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Abstract. We construct, in ZFC, a countably compact subgroup of 2c without
non-trivial convergent sequences, answering an old problem of van Douwen. As
a consequence we also prove the existence of two countably compact groups
G0 and G1 such that the product G0 ⇥ G1 is not countably compact, thus
answering a classical problem of Comfort.

1. Introduction

The celebrated Comfort-Ross theorem [7] states that any product of pseudo-
compact topological groups is pseudo-compact, in stark contrast with the examples
due to Novák [27] and Terasaka [33] who constructed pairs of countably compact
spaces whose product is not even pseudo-compact. This motivated Comfort [9]
(repeated in [8]) to ask:

Question 1.1 (Comfort [8]). Are there countably compact groups G0,G1 such that

G0 ⇥G1 is not countably compact?

The first consistent positive answer was given by van Douwen [44] under MA,
followed by Hart-van Mill [20] under MActble. In his paper van Douwen showed that
every boolean countably compact group without non-trivial convergent sequences
contains two countably compact subgroups whose product is not countably com-
pact, and asked:

Question 1.2 (van Douwen [44]). Is there a countably compact group without non-

trivial convergent sequences?

In fact, the first example of such a group was constructed by Hajnal and Juhász
[19] a few years before van Douwen’s [44] assuming CH. Recall, that every compact
topological group contains a non-trivial convergent sequence, as an easy conse-
quence of the classical and highly non-trivial Ivanovskĭı-Vilenkin-Kuz’minov theo-
rem [24] that every compact topological group is dyadic, i.e. a continuous image of
2 for some cardinal number .

Both questions have been studied extensively in recent decades, providing a large
variety of su�cient conditions for the existence of examples to these questions, much
work being done by Tomita and collaborators [16, 17, 22, 29, 32, 39, 40, 41, 36, 42,
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43, 37], but also others [10, 12, 13, 26, 34]. The questions are considered central in
the theory of topological groups [1, 2, 7, 8, 14, 31, 35].

Here we settle both problems by constructing in ZFC a countably compact sub-
group of 2c without non-trivial convergent sequences.

The paper is organized as follows: In Section 2 we fix notation and review basic
facts concerning ulrapowers, Fubini products of ultrafilters and Bohr topology. In
Section 3 we study van Douwen’s problem in the realm of p-compact groups. We
show how iterated ultrapowers can be used to give interesting partial solutions to
the problem. In particular, we show that an iterated ultrapower of the countable
Boolean group endowed with the Bohr topology via a selective ultrafilter p produces
a p-compact subgroup of 2c without non-trivial convergent sequences. This on
one hand raises interesting questions about ultrafilters, amd on other hand serves
as a warm up for Section 4, where the main result of the paper is proved by
constructing a countably compact subgroup of 2c without non-trivial convergent
sequences using not a single ultrafilter, but rather a carefully constructed c-sized
family of ultrafilters.

2. Notation and terminology

Recall that an infinite topological space X is countably compact if every infinite
subset of X has an accumulation point. Given p a nonprincipal ultrafilter on !

(for short, p 2 !
⇤), a point x 2 X and a sequence {xn : n 2 !} ✓ X we say

(following [5]) that x = p-limn2! xn if for every open U ✓ X containing x the
set {n 2 ! : xn 2 U} 2 p. It follows that a space X is countably compact if and
only if every sequence {xn : n 2 !} ✓ X has a p-limit in X for some ultrafilter
p 2 !

⇤. Given an ultrafilter p 2 !
⇤, a space X is p-compact if for every sequence

{xn : n 2 !} ✓ X there is an x 2 X such that x = p-limn2! xn.

For introducing the following definition, we fix a bijection ' : ! ! ! ⇥ !, and
for a limit ordinal ↵ < !1, we pick an increasing sequence {↵n : n 2 !} of smaller
ordinals with supremum ↵. Given an ultrafilter p 2 !

⇤, the iterated Fubini powers

or Froĺık sums [15] of p are defined recursively as follows:

p
1 = p

p
↵+1 = {A ✓ ! : {n : {m : (n,m) 2 '(A)} 2 p

↵} 2 p} and

p
↵ = {A ✓ ! : {n : {m : (n,m) 2 '(A)} 2 p

↵n} 2 p} for ↵ limit.

The choice of the ultrafilter p↵ depends on (the arbitrary) choice of ' and the choice
of the sequence {↵n : n 2 !}, however, the type of p↵ does not (see e.g., [15, 18]).

For our purposes we give an alternative definition of the iterated Fubini powers
of p: given ↵ < !1 we fix a well-founded tree T↵ ⇢ !

<! such that

(i) ⇢T↵(?) = ↵, where ⇢T↵ denotes the rank function on hT↵,✓i;
(ii) For every t 2 T↵, if ⇢T↵(t) > 0 then t

_
n 2 T↵ for all n 2 !.

For � 6 ↵, let ⌦�(T↵) = {t 2 T↵ : ⇢T↵(t) = �} and T
+
↵ = {t 2 T↵ : ⇢T↵(t) > 0}.

If p 2 !
⇤, then Lp(T↵) will be used to denote the collection of all trees T ✓ T↵

such that for every t 2 T \ T
+
↵ the set succT (t) = {n 2 ! : t_n 2 T} belongs to p.

Notice that each T 2 Lp(T↵) is also a well-founded tree with ⇢T (?) = ↵. Moreover,
the family {⌦0(T ) : T 2 Lp(T↵)} forms a base for an ultrafilter on ⌦0(T↵) which
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has the same type of p↵. If T 2 Lp(T↵) and U 2 p, T � U denotes the tree in
Lp(T↵) for which succT �U (t) = succT (t) \ U for all t 2 (T � U)+.

Next we recall the ultrapower construction from model theory and algebra. Given
a group G and an ultrafilter p 2 !

⇤, denote by

ultp(G) = G
!
/ ⌘ , where f ⌘ g i↵ {n : f(n) = g(n)} 2 p.

The Theorem of  Lós [25] states that for any formula � with parameters [f0], [f1], . . .
[fn], ultp(G) |= �([f0], [f1], . . . [fn]) if and only if {k : G |= �(f0(k), f1(k), . . .

fn(k))} 2 p. In particular, ultp(G) is a group with the same first order properties
as G.

There is a natural embedding of G into ultp(G) sending each g 2 G to the
equivalence class of the constant function with value g. We shall therefore consider
G as a subgroup of ultp(G). Also, without loss of generality, we can assume that
dom(f) 2 p for every [f ] 2 ultp(G).

Recall that the Bohr topology on a group G is the weakest group topology making
every homomorphism � 2 Hom(G,T) continuous, where the circle group T carries
the usual compact topology. We let (G, ⌧Bohr) denote G equipped with the Bohr
topology.

Finally, our set-theoretic notation is mostly standard and follows [23]. In partic-
ular, recall that an ultrafilter p 2 !

⇤ is a P -point if for every function on ! becomes
finite-to-one or constant when restricted to some set in the ultrafilter and, an ul-
trafilter p 2 !

⇤ is a Q-point if every finite-to-one function on ! becomes one-to-one
when restricted to a suitable set in the ultrafilter. The ultrafilters p 2 !

⇤ which
are P-point and Q-point are called selective ultrafilters. For more background on
set-theoretic aspects of ultrafilters see [6].

3. Iterated ultrapowers as p-compact groups

In this section we shall give a canonical construction of a p-compact group for
every ultrafilter p 2 !

⇤. This will be done by studying the iterated ultrapower
construction.

Fix a group G and put ult0p(G) = G. Given an ordinal ↵ with ↵ > 0, let

ult
↵
p (G) = ultp

 
lim�!
�<↵

ult
�
p (G))

!
,

where lim�!�<↵
ult

�
p (G) denotes the direct limit of the direct system hult�p (G),'�� : � 6

� < ↵i with the following properties:

(1) '�� is the identity of ult�p (G), and

(2) '�� : ult
�
p(G) ! ult

�
p (G) is the canonical embedding of ult�p(G) into ult

�
p (G).

In what follows, we will abbreviate ult
↵�

p (G) for lim�!�<↵
ult

�
p (G). Moreover, we

will treat ult
↵�

p (G) as
S

�<↵ ult
�
p (G) and, in such case, we put ht(a) = min{� <

↵ : a 2 ult
�
p (G)} for every a 2 ult

↵�

p (G). This is, of course, formally wrong, but is
facilitated by our indentification of G with a subgroup of ultp(G). In this way we
can avoid talking about direct limit constructions.
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We now consider (G, ⌧Bohr). Having fixed an ultrafilter p 2 !
⇤, this topology

naturally lifts to a topology on ultp(G) as follows: Every � 2 Hom(G,T) naturally
extends to a homomorphism � 2 Hom(ultp(G),T) by letting

(3.1) �([f ]) = p - lim
n2!

�(f(n)).

By  Lós’s theorem, � is indeed a homomorphism from ultp(G) to T and hence
the weakest topology making every � continuous, where � 2 Hom(G,T), is a group
topology on ultp(G). This topology will be denoted by ⌧Bohr.

The following is a trivial, yet fundamental fact:

Lemma 3.1. For every f : ! ! G, [f ] = p-limn2! f(n) in ⌧Bohr.

Proof. This follows directly from the definition of �. ⇤
The group that will be relevant for us is the group ult

!1
p (G), endowed with the

topology ⌧Bohr induced by the homomorphisms in Hom(G,T) extended recursively
all the way to ult

!1
p (G) by the same formula (3.1).

The (iterated) ultrapower with this topology is usually not Hausdor↵ (see [11,
3]), so we identify the inseparable functions and denote by (Ult!1

p (G), ⌧Bohr) these
quotients. More explicitly,

Ult
!1
p (G) = ult

!1
p (G)/K,

where K =
T

�2Hom(G,T) Ker(�). The natural projection will be denoted by

⇡ : ult!1
p (G) ! ult

!1
p (G)/K.

The main reason for considering the iterated Fubini powers here is the following
simple and crucial fact:

Proposition 3.2. Let p 2 !
⇤
be an ultrafilter.

(1) ult
↵
p (G) ' ultp↵(G) for ↵ < !1, and

(2) (Ult!1
p (G), ⌧Bohr) is a Hausdor↵ p-compact topological group.

Proof. To prove (1), fix an ↵ < !1. For given [f ] 2 ult
↵
p (G), recursively define a

tree Tf 2 Lp(T↵) and a function f̂ : Tf ! ult
↵
p (G) so that

• succTf (?) = dom(f?) and f̂(?) = [f?], where f? = f ;

• if f̂(t) is defined say f̂(t) = [ft], then succTf (t) = dom(ft) and f̂(t_n) =
ft(n) for every n 2 succTf (t).

We define ' : ult↵p (G) ! ultp↵(G) given by

'([f ]) = [f̂ � ⌦0(Tf )].

Claim 3.3. ' is an isomorphism.

Proof of the claim. To see that ' is a surjection, let [f ] 2 ultp↵(G) be such that
dom(f) = ⌦0(Tf ) for some Tf 2 Lp(T↵). Consider the function f̌ : Tf ! ult

↵
p (G)

defined recursively by

• f̌ � ⌦0(Tf ) = f and,
• if t 2 T

+
↵ , then f̌(t) = [hf̌(t_n) : n 2 succTf (t)i].
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Notice that the function f̌ satisfies that f̌(t) 2 ult
⇢Tf (t)

p (G) for every t 2 Tf . In
particular, f̌(?) 2 ult

↵
p (G) and, a routine calculation shows that '(f̌(?)) = [f ].

To see that ' is injective, suppose that '([f ]) = '([g]). Then there exists a tree
T 2 Lp(T↵) such that

f̂ � ⌦0(T ) = ĝ � ⌦0(T ).

If set h := f̂ � ⌦0(T ), then we can verify recursively that ȟ(?) = [f ] = [g].
Therefore, ' is a one-to-one function.

Finally, using again a recursive argument, one can check that ' preserves the
group structure.

To prove (2) note that by definition Ult
!1
p (G) is a Hausdor↵ topological group. To

see that Ult
!1
p (G) is p-compact, since Ult

!1
p (G) is a continuous image of ult!1

p (G),
so it remains only to check that ult

!1
p (G) is p-compact. Let f : ! ! ult

!1
p (G)

be a sequence and let n 2 !. So f(n) 2 ultp(ult
!�

1
p (G)), that is, there exists

fn : ! !
S

↵<!1
ult

↵
p (G) such that f(n) = [fn]. Thus, for every n 2 ! there exists

↵n < !1 such that f(n) 2 ult
↵n
p (G) and hence [f ] 2 ult

↵
p (G) for some ↵ < !1. Since

by Lemma 3.1, [f ] = p-limn2! f(n) in ⌧Bohr, this gives us the p-compactness of
ult

!1
p (G). ⇤

The plan for our construction is as follows: fix an ultrafilter p 2 !
⇤, find a suitable

topological group G without convergent sequences and consider (Ult!1
p (G), ⌧Bohr).

The remaining issue is: Does (Ult!1
p (G), ⌧Bohr) have non-trivial convergent se-

quences?

While our approach is applicable to an arbitrary group G, in the remainder of
this paper we will be dealing exclusively with Boolean groups, i.e., groups where
each element is its own inverse.1 These groups are in every infinite cardinality
 isomorphic to the group []<! with the symmetric di↵erence 4 as the group
operation and ? as the neutral element.

The following theorem is the main result of this section.

Theorem 3.4. Let p 2 !
⇤
be a selective ultrafilter. Then (Ult!1

p ([!]<!), ⌧Bohr)
is a Hausdor↵ p-compact topological Boolean group without non-trivial convergent

sequences.

In order to prove this theorem, we apply the first step of our plan.

Proposition 3.5. The group [!]<!
endowed with the topology ⌧Bohr is a non-

discrete Hausdor↵ topological group without non-trivial convergent sequences.

Proof. It is well-known and easy to see that ⌧Bohr is a non-discrete Hausdor↵ group
topology (e.g., see [2] Section 9.9), to see that ⌧Bohr has no non-trivial convergent
sequences, assume that f : ! ! [!]<! is a non-trivial sequence. Then rng(f) is an
infinite set. Find an infinite linearly independent set A ✓ rng(f) and split it into
two infinite pieces A0 and A1, and take � 2 Hom([!]<!

, 2) such that Ai ✓ ��1(i)
for every i < 2. Therefore, � is a witness that the sequence f does not converge. ⇤

1The general case will be dealt with in a separate paper.
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We say that a sequence h[fn] : n 2 !i ⇢ ultp([!]<!) is p-separated if for every
n 6= m 2 ! there is a � 2 Hom([!]<!

, 2) such that �([fn]) 6= �([fm]).

We next shows that, in general, the plan does not work for all p 2 !
⇤.

Lemma 3.6. The following are equivalent:

(1) There exists a p 2 !
⇤
such that (Ultp([!]<!), ⌧Bohr) has non-trivial convergent

sequences.

(2) There exist a sequence h�n : n 2 !i ⇢ Hom([!]<!
, 2) and a mapping

H : Hom([!]<!
, 2) ! ! such that for every n 2 ! the family

{[!]<! \Ker(�n)} [ {Ker(�) : H(�) 6 n}
is centered.

Proof. Let us prove (1) implies (2). let f̃ : ! ! Ultp([!]<!) be a non-trivial se-
quence, say f̃(n) = ⇡(f(n)) (n 2 !) where f : ! ! ult

!1
p ([!]<!). Without loss of

generality we can assume that f̃ is an one-to-one function converging to ⇡([h?i]),
here h?i denotes the constant sequence where each term is ?. So h[fn] : n 2 !i
is a p-separated sequence ⌧Bohr-converging to [h?i]. By taking a subsequence if
necessary, we may assume that for every n 2 ! there is a �n 2 Hom([!]<!

, 2) such
that �n([fn]) = 1. Now, by ⌧Bohr-convergence of h[fn] : n 2 !i, there is a mapping
H : Hom([!]<!

, 2) ! ! such that for each � 2 Hom([!]<!
, 2) and each n > H(�)

it follows that �([fn]) = 0. Now we will check that for every n 2 ! the family
{Ker(�n)c} [ {Ker(�) : H(�) 6 n} is centered2. For this, since ([!]<!

, ⌧Bohr) is

without non-trivial convergent sequences and [fn]
⌧Bohr���! [h?i], we may assume that

[fn] 6= [hai] for every hn, ai 2 !⇥[!]<!, that is, fn[U ] is infinite for all hn, Ui 2 !⇥p.
Now, fix n 2 ! and let F ⇢ Hom([!]<!

, 2) be a finite set such that H(�) 6 n for
every � 2 F . Then �([fn]) = 0 for every � 2 F and hence there exists UF 2 p

such that �(fn(k)) = 0 for every hk,�i 2 UF ⇥ F . Since �n([fn]) = 1, there exists
Un 2 p such that �n(fn(k)) = 1 for every k 2 Un. Put U = UF \ Un 2 p. Then
fn[U ] ⇢ Ker(�n)c \

T
�2F Ker(�), so we are done.

To prove (2) implies (1), first we observe that there is a sequence hfn : n 2 !i ⇢
([!]<!)! such that for each F 2 [!]<! and every � : F ! [!]<! there exists k 2 !

such that fi(k) = �(i) for all i 2 F . Now, define A
0
�,n = {k 2 ! : �(fn(k)) = 0}

and A
1
�,n = {k 2 ! : �(fn(k)) = 1} for all (�, n) 2 Hom([!]<!

, 2)⇥ !.

Claim 3.7. The collection
S

n2!{A1
�n,n

} [ {A0
�,n : H(�) 6 n} forms a centered

family which generates a free filter F .

Proof of the claim. To show that such family is centered, let m > 0 and for
every i < m fix a finite set {�j : j < mi} ⇢ H

�1[i+1]. Then, considering all choice
functions

� : n !
[

i<m

0

@Ker(�i)
c \

\

j<mi

Ker(�j)

1

A ,

we can ensure that
\

i<m

0

@A
1
�i,i \

\

j<mi

A
0
�j ,i

1

A

2For a subset A of the group [!]<! , Ac = [!]<! \A.
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is an infinite set.
To see that the filter F is free, let k 2 !. If there is an n 2 ! such that fn(k) = ?,

then k /2 A
1
�n,n

2 F . In another case, since hfn(k) : n 2 !i does not ⌧Bohr-converge
to ?, there exists � 2 Hom([!]<!

, 2) such that �(fn(k)) = 1 for infinitely many n.
Then pick one of such n with H(�) 6 n and, hence k /2 A

0
�,n 2 F .

Let p 2 !
⇤ extending F . By Claim 3.7, it follows that

(i) �n([fn]) = 1, for every n 2 !.
(ii) The sequence h�([fn]) : n 2 !i converges to 0, for every � 2 Hom([!]<!

, 2),
i.e., h[fn] : n 2 !i is a ⌧Bohr-convergent sequence to [h?i].

Finally, taking a subsequence if necessary, we can assume that h[fn] : n 2 !i is
p-separated and, hence h⇡([fn]) : n 2 !i is a non-trivial convergent sequence in
(Ultp([!]<!), ⌧Bohr). ⇤

Remark 3.8. Note that the filter F is actually an F�-filter.

Theorem 3.9. There exists a p 2 !
⇤
such that (Ultp([!]<!), ⌧Bohr) has non-trivial

convergent sequences.

Proof. We will show that the second clause of the Lemma 3.6 holds. To see this,
choose any countable linearly independent set {�n : n 2 !} ⇢ Hom([!]<!

, 2). Let
W be a vector subspace of Hom([!]<!

, 2) such that Hom([!]<!
, 2) = span{�n : n 2

!}�W . We define the mapping H : Hom([!]<!
, 2) ! ! as follows:

H(�) = min{n : � 2 span{�i : i < n}�W}.
Now, let n 2 ! and fix a finite set {�j : j < m} ⇢ H

�1[n + 1]. In order to show
that

Ker(�n)
c \

\

j<m

Ker(�j)

is infinite, we shall need a fact concerning linear functionals on a vector space.

Fact 3.10 ([30], p. 124). Let V be a vector space and �,�0
, . . . ,�m�1 linear

functionals on V . Then the following statements are equivalent:

(1)
T

j<m Ker(�j) ⇢ Ker(�).

(2) � 2 span{�j : j < m}. ⇤
Using this fact, and noting that �n /2 span{�j : j < m}, one sees that

Ker(�n)
c \

\

j<m

Ker(�j) 6= ;.

Pick an arbitrary a 2 Ker(�n)c \
T

j<m Ker(�j) and put

K = Ker(�n) \
\

j<m

Ker(�j).

Then K is an infinite set, and hence a+K is an infinite set too. But

a+K ⇢ Ker(�n)
c \

\

j<m

Ker(�j),

so we are done. ⇤
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Corollary 3.11 (CH). There is a P -point p 2 !
⇤
such that (Ultp([!]<!), ⌧Bohr)

has non-trivial convergent sequences.

Proof. It is well-known (e.g., see [21]) that assuming CH every F�-filter can be
extend to a P -point. ⇤

Selective ultrafilters and Q-points, have immediate combinatorial reformulations
relevant in our context. Given a non-empty set I and G a Boolean group, we shall
call a set {fi : i 2 I} of functions fi : ! ! G p-independent if

(
n : a+

X

i2E

fi(n) = ?

)
/2 p

for every non-empty finite set E ⇢ I and every a 2 G. Note that, in particular,
a function f : ! ! G is not constant on an element of p if and only if {f} is p-
independent. Now, we will say that a function f : I ! G is linearly independent

if f is one-to-one and {f(i) : i 2 I} is a linearly independent set and, a function
f : I ! ultp(G) is p-independent if f is one-to-one and {fi : i 2 I} is a p-independent
set, where f(i) = [fi] for i 2 I.

Proposition 3.12. Let p 2 !
⇤
be an ultrafilter. Then:

(1) p is a Q-point if and only if for every finite-to-one function f : ! ! [!]<!
there

is a set U 2 p such that f � U is linearly independent.

(2) The following are equivalent

(a) p is selective;

(b) for every function f : ! ! [!]<!
which is not constant on an element of p

there is a set U 2 p such that f � U is linearly independent;

(c) for every p-independent set {fn : n 2 !} of functions fn : ! ! [!]<!
, there

is a set U 2 p and a function g : ! ! ! so that fn � U \ g(n) is one-to-one

for n 2 !, fn[U \ g(n)] \ fm[U \ g(m)] = ? if n 6= m, and

G

n2!

fn[U \ g(n)]

is linearly independent.
3

Proof. Let us prove (1). Suppose first that p is a Q-point. Let f : ! ! [!]<! be a
finite-to-one function. Recursively define a strictly increasing sequence hnk : k 2 !i
of elements of ! and a strictly increasing sequence of finite subgroups hHn : n 2 !i
of [!]<! so that

(i) Hn \ rng(f) 6= ; for all n 2 !, and
(ii) nk = max f�1[Hk] & f

00[0, nk] ⇢ Hk+1, for all k 2 !.

Then partitioning ! into the union of even intervals, and the union of odd inter-
vals, one of them is in p, say

A =
[

i2!

[n2i, n2i+1) 2 p.

Applying Q-pointness we can assume that there exists an U 2 p such that

|[n2i, n2i+1) \ U | = 1 for every i 2 !,

3Here t denotes the disjoint union.
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and U ✓ A. By item (ii) and since hHn : n 2 !i is a strictly increasing sequence, it
follows that f � U is one-to-one and {f(n) : n 2 U} is linearly independent.

Suppose now that for every finite-to-one function f : ! ! [!]<! there is an
U 2 p such that f � U is one-to-one and {f(n) : n 2 U} is linearly independent.
Let hIn : n 2 !i be a partition of ! into finite sets. Define a finite-to-one function
f : ! ! [!]<! by putting f(k) = {n} for each k 2 In. Then there is an U 2 p such
that f � U is one-to-one and {f(n) : n 2 U} is linearly independent. Note that
necessarily |In \ U | 6 1 for every n 2 ! and therefore p is a Q-point.

(2) To see (a) implies (b), let f : ! ! [!]<! be a function which is not constant
on an element of p. Using P-pointness, we may assume without loss of generality
that f is a finite-to-one function. So, by item (1), there is an U 2 p such that f � U
is one-to-one and {f(n) : n 2 U} is linearly independent.

To see (b) implies (a), let f : ! ! [!]<! be a function which is not constant on
an element of p. By item (b), there is an U 2 p such that f � U is one-to-one and
{f(n) : n 2 U} is linearly independent, and hence p is a P-point. To verify that p
is a Q-point, notice that every finite-to-one function f : ! ! [!]<! is not constant
on an element of p. Thus, by clause (1) we get the desired conclusion.

To prove (a) implies (c), first note the following simple fact about p-independence.

Fact 3.13. Let {fi : i < n} be a finite p-independent set, and let A ⇢ [!]<! be a
finite linearly independent set. Then, the set of all m 2 ! such that At{fi(m) : i <
n} is linearly independent, belongs to p. ⇤

Assume now that {fn : n 2 !} is a p-independent set of functions fn : ! ! [!]<!.
Using Fact 3.13, we can recursively construct a p-branching tree T ⇢ !

<! such that
for every t 2 T , it follows that

succT (t) = {m : At t {fi(m) : i 6 |t|} is linearly independent},
where At = {fi(t(j)) : i < |t| & j 2 [i, |t|)}.

By Galvin-Shelah’s theorem ([4, Theorem 4.5.3]), let x 2 [T ] be a branch such
that rng(x) 2 p. Thus, if we put U = rng(x) and g(n) = max(x � n) for n 2 !, we
get the required.

Finally, notice that (b) is a particular instance of (c) when {fn : n 2 !} = {f}.
Therefore, (c) implies (b). ⇤

Remark 3.14. In the previous theorem, it is possible to change the group [!]<! by
any arbitrary Boolean group and, the conclusions of the theorem remain true.

For technical reasons, it will be necessary reformulate the notion of p-independen-
ce.

Lemma 3.15. Let G be a Boolean group and 0 < ↵ < !1. Then:

(1) A set {fi : i 2 I} of functions fi : ! ! G is p-independent if and only if the

function

f̃ : I ! ult
1
p(G)/ult0p(G)

defined by f̃(i) = ⇡
1
0([fi]) for i 2 I is linearly independent, where ⇡

1
0 : ult

1
p(G) !

ult
1
p(G)/ult0p(G) denotes the natural projection.
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(2) A set {fi : i 2 I} of functions fi : ! ! ult
↵
p (G) is p-independent if and only if

the set {f̃i : i 2 I} of functions f̃i : ! ! ult
↵
p (G)/ult↵

�

p (G) is a p-independent

set, where each f̃i is defined by f̃i(n) = ⇡
↵
↵�(fi(n)) for n 2 ! and

⇡
↵
↵� : ult↵p (G) ! ult

↵
p (G)/ult↵

�

p (G)

denotes the natural projection.

Proof. To see (1), note that X

i2E

[fi] = [hai]

i↵ (
n : a+

X

i2E

fi(n) = ?

)
2 p,

for every non-empty finite set E ⇢ I and every a 2 G.

To see (2). Let E ✓ I be a non-empty finite set and a 2 ult
↵
p (G) and, notice that

(
n :
X

i2E

f̃i(n) = ⇡
↵
↵�(a)

)
2 p

i↵ (
n : a+

X

i2E

fi(n) 2 ult
↵�

p (G)

)
2 p

i↵ (
n : (a+ [f ]) +

X

i2E

fi(n) = ?

)
2 p,

where for some U 2 p we have that f(n) = a+
P

i2E fi(n) 2 ult
↵�

p (G) for n 2 U . ⇤

Note also that if ht([f ]) = ↵ for ↵ > 0, then f is not constant on an element of
p (equivalently, {f} is p-independent).

Lemma 3.16. Let 0 < ↵ < !1, [f ] 2 ult
↵
p ([!]

<!) and p a selective ultrafilter. If f

is not constant on an element of p, then there is a tree T 2 Lp(T↵) with T ✓ Tf

such that f̂ � ⌦0(T ) is linearly independent.
4

Proof. First, if ↵ = 1, then the conclusion of the lemma follows from Proposition
3.12 (2) (b). Thus, we may assume that ↵ > 2.

We plan to construct a tree T 2 Lp(T↵) with T ✓ Tf , so that the following hold
for any � 6 ↵:

• if � > 0, then hf̂(t) : t 2 ⌦�(T )i forms a p-independence sequence;

• if � = 0, then hf̂(t) : t 2 ⌦0(T )i forms a linearly independent sequence.

In order to do this, first, we recursively construct a tree T
⇤ 2 Lp(T↵) with

T
⇤ ✓ Tf , so that the following hold for any t 2 T

⇤ with ⇢T⇤(t) > 1:

• if ht(f̂(t)) = 1, then hf̂(t_n) : n 2 succT⇤(t)i ⇢ [!]<! forms a linearly
independent sequence;

4Here, we are using the notation from the proof of Proposition 3.2 (1).
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• if ht(f̂(t)) = � +1 with � > 1, then hf̂(t_n) : n 2 succT⇤(t)i ⇢ ult
�
p ([!]

<!)
forms a p-independent sequence;

• if ht(f̂(t)) is a limit ordinal, then hht(f̂(t_n)) : n 2 succT⇤(t)i is a strictly
increasing sequence of non-zero ordinals.

At step t. If ht(f̂(t)) = 1 and hf̂(t_n) : n 2 succTf (t)i is not constant on an
element of p, then ⇢Tf (t) = 1 and applying Proposition 3.12 (2) (b) there exists

U 2 p with U ✓ succTf (t) such that hf̂(t_n) : n 2 Ui is linearly independent.
Therefore, in this case we put succT⇤(t) = U .

If ht(f̂(t)) = � + 1 with � > 1 and hf̂(t_n) : n 2 succTf (t)i is not constant on
an element of p, then consider the sequence

f̃t : succTf (t) ! ult
�
p ([!]

<!)/ult��
p ([!]<!)

defined by f̃t(n) = ⇡
�
��(f̂(t_n)) for n 2 succTf (t). Since hf̂(t_n) : n 2 succTf (t)i is

not constant on an element of p, by Lemma 3.15 (2), the sequence f̃t is not constant
on an element of p. Therefore, applying Proposition 3.12 (2) (b) and Remark 3.14,
we can find an element U 2 p with U ✓ succTf (t) such that f̃t � U is linearly
independent. Thus, by Lemma 3.15 (1), putting succT⇤(t) = U we can conclude
that hf̂(t_n) : n 2 succT⇤(t)i forms a p-independent sequence.

If ht(f̂(t)) = � is a limit ordinal, then for every � < � we set U� = {n 2
succTf (t) : ht(f̂(t

_
n)) = �}. Then

G

�<�

U� = succTf (t),

where each U� /2 p. The selectiveness of p implies that there is an U 2 p such that
|U \ U�| 6 1 for every � < �. Thus, in this case put succT⇤(t) = U \ U0. This
concludes recursive construction of T ⇤.

Notice that ⇢T⇤(t) = ht(f̂(t)) for every t 2 T
⇤. Now given a tree T

0 2 Lp(T↵)

with T
0 ✓ T

⇤, we can canonically list its members t0 2 T
0 as {tT 0

k : k < !} so that

• t
T 0

k ⇢ t
T 0

l entails k < l;

• t
T 0

k = t
_
n, t

T 0

l = t
_
m, ht(f̂(t)) is a limit ordinal, and ht(f̂(t_n)) <

ht(f̂(t_m)) entails k < l;
• t

T 0

k = t
_
n, tT

0

l = t
_
m, ht(f̂(t)) is a successor ordinal, and n < m entails

k < l.

Choose a su�ciently large regular cardinal ✓ and a countable elementary sub-
model M of hH(✓),2i containing all the relevant objects as p and T

⇤. Fix U 2 p

so that U is a pseudo-intersection of p\M . Put T ⇤⇤ = T
⇤ � U and Vt = succT⇤⇤(t)

for t 2 (T ⇤⇤)+.

We unfix t, and construct by recursion on k the required condition T = {tTk : k 2
!} 2 Lp(T↵) with T ✓ T

⇤⇤, as well as an auxiliary function g : T+ ! ! and sets
Wt ✓ Vt for t 2 T

+ such that the following are satisfied:

(a) Wt = Vt \ g(t) = succT (t) for all t 2 T
+ (by definition).

(b) For all k,
• if ⇢T (tTk ) = 1, then

D
f̂(tTl

_
n) : 9 l 6 k

⇣
n 2 WtTl

& ⇢T (t
T
l
_
n) = 0

⌘E
✓ [!]<!
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forms a linearly independent sequence;
• if ⇢T (tTk ) = � + 1 with � > 1, then
D
f̂(tTl

_
n) : 9 l 6 k

⇣
n 2 WtTl

& ⇢T (t
T
l
_
n) = �

⌘E
⇢ ult

�
p ([!]

<!)

forms a p-independence sequence;
• if ⇢T (tTk ) = � is a limit ordinal, then

D
ht(f̂(tTl

_
n)) : 9 l 6 k

⇣
n 2 WtTl

& ⇢T (t
T
l ) = �

⌘E

forms an one-to-one sequence, and

sup
n
ht(f̂(tTl

_
n)) : 9 l < k

⇣
⇢T (t

T
l ) 6= � & n 2 WtTl

& ⇢T (t
T
l
_
n) < �

⌘o

< min
n
ht(f̂(tTk

_
n)) : n 2 WtTk

o
.

Before describing the construction let us recall a simple fact from linear algebra:

Fact 3.17. Let A and B be linearly independent sets in a Boolean group with A

a finite set. Then there is A0 ✓ B such that |A0|  |A| and A [ (B \A0) is linearly
independent. ⇤

Basic step k = 0. So t
T
0 = ?. We put g(tT0 ) = 0 and hence WtT0

= VtT0
. The

conditions (a) and (b) are immediate.

Recursion step k > 0. Assume WtTl
(for l < k) as well as g � k have been defined

so as to satisfy (a) and (b). In particular, we know already t
T
k , for it is of the form

t
T
l
_
n for some n 2 WtTl

where l < k. Put ⇢T (tTk ) = � and assume � > 1. Note

that, since (b) is satisfied for l, we must have ⇢T (tTl ) = � + 1 and
D
f̂(tTj

_
m) : 9 j 6 l

⇣
m 2 WtTj

& ⇢T (t
T
j
_
m) = �

⌘E
⇢ ult

�
p([!]

<!)

is a p-independent sequence. Put

Al = {tTl0 : l0 6 k & ⇢T (t
T
l0 ) = �}

⇢
n
t
T
j
_
m : 9 j 6 l

⇣
m 2 WtTj

& ⇢T (t
T
j
_
m) = �

⌘o

and A
�
l = Al \ {tTk }.

If � = 1, then applying Proposition 3.12 (2) (c) there exists V 2 p and a function
gl : Al ! ! such that

D
f̂(t_m) : t 2 Al & m 2 V \ gl(t)

E
✓ [!]<!

is a linearly independent sequence. Using the elementarity ofM and our assumption
about U we conclude that there exists a function gl,U : Al ! ! such that

D
f̂(t_m) : t 2 Al & m 2 U \ gl,U (t)

E
✓ [!]<!

is a linearly independent sequence. Note that VtTk
\ gl,U (tTk ) ✓ U \ gl,U (tTk ) and

Wt \ gl,U (t) ✓ U \ gl,U (t) for t 2 A
�
l . Since Al is a finite set, using Fact 3.17, we

can find a natural number g(tTk ) > gl,U (tTk ) so that
D
f̂(t_m) : t 2 A

�
l & m 2 Wt

E
[
D
f̂(tTk

_
m) : m 2 VtTk

\ g(tTk )
E

forms a linearly independent sequence, as required.
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For the case � = � + 1 with � > 1, we will proceed in a similar way as the
previous case. Given t 2 Al, let

f̃t : Vt ! ult
�
p ([!]

<!)/ult�
�

p ([!]<!)

be defined by f̃t(m) = ⇡
��

� (f̂(t_m)) for m 2 Vt. By Lemma 3.15 (2), {f̃t : t 2 Al}
is a p-independent set. Thus, applying Proposition 3.12 (2) (c) and Remark 3.14,
we can find an element V 2 p and a function gl : Al ! ! such that

D
f̃t(m) : t 2 Al & m 2 V \ gl(t)

E
✓ ult

�
p ([!]

<!)/ult�
�

p ([!]<!)

is a linearly independent sequence. By elementarity of M and the property of U
we have that there exists a function gl,U : Al ! ! such that

D
f̃t(m) : t 2 Al & m 2 U \ gl,U (t)

E

is a linearly independent sequence. Since Al is a finite set, VtTk
\ gl,U (tTk ) ✓ U \

gl,U (tTk ) and Wt \ gl,U (t) ✓ U \ gl,U (t) for t 2 A
�
l , using Fact 3.17, we can find a

natural number g(tTk ) > gl,U (tTk ) so that
D
f̃t(m) : t 2 A

�
l & m 2 Wt

E
[
D
f̃tTk

(m) : m 2 VtTk
\ g(tTk )

E

forms a linearly independent sequence and, by Lemma 3.15 (1), this means that
D
f̂(t_m) : t 2 A

�
l & m 2 Wt

E
[
D
f̂(tTk

_
m) : m 2 VtTk

\ g(tTk )
E
⇢ ult

�
p ([!]

<!)

forms a p-independent sequence, as required.

If � is a limit ordinal, then applying Proposition 3.12 (2) (c) there exists V 2 p

and a function gl : Al ! ! such that
D
f̂(t_m) : t 2 Al & m 2 V \ gl(t)

E
⇢ ult

��

p ([!]<!)

is a linearly independent sequence. Thus, proceeding as previous cases, it is possible
to find a function gl,U : Al ! ! and a natural number g(tTk ) > gl,U (tTk ) so that

D
f̂(t_m) : t 2 A

�
l & m 2 Wt

E
[
D
f̂(tTk

_
m) : m 2 VtTk

\ g(tTk )
E

forms a linearly independent sequence. In particular,
D
ht(f̂(t_m)) : t 2 A

�
l & m 2 Wt

E
[
D
ht(f̂(tTk

_
m)) : m 2 VtTk

\ g(tTk )
E

forms an one-to-one sequence and, since � is a limit ordinal, one sees that without
loss of generality, we may assume that

sup
n
ht(f̂(tTl

_
m)) : 9 l < k

⇣
⇢T (t

T
l ) 6= � & m 2 WtTl

& ⇢T (t
T
l
_
m) < �

⌘o

< min
n
ht(f̂(tTk

_
m)) : m 2 VtTk

\ g(tTk )
o
,

as required. ⇤

Now we are ready to prove the main theorem of this section.

Proof of the Theorem 3.4. According to Proposition 3.2, Ult!1
p ([!]<!) is

a Hausdor↵ p-compact topological group. It remains therefore only to show that
Ult

!1
p ([!]<!) contains no non-trivial convergent sequences to ⇡([h?i]). To see this,

let f̃ : ! ! Ult
!1
p ([!]<!) be a non-trivial sequence, say f̃(n) = ⇡(f(n)) (n 2 !)
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where f : ! ! ult
!1
p ([!]<!). Without loss of generality we can assume that f̃ is an

one-to-one function. Thus, since

ult
!1
p ([!]<!) = ultp

 
[

↵<!1

ult
↵
p ([!]

<!)

!
,

there exists 0 < ↵ < !1 so that [f ] 2 ult
↵
p ([!]

<!) and f is not constant on an element

of p. By Lemma 3.16, there is a tree T 2 Lp(T↵) with T ✓ Tf such that f̂ � ⌦0(T )

is linearly independent. Note that f̂ [⌦0(T )] ✓ [!]<!. Take � 2 Hom([!]<!
, 2) so

that f̂ [⌦0(T )] ✓ ��1(1). So �([f̂ ]) = 1 and hence �([f ]) = 1. Thus, � is a witness
that the sequence f does not ⌧Bohr-converge to [h?i] and, since f̃ is one-to-one, in

fact f̃ does not converge to ⇡([h?i]).

4. Countably compact group without convergent sequences

In this section we develop the ideas introduced in the previous section into a ZFC

construction of a countably compact subgroup of 2c without non-trivial convergent
sequences. Similarly to the ultrapower construction, we shall extend the Bohr
topology ⌧Bohr on [!]<! to a group topology ⌧Bohr on [c]<! to obtain the result.
The di↵erence is that rather than using a single ultrafilter, we shall use a carefully
constructed c-sized family of ultrafilters.

Theorem 4.1. There is a Hausdor↵ countably compact topological Boolean group

without non-trivial convergent sequences.

Proof. We shall construct a countably compact topology on [c]<! starting from
([!]<!

, ⌧Bohr) as follows:

Fix an indexed family {f↵ : ↵ 2 [!, c)} ⇢ ([c]<!)! of one-to-one sequences such
that

(1) for every infinite X ✓ [c]<! there is an ↵ 2 [!, c) with rng(f↵) ✓ X,
(2) each f↵ is a sequence of linearly independent elements, and
(3) rng(f↵) ⇢ [↵]<! for every ↵ 2 [!, c).

Given a sequence {p↵ : ↵ 2 [!, c)} ⇢ !
⇤ define for every � 2 Hom([!]<!

, 2) its
extension � 2 Hom([c]<!

, 2) recursively by putting

�({↵}) = p↵- lim
n2!

�(f↵(n)).

Note that doing this indeed defines unique extension of � to a homomorphism on
[c]<! to 2, which, moreover, has the property that �({↵}) = p↵- limn2! �(f↵(n))
for every � and every ↵ 2 [!, c).

This allows us to define the topology ⌧Bohr induced by {� : � 2 Hom([!]<!
, 2)}

on [c]<! as the weakest topology making all � continuous (� 2 Hom([!]<!
, 2)), or

equivalently, the group topology having {Ker(�) : � 2 Hom([!]<!
, 2)} as a subbasis

of the filter of neighbourhoods of the neutral element ?. It follows directly from the
above observation that independently of the choice of the ultrafilters the topology is
a countably compact group topology on [c]<!. Indeed, {↵} 2 {f↵(n) : n 2 !}

⌧Bohr

for every ↵ 2 [!, c), in fact {↵} = p↵- limn2! f↵(n).

Call a set D 2 [c]! suitably closed if ! ✓ D and
S

n2! f↵(n) ✓ D for every
↵ 2 D. The following claim shows that the construction is locally countable.
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Claim 4.2. The topology ⌧Bohr contains no non-trivial convergent sequences if and
only if 8D 2 [c]! suitably closed 9 2 Hom([D]<!

, 2) such that

(1) 8↵ 2 D \ !  ({↵}) = p↵- limn2!  (f↵(n));
(2) 8i 2 2 |{n :  (f↵(n)) = i}| = !.

Proof of the claim. Given an infinite X ✓ [c]<! there is an ↵ 2 [!, c) such
that rng(f↵) ✓ X. Let D be suitably closed with ↵ 2 D, and let  be the given
homomorphism. It follows directly from the definition, and property (1) of  , that,
if � =  � [!]<! then in turn  = � � [D]<!, which implies that hf↵(n) : n 2 !i
(and hence also X) is not a convergent sequence as � takes both values 0 and 1
infinitely often on the set {f↵(n) : n 2 !}.

The reverse implication is even more trivial (and not really necessary for the
proof).

Note that if this happens then, in particular,

K =
\

�2Hom([!]<!,2)

Ker(�)

is finite, and [c]<!
/K with the quotient topology is the Hausdor↵ countably com-

pact group without non-trivial convergent sequences we want.

Hence to finish the proof it su�ces to produce a suitable family of ultrafilters:

Claim 4.3. There is a family {p↵ : ↵ < c} of free ultrafilters on ! such that for
every D 2 [c]! and {f↵ : ↵ 2 D} such that each f↵ is an one-to-one enumeration of
linearly independent elements of [c]<! there is a sequence hU↵ : ↵ 2 Di such that

(1) {U↵ : ↵ 2 D} is a family of pairwise disjoint subsets of !,
(2) U↵ 2 p↵ for every ↵ 2 D, and
(3) {f↵(n) : ↵ 2 D & n 2 U↵} is a linearly independent subset of [c]<!.

Proof of the claim. Fix {In : n 2 !} a partition of ! into finite sets such that

|In| > n ·
X

m<n

|Im|,

and let
B = {B ✓ ! : 8n 2 ! |In \B| >

X

m<n

|Im|}.

Note that B is a centered family, and denote by F the filter it generates. Note also,
that if A is an infinite subset of ! then

S
n2A In 2 F+.

Let {A↵ : ↵ 2 !} be any almost disjoint family of size c of infinite subsets of !,
and let, for every ↵ < c, p↵ be any ultrafilter on ! extending F � Sn2A↵

In.

To see that this works, let D = {↵n : n 2 !} and a family {f↵ : ↵ 2 D} of one-to-
one sequences of linearly independent elements of [c]<! be given. Let {Bn : n 2 !}
be a partition of ! such that for Bn =⇤

A↵n for every n 2 !, and recursively define
a set B such that, I0 ✓ B,

|In \B| >
X

m<n

|Im|

for every n > 0, and

{f↵n(m) : m 2 B \ Il, l 2 Bn} is linearly independent.

This is easy to do using Fact 3.17. Then B 2 B and letting Un =
S

l2Bn
Il gives

the sequence required.
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Now, use this family of ultrafilters as the parameter in the construction of the
topology described above. By Claim 4.2 it su�ces to show that given a suitably
closed D ✓ c and ↵ 2 D \ ! there is a homomorphism  : [D]<! ! 2 such that

(1) 8↵ 2 D \ !  ({↵}) = p↵- limn2!  (f↵(n))
(2) 8i 2 2 |{n :  (f↵(n)) = i}| = !.

By Claim 4.3, there is a sequence hU↵ : ↵ 2 D \ !i such that

(1) {U↵ : ↵ 2 D \ !} is a family of pairwise disjoint subsets of !,
(2) U↵ 2 p↵ for every ↵ 2 D \ !, and
(3) {f↵(n) : ↵ 2 D \ ! & n 2 U↵} is a linearly independent subset of [c]<!.

Enumerate D \ ! as {↵n : n 2 !} so that ↵ = ↵0. Recursively define a function
h : {f↵(n) : ↵ 2 D \ ! & n 2 U↵} ! 2 so that

(1) h takes both values 0 and 1 infinitely often on {f↵0(n) : n 2 U↵0 \ {↵0}},
(2)  0({↵0}) = p↵0 -limk2U↵0

 0(f↵0(k)), and
(3) if {↵n} is in the subgroup generated by {f↵m(n) : m < n & n 2 U↵m} then

 n({↵n}) = p↵n - limk2U↵n
 n(f↵n(k)), and making sure that

(4)  n({↵n}) = p↵n - limk2U↵n
 n(f↵(k)).

where  n is a homomorphism defined on the subgroup generated by

{f↵m(n) : m < n & n 2 U↵m} [ {{↵m} : m < n}

extending h � {f↵m(n) : m < n & n 2 U↵m}. Then let  be any homomorphism
extending

S
m2!  m. Doing this is straightforward given that the set

{f↵(n) : ↵ 2 D \ ! & n 2 U↵}

is linearly independent.

Finally, note that if we, for a 2 [c]<!, let

H(a)(�) = �(a)

then H is a continuous homomorphism from [c]<! to 2Hom([!]<!) whose kernel is
the same group K =

T
�2Hom([!]<!) Ker(�), which defines a homeomorphism (and

isomorphism) of [c]<!
/K onto a subgroup of 2Hom([!]<!) ' 2c. ⇤

5. Concluding remarks and questions

Even though the results of the paper solve longstanding open problems, they also
open up very interesting new research possibilities. In Theorem 3.4 we showed that
if p is a selective ultrafilter then Ult

!1
p ([!]<!) is a p-compact group without non-

trivial convergent sequences. This raises the following two interesting questions,
the first of which is the equivalent of van Douwen’s problem for p-compact groups.

Question 5.1. Is there in ZFC a Hausdor↵ p-compact topological group without a

non-trivial convergent sequence?

A closely related problem asks how much can the property of being selective
be weakened in Theorem 3.4. Recall that by Corollary 3.11 it is consistent that
there is a P-point p for which Ult

!1
p ([!]<!) does contain a non-trivial convergent

sequence. On the other hand, Ult!1
p ([!]<!) ' Ult

!1
p↵([!]<!) for every ↵ < !1, so

there are consistently non-P-points for which (Ult!1
p ([!]<!) contains no non-trivial

convergent sequences.
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Question 5.2. Is the existence of an ultrafilter p such that Ult
!1
p ([!]<!) contains no

non-trivial convergent sequences equivalent to the existence of a selective ultrafilter?

Question 5.3. Is it consistent with ZFC that Ult
!1
p ([!]<!) contains a non-trivial

convergent sequence for every ultrafilter p 2 !
⇤
?

Assuming Ult
!1
p ([!]<!) contains no non-trivial convergent sequences, it is easy to

construct for every n 2 ! a subgroup H of Ult!1
p ([!]<!), such that Hn is countably

compact while H
n+1 is not. It should be possible to modify the construction in

Theorem 4.1 to construct such groups in ZFC. These issues will be dealt with in a
separate paper.

Another interesting question is:

Question 5.4. Is it consistent with ZFC that for some ultrafilter p 2 !
⇤
there is a

Hausdor↵ p-compact topological group without non-trivial convergent sequences of

weight < c?

Finally, let us recall a 1955 problem of Wallace:

Question 5.5 (Wallace [45]). Is every both-sided cancellative countably compact

topological semigroup necessarilly a group?

It is well known that a counterexample can be recursively constructed inside of
any non-torsion countably compact topological group without non-trivial conver-
gent sequences [28, 38]. The fact that we do not know how to modify (in ZFC) the
construction in Theorem 4.1 to get a non-torsion example of a countably compact
group seems surprising. Also the proof of Theorem 3.4 does not seem to easily
generalize to non-torsion groups. Hence:

Question 5.6. Is there, in ZFC , a non-torsion countably compact topological group

without non-trivial convergent sequences?

Question 5.7. Assume p 2 !
⇤
is a selective ultrafilter. Does (Ult!1

p (Z), ⌧Bohr)
contain no non-trivial convergent sequence?

Here the ⌧Bohr is defined as before as the weakest topology on ult
!1
p (Z) which

makes all extensions of homomorphisms from Z to T continuous, and the group
Ult

!1
p (Z) = ult

!1
p (Z)/K with K being the intersection of all kernels of the extended

homomorphisms.
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