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ABSTRACT. We study the Mathias-Prikry and Laver-Prikry forc-
ings associated with filters on w. We give a combinatorial charac-
terization of Martin’s number for these forcing notions and present
a general scheme for analyzing preservation properties for them. In
particular, we give a combinatorial characterization of those filters
for which the Mathias-Prikry forcing does not add any dominating
reals.

INTRODUCTION

In recent years, a variety of consistency results have been given using
the Mathias-Prikry and the Laver-Prikry forcing associated with filters.

Let F be a filter on w. The Mathias-Prikry forcing associated with
F, denoted by Mz consists of pairs (s, A) such that s € [w]<¥, A € F
and s N A = (. The ordering (s, A) < (t,B) if s D t, A C B and
s\t C B.

We will refer to the union of the first coordinates of conditions in
the generic filter as the generic subset of w, and denote it by agep.

The Laver-Prikry forcing associated with F, denoted by ILz consists
of subtrees T' C w<* which have a stem s € T (denoted by stem(T"))
such that for every ¢t € T either ¢t C s or s C t and for every t € T
extending s the set

Succr(t)={new:t"(n)eT}eF.

The order on L is given by inclusion.

These forcing notions play a significant role in the use of the matrix
iteration introduced by Blass and Shelah [5] and further developed and
used by Shelah [20], Brendle [10] and Brendle and Fischer [11].

The Laver-Prikry forcing was used to separate variants of the group-
wise density number and the distributivity numbers by Brendle in
[7, 8, 9] and by Brendle and Hrusdk to show it is relatively consis-
tent that every countable F'Uy;, space of weight X; is metrizable [12].

The research of first and second authors was partially supported by PAPIIT
grant IN101608 and CONACYT grant 46337.
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In [19], Raghavan constructs a model of ZFC without strongly separable
almost disjoint families by using a similar technique.

In this paper, we shall study the relation between combinatorial
properties of an ideal Z and the forcing properties of the Mathias-Prikry
and the Laver-Prikry type forcings associated with the dual-filter Z*
(denoted by Mz« and Lz« respectively) often expressed in terms of the
Katétov order, paying special attention to definable (Borel, analytic)
ideals.

Both forcing notions are clearly c.c.c, in fact, o-centered. Also Lz~
adds a dominating real (the generic function fgen is dominating).

In section 1, we give a combinatorial characterization of the Mar-
tin number of Mz« and L7+ and introduce the separating number of
the corresponding ideal. In section 2, we investigate the relationship
between preservation statements for Mz« and Lz« and combinatorial
properties of Z. Finally, in section 3, we give a characterization of
those ideals Z such that Mz« does not add any dominating reals.

For a set X, we call Z C P(X) an ideal on X if

(1) for ABeZ, AUB €T,

(2) for A,BC X, AC B and B € 7 implies A € Z and

(3) X ¢7T.
We assume that all ideals on X contain [X]<“, all finite subsets of X.
If 7 is an ideal on X, 7% is the dual filter, consisting of complements of
the sets in Z. 1 denotes the collection of Z-positive set, i.e., subsets of
X which are not in Z. We say that an ideal Z on the set of all natural
numbers w is tall if for each A € [w]“ there is a I € Z such that I N A
is infinite. If Z is an ideal on w and Y € Z7, we denote by Z | Y the
ideal {INY :I€Z}onY.

The topology of P(w) is induced by identifying each subset of w
with its characteristic function, where 2“ is equipped with the product
topology. We call an ideal Z on w a Borel ideal if Z is Borel in this
topology.

Given a tall ideal Z on w and a forcing notion P, we say that the
forcing P destroys T if there is a P-name & for en element of [w]* such
that

lFp VI € ZNV([INE| < Ro).

We say that a family £ C [w]* is countably tall (or w-hitting) if
given (A, : n € w) C [w] there is an K € K such that for n € w,
The Katétov order on ideals is defined as follows: Suppose Z and J
are ideals on countable sets X and Y respectively. Then 7 <y J if
there exists a function f : Y — X such that foreach I € Z, f7'[I] € J.
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When dealing with ideals on countable sets, we often use the follow-
ing cardinal invariants [15]:

add*(Z) = min{|A]: ACTA (VX € T)(3A € A)(A ¢* X)}.
(Z) = min{|A|: ACTA VX € W) 3FAeA)(ANX| =R}

non*(Z) = min{|X]: X C [w]* A (VI € T)(3X € X)(|I N X]| < Ro)}.
(T) = min{|A]: ACTA W eT)(IAc A A}

1. MARTIN NUMBERS OF M7+ AND Lz«

Recall that the Martin number m(P) of a partial order PP is the min-
imal size of a family of dense open subsets of P such that no filter on
P intersects with them all.

In this section, we shall give a combinatorial characterization of the
cardinal invariants m(Lz+) and m(Mz-).

Both focings Mz«, and L7+ destroy the ideal Z. In fact, they do
more than that. Mz and Lz« separate Z and Z", that is, they add
a set agen, C w which is almost disjoint from every I € Z, and have
infinite intersection with every X € ZT N V. It is useful to introduce
the corresponding cardinal invariant, the separating number of an ideal
T

Let Z be an ideal on w. Let G C Z, H C ZT and A C w. We say A
separates G from H if

(1) JANI| <Yy for I € G and
(2) [JANX| =Ry for X € H.

For an ideal Z, the separating number sep(Z) is

sep(Z) = min{|G| + |H|: G CZAH CI"A
VACw3l e GIX e H(|[ANI|=wor [ANX| <w)}.

It is clear from the definition that add™(Z) < sep(Z) < cov*(Z) for
every tall ideal Z and that sep(Z) = cov*(Z) if Z is a maximal ideal.

Proposition 1.1. [15] Let Z and J be ideals on w. Suppose T is
below J in the Rudin-Kiesler order, that is, there exists f : w — w
such that for every A C w, A € T if and only if f~'[A] € J. Then
sep(Z) < sep(J).

'In [13], Brendle and Shelah introduced cardinal invariants p(F) and wp(F)
associated with an ultrafilter F. For all tall ideals Z, add™(Z) = p(Z*), cov*(Z) =
7p(Z*), non*(Z) = m, (Z*) and cof *(Z) = x(Z*).
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Brendle and Shelah characterized the Martin number of the Mathias-
Prikry and Laver-Prikry type for ultrafilters in [13].

Theorem 1.2. [13] Let U be an ultrafilter. Then
(1) m(My,) = cov*(U*).
(2) m(LLy) = min{b, cov*(U*)}*.

We will prove analogous results for arbitrary filter/ideal.

1.1. Martin number of Lz.. Recall that an ultrafilter &/ on w is
nowhere dense if for every function f : w — R there is a U € U such
that f[U] is a nowhere dense subset of R. It is known (see [3]) that the
Lave-Prikry forcing with U4 adds a Cohen real if and only if ¢ is not a
nowhere dense ultrafilter.

The following was announced in [15].

Theorem 1.3. For every ideal T on w,

(Ly.) = min{b,sep(Z)} if T is a nowhere dense ultrafilter,
M) = min{add(M), sep(T)}  otherwise.

Proof. (i) If Z* is a nowhere dense ultrafilter, then the required state-
ment holds by Theorem 1.2 (2) as sep(U*) = cov*(U*) for every ultra-
filter U.

Suppose that Z* is not a nowhere dense ultrafilter. First we shall
show m(Lz+) < min{add(M),sep(Z)}.

Since Lz« adds a dominating real, m(Lz<) < b. Since Z* is not a
nowhere dense ultrafilter, L7+ adds a Cohen real (see [3]). So m(LLz+) <
cov(M). Since add(M) = min{b, cov(M)}, m(LLz-) < add(M).

To see that m(LLz+) < sep(Z), suppose that k < m(Lz<) and let
J CZ and H C Z% such that | J| + |H| < k. For J € J, put

Dy ={T €Lz :Vt € T(stem(T) C t — Succr(t)NJ =0)}.
For H € H and n € w, define
Eyn, ={T € Lz : rang(stem(T)) N H \ n # 0}.
Then D; and Ey, are dense for J € J, H € H and n € w.
Let G C Lz bea{D;:Je J}U{Eu,: He HAn € w}-generic.
Let fa = U{stem(T') : T € G'}. By genericity, rang(fs) N J is finite for

J € J and rang(fe) N H is infinite for H € H. So rang(fs) separates
J from H. Therefore xk < sep(Z).

(ii) min{add(M),sep(Z)} < m(Lz-).
OBrendle and Shelah investigated cardinal invariants of ideals 2, and ry asso-

ciated with an ultrafilter &. For all ideals Z, cov(¢%.) = m(LLz-) and cov(r}.) =
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Suppose £ < add(M),sep(Z). Let {D,, : @ < k} be a family of dense
open subsets of Lz«.

For each o < K, let {77 : n € w} be a maximal antichain of D,. Let
I3 = w\Succrn (t) € Tfora < k,n € wand t € T} witht D stem(7T7).

Fix a < k. Define a rank function rk, : w<¥ — Ord by

(1) rko(t) =0if In € w(t € TY and t D stem(T7)).
(2) rko(t) < B HY ={necw:rky(t™(n)) < B} €ZT.

Claim 1.4. [12, Lemma 4] For all t € w<¥, rk,(t) is defined.

Since k < sep(Z), there is an A € [w]¥ such that for every a < &,
new teTrands € w™, |ANI,| <N, ie, A C* Succry(t) and
|ANH2| = N,.

Let Lgnca)- be the Laver-Prikry forcing on A associated with the
ideal fin(A) of finite subsets of A. Let

D, ={TNA:TeD,NTNA € Lfin(ay }-

Claim 1.5. {T) NA<“ :n € w and T} N A<¥ € Lin(a)-} is predense
in Lin(ay-. Therefore, D, is dense in Len(a)«-

Proof of Claim 1.5. Fix oo < k. Let S € Lin(a)~ and s = stem(S).

Then rk,(s) < co. Since {n € w: s (n) € T} € fin(A)* and H*N A
is infinite, H*N{n € w : t~(n) € T} # 0.

By induction on rank, there exists ¢t € S such that ¢t O s = stem(5)
and rk,(t) = 0, that is, t € T and ¢ D stem(7) for some n € w. Fix
such n € w.

Since t € A<¥  stem(T?) € A<¥. For every u € T with u D
stem(T7), AC* {n € w:u"(n) € T}}. So T} N ASY € Liinca)~ and
TN A<¥ is compatible with S. Hence {T?NA<Y :n € wATINA €
Lfin(a)- } is predense. O

Let T} =T} N A<¥. For each a < k and n € w with T} € Lina)-,
define g5 : A< — w by

@ (5) = min{n : A\ n C Succyw(s)} if s € T7 and s D stem(T}),
In\5) = 0 otherwise.

Notice that when Stem(T}}) & A%, T & Lin(a)- and g5 is undefined.

Since k < add(M) < b, there exists g : A<“ — w such that fora < &
and n € w, for almost all t € A<Y, g2(t) < g(t). Define S € Lin(ay+ so
that

(1) 0 € S and
(2) if s € S, then s™(k) € S if and only if £ > g(s) and k € A.
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For each o < &, put
D/ ={teS:Inecw(teT, TV € Linu and
Vs € S(s Dt —g(s) > gi(s)}.

Let M, ={f€[S]:VYne€w(f | n¢gD!)}. Then M, is nowhere dense
in [S]. Since k < add(M) < cov(M), there exists f € [S] such that
f & M, for every a < k.

Claim 1.6. For every a < k, there exists T € D,, such that f € [T].

Proof. For a < Kk, let n € w such that f [ n € D”. Then there exists
m € w such that f [ n € T2 and for s € S whenever s O f [ n,
g(s) > g*(s). By definition of ¢, Sf;, C T2V, Hence f € [T2]. So

f € [T] for some T € D,,. O
By construction of f, fis a {D, : a < k}-generic real, i.e., {T : f €
[T} is a filter intersecting with D,, for all o < k. O

Corollary 1.7. For every ideal Z on w,

(Ly-) = min{b,sep(Z)} if T is ultrafilter
A= min{add(M), sep(Z)}  otherwise.

1.2. Martin number of Mz.. It seems that the rank argument does
not work for the Mathias-Prikry type forcings. However, they can be
investigated by studying the ideal Z<* on [w]<* \ {0} associated to an
ideal Z on w.

Definition 2. Given ideal Z on w, let

I<¢ ={AC[w]\{0}: 3 €IVa € A(an I # D)}

This ideal was considered by Sirota [21] and Louveau [18] in the
construction of an extremely disconnected topological group. Recall
that an ultrafilter & on w is selective if for every partition {I,, : n € w}
of w either there is an n such that I,, € U or there is a U € U such that
I, NU| <1 for every n € w.

Theorem 2.1. For every ideal T on w,

(My.) = sep(Z) if T* is a selective ultrafilter.
) = min{sep(Z<¥),cov(M)} otherwise.

If Z* is a selective ultrafilter, then m(Mz.) = cov*(Z) by Theorem
1.2 (1).

To prove the rest of this theorem, we will first introduce two vari-
ations of sep(Z). Define sep(Z) by k < sep(Z) if for J C Z and
H C (Z<°)" with | 7| + |H| < &, there exists A C w such that
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(1) JANJ| <N, for J € J and

(2) |[AI™* N H| =R, for H € H.
Define s/?vp(I) by £ < S%E)(I) if for 7 C T and H C (Z<)" with
|\ T | + |H| < k, there exists A C w such that

(1) JANJ| <Ny for J € J and
(2) [A\n]|<*NH| =, for He H and n € w.

Claim 2.2. s6p(Z) = sep(T).

Proof of Claim 2.2. By definition, it is clear that s:éf)(I) < sep(Z). We
shall show sep(Z) > sep(Z).

Let J C Z and H C (Z<¥)* with |J| + |H| < sep(Z). Let H* =
{H, : H € H,n € wand H, = HN[w\ n]~“}. Since |J| + |H*| =
|T| + |H| < sep(Z), we can pick A C w so that

(1) JANnJ| <X, for J € J and
(2) |[A]=* N H| =R for H € H*.
Since [A|*“NH,, = [A]*N[w\n|*NH = [A\n]**NH for H € H and
ne€w, [ANJ| <Ny for J € J and [[A\n]~*NH| =R, for H € H
and n € w. Therefore sep(Z) > sep(Z).
U

Lemma 2.3. If T is not a selective ultrafilter, then
m(Mz.) = min{sep(Z), cov(M)}.

Proof of Lemma 2.3. We shall show that m(Mgz+) = min{sep(Z), cov(M)}.
(i) m(Mz-) > min{sep(Z), cov(M)}.
Let k < sep(Z), cov(M). Let {D,, : @ < K} be a family of open dense

subsets of Miz-. Let {(s?, F") : n € w} be a maximal antichain in D,
Let [ =w\ F} €T forn € wand a < k. Let

H={tew]™:Incw(sh CsUtCsLUFM}
Claim 2.4. HY € (Z<%)7" for all s € [w]<* and a < K.

Proof of Claim 2.4. Let s € [w]*¥, o < Kk and I € Z. Then (s,w \
(I Us)) € Mgz-. Since {(s”,F") : n € w} is a maximal antichain,
(s,w\ (IUs)) is compatible with some (s”, F™). So there are n € w, t €
[w\ (/Us)]<¥ and F' € Z* such that (sUt, F') < (s?, F™), (s,w\ (IUs)).

Since (sUt, F) < (st F™), s" C sUt C s?UFE”. Since (sUt, F) <
(s,w\ (IUS)), tNI =1. Hence for each I € Z, there exists t € H
such that ¢t NI = (. Therefore H* € (Z<¥). O

As k < se:f)(Z), there is an A C w such that
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(1) |JANIZ| < Ng for every n € w and a < k and

(2) |[A\n]< N HX| =X, for every n € w, s € [w]<¥ and a < k.
Let Ay = {(s2, FINA) : sk C Aand n € w} C Miin(ay-, where Miin 4y
is the Mathias-Prikry forcing associated with the ideal fin(A) of finite
subsets of A and Miin(4)- consists of pairs (s, B) such that s € [A]<¥,
B e fin(A)* and sN B = ().

Claim 2.5. A, is predense in Mg a)- .

Proof of Claim 2.5. Let (s, B) € Mfin(ay-. Let n > max(s) such that
B\n = A\n. Since |[A\ n]< N HY| =R, pick t € [A\ n]<* N HS.
Then there is an n € w such that s C sUt C s” U (F*N A). So
(sUt, (F2\sUt)NA) < (sl FXNA) and (sUt, (£} \sUt)NA) € Mgin(ay-.
Since t € [A\ n]<¥ = [B\n]<¥, (sUt,B\ (sUt)) < (s,B). So (s, B)

is compatible with (s?, F N A) for some n € w. O
Let D), = {(s, FNA):sC AFNAE€fin(A)" and (s, ) € D,}.
Then D) is dense open subset of Mjfpnca)-. Since ‘Mﬁn(A)*| = N,

Min(ay- = C. Since k < cov(M), there exists Ay, such that for every
a < K there is (s, FNA) € D/, so that s C Age, C sU(F NA). Hence,
for every o < k there exists (s, F') € D, such that s C Ay, C sUF.
(i) m(Mz+) < min{sep(Z), cov(M)}.

Suppose k < m(Mz-). Let J C Z and H C (Z=)" with |J| +
'H| < k. Let Dy = {(s,F) € Mz- : FNJ =0} for J € J, and let
E} ={(s,F) € Mg : |[s|*NH| > n} for H € H and n € w. Since
J CZand H C (Z=¥)*, D; and E}, are dense subsets of Mz for
JeJ, HeHandn € w. Let ACwbea{D;:Je J}U{EY:
H € H An € w}generic real. Then [ANJ| < Xy for J € J and
|ANH| =X, for H € H. So k < sep(Z).

Since Z* is not selective ultrafilter, Mz« adds a Cohen real (see [3]).
Therefore xk < cov(M). O

Lemma 2.6.
min{sep(Z), cov(M)} = min{sep(Z<), cov(M)}.

Proof. To prove min{sep(Z), cov(M)} > min{sep(Z<¥), cov(M)}, we
shall show that sep(Z) > sep(Z<¥).

Claim 2.7. sep(Z<¥) < sep(Z) < sep(Z).

Proof of Claim 2.7. Suppose k < sep(Z<¥). Let J C Z and ‘H C
(Z<*)* with | J|+|H| < k. For J € J,put J = {a € [w]< : anNJ # 0}.
Then J € <%,

Let A C [w]<“ be such that
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(1) )Aﬂj‘ < R for J € J and
(2) |JANH| =X for H € H.
Then |[JAN J| < Ny, and since A C [|J 4], | A satisfies
(1) |IUANJ| <Ng for J € J and
(2) [[UA]“ N H| =X, for H € H.
Hence x < sep(Z). Therefore sep(Z<¥) < sep(Z).

sep(Z) < sep(Z) follows from the fact when H € 7%, H* = {{n} :
neH} e (ZT<9)" .

To finish the proof of the theorem, we shall show min{sep(Z), cov(M)} <
min{sep(Z<¥), cov(M)}.

Suppose k < sep(Z), cov(M). Let J C =¥ and H C (Z<¥)* with

T+ |H| < k. For J € J, fix I; €T sothat anl; # () for a € J.
Let A C w be such that

(1) |JANI;| <R forall J € J.
(2) |[A\ n|<* N H| =N, for every H € H and n € w.

We will construct B C [A]<* so that

(1) |IBNJ| <R for J € J.
(2) |IBNH| =X, for H € H.

In order to do so, define a forcing notion P by (F,n) € P if F €
[[A]<“]<“ and n € w ordered by (F,n) < (G,m) if F D G, n > m and
min(a) > m for a € F'\ G. Since |P| = Xy, C = P. Let Dg, and
E;CcPfor He H,n€wand J e J be defined by
Dy, = {(F,m):3a € F(min(a) >n and a € H)}.
E; = {(F,m):m>max(ANI,)}.
Then Dy, is dense for H € 'H and n € w, and £ is dense for J € J.

Since £ < cov(M), there is a {Dy,, : H € Handn € w} U{E; :
J € J}-generic G. Let Ag = U{F : (F,n) € G}. Then

(1) |JAgNJ| < Ny for J € J and
(2) |AgN H| =X, for H € H.

So k < sep(Z<¥). Therefore
min{sep(Z), cov(M)} < min{sep(Z=*), cov(M)}.

Corollary 2.8. For every ideal Z on w,

(My.) = sep(Z) if T is an ultrafilter.
)= min{sep(Z<¥),cov(M)}  if T is not an ultrafilter.
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3. PRESERVATION PROPERTIES OF M-

The methods for studying properties of the forcing Lz- are well
known (see [2, 7, 12]). Here we concentrate on the preservation prop-
erties of the forcings Mz-. In [12] it is shown that a useful characteri-
zation for when LLz+ preserves w-hitting families. An analogous result
also holds for Mz..!

Theorem 3.1. Let Z be an ideal on w. The following are equivalent:
(1) VX € (T<9)" VT <k I=*| X (J is not w-hitting,)
(2) Mz« strongly preserves w-hitting families, and
(3) Mz« preserves w-hitting families.

Proof. From (1) to (2).

Suppose (2) doesn’t hold. Let A be Mz--names witnessing the negation
of (2), i.e., for every (B, : n € w) there exists B € [w]* such that
|B, N B| = X, for every n € w and there exist pg = (s, Fg) € Mz
and mp € w such that pg IF BN AcC mpg.

Let B be the family of all such B. By the assumption that B is
w-hitting, there are s € [w]<“ and m € w such that By = {B € B :
sp = s and mp = m} is w-hitting (If an w-hitting family is split into
countably pieces, one of them is w-hitting). Fix such s € [w]<¥ and
m € w and let

Xf:ﬁek@“ﬁ3k>nﬂFeI*«suuFMerA>}

Claim 3.2. X, € (Z=¥)*.

Proof of Claim 3.2. Given I € T, there are ¢t € [w \ I]**, k > m and
F € T such that (sUt, F) < (s,w\ I) and (sUt,F) IF k € A. Then
teX,andtNI=10. U

Define f: X, — w by

max{k >m:3IF € T*((sUt, F) - k € A)}
if there are finitely many such k,
ft) = ,
min{k > max(tU{m}) :IF e T*((sUt, F) IFk € A)}

otherwise.
Claim 3.3. For every k € w, f~'w\ k] € (Z=¥)T.

LA forcing P strongly preserves w-hitting families if given a P-name A for an
infinite subset of w there is a countable family H of infinite subsets of w such
that whenever B C w has an infinite intersection with every element of H then
IFp “|/ANB| =w".
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So we can assume that for all but finitely many k& > m, f~1({k}) €
<% or there exist infinitely many k € w such that f~'({k}) € (Z<*)*.

Claim 3.4. For all but finitely many k > m, f~1({k}) € T=.

Proof. Assume to the contrary that there are infinitely many k > m
such that f~1({k}) € (Z<¥)". Let C = {k >m: f7'({k}) € (Z=¥)"}.
Since By is w-hitting, there exists B € By such that B N C' is infinite.
Let k > m such that kK € C N B and f~'({k}) € (Zv¥)". Then
[FB]= N f7Y({k})| = Ro. Let t € [Fp]<* N f~*({k}). Then there
exists F' € Z* such that (sUt, F) I k € AN B. Since t € [Fp|<*,
(s, Fig) is compatible with (s Ut, F). However (s, Fg) IF AN B C m,
which is a contradiction. U

Claim 3.5. f witnesses that (Bo) <xg Z=“ [ X.

Proof. Assume to the contrary that there is a B € By such that
[7YB] € (Z=¥)". Since Fp € Z* and |[F|<“ N f~![B]| = Ny, there
is at € [Fg| N f~'[B] such that for some F' € Z* and k > m
(sUt,F)IFke ANB.

Since t € [Fp]<¥, s C sUt C sU Fg. So (s, Fp) is compatible with
(sUt, F). However, (s, Fg) I ANB C m, which is a contradiction. [

Since (Bp) is w-hitting, (1) doesn’t hold.
Obviously (2) implies (3).
We shall prove (3) implies (1). Assume to the contrary that there

exists an ideal J on w such that there exist X € (Z<“)" and f : X — w
so that

(1) For every J € J, f~'[J] € Z<“ and

(2) J is w-hitting.
Let agen be the canonical name for the Mz--generic subset of w. We
shall show that I J is not w-hitting. Let Xn be a Mz--name such that

IF X = f[[agen \ 7]
Claim 3.6. |- X, is infinite.
Proof of the Claim. If IF X,, were finite, then
I [agen \ 0] N X C f1[X,] € T°%.

However, IF VI € Z(|agen N I| < Rg) and IF |[agen \ ] N X| = Ry by
genericity. So IF VI € IVn € w3a € [agen \ n|<“(a N I = 0), which is a
contradiction. d

Claim 3.7. IFYJ € JIn € w(J N X, =0).
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Proof. For every J € J and (s,F) € Mz, pick I € Z such that
anl # () forae f7[J], G=FnN(w\I)and n = max(s). Then
(8, GY IF [agen \ n]~* N f7HJ] = 0. So (s,G) IF X, N J = 0. O

So J is not w-hitting in the extension, contradiction. U

Now, we turn our attention to the question of when does the forcing
Mz« add a dominating real. This line of investigation was started by
M. Canjar in [14], where he assuming 0 = ¢ constructed an ultrafilter I/
such that My, doesn’t add any dominating reals. He also noticed that
such an ultrafilter has to be a P-point without rapid Rudin-Keisler pre-
decessors (see e.g. [1] for definitions and more information) and asked
whether the converse is also true. Here we give a simple combinatorial
characterizations of ideals Z such that Mz« doesn’t add any dominating
reals.

We call an ideal J a PT-ideal if for every decreasing sequence { X, :
n € w} of J positive sets, there is an X € J* such that X c* X, for
all n € w.

Theorem 3.8. The following are equivalent.
(1) Mz« adds a dominating real.
(2) T<¥ is not a P*-ideal.
Proof. (1) implies (2).
Let g be a Miz--name for a dominating real, i.e., Vf € w*NV(IF f <*
¢). In particular, for every f € w NV, there are sy € [w|<¥, F; € Z*
and ny € w such that

(sp, Fy) =50 > ng(f(n) < g(n)).

If one partitions a dominating family into countably many pieces,
one of the pieces is also dominating. So there are s € [w]<¥ and n € w
such that

F={few':sf=sAnsf=n}
is a dominating family. Fix such s € [w]<“ and n € w and let
X, ={t € w\max(s)|*:IF € Z*Im > n ((s Ut, F) decides g(m))}.
Claim 3.9. X, € (Z=9)*.

Foreach t € X, let z; = {m > n: IF € T*((sUt, F') decides g(m))}.
Put k;,l; € w so that

P max(z) if |z <w
b min(z; \ max(t)) otherwise.

and there is an F' € Z7* such that (sUt, F) IF g(k;) = [;.
Then define H : Xy — w X w by H(t) = (ki ;).
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Claim 3.10. For everym € w, H '[(w\ m) x w] € (Z<)*.

Let K = {k;:t € X,}. Then K is infinite and let {k; : i € w} be its
increasing enumeration. Put K; = {l € w: (k;,l) € H[X{]}.

Claim 3.11. There are infinitely many i € w such that K; is infinite.

Proof of Claim 3.11. Assume to the contrary that for all but finitely
many ¢ € w, K; is finite. Then define g : w — w by

(m) max(K;) if m=k; and |K;| <Xy for some i € w,
g\m) = 0 otherwise.

Since F is a dominating family, there is an f € F such that g <* f.
Let mg > n be such that g(m) < f(m) for m > my and k; > my
implies | K;| < Ro.

By Claim 3.10, H '[(w \ m) x w| N [F]<¥ € (Z<¥)" for F € Z* and
mew.

Let t € [Fy]<*NH'[(w\mo) Xw]. Then there is an F' € Z* such that
(sUt, F) IF g(ke) =1 < g(ke) < f(kt). However, (s, Ff) is compatible
with (sUt, F') and (s, Fy) I f(k:) < g(k;), which is a contradiction. [

Without loss of generality, we can assume that for every ¢ € w, K; is
infinite.

Let V,, = H ' U,o,, K] for m € w. Then Y,,4; C Y. As Claim
3.10, we can prove the following.

Claim 3.12. Y,, € (Z=¥)" form € w.

Proof of Claim 3.12. Let I € T and m € w. We shall show that there
exists t € Yy, such that tNI = (). Let ¢t € [w\ I]<¥ such that (sUt, F') <
(s,w\ I) decides ¢(k) for some k > m and max(t) > m. By definition
of k¢, ky > k > m. Then H(t) € U,.,, Ki- Sot €Y, and t NI = 0.

O

Let Y c*Y,, for m > n. We shall show that Y € Z<%.

Assume to the contrary that Y € (Z<¢)*.

Since Y C* Y,,, K,,, N H[Y] is finite for every m € w. Define a
function A from w to w by

max{l; : ¥ €Y NY,}ifYNY,, #0,
h(m) =

0 otherwise.

Then there are infinitely many m such that h(m) > 0.

Since F is a dominating family, there is an f € F such that h <* f.
Let mg > n be such that h(m) < f(m) for m > mgy. Since Y C* Y,,,
FreI* and Y € (Z=¥)7, there is an m > mg such that Y NY,, N
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[Fe|=“ £ 0. Let t € Y NY,, N [Ff]<“. Since t € Y there is an F € Z*
such that (s Ut,F) IF g(m) < h(m). However, (s, Fy) IF “Ym >
n(f(m) < g(m))” and (s Ut, F) is compatible with (s, Fy), which is a
contradiction. Therefore Y € <. So Z<“ is not P*-ideal.

(2) implies (1).

Let (X, : n € w) be a decreasing sequence of Z<“-positive sets with-
out a pseudointersection in (Z<“)*. Let (ay : k € w) be an enumeration
of [w]<¥\ {0} and let age, be the canonical name for the Mz--generic
real. Define a Mz.-name ¢ for a function from w to w by

IF g(n) = min{k : ax C [dgen]™ N XA
maX(U{am l<nAm=4g(l)}) <min(ax)}.

We shall show that ¢ is a dominating real. Let f € w*NV and (s, F)) €
Mz-. Let Iy = {a), € [w]<*\ {0} : In € w(ar € X, ANk < f(n))}. Then
Iy C* X, for every n € w. Therefore Iy € 7= by definition of X,,.
Let I € T such that VYa € If(anl # 0). Then F\ I € I* and
[F\I]**nNI;=10.

Claim 3.13. Let (t, : n < a) be a sequence of finite subsets of w such
that

(1) tn € [s U(F\ D™ N X,
<

(2) max(t,) ( nt1)
(3) Ik € w(t, = apr Nk < f(n))

Then a < |s|.

Proof of Claim. If t € [ \ I]<¥, then t = a; and t € X, implies
k> f(n) by [F\I|~*nNI;=0. Soby()a§|s]. O

Put |s|=m. Then (s, F'\ I} < (s, F') and

(s, F\ I)IF¥n>m(f(n) < g(n)).
U

Recently, using our characterizations, M. Hrusédk and J. Verner showed
that if Z is an F, P-ideal, then P(w)/Z adds an ultrafilter &/ which is
a P-point without rapid RK-predecessors, but U* is not a PT-ideal
[17]. Thus this answers Canjar’s question in the negative. Morover, A.
Blass, M. Hrusék and J. Verner [4] (also using our theorem) showed
that M, doesn’t add any dominating reals if and only if I/ is strong
P-point.
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4. CONCLUDING REMARKS AND OPEN PROBLEMS.

It is still interesting to try to better understand ideals Z for which
Mz- doesn’t add any dominating reals. An interesting class of ideals
in this respect are those generated by maximal almost disjoint (mad)
families.

Theorem 4.1. [6] Assume b = ¢. Then there exists a mad family A
such that Mz 4y adds a dominating real.

Question 4.2. [6] Is it consistent that there is no mad family A such
that Mz 4y adds a dominating real?

As far as definable ideals are concern, J. Brendle has in [6] that an
Mz« doesn’t add any dominating reals for any F,-ideal Z. This follows
directly from our characterization. However, it is not clear whether
this characterizes F,-ideals among Borel ones:

Question 4.3. Is there a Borel ideal Z which is not F,, yet Mz« doesn’t
add any dominating reals?

However, we have the following useful approximation:

Theorem 4.4. Suppose I is a Borel ideal. Then the following are
equivalent.

(1) T can be extended to an ideal J such that M 7+ which doesn’t
add any dominating reals.

(2) T can be extended to a P -ideal.

(3) I can be extended to an F,-ideal.

Proof. (3) implies (1).
This is proved in Brendle’s paper [6], but it also follows from our
theorem using the following two simple observations:
(i) If 7 is F, then Z<¥ is F,, and
(ii) every F,-ideal is PT.
(1) implies (2).
Suppose (2) doesn’t hold. Then every J extending Z is not P™.

Claim 4.5. If 7<% is P, then J is P™T.

Proof of Claim. Let {Y,, : n € w} be a decreasing sequence of J+.
Put V) = {{k} : k € V,,} for n < w. Then Y € (J<¥)*. By
assumption, there exists Y* € (J<¥)* such that Y* C* Y,* for n < w.
Put Y = JY*. ThenY € Jt and Y C* Y, for n < w. So J is
P, O
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By this claim, J<“ is not P*. So M7+ adds a dominating real by
our theorem.
(2) implies (3).
This follows from a theorem of D. Meza and M. Hrusak (see [16]).
O

This, in particular, shows that the ideal Z of sets Banach density
zero can not be extended to an ideal Z such that Mz« doesn’t add any
dominating reals, as it can not be extended to an F),-ideal.

Corollary 4.6. Let Z be the density zero ideal. If Z* C F, then Mr
adds a dominating real.

Question 4.7. Is there forcing notion P which destroys Z and doesn’t
add a dominating real?
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