Q),⊆nwd).

There is a natural embedding, φ : [ω]ω −→ Dense(Q), due to Sierpiński, defined by

φ(X) = {s ∈ 2<ω : |s| ∈ X}. This embedding preserves ordering and orthogonality but

it is not a regular embedding since it does not preserve maximality of antichains. It will
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be shown that it is useful nonetheless.

Theorem 2.4. t = tQ and p = pQ.

Proof. The basic fact that pQ ≤ tQ ≤ add(M) follows directly from Theorem 3.2. We

apologize for committing the crime of forward referencing.

First we prove that tQ ≤ t. Fix κ < tQ and let {Tα : α < κ} be a ⊆∗-decreasing chain

in [ω]ω. Then {φ(Tα) : α < κ} form a ⊆∗-decreasing chain in Dense(Q). As κ < tQ,

there is a D ∈ Dense(Q) such that D ⊆nwd φ(Tα) for all α < κ. Treat the set D as the

rationals, note that φ(Tα) ∩ D contains a dense open subset of D for every α < κ. As

κ < tQ ≤ add(M) an application of Theorem 1.4 (ii), produces a dense set D′ ⊆ D such

that D′ ⊆∗ φ(Tα). Put T = {|s| : s ∈ D′}. Then T is an infinite subset of ω and T ⊆∗ Tα

for all α < κ.

To prove that t ≤ tQ fix κ < t and let {Dα : α < κ} be a ⊆nwd-decreasing chain in

Dense(Q). As, by Proposition 1.3 (ii), κ < t ≤ add(M) there is a dense Gδ set Y ⊆ 2ω

such that

(1) Y ⊆ D̂α for all α < κ and

(2) Y ∩ N̂α,β = ∅, where Nα,β = Dα \Dβ , for all β < α < κ.

For f ∈ Y and α < κ let Af
α = {k ∈ ω : f � k ∈ Dα}. Note that the set Af

α is

infinite for every f ∈ Y and α < κ. Also for every f in Y , the family {Af
α : α < κ}

is a ⊆∗-decreasing chain in [ω]ω. As κ < t, there is a set Lf a ⊆∗-lower bound for

{Af
α : α < κ}. Let C = {cn : n ∈ ω} ⊆ 2ω be a countable dense subset of Y and put

En = {cn � m : m ∈ Lcn
}. For α < κ let

gα(n) = min{k ∈ ω : (∀m > k) cn � m ∈ En ⇒ cn � m ∈ Dα}.

As t ≤ b there is a function g dominating all gα, α < κ. Put

D =
⋃
n∈ω

{cn � m ∈ En : m ≥ g(n)}.

Since C is a dense subset of 2ω, D is in Dense(Q). It is clear that D ⊆∗ Dα for every

α < κ. So, we have proved that κ < tQ.

The proof that p = pQ is analogous, only simpler. �

Another cardinal invariant studied by J. Cichoń in [Ci] is defined as follows: Given a

family S ⊆ [ω]ω we say that a function ψ : ω −→ Q is a dense embedding of S if ψ is
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one-to-one and ψ[S] ∈ Dense(Q) for every S ∈ S. The cardinal invariant deq denotes the

minimal cardinality of a family S ⊆ [ω]ω for which there is no dense embedding. Recall

that the reaping number r denotes the minimal size of a family R ⊆ [ω]ω such that for

every A ∈ [ω]ω there is an R ∈ R such that R ⊆∗ A or R ∩ A is finite. Cichoń showed

that deq ≤ r and found some lower bounds for deq. The next proposition shows that the

two numbers actually coincide. Let A,B be infinite subsets of ω. We say that A splits

B if both A ∩B and B \A are infinite.

Proposition 2.5. deq = r.

Proof. Let R ⊆ [ω]ω be a reaping family of size r. Aiming for contradiction suppose that

ψ is a dense embedding of R. Split Q into two disjoint open sets U, V . Let A = ψ−1[U ].

It is easily seen that A splits every element of R, which contradicts the assumption that

R was a reaping family.

For the other direction, let S ⊆ [ω]ω be of size strictly less than r. We need to show

that there is a dense embedding of S. Rather then constructing an embedding we show

that there is a topology on ω homeomorphic to Q in which all sets in S are dense.

Recursively construct sets In, n ∈ ω so that

(1) I0 splits all elements of S,

(2) In+1 splits all infinite intersections of finitely many elements of the family S∪{Im :

m ≤ n} ∪ {ω \ Im : m ≤ n},

(3) for every pair i 6= j ∈ ω there is an n ∈ ω such that |In ∩ {i, j}| = 1, i.e In

separates i and j.

To do this is easy, existence of In+1 follows directly from the fact that the family of all

intersections of finitely many elements of the family S ∪ {Im : m ≤ n} has size strictly

less than r. Note that pronouncing the family {In : n ∈ ω} a clopen subbase defines a

Hausdorff, regular, zero dimensional second countable topology on ω in which all elements

of S are dense. �

A family I ⊆ [ω]ω is independent provided that
⋂
F \

⋃
G 6= ∅ for every nonempty and

disjoint F ,G ∈ [I]<ω. Similarly a family I ⊆ Dense(Q) is said to be dense-independent if⋂
F \

⋃
G ∈ Dense(Q) for every disjoint finite subsets F ,G of I. The cardinal invariant i

denotes the minimal cardinality of a maximal independent family. Similarly, iQ denotes

the minimal cardinality of a maximal dense-independent family. Next we show that these
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two cardinal numbers actually coincide.

Proposition 2.6. i = iQ.

Proof. To prove that i ≤ iQ, identify Q with the set {q ∈ 2ω : (∀∞i ∈ ω) q(i) = 0} with

the topology inherited from 2ω. Let I be a maximal dense-independent family of size iQ.

For n ∈ ω let In = {q ∈ Q : q(n) = 1}. Note that the sets In and their complements

form a subbase for the topology on Q. Moreover, the family I ′ = I ∪ {In : n ∈ ω} is

an independent family of subsets of Q. We will show that it is in fact maximal. Aiming

for a contradiction suppose that I is a subset of Q such that I ′ ∪ {I} is independent.

Then I ∈ Dense(Q) because {I} ∪ {In : n ∈ ω} is an independent family and the

Boolean combinations of the elements of {In : n ∈ ω} form a base for the topology on Q.

Similar reasoning shows that the family I ∪{I} is then dense-independent, contradicting

maximality of I. As |I| = |I ′| we are done.

For the other direction let I be a maximal independent family. Let {Jn : n ∈ ω}

be a sequence of distinct elements of I. By changing them by a finite set, if necessary,

we can assume that they separate points, i.e. for every pair i 6= j ∈ ω there is an

n ∈ ω such that |Jn ∩ {i, j}| = 1. The sets {Jn : n ∈ ω} then form a clopen subbase

of a Hausdorff, regular, zero dimensional second countable topology on ω in which all

elements of I \{Jn : n ∈ ω} are dense. Identify Q with ω equipped with this topology. It

is again routine to verify that the family I \{Jn : n ∈ ω} is a maximal dense-independent

family. �

3. Dense(Q) as a forcing notion:

P(ω)/fin and Dense(Q) are not quite the same.

A basic fact about P(ω)/fin is that the partial order ([ω]ω,⊆∗) is not isomorphic to

its product ([ω]ω,⊆∗) × ([ω]ω,⊆∗), as βω \ ω is not homeomorphic to βω \ ω × βω \ ω.

The situation is quite different for Dense(Q).

Proposition 3.1. (Dense(Q),⊆nwd) is isomorphic to (Dense(Q),⊆nwd)ω.

Proof. Partition Q into pairwise disjoint non-empty open sets Vn, n ∈ ω. Note that

(Dense(Vn),⊆nwd) is isomorphic to (Dense(Q),⊆nwd). Define

Ψ : Dense(Q) −→
∏
{Dense(Vn) : n ∈ ω}
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by Ψ(D) = 〈D ∩ Vn : n ∈ ω〉. It is easily seen that this map induces the desired

isomorphism. �

The distributivity number of a separative partial pre-order P without minimal elements,

denoted by h(P), is defined as the minimal size of a family of maximal antichains in P

without common refinement. For homogeneous P, h(P) is equal to the minimal size of

a collection of dense downward closed subsets of P whose intersection is empty. The

number h(P) is equal to h(B), where B is the complete Boolean algebra determined by

P. Note that t(P) ≤ h(P) for every separative partial pre-order P. Again, h([ω]ω,⊆∗) is

denoted simply by h and we denote h(Dense(Q),⊆nwd) by hQ. It was shown in [SS], that

the distributivity number of the free product P(ω)/fin⊗P(ω)/fin is consistently strictly

smaller than h. By Proposition 3.1 this does not happen in the case of Dense(Q).

The following theorem shows that unlike in the case of P(ω)/fin the properties of the

partial order Dense(Q) depend on topological properties of the real line.

Theorem 3.2. hQ ≤ add(M).

Proof. Let {Vn : n ∈ ω} be an enumeration of all non-empty clopen subsets of the Cantor

set 2ω. For each n ∈ ω fix a family {Kn
α : α < add(M)} of meager subsets of Vn such that⋃

{Kn
α : α < add(M)} is not meager in Vn. Put Mα =

⋃
{Kn

β : β < α and n ∈ ω}. Note

that each Mα is meager in 2ω and that they form an increasing chain. For α < add(M)

put

Hα = {D ∈ Dense(Q) : D̂ ∩Mα is nowhere dense in 2ω}.

Note that:

a) Hα is downward closed in (Dense(Q),⊆nwd), i.e. if D ∈ Hα and C ⊆nwd D then

C ∈ Hα.

This follows directly from Fact 1.2.

b) Hα is dense in Dense(Q).

To see this, let D ∈ Dense(Q). As Mα is meager, there is a Y ⊆ D̂ dense Gδ set

disjoint from Mα. Write Y as an intersection of a decreasing sequence of Wn, n ∈ ω,

where each Wn is open dense in 2ω. For every n ∈ ω let An be a maximal antichain

An ⊆ D such that for every s ∈ An 〈s〉 ⊆Wn and such that An+1 refines An. Note that
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{〈s〉 : s ∈ An} ⊆ Wn. Let C =

⋃
{An : n ∈ ω}. Obviously, C ⊆ D is dense. It is also

easy to see that Ĉ ⊆ Y .

To finish the proof it suffices to check that:

c)
⋂
{Hα : α < add(M)} = ∅.

To that end take D ∈ Dense(Q). As
⋃
{Kn

α : α < add(M)} is not meager in Vn and D̂

is dense Gδ in 2ω, for every n ∈ ω there is an αn < add(M) such that D̂∩Vn ∩Kn
αn
6= ∅.

Pick cn ∈ D̂ ∩ Vn ∩Kn
αn

. The set {cn : n ∈ ω} is dense in 2ω. As add(M) is a regular

uncountable cardinal, there is an α < add(M) such that αn < α for every n ∈ ω. Then,

however, {cn : n ∈ ω} ⊆Mα ∩ D̂ which means that D 6∈ Hα. �

Let us remark that the equality in 3.2. is not provable, see 3.5.(i).

Theorem 3.3. (Base tree) There is a family T ⊆ Dense(Q) such that

(1) T is a tree, ordered by ⊃∗, of height hQ,

(2) Each level of T is a maximal antichain in Dense(Q) and

(3) Each D ∈ T has c-many immediate successors.

(4) For every D ∈ Dense(Q) there is a C ∈ T such that C ⊆ D.

Proof. It follows directly from Theorem 1.13 of [BS] that there is a family T ′ ⊆ Dense(Q)

such that

(1) T ′ is a dense subset of Dense(Q),

(2) T ′ is a tree (ordered by ⊃nwd) of height hQ,

(3) Each level of T ′ is a maximal antichain in Dense(Q) and

(4) Each D ∈ T ′ has c-many immediate successors.

Enumerate as {Mξ : ξ < c} all nowhere dense subsets of Q. We will construct a tree T

by induction on levels. For α = β+ 1 let A be a maximal antichain in Dense(Q) refining

both Tβ and T ′α such that for every D ∈ Tβ there are c-many elements of A below D.

For every D ∈ Tβ enumerate as {CD
ξ : ξ < c} all immediate successors of D (in A) and

let Tα = {CD
ξ \Mξ : D ∈ Tβ and ξ < c}.

For α < hQ limit, let A be a maximal antichain in Dense(Q) refining all Tβ , β < α

and let H be the downward closure of A. For every D ∈ H and every β < α there is a

unique Cβ ∈ Tβ such that Nβ = D \ Cβ is nowhere dense in D. As D is homeomorphic

to Q and as α < hQ ≤ add(M), by Theorem 1.4, there is a dense subset CD ⊆ D such
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that CD ∩Nβ is finite, or equivalently, CD ⊆∗ Cβ for every β < α. Let Tα be a maximal

antichain contained in {CD : D ∈ H}.

The tree T =
⋃
{Tα : α < hQ} is dense as, by the construction, Tα+1 refines T ′α and

T is ordered by ⊇∗. To see, that for every D ∈ Dense(Q) there is a C ∈ T such that

C ⊆ D, fix D. There is an E in T such that E ⊂nwd D. There is a ξ < c such that

Mξ = E \D. Then C = CE
ξ ⊆ D. �

Cichoń in [Ci] investigated also a cardinal invariant sQ which is defined as the minimal

size of a family S ⊆ Dense(Q) such that for every D ∈ Dense(Q) there is an S ∈ S such

that both S ∩D and D \ S are dense. He showed that sQ is less or equal to the cardinal

invariant ℵ0 − s introduced by Malyhin and studied in [KW]. The cardinal invariant

ℵ0−s is defined as a minimal cardinality of a family S ⊆ [ω]ω such that for any countable

B ⊆ [ω]ω there is a set S ∈ S which splits all elements of B. Obviously, s ≤ ℵ0 − s and

also ℵ0 − s ≤ d. It is an open problem whether s < ℵ0 − s is consistent.

Proposition 3.4. hQ ≤ sQ.

Proof. The proof is quite analogous to the proof that h ≤ s. Fix a family S ⊆ Dense(Q)

such that for every D ∈ Dense(Q) there is an S ∈ S such that both S ∩D and D \S are

dense. For every S ∈ S let

HS = {D ∈ Dense(Q) : D ∩ S ∈ nwd or D \ S ∈ nwd}.

This works. �

Theorem 3.5. The following are all relatively consistent with ZFC:

(i) hQ < add(M),

(ii) hQ < h,

(iii) t < hQ.

Proof. (i) holds in the Hechler model, i.e. model obtained from a model of CH by forcing

with finite support iteration of length ω2 of Hechler forcing. As Hechler forcing adds both

a Cohen real and a dominating real, add(M) = ω2 in the Hechler model. On the other

hand, Hechler forcing preserves splitting families; hence s = ω1 in the Hechler model (see

e.g. [BJ]). In [KW] it is shown that if s < cov(M) then ℵ0− s = s. Using Cichoń’s result

we obtain that sQ = ω1 and by Proposition 3.4, hQ = ω1.
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(ii) holds in the iterated Mathias model. It was probably first observed in [Do], that

h = c = ω2 in the Mathias model. The fact that add(M) = ω1 in the Mathias model

(see e.g. [BJ]) follows from the fact that Mathias forcing has the Laver property and

hence in the Mathias model there are no reals Cohen generic over the ground model. By

Theorem 3.2, the result follows.

(iii) holds for example in a model obtained from a model of CH by forcing with the free

product B⊗ Fn(ω1, 2, ω1) where B denotes the Solovay-Tennenbaum algebra for forcing

Martin’s Axiom and failure of CH. The argument is similar to the one in [BPS]). �

The reaping number r was mentioned before Proposition 2.5. Next we deal with its

analogue in the context of Dense(Q). Call a family R ⊆ Dense(Q) dense-reaping if no

dense set D splits all elements of R into dense pieces, i.e. for every D ∈ Dense(Q) there

is an R ∈ R such that R \D 6∈ Dense(Q) or R∩D 6∈ Dense(Q), or equivalently, for every

D ∈ Dense(Q) there is an R ∈ R and U ⊆ Q open such that D∩R∩U = ∅ or R∩U ⊆ D.

The cardinal invariant rQ denotes the minimal size of a dense-reaping family. In [MHD]

it is shown that ♦(rQ) implies i = ω1.

Theorem 3.6. max{r, cof(M)} ≤ rQ ≤ i.

Proof. The fact that rQ ≤ i follows directly from Proposition 2.6 and the simple obser-

vation that rQ ≤ iQ.

To see that r ≤ rQ fix κ < r and a family R = {Dα : α < κ} ⊆ Dense(Q). Consider

R′ = {Dα ∩ Un : α < κ and n ∈ ω}. R′ has also size κ and as κ < r it is not a reaping

family; hence there is a set D ⊆ Q which splits all elements of R′ into infinite pieces. It

follows that D is dense and splits each Dα into two dense sets and hence κ < rQ.

We will use Theorem 1.6 and prove that κ < µQ ⇒ κ < rQ. To that end, assume κ <

µQ and consider a base {Un : n ∈ ω} for the topology of Q and a familyR = {Rα : α < κ}

of dense subsets of Q. Build sequences of disjoint nwd subsets F 0
n , F

1
n ⊆ Q, n ∈ ω, such

that

(1) (∀n ∈ ω)
(
F 0

n ∪ F 1
n ⊆ Un

)
, and

(2) (∀m,n ∈ ω) (∀i, j ∈ {0, 1})
(
m 6= n⇒ F i

m ∩ F j
n = ∅

)
.

By induction, assume F i
k have been chosen for i ∈ {0, 1} and k < n. Then F =⋃

k<n F
0
k ∪F 1

k is nowhere dense and hence Un \F is non-empty; furthermore, it is home-

omorphic to Q. Thus, since κ < µQ, there is some F 0
n ⊆ Un \ F such that F 0

n ∩Rα 6= ∅,
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for every α < κ, and repeating the same argument find F 1
n ⊆ Un \

(
F ∪ F 0

n

)
such that

F 1
n ∩Rα 6= ∅, for every α < κ too. This completes the construction of the sequences.

Now let D =
⋃

n∈ω F
0
n . By construction D is dense and D does not get reaped by the

family R. Therefore κ < rQ. �

Note that it follows that sQ ≤ rQ while r and s are not provably comparable.

Theorem 3.7. It is relatively consistent with ZFC that r < rQ.

Proof. By Theorem 3.6 this holds in any model where r < d; in particular, it holds in

the iterated Miller model (see [Mi] or [Bl]). �

It is worth noting that Theorem 3.6 gives cof(M) ≤ i, which improves the best known

result placing i among other cardinal invariants: Shelah’s result that d ≤ i (see [Va]).

The analogous claim for measure does not hold.

Theorem 3.8. It is consistent with ZFC that i < non (N ).

Proof. Start with a model of non (N ) > ω1. It is shown in [BJ], Lemma 6.5.27 and

Theorem 6.5.31, that a finite support iteration of σ-centred forcings does not decrease

non (N ), thus all we need to do is find a forcing iteration of σ-centred forcings which

forces i to be small.

If I is a countable independent family, find a maximal filter F with the property:

(∀F ∈ F) (∀H ∈ [I]<ℵ0) (∀ξ : H → 2) (|F ∩ Iξ| = ℵ0) ,

where Iξ =
⋂
{I : ξ (I) = 1} ∩

⋂
{ω \ I : ξ (I) = 0}. Let

MF =
{
〈s, F 〉 : s ∈ [ω]<ℵ0 ∧ F ∈ F0

}
with the ordering 〈s, F 〉 ≤ 〈t, F ′〉 if and only if s ⊆ t ∪ F ′ ∧ F ⊆ F ′. This forcing is

sometimes called the Mathias forcing with respect to F . The MF -generic real I will be

a subset of ω which can be added to the countable family I preserving that it is an

independent family. It is also clear that MF is a σ-centred forcing.

Consequently, all we need is to iterate the forcings MF to produce a maximal in-

dependent family on ω. So, let P =
〈

Pα; Q̇α : α < ω1

〉
be the finite support iteration

inductively defined as follows: Assuming Pα is defined and that İα is a Pα-name for a

countable independent family on ω, let Gα any Pα-generic filter over V . In V [Gα], take
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a maximal filter F satisfying the property above mentioned with Iα in place of I. Then

let Qα be the forcing MF , as defined in V [Gα]. Thus Pα+1 is defined; İα+1 will be a

Pα+1-name for Iα augmented by the generic subset of ω coded by the Qα-generic filter

over V [Gα], and for limit α, Iα =
⋃

β<α Iβ .

Let G be P-generic over the ground model, V , and let Iα be the α-th generic real added

with this iteration. A simple reflection argument in V [G] shows that I = {Iα : α < ω1}

is a maximal independent family. Thus V [G] |= i = ℵ1. �

The cardinal invariant rQ is a Borel invariant dual to sQ. However, from the point

of view of partial order Dense(Q) a more natural notion is the following: Call a family

R ⊆ Dense(Q) strongly dense-reaping if for every D ∈ Dense(Q) there is an R ∈ R such

that R \D is nowhere dense or R ∩D is nowhere dense.

Theorem 3.9. Every strongly dense-reaping family has size c.

Proof. Let R ⊆ Dense(Q) be of size less than c. We will show that R is not strongly

dense-reaping. To that end split Q into two open sets U, V , let {Aα : α < c} be an almost

disjoint family of dense subsets of U and let {Bα : α < c} be an almost disjoint family

of dense subsets of V . As |R| < c, there are α, β < c such that R ∩ U 6⊆nwd Aα and

R ∩ V 6⊆nwd Bα for every R ∈ R. Set D = Aα ∪ (V \Bβ). D is clearly a dense subset of

Q which is not strongly reaped by any element of R. �

Next, we mention some elementary properties of the generic extension obtained by

forcing with Dense(Q). Let U be a Dense(Q)-generic filter over V . In V [U ], c = hV
Q and

P(κ) = P(κ)V for all κ < hQ; in particular Dense(Q) does not add any new subsets of Q.

This follows from homogeneity of Dense(Q) and standard reformulation of distributivity.

Just as P(ω)/fin generically adds a selective ultrafilter on ω, the forcing Dense(Q) adds

a free filter on Q. Recall that a free filter on a countable set is a simple Pκ-filter if it is

generated by a ⊆∗-decreasing chain of length κ. A filter F on ω is a Q-filter if for every

partition 〈In : n ∈ ω〉 of ω into finite sets there is an X ∈ F such that |X ∩ In| ≤ 1 for

every n ∈ ω.

Proposition 3.10. In V [U ], U is a simple Pc-filter on Q which is also a Q-filter. In

particular, it is non-measurable and does not have the Baire property and has the following

selection property: Given a partition 〈In : n ∈ ω〉 of Q into nowhere dense sets there is

an X ∈ U such that |X ∩ In| ≤ 1 for every n ∈ ω.
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Proof. The generic filter U introduces a branch through the base tree constructed in

Theorem 3.3. Condition (1) of the theorem guarantees that the branch forms a ⊆∗-

decreasing chain of length hQ. As no new subsets of Q are added, genericity of U and

condition (4) of the theorem ensure that this branch forms a base of U . As, hV
Q = c in

V [U ], the proof that U is a simple Pc-filter is finished.

Next we prove that has the selection property and in particular is a Q-filter. As

Dense(Q) does not add any new reals, all that needs to be shown is that given a partition

〈In : n ∈ ω〉 of Q into nowhere dense sets, the set D = {D ∈ Dense(Q) : (∀n ∈

ω) |D ∩ In| ≤ 1} is dense in the partial order Dense(Q). To see this fix C ∈ Dense(Q)

and recursively choose qn ∈ Un ∩ C so that no two distinct qn are in the same part of

the partition. It is easily verified that D = {qn : n ∈ ω} ⊆ C is an element of D. �

We conclude this section with the list of problems which are still open.

Questions 3.11. Are the following relatively consistent with ZFC?

(1) h < hQ,

(2) s < sQ,

(3) sQ < s,

(4) hQ < sQ,

(5) rQ < i,

(6) max{cof(M), r} < rQ.

4. The algebra P(Q)/nwd and its relation to Dense(Q).

The Boolean algebra P(Q)/nwd has been recently considered in the literature (see

example [St] and [FS]) and fits into the extensive study of analytic quotients by I. Farah

[Fa]. We will show that it is closely related to both Dense(Q) and the Cohen forcing.

Cohen forcing C will be viewed as the partial order (2<ω,⊇). The algebra P(Q)/nwd is,

as a forcing notion, equivalent to the pre-order (P(Q) \ nwd,⊆nwd). Just like Dense(Q),

the algebra P(Q)/nwd is homogeneous and has c+-c.c and not c-cc. Unlike Dense(Q),

P(Q)/nwd does not contain a dense σ-closed part; in fact, it adds new reals. We will

show that all reals added by P(Q)/nwd are Cohen over the ground model.

Theorem 4.1. The forcing P(Q)/nwd is proper and adds only Cohen reals.
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Proof. To see that P(Q)/nwd is proper, fix M a countable elementary submodel of some

large enough H(θ) and let C ∈ P(Q)/nwd ∩ M . Without loss of generality we can

assume that M is the union of an increasing ∈-chain of elementary submodels Mn. Fix

{An : n ∈ ω} an enumeration of all maximal antichains in M such that An ∈ Mn.

Recursively construct a sequence {Dn : n ∈ ω} of P(Q) \ nwd so that

(1) D0 = C,

(2) Dn+1 is a dense subset of Dn,

(3) Dn ∈Mn,

(4) {A∩Dn+1 : A ∈ An∩Mn and A∩Dn+1 is somewhere dense} is a maximal pairwise

disjoint family of subsets of Dn which differ from an open set by a nowhere dense

set.

Having constructed Dn, construct Dn+1 as follows: Enumerate (in Mn+1) An ∩Mn as

{Ai : i ∈ ω}. Let

Dn+1 =
⋃
k∈ω

Bk,

where

B0 = int(Dn ∩A0) ∩ (Dn ∩A0)

and

Bk = int(Dn ∩Ak) ∩Dn ∩Ak \
⋃
j<k

B̄j .

Note that Dn+1 ∈Mn+1, as its definition only uses elements of Mn+1. As Dn and An are

both elements of Mn and since Mn |= “An is a maximal antichain”, for every Un ⊆ D̄n

there is an A ∈ An ∩Mn such that Dn ∩A∩Un is not nowhere dense in Un. So Dn+1 is

a dense subset of Dn and {A∩Dn+1 : A ∈ An ∩Mn and A∩Dn+1 is somewhere dense}

is a maximal pairwise disjoint family of subsets of Dn which differ from an open set (in

Dn+1) by a nowhere dense set.

Having constructed the sequence {Dn : n ∈ ω} use Proposition 2.2 (ii) to find a set

D dense in C which is ⊆∗-included in all Dn. The fact that D (viewed as a condition

in P(Q)/nwd) is (C,M)-generic follows from condition (4). Much more is actually true.

Not only are all antichains An ∩M pre-dense below D but also any maximal antichain

of elements of
⋃

n∈ω An ∩M is “really” a maximal antichain below D, which translates

directly into the fact every real in the extension is contained in a smaller extension by

Cohen forcing. �
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One of the cardinal invariants of the Boolean algebra P(Q)/nwd was considered by

J. Steprans. In [St] he showed that it is relatively consistent with ZFC that there is an

uncountable maximal antichain in P(Q)/nwd of cardinality strictly less than b. Other

cardinal invariants (p(P(Q)/nwd), t(P(Q)/nwd), h(P(Q)/nwd) and s(P(Q)/nwd)) are

equal to ω, due to the fact that the Cohen algebra regularly embeds into P(Q)/nwd. On

the other hand, the cardinal invariants r(P(Q)/nwd) and i(P(Q)/nwd) are of interest

and are, in fact, equal to their Dense(Q) analogues. In some sense this justifies calling

rQ a reaping number.

Proposition 4.2. r(P(Q)/nwd) = rQ and i(P(Q)/nwd) = iQ

Proof. To see that r(P(Q)/nwd) ≤ rQ note that if R is a dense-reaping family then

{R ∩ Un : R ∈ R and n ∈ ω} is a reaping family in P(Q)/nwd for if X ∈ P(Q) \ nwd is

not dense, then there is an n ∈ ω such that Un ∩X = ∅ and if it is dense then, as R was

dense-reaping, there is an R ∈ R and n ∈ ω such that X ∩R ∩ Un = ∅ or R ∩ Un ⊆ D.

For the other direction, fix κ < rQ and a family R ⊆ P(Q) \ nwd. For R ∈ R put

DR = R ∪ (Q \ R̄). As κ < rQ, the family {DR : R ∈ R} is not dense-reaping; hence

there is a D ∈ Dense(Q) which splits all DR into two dense sets and in particular it splits

each R into two somewhere dense sets. So R is not reaping in P(Q)/nwd and therefore

κ < r(P(Q)/nwd).

The proof of i(P(Q)/nwd) ≤ iQ(= i) is virtually identical to the proof of Proposition

2.6. Identify Q with a countable dense subset of 2ω and let Jn = {f ∈ Q : f(n) = 1}.

The family {Jn : n ∈ ω} forms a subbase of the topology of Q. Let I be a maximal

dense-independent family of size iQ. Then J = I ∪{Jn : n ∈ ω} is an independent family

in P(Q)/nwd. Maximality of J follows easily from dense-maximality of I and the fact

that any set independent from all Jn is dense. So i(P(Q)/nwd) ≤ iQ.

Put κ = i (P (Q) /nwd). In order to show that κ ≥ i, let I = {[Iα] : α < κ} be a

maximal independent family in P (Q) /nwd and consider a cofinal family in nwd indexed

as {Cα : α < κ}, where each element appears infinitely often. There exists such a cofinal

family because cof (nwd) = cof (M) ≤ rQ and rQ ≤ i (P (Q) /nwd) .

For each α < κ, let Jα = Iα \Cα. Then J = {Jα : α < κ} is an independent family of

subsets of Q since I is an independent family in P (Q) /nwd. Moreover, if A is any subset

of Q, there exist finite sets F , G ⊆ κ such that A ∩ (
⋂
{Iα : α ∈ F} \

⋃
{Iα : α ∈ G}) is

a nowhere dense subset of Q and therefore is contained in Cβ , for some β ∈ κ \ (F ∪G)
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(as each C appears infinitely often). Thus

A ∩
(⋂

{Jα : α ∈ F ∪ {β}} \
⋃
{Jα : α ∈ G}

)
= ∅,

and hence J is maximal independent. �

A natural question concerning P(Q)/nwd is the following:

Question 4.3. Does P(Q)/nwd collapse c to hQ?
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de la UNAM, Unidad Morelia. The authors wish to thank both institutions for their

hospitality.

References

[BPS] B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense

sets, Fund. Math vol. 110 (1980), 11–24.

[BS] B. Balcar and P. Simon, Disjoint refinement, In J. D. Monk and R. Bonnet, editors, Handbook
of Boolean Algebras vol. 2 (1989), 333–386.
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[KW] A. Kamburelis and B. Wȩglorz, Splittings, Archive for Math. Logic vol. 35 (1996), 263–277.

[Ke] K. Keremedis, On the covering and the additivity number of the real line, Proc. Amer. Math.

Soc. vol. 123 (1995), 1583–1590.

[Ku] K. Kunen, Set Theory. An Introduction to Independence Proofs (1980), North Holland, Ams-

terdam.

[Kr] K. Kuratowski, Introduction to set theory and topology (1977), PWN—Polish Scientific Pub-
lishers, Warsaw.

[Mi] A. Miller, Rational perfect set forcing, In J. Baumgartner, D. A. Martin, and S. Shelah, editors,

Axiomatic Set theory vol.31 of Contemporary Mathematics (1984), AMS, 143-59.



COMBINATORICS OF DENSE SUBSETS OF THE RATIONALS 25
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