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Abstract. We construct a model of ZFC where every separable Fréchet group

is metrizable. This solves a 1978 problem of V. I. Malykhin.

1. Introduction

Metrization theorems have been central to topology since its beginnings. Among
the classical metrization theorems are those of Urysohn [63] for separable spaces,
Bing [13] and Nagata-Smirnov [44, 58] for general topological spaces, Birkhoff-
Kakutani [14, 35] for topological groups, and Katětov [36] for compact spaces.

In more recent decades, several important metrization problems were solved us-
ing special set-theoretic assumptions, i.e., were proved to be independent of the
usual axioms of set theory (ZFC). Many such results, including the solution to
Suslin’s problem [59], were solved appealing to some form of a forcing axiom (Mar-
tin’s Axiom MA, Proper Forcing Axiom PFA). A recent example is the solution
to a problem of von Neumann (The Scottish book [40][Problem 163]) about weakly
distributive Boolean algebras (a metrization problem in disguise) using the P-Ideal
Dichotomy (PID) [8, 7], a consequence of PFA.

Then there are metrization problems, the solution of which requires a special forc-
ing construction as they have provably negative solutions both in the constructible
universe (assuming V = L) and assuming a forcing axiom such as PFA: The famous
Normal Moore Space Conjecture [33, 34] was solved in the late 70’s and early 80’s
by appealing to forcing techniques combined with large cardinals [23, 45, 24], the
problem of Katětov’s [36] about metrizability of compact spaces with hereditarily
normal squares was solved by forcing with a Suslin tree over a model of a large
fragment of the Proper Forcing Axiom (PFA) [38], hence creating a model which
shares several properties of mutually contradictory theories V = L and PFA.

Following this line of research, we present a consistent metrization theorem for
separable Fréchet topological groups.

The classical metrization theorem of Birkhoff and Kakutani states that a T1

topological group is metrizable if and only if it is first countable. The natural
question as to what extent can the first countability be weakened was asked by
Malykhin (see [4, 43]):
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Problem 1.1 (Malykhin 1978). Is there a separable (or, equivalently, countable)
Fréchet-Urysohn group that is not metrizable?

Recall that a topological space X is Fréchet-Urysohn or just Fréchet if for every
A ⊆ X and every x in the closure of A there is a sequence of elements of A
converging to x. All spaces and groups are assumed to be T1 and completely
regular.

Malykhin knew that assuming p > ω1 every countable dense subgroup of 2ω1

is Fréchet and not metrizable. There are known consistent positive solutions to
Malykhin’s problem also under either of the following assumptions: the existence
of an uncountable γ-set (Gerlits-Nagy [25]) and p = b (Nyikos [48]). In fact, by a
recent result of Ohrenstein and Tsaban [50] the existence of an uncountable γ-sets
is the weakest of the assumptions.

On the other hand, Todorčević and Uzcátegui [61] recently showed that there
are no definible examples of non-metrizable countable Fréchet groups.

One of the first consistency results in the “negative direction” was proved by
Brendle and the first author. Recall that a filter F on ω is a FUF-filter [52, 27, 28]
if given a family X ⊆ [ω]<ω \ {∅} such that every element of F contains an element
of X there is a sequence 〈an : n ∈ ω〉 ⊆ X such that every element of F contains
all but finitely many an’s. Every FUF filter F induces a T1 group topology on
the Boolean group [ω]<ω by declaring the family {[F ]<ω : F ∈ F} basis for open
neighbourhoods of the neutral element ∅. Moreover, the weight of the induced
topology coincides with the character of the filter F (see [52] or [27]).

Theorem 1.2 ([18]). It is consistent with the continuum arbitrarily large that no
uncountably generated filter of character less than c is a FUF-filter.

The method of the proof of our main theorem is largely based on the proof of
this theorem.

Another recent theorem of Barman and Dow [9] hinted in the direction of a
consistency result.

Theorem 1.3 ([9]). It is consistent with ZFC that every countable Fréchet space
has π-weight at most ω1.

Corollary 1.4. It is consistent with ZFC that every separable Fréchet group has
weight at most ω1.

This paper is dedicated to showing that

Theorem 1.5. It is consistent with ZFC that every countable Fréchet topological
group is metrizable.

The basic forcing used is the Laver-Mathias-Prikry forcing with a suitable filter
(the filter of dense open subsets of a Fréchet space or a group). The main technical
notion involved is that of an ω-hitting family and its variations.

We say that a family H ⊆ [ω]ω is ω-hitting [20] if given 〈An : n ∈ ω〉 ⊂ [ω]ω

there is an H ∈ H such that H ∩An is infinite for all n. An important property of
ω-hitting families, which will be used several times, is that if an ω-hitting family is
partitioned into countably many pieces, then at least one of the pieces is ω-hitting.

The outline of the proof is as follows. Put S2
1 = {α < ω2 : cof(α) = ω1}. Start

with a model of CH and ♦(S2
1) and construct a finite support iteration Pω2 =
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〈Pα, Q̇α : α < ω2〉 so that each Q̇α is forced to be the Laver-Mathias-Prikry forcing
with the filter of dense open subsets of a Fréchet space or a group and use ♦(S2

1)
to trap all “future” countable Fréchet spaces/groups.

At stage α < ω2 we deal, say, with a countable Fréchet group G with the neutral
element 1G endowed with a group topology τ . We show that, assuming the weight of
τ is uncountable, forcing with the Laver-Mathias-Prikry forcing Lnwd∗(τ) generically
adds a set A such that 1G is in the closure of A yet there is no sequence in A
convergent to 1G. This procedure will be called sealing. Then we have to make sure
that the rest of the iteration preserves

(1) there is no sequence in A convergent to 1G, and
(2) 1G is in the closure of A (in all future group topologies extending τ).

The first item is taken care of by preservation of ω-hitting, and is a direct gen-
eralization of the results in [18]. The second item required new ideas. It is here
where the relationship between the topological and algebraic structure of the group
comes into play and, ultimately, a variant of ω-hitting, called ω-hitting w.r.t. A is
introduced and used here.

Malykhin’s problem was considered one of the principal open problems in Set-
theoretic topology [43, 30, 41] and its solution is a major contribution to the study
of convergence properties in topological groups [4, 46, 53, 48, 5, 56, 54, 60, 27, 28, 6]
as well as a contribution to the study of structural properties of Fréchet spaces in
general [1, 26, 2, 57, 47, 22].

Our set-theoretic notation is standard and follows [37]. For more background on
forcing see [37, 11, 10] and on cardinal invariants of the continuum see [15, 11].

2. Laver-Mathias-Prikry forcing

The Laver-Mathias-Prikry forcing LF associated to a free filter F on ω, is defined
as the set of those trees T ⊆ ω<ω for which there is sT ∈ T (the stem of T ) such
that for all s ∈ T , s ⊆ sT or sT ⊆ s and such that for all s ∈ T , with s ⊇ sT the
set succT (s) = {n ∈ ω : s_n ∈ T} ∈ F ordered by inclusion.

LF is a σ-centered forcing notion which adds generically a dominating function
˙̀F : ω → ω. The range Ȧgen = ran( ˙̀F ) of which separates the filter F (that is,
Ȧgen is almost contained in all members of F and has infinite intersection with each
F-positive set).

For a tree T ⊆ ω<ω and s ∈ T with s ⊇ sT , let Ts = {t ∈ T : s ⊆ t or t ⊆ s} be
the full subtree of T below s.

Names for reals in forcings of the type LF can be analyzed using ranks as in-
troduced by Baumgartner and Dordal in [12] (and further developed by Brendle
[16, 17]). Given a formula ϕ in the forcing lenguage and s ∈ ω<ω, we say that
s favors ϕ if there is no condition T ∈ LF with stem s such that T  “¬ϕ”, or
equivalently, every condition T ∈ LF with stem s has an extension T ′ such that
T ′  “ϕ”.

3. Preservation of ω-hitting

As already mentioned earlier ω-hitting families and their preservation by forcing
are crutial in our arguments and appeared already in [20] and [18].
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Definition 3.1 ([18]). A forcing notion P strongly preserves ω-hitting if for every
sequence 〈Ȧn : n ∈ ω〉 of P-names for infinite subsets of ω there is a sequence
〈Bn : n ∈ ω〉 of infinite subsets of ω such that for any B ∈ [ω]ω, if B ∩Bn is infinite
for all n then P “B ∩ Ȧn is infinite for all n”.

Clearly, every forcing notion that strongly preserves ω-hitting preserves that all
ground model ω-hitting families remain ω-hitting in the extension.

Lemma 3.2 ([18]). Finite support iteration of ccc forcings strongly preserving ω-
hitting strongly preserves ω-hitting.

In [18] preservation of ω-hitting for the forcing notions of type LF was charac-
terized.

Proposition 3.3 ([18]). Let I be an ideal on ω and let F = I∗ be the dual filter.
Then the following are equivalent:
(1) For every X ∈ I+ and every J 6K I � X the ideal J is not ω-hitting.
(2) LF strongly preserves ω-hitting.
(3) LF preserves ω-hitting.

Recall the definition of Katětov order (see [29, 32]): Given two ideals I, J on
ω, we say that I 6K J if there is a function f : ω → ω such that f−1[I] ∈ J for
every I ∈ I.

4. Sealing by LF
Definition 4.1. Let I be an ideal on ω, P a forcing notion and let Ȧ be a P-name
for a subset of ω. We say that P seals the ideal I via Ȧ if P “Ȧ ∈ I+ ∧ I � Ȧ is
ω-hitting”.

The following variation of ω-hitting is used to characterize when LF seals an
ideal I via Ȧgen.

Definition 4.2. Given an ideal I and a free filter F both on ω, we say that I is
ω-hitting mod F , if I ∩ F = ∅ and for every countable family H ⊂ F+ there is an
I ∈ I such that H ∩ I ∈ F+ for all H ∈ H.

Note that an ideal I is ω-hitting if and only if I is ω-hitting mod Fr, where Fr
is the Fréchet filter (the filter of co-finite sets of ω).

Lemma 4.3. The forcing LF seals the ideal I via Ȧgen if and only if I is ω-hitting
mod F .

Proof. Suppose that LF seals the ideal I via Ȧgen. Since LF “Ȧgen ∈ I+”, it
follows that I ∩F = ∅. Assume that there is a countable family H ⊂ F+ such that
for every I ∈ I there is a H ∈ H with H ∩ I ∈ F∗. The forcing LF separates the
filter F . Then LF “ȦH := Ȧgen ∩H is infinite for every H ∈ H” and LF “Ȧgen
is almost disjoint from each member of F∗”. Therefore, LF “I � Ȧgen is not
ω-hitting”.

Conversely, suppose that I is ω-hitting mod F . As I ∩ F = ∅, it follows that
I∗ ⊆ F+ and by genericity LF “X ∩ Ȧgen is infinite for all X ∈ F+”. Thus,
LF “Ȧgen ∈ I+”.

We now show that LF “I � Ȧgen is ω-hitting”. This is a rank argument based
on [18]. Let 〈Ȧn : n ∈ ω〉 be a sequence of LF -names for infinite subsets of Ȧgen.
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Aiming towards a contradiction, assume that for all I ∈ I there are TI ∈ LF , and
natural numbers nI , mI such that

TI  “ȦnI
∩ I ⊆ mI”. (?)

Define the rank rkn(s) by recursion on the ordinals by

rkn(s) = 0⇔ ∃B ∈ F+ ∀b ∈ B(s_b favors b ∈ Ȧn)

rkn(s) 6 α⇔ ∃B ∈ F+ ∀b ∈ B(rkn(s_b) < α)

for α > 0.

Claim 4.4. rkn(s) <∞ for all s and n.

Proof of the claim. Fix n. Let k ∈ ω. Define an auxiliary rank ρk(s) by recursion
such that

ρk(s) = 0⇔ ∃b > k(s favors b ∈ Ȧn)

and ρk(s) 6 α is defined as for rkn, for α > 0. First, notice that ρk(s) < ∞ for
all s and k. Indeed, suppose that ρk(s) = ∞ for some s and k. Recursively build
condition T with sT = s such that ρk(t) = ∞ for every t ∈ T with t ⊇ s. As Ȧn
is forced to be infinite, there are T ′ 6 T and b > k such that T ′  “b ∈ Ȧn”. In
particular, sT ′ ⊇ s and sT ′ favors b ∈ Ȧn. Hence, ρk(sT ′) = 0, a contradiction.
Now, also note that since Ȧn is forced to be a subset of Ȧgen, any s can favor only
elements of ran(s).

If ρk(s) = 1, then there is a F-positive set of b such that s_b favors a ∈ Ȧn for
some a = ab with a > k. If on a F-positive set, the same a ∈ ran(s) works, we get
ρk(s) = 0, a contradiction. Since ab ∈ ran(s) ∪ {b}, it follows that on a F-positive
set, ab = b. This, however, means that rkn(s) = 0.

Now, let k > max(ran(s)). Then ρk(s) > 1. By the preceding paragraph and
induction, we see that rkn(s) <∞, as required.

Let sI be the stem of TI . By strengthening the TI , if necessary, by Claim 4.4
and using induction on the rank of the stem, we may assume that rknI

(sI) = 0 for
all I ∈ I. According to the definition of rkn, for every I ∈ I there is a BsI ,nI

∈ F+

such that s_I b favors b ∈ ȦnI
for all b ∈ BsI ,nI

. Since I is ω-hitting mod F , there is
an I which intersects all the Bs,n’s in a F-positive set. In particular, I∩BsI ,nI

∈ F+

and hence there is a b > mI with b ∈ I∩BsI ,nI
∩succTI

(sI). As s_I b favors b ∈ ȦnI
,

there is a T 6 TI whose stem extends s_I b such that T  “b ∈ ȦnI
”, a contradiction

to the initial assumption (?). �

5. Topology

Given a topological space X and a point x ∈ X, we denote by Ix the dual ideal
to the neighourhood filter of x and by nwd(X) the ideal of nowhere dense subsets
of X. Then nwd∗(X) is the filter generated by the dense open subset of X.

The following simple yet important topological fact due to Barman and Dow [9]
is used several times in what follows:

Lemma 5.1 ([9]). Let X be a Fréchet space without isolated points, let x ∈ X
and let M be a countable family of nowhere dense subsets of X. Then there is an
infinite sequence Cx converging to x with only finite intersection with every element
of M.
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Proof. Fix 〈Mn : n ∈ ω〉 an enumeration of M. Since the space X has no isolated
points, there is a sequence 〈xn : n ∈ ω〉 ⊆ X \ {x} converging to x. Let Xn =
X \

(
{x} ∪

⋃
i<nMi

)
. Then Xn is dense in X for every n. Since X is Fréchet,

there is a sequence 〈xnk : k ∈ ω〉 ⊆ Xn converging to xn for each n ∈ ω. Put
X ′ = {xnk : k, n ∈ ω}. Then x ∈ X ′, and hence there is a sequence Cx ⊆ X ′

converging to x. By the construction, the sequence Cx is as required. �

Recall that πw(X), the π-weight of a space X is the minimal size of a π-base,
i.e., a family of non-empty open sets such that every non-empty open set contains
an element of the family.

Theorem 5.2 ([3]). Let G be a topological group. Then w(G) = πw(G).

Recall that the π-character πχ(x,X) of a point x in a space X is the minimal size
of a local π-base of x that is the minimal size of a family of non-empty open subsets
of X such that any neighborhood of x contains one of them. In a countable group G
the weight is equal to the π-character of any of its points, and a countable space X
has uncountable π-weight if and only if there is an x ∈ X such that πχ(x,X) > ω.

Recall that we wish to introduce a set A ⊆ X such that x is in the closure of
A yet no sequence from A converges to x. This is easily seen to be equivalent to
A being Ix-positive and such that the ideal Ix � A is tall. However, tallness of
ideals is in general not preserved by any forcing adding a real. However, a slight
strengthening - countable tallness, is preserved as seen in Section 3.

Proposition 5.3. Let X be a countable regular space and let x ∈ X.

(a) If πχ(x,X) > ω, then Lnwd∗(X) seals the ideal Ix via Ȧgen.
(b) If X is a T1 Fréchet space with no isolated points, then Lnwd∗(X) strongly pre-

serves ω-hitting.

Proof. To see (a), by Lemma 4.3, it is enough to show that the ideal Ix is ω-hitting
mod nwd∗(X). Clearly Ix ∩ nwd∗(X) = ∅. For the other part, suppose that there
is a countable family H ⊂ nwd+(X) such that for every I ∈ Ix there is a H ∈ H
with H ∩ I ∈ nwd(X). For each H ∈ H, put UH = Int(H) 6= ∅.

Claim 5.4. The family {UH : H ∈ H} forms a π-base at x.

Proof of the claim. Let U be an arbitrary neighbourhood of x. By regularity
of X, there exists a neighbourhood V of x such that V ⊆ U . There exists a
H ∈ H such that H \ V ∈ nwd(X), and hence Int(H \ V ) = ∅. We claim that
UH = Int(H) ⊆ V . Indeed, if y ∈ UH\V and W is an arbitrary open neighbourhood
of y, then H ∩ (W ∩ (UH \ V )) 6= ∅. So W ∩ (H \ V ) 6= ∅, and therefore y ∈ H \ V ,
i.e., UH \ V ⊆ H \ V , which contradicts the fact that Int(H \ V ) = ∅.

Thus, πχ(x,X) = ω, a contradiction to the initial assumption. Therefore,
Lnwd∗(X) seals the ideal Ix via Ȧgen.

To see (b), by Proposition 3.3, it suffices to show that for every Y ∈ nwd(X)+

and every J 6K nwd(X) � Y the ideal J is not ω-hitting. Aiming towards a
contradiction, assume that there is a ω-hitting ideal J Katětov below nwd(X) � Y ,
for some Y ∈ nwd(X)+, witnessed by a function f : Y → ω. Put U = Int(Y ) 6= ∅
and Z = U ∩ Y .
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Claim 5.5. For every x ∈ Z there is an infinite sequence Cx ⊆ Z converging to x
such that f � Cx is finite to one.

Proof of the claim. Note that f−1(n) ∈ nwd(X) for all n ∈ ω. Apply Lemma
5.1 to Z with M = {f−1(n) ∩ Z : n ∈ ω}.

Since J is ω-hitting there is a J ∈ J such that J ∩ f [Cx] is infinite for every
x ∈ Z. Then f−1[J ] is dense in Z, but Z is dense in U , a contradiction. �

Using the results mentioned so far, we can prove that it is relatively consistent
with the continuum arbitrarily large, that every separable Fréchet space of weight
less than c has countable π-weight, in particular, every separable Fréchet group of
weight less than c is metrizable.

6. Algebra

So far we could get by with only topology. However, now we turn our attention
to the problem of preserving that 1G is in the closure of the generically added set A.
Here is where algebra comes into play, and necessarily so, as Dow [21] has recently
showed that, assuming b = c there is a countable Fréchet space of uncountable
π-weight.

Let us elaborate a bit more: In particular, in our model there is such a space.
However, a fragment of such a space has been trapped by our bookkeeping device
and “killed” by adding a set A which has a point x in its closure and contains
no converging sequences, in fact, Ix � A is ω-hitting. Moreover, as the iteration
preserves ω-hitting, A will never contain any sequence converging to x. It means
that there is an extension of the original topology in which x is no longer in the
closure of A, i.e., there is a new open set containing x which is disjoint from A.

We will show that this does not happen in the case of topological groups.

Definition 6.1. Let (G, ·) be an abstract group and let X ⊆ G \ {1G}. A subset
A of G is called X-large if for every b ∈ X and a ∈ G, either a ∈ A or b · a−1 ∈ A.
By X-large we will denote the collection of all subsets of G which are X-large.

The intention is as follows: Let X be the generically added set. If there were a
finer group topology in which 1G is not in the closure of X, then there would be a
set U ⊆ G containing 1G and such that U · U ∩X = ∅, a new open neighbourhood
of 1G disjoint from X. A set A is X-large if it contains the complement of such a
U .

Definition 6.2. A family C of subsets of an abstract group G is ω-hitting with
respect to (or just ω-hitting w.r.t.) X if given 〈An : n ∈ ω〉 ⊂ X-large there is a
C ∈ C such that C ∩An is infinite for all n.

Let us continue with the intended meaning of this. Again, suppose that a set U
is a new open neighbourhood of 1G disjoint from X (such that U ·U ∩X = ∅). The
information about the future group topologies extending our topology τ , includes
information about convergent sequences: If C converges to 1G in τ it will also
converge in all future topologies, in particular, C would have to be almost contained
in U . However, if we manage to prove that for every candidate for U there is a C
which is not almost contained in U (equivalently, has an infinite intersection with
the X-large set which is the complement of U) and also manage to preserve this,
we will be able to show that 1G will be in the closure of X in all future group
topologies extending τ . This is, indeed, what we shall do.
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Definition 6.3. We say that a relation R ⊆ G × G is large if for every b, a ∈ G,
either 〈b, a〉 ∈ R or 〈b, b · a−1〉 ∈ R. By large we will denote the family of relations
which are large.

The following is the crutial topological lemma, which makes the proof work:

Lemma 6.4. Let G be a countable Fréchet group and let 〈Rn : n ∈ ω〉 be a sequence
of large relations. Then there is a sequence C convergent to 1G such that R−1

n [C \
F ] ∈ nwd(G)+ for every n ∈ ω and F ∈ [G]<ω.

Proof. For every n ∈ ω let An = {a ∈ G : R−1
n (a) ∈ nwd(G)} and put

M = {R−1
n (a) · a−1 : a ∈ An, n ∈ ω} ∪ {An : An ∈ nwd(G)}.

By Lemma 5.1, there is a sequence C converging to 1G such that C ∩M is finite
for every M ∈ M. We claim that R−1

n [C \ F ] ∈ nwd(G)+ for every n ∈ ω and
F ∈ [G]<ω. To see this, let n ∈ ω and F ∈ [G]<ω are given. Consider two cases.

Case 1. An ∈ nwd(G).
Then there is an a ∈ C \ F such that R−1

n (a) ∈ nwd(G)+.
Case 2. An ∈ nwd(G)+.
Fix a ∈ An. Then b /∈ R−1

n (a) · a−1 (or equivalently b · a /∈ R−1
n (a)) for all but

finitely many b ∈ C. Since Rn is a large relation, we must have 〈b ·a, b〉 ∈ Rn for all
but finitely many b ∈ C. In particular, {b·a : b ∈ C} ⊆∗ R−1

n [C\F ] and {b·a : b ∈ C}
converges to a. Thus, An ⊆ R−1

n [C \ F ] and hence also R−1
n [C \F ] ∈ nwd(G)+. �

Lemma 6.4 allows us to prove the following:

Lemma 6.5. Let G be a countable Fréchet topological group. Then

Lnwd∗(G) “C is ω-hitting w.r.t. Ȧgen”,

where C = I⊥1G
is the ideal consisting of sequences converging to 1G.

Proof. Aiming towards a contradiction, assume that there are a sequence 〈Ȧn : n ∈
ω〉 of Lnwd∗(G)-names and a condition T ∗ ∈ Lnwd∗(G) such that T ∗  “∀n ∈ ω (Ȧn ∈
Ȧgen-large)” and for every C ∈ C there are a condition TC ∈ Lnwd∗(G), a natural
number nC and FC a finite subset of G such that

TC  “C ∩ ȦnC
⊆ FC”. (?)

For each s ∈ T ∗ with s ⊇ sT∗ and each natural number n, put

Rs,n = {〈b, a〉 : b ∈ succT∗(s)⇒ s_b favors a ∈ Ȧn}.

Claim 6.6. The relation Rs,n is large.

Proof of the claim. Let b and a be two arbitrary elements of G. Assume that
〈b, a〉 /∈ Rs,n. We have to show that 〈b, b · a−1〉 ∈ Rs,n. Let T be an arbitrary
condition with sT = s_b. By the assumption, necessarily b ∈ succT∗(s) and there
is a condition T ′ with sT ′ = s_b such that T ′  “a /∈ Ȧn”. Put T ′′ = T ∗s_b∩T ∩T ′.
Then T ′′  “b ∈ Ȧgen and a /∈ Ȧn”, but also T ′′  “Ȧn ∈ Ȧgen-large”, hence there
is a condition S 6 T ′′ such that S  “b · a−1 ∈ Ȧn”.

By Lemma 6.4, there is a C ∈ C such thatR−1
s,n(C\F ) ∈ nwd(G)+ for every s ∈ T ∗

with s ⊇ sT∗ , n ∈ ω and F ∈ [G]<ω. In particular, R−1
sC ,nC

(C \ FC) ∈ nwd(G)+,
where sC = sTC

. Pick a b ∈ succTC
(sC) ∩ R−1

sC ,nC
(C \ FC). Then, there is an
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a ∈ C \ FC such that s_C b favors a ∈ ȦnC
, and hence there is a condition T 6 TC

whose stem extends s_C b such that T  “a ∈ ȦnC
”, a contradiction to the initial

assumption (?). �

We now turn to the preservation of ω-hitting w.r.t. X in iterations. In order to
do this, we introduce the corresponding iterable property: We say that a forcing
notion P strongly preserves ω-hitting w.r.t. X if for every Ȧ a P-name for a subset
X-large of a group G there is a sequence 〈An : n ∈ ω〉 ⊂ X-large such that for any
C ⊆ G, if C ∩ An is infinite for all n then P “C ∩ Ȧ is infinite”. Clearly, every
forcing notion that strongly preserves ω-hitting w.r.t. X preserves ω-hitting w.r.t.
X.

Lemma 6.7. Let P be a σ-centered forcing notion. Then P strongly preserves
ω-hitting w.r.t. X.

Proof. Without loss of generality, P is a complete Boolean algebra, P+ =
⋃
n∈ω Un,

all Un being ultrafilters. Let Ȧ be a P-name for a subset X-large of a group G. Put
An = {a ∈ G : Ja ∈ ȦK ∈ Un} for every n ∈ ω. It is easy to see that each An is
X-large. Now, let C be a subset of G such that C ∩ An is infinite for all n. We
claim, P “C ∩ Ȧ is infinite”. Indeed, let p ∈ P and let F be a finite subset of G.
Then there exists an n with p ∈ Un and a ∈ C ∩ An \ F . Thus, Ja ∈ ȦK ∈ Un and
hence there is a condition q 6 p such that q  “a ∈ Ȧ”. �

Lemma 6.8. Finite support iteration of ccc forcings strongly preserving ω-hitting
w.r.t. X strongly preserves ω-hitting w.r.t. X.

Proof. This is a standard argument. Obviously, it suffices to consider only limit
stages of cofinality ω.

Let 〈Pk, Q̇k : k ∈ ω〉 be a finite support iteration of ccc forcing such that

Pk
“Q̇k strongly preserves ω-hitting w.r.t. X”,

for each k ∈ ω.
Let Ȧ be a Pω-name for a subset X-large of a countable group G. In the inter-

mediate extension V[Gk] find a decreasing sequence of conditions 〈pn,k : n ∈ ω〉 ⊂
P[k,ω) and subsets X-large An,k of G such that

pn,k P[k,ω) “the first n elements of Am,k and Ȧ agree for m ≤ n”,

where Pω = Pk ∗ P[k,ω). The An,k are approximations to Ȧ.
Now, as each Pk strongly preserves ω-hitting w.r.t. X, there is a 〈Amn,k : m ∈

ω〉 ⊂ X-large such that for any C ⊆ G, if C ∩Amn,k is infinite for all m then

Pk
“C ∩ Ȧn,k is infinite”.

Consider 〈Amn,k : n, k,m ∈ ω〉 and let C ⊆ G be such that C ∩Amn,k is infinite for all
n, k and m. To finish the proof, it suffices to show that

Pω “C ∩ Ȧ is infinite”.

If not, then there are a q ∈ Pω and F ∈ [G]<ω such that q Pω
“C ∩ Ȧ ⊆ F”. Let

k be such that q ∈ Pk. Let Gk be a Pk-generic such that q ∈ Gk. As C ∩ Am,k is
infinite, let a /∈ F with a ∈ C ∩Am,k. For large enough n,

pn,k P[k,ω) “a ∈ Ȧ”.

Since q ∈ Gk, this contradicts the initial assumption about q. �
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7. The main result

We are now in position to give the proof of the main theorem.
Proof of the Theorem 1.5. Assume that the ground model V satisfies CH,

and suppose 〈Aα : α ∈ S2
1〉 witnesses that ♦(S2

1) holds in it. We construct a finite
support iteration Pω2 = 〈Pα, Q̇α : α < ω2〉 so that at a stage α ∈ S2

1 , if Aα codes
a Pα-name for a regular Fréchet topology τ with no insolated points on ω with a
point n ∈ ω such that πχ(n, τ) > ω, we let Q̇α be a Pα-name for Lnwd∗(τ). If α is
not of this form, let Q̇α be a Pα-name for, say, Lnwd∗(Q). Let Gω2 be a Pω2 -generic
over V. We shall show that, in V[Gω2 ], every countable Fréchet topological group
is metrizable. Aiming towards a contradiction, assume that in V[Gω2 ] there is a
non-metrizable Fréchet group topology τ on a group G = (ω, ·) with the neutral
element 0.

By Theorem 5.2, πχ(0, τ) > ω. Now, by a standard argument, there is a set
C ⊂ S2

1 which is a club relative to S2
1 such that for all α ∈ C, V[Gα] |= τα is

Fréchet and πχ(0, τα) > ω, where τα = τ ∩V[Gα]. Therefore, at some stage α ∈ C,
we would have added a set Agen such that V[Gα] |= Agen ∈ I+

0 (τα) and the ideal
I0(τα) � Agen is ω-hitting (Proposition 5.3 (a)).

We claim that in V[Gω2 ] also Agen ∈ I+
0 (τ). That is Agen has the point 0 in its

closure. If not, then there is a open neighbourhood U of 0 disjoint from Agen such
that U ·U ∩Agen = ∅. Then A = G \U is Agen-large. By Lemma 6.5, in V[Gα] the
ideal I⊥0 (τα) is ω-hitting w.r.t. Agen, and by Lemmata 6.7 and 6.8, it follows that
in V[Gω2 ] the ideal I⊥0 (τα) is also ω-hitting w.r.t. Agen. In particular, there is a
C ∈ [A]ω such that C ∈ I⊥0 (τα), i.e., C is a sequence in A τα-converging to 0. But
I⊥0 (τα) ⊂ I⊥0 (τ), then also C is a sequence in A τ -converging to 0, a contradiction
(A ∩ U = ∅).

Thus, by the assumption that τ is Fréchet, in V[Gω2 ] there is a C ∈ [Agen]ω such
that C ∈ I⊥0 (τ), i.e., C is a sequence in Agen converging to 0. By Proposition 5.3
(b) and Lemma 3.2, in V[Gω2 ] the ideal I0(τα) � Agen is ω-hitting (in particular
tall), and hence there is a I ∈ I0(τα) such that I ∩ C is infinite, which contradicts
the fact that C converged to 0 (I0(τα) ⊆ I0(τ)).

8. Concluding remarks

The question as to what extent is algebra involved in the problem was asked by
Juhasz:

Question 8.1 (Juhász). Is there in ZFC a countable Fréchet space of uncountable
π-weight?

Dow [21] has recently shown that

Theorem 8.2 (Dow). There is a countable Fréchet space of uncountable π-weight,
assuming b = c.

In particular, there is a countable Fréchet space of π-weight c in our model. Also,
Dow’s result together with the result of Nyikos [48] that there are countable non-
metrizable Fréchet groups assuming p = b imply that there is a countable Fréchet
space of π-weight if c ≤ ω2.

In [31] it was noted that if p > ω1 then any countable group which admits a non-
discrete group topology, i.e., is topologizable (see [49]), admits a non-metrizable
Fréchet group topology. It would be interesting to know:
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Question 8.3. Is it consistent with ZFC that some topologizable group admits a
non-metrizable Fréchet group topology while another does not?

Up to now, uncountable γ-sets1 existed in every known model with an example
of a non-metrizable separable Fréchet group. It has therefore been asked [31, 62]
whether the existence of a non-metrizable separable Fréchet group implies the ex-
istence of an uncountable γ-set.

We will show that it is not the case. In fact, we will prove that there is an ω1-
generated FUF filter, hence a simple example of a countable non-metrizable group,
in virtually any model obtained by iterating definable forcing over a model of CH.
In particular, there is an ω1-generated FUF filter in the Laver model for Borel’s
Conjecture [39], in which there are no uncountable γ-sets.

Our construction uses a parametrized diamond principle, in fact, the Borel ver-
sion of the “weak diamond principle” introduced by Devlin and Shelah in [19].

Definition 8.4 ([42]). ♦(2,=) is the following statement:

♦(2,=) For every Borel map F : 2<ω1 → 2 there is a g : ω1 → 2 such that for every
f : ω1 → 2 the set {α < ω1 : F (f � α) = g(α)} is stationary.

A map F : 2<ω1 → 2 is Borel if for every α the restriction of F to 2α is a Borel map.
The witness g for a given F in this statement will be called a ♦(2,=)-sequence for
F . If F (f � α) = g(α), then we will say that g guesses f (via F ) at α.

Parametrized diamond principles were introduced in [42]. They have a similar
relationship to Jensen’s ♦ as cardinal invariants of the continuum have to CH.
The parametrized ♦-principles are useful tools for topological and combinatorial
constructions. It is well known that the guessing principle ♦(2,=) holds if 2ω < 2ω1

[19], after forcing with a Suslin tree [42], and in models obtained by iterating
definable forcing over a model of CH [42].

Theorem 8.5. ♦(2,=) implies the existence of an ω1-generated FUF filter.

Proof. We will first define a Borel function F into the set 2 as follows. The domain
of F (using a suitable coding) is the set of all fifths t = 〈X, 〈Aβ : β < α〉, 〈Bβ : β <
α〉, A,B〉 such that:

(1) X ⊆ [ω]<ω \ {∅}.
(2) α is an infinite countable ordinal.
(3) 〈Aβ : β < α〉, 〈Bβ : β < α〉 is a pair of mutually orthogonal, almost increas-

ing sequences of infinite subsets of ω.
(4) A and B are disjoint sets such that A almost contains all Aβ , β < α, while

B almost contains all Bβ , β < α.
Define

F (t) =

{
0 if ∃n ∈ ω ∀a ∈ X(a ∩ (A ∪ n) 6= ∅);
1 if ∀n ∈ ω ∃an ∈ X(a ∩ (A ∪ n) = ∅).

Note that a ∩ (A ∪ n) = ∅ is equivalent to min an > n and an ⊂ B.
Now suppose that g : ω1 → 2 is a ♦(2,=)-sequence for F . By recursion, we

will construct a pair of mutually orthogonal, almost increasing sequences of infinite

1A separable metric space X is called a γ-set if every ω-cover of X has a γ-subcover. An open
cover U = {Un : n ∈ ω} is an ω-cover if for every finite F ⊆ X there is a n ∈ ω such that F ⊆ Un;

U = {Un : n ∈ ω} is a γ-cover if for every x ∈ X and for all but finitely many n ∈ ω, x ∈ Un.
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subsets of ω (in fact, a Hausdorff gap) 〈Aα : α < ω1〉, 〈Bα : α < ω1〉 so that for
every X ⊆ [ω]<ω \ {∅} there exists an α < ω1 such that either
(a) there is an n ∈ ω such that a ∩ (Aα ∪ n) 6= ∅ for every a ∈ X, or
(b) for every n ∈ ω there is an an ∈ X such that min an > n and an ⊂ Bα.
Let 〈An : n < ω〉, 〈Bn : n < ω〉 be any pair of mutually orthogonal, almost increasing
sequences of infinite subsets of ω. If 〈Aβ : β < α〉, 〈Bβ : β < α〉 has been defined,
consider a partition ω = A ∪ B such that A almost contains all Aβ , β < α, while
B almost contains all Bβ , β < α. If g(α) = 0, then we let Aα = A and let Bα be a
co-infinite subset of B still almost containing all Bβ , β < α. If it were not the case
(i.e., g(α) = 1), then let Bα = B and let Aα be a co-infinite subset of A almost
containing all Aβ , β < α. Let X ⊆ [ω]<ω \ {∅}. Clearly, if g guesses 〈tβ : β < ω1〉
at α where tβ = 〈X, 〈Aξ : ξ < β〉, 〈Bξ : ξ < β〉, Aβ , Bβ〉, then either clause (a) or
(b) is satisfied.

Let F be the dual filter to the ideal generated by 〈Aα : α < ω1〉. We claim
that F is a FUF filter. Indeed, let X ⊆ [ω]<ω \ {∅} so that every element of F
contains an element of X. Now, there is an α < ω1 such that either clause (a)
or (b) is satisfied. By election of X, clause (a) fails. Then there is a sequence
〈an : n ∈ ω〉 ⊂ X such that min an > n and an ⊂ Bα for every n ∈ ω. Since Bα is
almost disjoint with 〈Aα : α < ω1〉, it follows that every element of F contains all
but finitely many an’s. �

One of the major obstacles in proving the main theorem of this paper was the
apparent lack of a “reflection theorem”

Question 8.6. Is it consistent with ZFC that there is no Fréchet group of weight
ω1 while there is one of weight ω2?

In particular,

Question 8.7. Is it consistent with ZFC that there is no γ-set of size ω1 while there
is one of size ω2?

In more technical terms, the problem was to ensure that the generically added
set Agen remained I0-positive. Here the problem was solved using algebra. While
proving the consistency of non-existence of strongly separable MAD families in [51]
(answering a question of Shelah and Steprāns [55] concerning masas in the Calkin
algebra) Raghavan faced an analogous problem. There it was solved using a clever
Ramsey theoretic argument. Even though both problems seem related, it appears
that neither his approach works here nor our aproach could be used in the context
of strongly separable MAD families.

Acknowledgements. The authors wish to thank J. Brendle and A. Dow for stim-
ulating discussions on the subject. The authors would also like to thank G. Gru-
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of the paper.
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20. A. Dow, Two clasess of Fréchet-Urysohn spaces, Proc. Amer. Math. Soc. 108 (1990), 241–247.

21. A. Dow, private communication, (2012).
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49. A. J. Ol’̌sanskǐı, A note on countable non-topologizable groups, Vestnik Mosk. Gos. Univ. Mat.

Mekh. 3 (1980)103 (in Russian).

50. T. Orenshtein, B. Tsaban, Linear σ-additivity and some applications, Trans. Amer. Math.
Soc. 363 (2011), 3621–3637.

51. D. Raghavan, A model with no strongly separable almost disjoint families, Israel J. Math.

189 (2012), 39–53.
52. E. A. Reznichenko, O. V. Sipacheva, Properties of Fréchet-Uryson type in topological spaces,
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