UNIVERSAL SUBMEASURES AND IDEALS

M. HRUŠÁK AND D. MEZA-ALCÁNTARA

Abstract. The motivation for this work comes from the following general question: Given a class \mathcal{M} of ideals on ω, is there $I \in \mathcal{M}$ such that for every $J \in \mathcal{M}$, J is isomorphic to $I \upharpoonright X$ for some I-positive set X? We show that for the classes of F_σ-ideals and analytic P-ideals there are such “universal” ideals, by using well-known results from Mazur [3] and Solecki [4] which characterize ideals of these classes in terms of lower semicontinuous submeasures. The key fact is that for \mathbb{Z}-valued and \mathbb{Q}-valued submeasures on $[\omega]<^{\aleph_0}$ there are universal submeasures.

Introduction

By an **ideal on ω** we mean a family I of subsets of the first infinite ordinal ω which satisfies (1) $\emptyset \in I$, $\omega \notin I$, (2) if $B \in I$ and $A \subseteq B$ then $A \in I$, and (3) if $A, B \in I$ then $A \cup B \in I$. Every ideal on ω can be considered as a subspace of the Cantor space 2^ω. When we say that an ideal is F_σ, Borel, analytic, etc, we mean it is with respect to the product topology of the Cantor space.

A **submeasure** on a set X is a real-valued function φ whose domain is a family of subsets of X and satisfies $\varphi(\emptyset) = 0$ and $\varphi(A) \leq \varphi(A \cup B) \leq \varphi(A) + \varphi(B)$. A submeasure φ is **lower semicontinuous** (lsc) if for any set A in $\text{dom}(\varphi)$, any F finite subset of A, $F \in \text{dom}(\varphi)$ and $\varphi(A)$ is the supremum of $\varphi(F)$ over all finite subsets F of A.

Note that if $\text{dom}(\varphi) = [X]<^{\aleph_0}$ then there is a unique lsc submeasure φ whose domain is $\mathcal{P}(X)$ and $\varphi \upharpoonright [X]<^{\aleph_0} = \varphi$. There are two ideals naturally associated with any lsc submeasure φ on ω:

$$\text{Fin}(\varphi) = \{ A \subseteq \omega : \varphi(A) < \infty \},$$

and

$$\text{Exh}(\varphi) = \{ A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus n) = 0 \}.$$
K. Mazur in [3] proved that for every F_σ-ideal I, $I = \text{Fin}(\varphi)$ for some lsc submeasure φ.

An ideal I on ω is a P-ideal if for every countable subfamily $\{I_n : n < \omega\}$ of I, there is $I \in I$ such that $|I_n \setminus I| < \infty$ for all $n < \omega$. S. Solecki [4] proved that for each analytic P-ideal I on ω, $I = \text{Exh}(\varphi)$ for some lsc submeasure φ. In particular, all the analytic P-ideals are $F_{\sigma\delta}$. We remark that, in Mazur’s (respectively, Solecki’s) proof, the construction of such a lsc submeasure was done by extending an integer-valued (resp. rational-valued) submeasure on $[\omega]^{<\aleph_0}$.

Set theoretic notation we use is standard and follows [2]. In particular, a natural number is identified with the set of all smaller natural numbers.

1. Universal submeasures

We construct two submeasures on $[\omega]^{<\aleph_0}$. The first, ρ, integer-valued, and the other, ρ', rational-valued as Fraïssé limits. We present a detailed construction of ρ, while ρ' can be constructed by a simple modifications to the construction of ρ.

Theorem 1.1. There is an integer-valued submeasure ρ (respectively, rational-valued submeasure ρ') on $[\omega]^{<\aleph_0}$ such that:

For every $a \in [\omega]^{<\aleph_0}$, every $z \notin a$ and every integer-valued (resp. rational-valued) submeasure φ on $\mathcal{P}(a \cup \{z\})$, if $\varphi \upharpoonright a = \rho \upharpoonright a$ (resp $\varphi \upharpoonright a = \rho' \upharpoonright a$), then there is $l \in \omega$ such that $\text{id}_{a \cup \{l\}}$ is an isomorphism from $\langle a \cup \{l\}, \rho \upharpoonright a \cup \{l\} \rangle$ (resp. $\langle a \cup \{l\}, \rho' \upharpoonright a \cup \{l\} \rangle$) onto $\langle a \cup \{z\}, \varphi \rangle$.

Proof. Let $\langle \{s_n, \varphi_n\} : n \in \omega \rangle$ be an enumeration of the family of all pairs $\langle s, \varphi \rangle$, where $s \in \omega \setminus \{0\}$ and φ is an integer-valued submeasure on $\mathcal{P}(s)$. We can assume that this enumeration satisfies the following conditions for all n and m:

1. if $\max\{s_n, \varphi_n(s_n)\} < \max\{s_m, \varphi_m(s_m)\}$ then $n < m$, and
2. if $\max\{s_n, \varphi_n(s_n)\} = \max\{s_m, \varphi_m(s_m)\}$ and $s_n < s_m$ then $n < m$.

Recursively, we define:

- an increasing sequence $\langle M_n : n < \omega \rangle$ of natural numbers, and
- an \subseteq-increasing sequence $\langle \rho_n : n < \omega \rangle$ of submeasures on each respective $\mathcal{P}(M_n)$;

satisfying that for every $n < \omega$, every $a \subseteq M_n$ and every $j \leq n$, if $\langle a, \rho_n \upharpoonright a \rangle \cong \langle s_j \setminus \{s_j - 1\}, \varphi_j \upharpoonright (s_j \setminus \{s_j - 1\}) \rangle$ then there is $k < M_{n+1}$ such that $\langle a \cup \{k\}, \rho_{n+1} \upharpoonright a \cup \{k\} \rangle \cong \langle s_j, \varphi_j \rangle$.

Define \(M_0 = 0, \rho_0(\emptyset) = 0 \); and for every \(n \), let \(\{ (a, m, f) : l < p_n \} \) an enumeration of the finite set of 3-tuples \((a, m, f) \) so that \(a \subseteq M_n, m \leq n \) and \(f \) is an isomorphism from \((s_{m-1}, \varphi_m \upharpoonright s_{m-1}) \) onto \((a, \rho_n \upharpoonright a) \). Now we define \(M_{n+1} = M_n + p_n \) and \(\rho_{n+1} = \bigcup_{l=0}^{p_n} \rho'_n \) where \(\rho'_n \) is defined on \(\mathcal{P}(M_n + l + 1) \) as follows:

(a) If \(l = 0 \), extend \(f_0 \) to an isomorphism \(f'_0 \) from \((s_m, \varphi_m) \) onto \(a_0 \cup \{ M_n \} \) and define \(\rho'_n(b) = \max\{ \varphi_m(f'_0^{-1}[b]), \rho_n(b \setminus a_0) \} \) for all \(b \subseteq M_n + 1 \).

(b) If \(0 < l < p_n \), extend \(f_l \) to an isomorphism \(f'_l \) from \((s_m, \varphi_m) \) onto \(a_l \cup \{ M_n + l \} \) and define \(\rho'_n(b) = \max\{ \varphi_m(f'_l^{-1}[b]), \rho_n^{-1}(b \setminus a_l) \} \) for all \(b \subseteq M_n + l \).

Let us check that \(\rho = \bigcup_n \rho_n \) works. Let \(a \) be a finite subset of \(\omega \), and suppose \(z \notin a \) and \(\varphi \) a submeasure on \(\mathcal{P}(a \cup \{ z \}) \) so that \(\rho \upharpoonright a = \varphi \upharpoonright a \). Let \(m \) be so that \((a, \rho \upharpoonright a) \cong (s_m, \varphi_m) \), witnessed by a function \(h \). Clearly \(h' = h \cup \{(z, s_m)\} \) induces a submeasure \(\psi \) on \(s_m \), which makes \(h' \) an isomorphism. By (2), there is \(k > m \) so that \(\langle s_{m+1}, \psi \rangle = \langle s_k, \varphi_k \rangle \). Take \(N = \max(a \cup \{ k \}) + 1 \). Then \(a \subseteq M_N \) and consequently, there is \(l < p_N \) such that \(id_a \cup \{ (l, z) \} \) is an isomorphism from \(\langle a \cup \{ l \}, \rho \upharpoonright a \cup \{ l \} \rangle \) onto \(\langle a \cup \{ z \}, \varphi \rangle \).

An easy modification to the construction of \(\rho \) enables us to construct \(\rho' \): In conditions (1) and (2) for the ordering on submeasures, replace \(\varphi_n(s_n) \) for \(\max\{ j : (\exists a \subseteq s_n)(\varphi_n(a) = q_j) \} \), where \(\{ q_j : j \in \omega \} \) is a fixed enumeration of the non-negative rational numbers with \(q_0 = 0 \). This modification works because again, \(\langle s_n - 1, \rho_n \upharpoonright s_n - 1 \rangle = \langle s_k, \rho_k \rangle \) for some \(k < n \).

Theorem 1.2. There is a lsc submeasure \(\overline{\rho} \) on \(\mathcal{P}(\omega) \) such that for all lsc submeasures \(\varphi \), if \(\varphi(a) \in \mathbb{N} \) for all \(a \in [\omega]^{<\aleph_0} \) then there is \(X \subseteq \omega \) such that \(\langle \omega, \varphi \rangle \cong \langle X, \overline{\rho} \upharpoonright X \rangle \).

Analogously, there is a lsc submeasure \(\overline{\rho}' \) on \(\omega \) such that for all lsc submeasures \(\varphi \), if \(\varphi(a) \in \mathbb{Q} \) for all \(a \in [\omega]^{<\aleph_0} \) then exists \(X \subseteq \omega \) such that \(\langle \omega, \varphi \rangle \cong \langle X, \overline{\rho}' \upharpoonright X \rangle \).

Proof. Consider \(\overline{\rho} \) and \(\overline{\rho}' \) as the unique lower semicontinuous extensions to \(\mathcal{P}(\omega) \) of the submeasures \(\rho \) and \(\rho' \) from the previous lemma.

Remark 1.3. From the proof of Lemma 1.1, it is easy to see that the class \(\mathcal{K} \) (respectively, \(\mathcal{K}' \)) of all the integer (resp., rational)-valued submeasures on finite sets is a Frāssé class \([1]\), i.e., satisfies:

1. **hereditarity:** If \(\varphi \) is a submeasure on \(a \) and \(b \subseteq a \) then \(\varphi \upharpoonright b \) is a submeasure on \(b \),
(2) **joint embedding property:** If \(\varphi, \psi \) are submeasures on finite sets \(a \) and \(b \), then there is a submeasure \(\chi \) on a set \(c \) and embeddings \(f \) and \(g \) from \(\langle a, \varphi \rangle \) and \(\langle b, \psi \rangle \) into \(\langle c, \chi \rangle \).

(3) **amalgamation property:** If \(f : a \to c \) and \(g : a \to d \) are embeddings of \(\langle a, \varphi \rangle \) in \(\langle c, \chi \rangle \) and \(\langle d, \rho \rangle \) respectively, then there is a submeasure \(\psi \) on a set \(b \) and embeddings \(f' \) and \(g' \) from \(c \) and \(d \) to \(b \), respectively, so that \(f' \circ f = g' \circ g \), and

(4) \(K \) contains, up to isomorphism, only countably many submeasures and contains submeasures of arbitrarily large finite cardinalities.

In particular, \(\rho \) and \(\rho' \) are Fraïssé structures, i.e. they are countable, **locally finite** (finitely generated substructures are finite) and **ultrahomogeneous:** If \(f \) is an isomorphism from \(\langle a, \rho \upharpoonright a \rangle \) onto \(\langle b, \rho \upharpoonright b \rangle \) (resp, replacing \(\rho \) with \(\rho' \)), then \(f \) is extendable to an automorphism of \(\langle \omega, \rho \rangle \) (resp, \(\rho' \)). Moreover, \(\rho \) (resp, \(\rho' \)) is the Fraïssé limit of \(K \) (resp, \(K' \)), i.e., each submeasure in \(K \) (resp, \(K' \)) is embedded in \(\rho \) (resp, \(\rho' \)). Fraïssé limits are unique up to isomorphims, and satisfy the following Ramsey property (see [1]):

Theorem 1.4. For all \(A \subseteq \omega \), either \(\langle A, \rho \upharpoonright A \rangle \cong \langle \omega, \rho \rangle \) or \(\langle \omega \setminus A, \rho \upharpoonright \omega \setminus A \rangle \cong \langle \omega, \rho \rangle \). \(\square \)

2. Universal ideals

Let \(\mathcal{M} \) be a class of ideals on \(\omega \). We say that an ideal \(l \in \mathcal{M} \) is **universal** for \(\mathcal{M} \) if for every ideal \(J \in \mathcal{M} \) there is an \(l \)-positive set \(X \) such that \(J \cong l \upharpoonright X \). We say that \(l \in \mathfrak{M} \) is Fraïssé-universal for \(\mathcal{M} \) if, moreover, for every \(A \subseteq \omega \), either \(l \upharpoonright A \cong l \) or \(l \upharpoonright (\omega \setminus A) \cong l \).

An immediate consequence of the last theorem is that there are Fraïssé-universal ideals for the class of \(F_{\sigma} \)-ideals and the class of analytic P-ideals.

Theorem 2.1.

1. There is a Fraïssé-universal \(F_{\sigma} \)-ideal.
2. There is a Fraïssé-universal analytic P-ideal.

Proof. Let \(J \) be an \(F_{\sigma} \)-ideal. By Mazur’s theorem, there is a lsc submeasure \(\varphi \) such that \(J = \text{Fin}(\varphi) \). From Mazur’s proof, we can assume \(\varphi \upharpoonright [\omega]^{<\aleph_0} \) only takes integer values. Then there is \(X \in \text{Fin}(\rho)^+ \) so that \(\varphi \upharpoonright [\omega]^{<\aleph_0} \cong \rho \upharpoonright [X]^{<\aleph_0} \). Finally, the unique lower semicontinuous extension of \(\rho \upharpoonright [X]^{<\aleph_0} \) is \(\rho \upharpoonright \mathcal{P}(X) \) and is isomorphic to \(\varphi \). Hence, \(J \cong \text{Fin}(\rho \upharpoonright [X]^{<\aleph_0}) \). The proof of the second part is analogous. \(\square \)

We pose the following general question:
Question 2.2. For which families \mathcal{M} of definable ideals on ω is there a (Fraïssé)-universal ideal I? In particular:

1) Is there a (Fraïssé)-universal $F_{\sigma\delta}$-ideal?
2) Is there a (Fraïssé)-universal analytic ideal?

Let us remark that there is no universal ideal I for the class of all Borel ideals: If a Borel ideal I is say Σ^0_α then all restrictions are at most Σ^0_α. As there are Borel ideals of arbitrarily high Borel complexity the claim follows.

Our last question is motivated by [1]:

Question 2.3. Is the automorphism group of $\langle \omega, \rho \rangle$ (resp. $\langle \omega, \rho' \rangle$) extremely amenable?

REFERENCES

