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Abstract. We study separable metric spaces with few types of countable dense sets.
We present a structure theorem for locally compact spaces having precisely n types of
countable dense sets: such a space contains a subset S of size at most n−1 such that S is
invariant under all homeomorphisms of X and X \S is countable dense homogeneous. We
prove that every Borel space having fewer than c types of countable dense sets is Polish.
The natural question of whether every Polish space has either countably many or c many
types of countable dense sets, is shown to be closely related to the Topological Vaught
Conjecture.

1. Introduction

All spaces under discussion are separable and metrizable. A metric on a space X is
admissible if it generates the topology on X. A space is Polish if it has an admissible
complete metric.

Recall that a space X is countable dense homogeneous (CDH) if, given any two countable
dense subsets D and E of X, there is a homeomorphism f : X → X such that f(D) = E.
This is a classical notion that can be traced back to the works of Cantor, Brouwer, Fréchet,
and others. Examples of CDH-spaces are the Euclidean spaces, the Hilbert cube and the
Cantor set. In fact, every strongly locally homogeneous Polish space is CDH, as was shown
by Bessaga and Pe lczyński [4]. Recall that a space X is strongly locally homogeneous if
it has a basis B of open sets such that for every U ∈ B and every x, y ∈ U there is a
autohomeomorphism h of X such that h(x) = y and h � X \ U = id.

In this paper we consider the number of types of countable dense sets that a given space
has. As usual, we let c denote the cardinality of the continuum. Given a space X and
a cardinal number 1 ≤ κ ≤ c we say that a space X has κ types of countable dense sets
provided that κ is the least cardinal for which there is a collection A of countable dense
subsetes of X such that |A | = κ while for any given countable dense set B of X there
exist A ∈ A and a homeomorphism f : X → X such that f(A) = B.

We prove that a Borel space that has fewer than continuum many types of countable
dense sets is Polish. This improves the result of Hrušák and Zamora Avilés [13] that a Borel
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CDH-space is Polish. It is a natural question whether a Polish space having uncountably
many types of countable dense sets, has in fact c many such types. We show that the
question is strongly related to the Topological Vaught Conjecture.

The topological sum of n copies of [0, 1) has n+1-many types of countable dense sets,
while the topological sum of countably many copies of [0, 1) has countably many types
of countable dense sets, i.e., simple examples of locally compact spaces having at most
countably many types of countable dense sets can be constructed by adding a finite number
of points to a CDH Polish space (e.g., finite graphs). Perhaps the main result of the
present paper presenting a structure theorem on locally compact spaces X having at most
countably many types of countable dense sets shows that these are the only examples.

Theorem 1.1. Let X be a locally compact space having at most countably many types of
countable dense sets. Then X contains a closed and scattered subset S of finite Cantor-
Bendixson rank which is closed under all homeomorphisms of X and has the property that
X \ S is CDH. If X has at most n types of countable dense sets for some n ∈ N, then
|S| ≤ n−1.

The pseudoarc P is an example of a homogeneous continuum that has c types of countable
dense sets, the maximum number possible. To see this, let A and B be disjoint composants
of P . Moreover, let D and E be countable dense sets of A and B, respectively. By
Lemma 4.3 below, there is a collection F consisting of c pairwise nonhomeomorphic subsets
of E, none of which is homeomorphic to Q. Since every homeomorphism of P permutes its
composants, it is easy to see that for distinct F, F ′ ∈ F we have that D ∪ F and D ∪ F ′
are of different type.

The proofs of our results depend heavily on the Effros Theorem [8] about actions of
Polish groups on Polish spaces as well as on Ungar’s analysis of various homogeneity
notions in [22, 23].

2. Ungar’s Theorem revisited

Recall that a space X is n-homogeneous provided that for all subsets F and G of X of
size n there is a homeomorphism f of X such that f(F ) = G. In addition, X is strongly
n-homogeneous provided that for all n-tuples (x1, . . . , xn) and (y1, . . . , yn) of distinct points
of X there is a homeomorphism f of X such that f(xi) = yi for all i ≤ n.

The natural question whether these homogeneity notions are actually equivalent to
countable dense homogeneity for certain classes of spaces was addressed by Ungar in
[22, 23]. He showed that for highly connected locally compact spaces this is indeed the
case1:

Theorem 2.1 (Ungar [22, 23]). Let X be a locally compact space such that no finite set
separates X. Then the following statements are equivalent:

(1) X is CDH.
(2) X is n-homogeneous for every n.

1See van Mill [20] for an example of a Polish space that is strongly n-homogeneous for all n, but not
CDH.
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(3) X is strongly n-homogeneous for every n.

The proof of this very elegant result is based on the Effros Theorem [8] on actions
of Polish groups on Polish spaces (see below). For a generalization of the implication
(1) ⇒ (3) in Theorem 2.1 see [20, Theorem 1.2]. The principal aim of this section is to
prove an extension of this result without the connectivity assumptions.

First we recall relevant definitions and facts concerning actions of Polish groups.
An action of a topological group G on a space X is a continuous map

(g, x) 7→ gx : G×X → X

such that ex = x for every x in X and g(hx) = (gh)x for g and h in G and x in X (here e
denotes the neutral element of G). It is easily seen that for each g in G the map x 7→ gx
is a homeomorphism of X whose inverse is the map x 7→ g−1x.

If x belongs to X and U is a subset of G then Ux = {gx : g ∈ U}. The action of G on
X is transitive if Gx = X for every x in X. It is micro-transitive if for every x in X and
every neighborhood U of e in G the set Ux is a neighborhood of x in X.

Let G be a topological group acting on a space X. For every F ⊆ X, we put

GF = {g ∈ G : (∀x ∈ F )(gx = x)}, and GF = {g ∈ G : gF = F}.
If F is a singleton, say F = {x}, then we denote GF by Gx; it is the stabilizer of x by G.
Observe that both GF and GF act on X \ F and that GF is a normal subgroup of GF .
Moreover, clearly, if F is finite, then GF has finite index in GF .

We say that a group G makes X CDH if G acts on X in such a way that for any two
countable dense subsets D,E ⊆ X there is a g ∈ G such that gD = E. The following
result appears in [20, Proposition 3.1].

Proposition 2.2. Let X be a space, and let G be a group that makes X CDH. If F ⊆ X
is finite, and D,E ⊆ X \F are countable and dense in X, then there is an element g ∈ GF

such that gD ⊆ E.

A space X is Baire if the complement of every first category subset of X is dense in X.
A space is analytic if it is a continuous image of a Polish space. It is well known that an
absolute Borel set is analytic and that a Borel subspace of an analytic space is analytic.The
following interesting fact, was proved in a more general context by Levi [16] (see also [17,
§A13]):

Theorem 2.3. Every analytic Baire space has a dense Polish subspace.

As already mentioned, our main tool is the so-called Effros Theorem from [8], also known
as the ‘Open Mapping Principle’. It was generalized in [19], as follows:

Theorem 2.4 (Open Mapping Principle). Suppose that an analytic group G acts tran-
sitively on a space X. If X is of second category, then G acts micro-transitively on X.

This extremely useful result was first proved in its original form by Effros [8] using a Borel
selection argument. Simpler proofs were found independently by Ancel [1], Hohti [11], and
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Toruńczyk (unpublished). The proofs of Ancel and Toruńczyk are based on an ingenious
technique of Homma [12], while Hohti uses an open mapping theorem due to Dektjarev [7].

The Open Mapping Principle implies the classical Open Mapping Theorem of functional
analysis (for separable Banach spaces). Indeed, let B and E be separable Banach spaces,
and let h : B → E be a continuous linear surjection. We think of B as a topological group,
and define an action of B on E by (x, y) 7→ h(x) + y. This action is transitive, since if y
and y′ in E and x in B are such that h(x) = y′− y, then (x, y) 7→ y′. By Theorem 2.4, the
map B → E defined by x 7→ h(x) + 0 is open.

More important for our considerations is the fact that the Open Mapping Principle
also implies that for every homogeneous compactum (X, %) and every ε > 0 there exists
δ > 0 such that, if x and y in X satisfy %(x, y) < δ, then there is a homeomorphism
f : X → X such that f(x) = y and such that f does not move any point more than ε
far from itself. (This goes half way towards explaining the word micro-transitive.) This
interesting and surprising fact, first discovered by Ungar [23], was used with great success by
continuum theorists in their study of homogeneous continua. See Ancel [1] and Charatonik
and Maćkowiak [6] for details and further references.

Lemma 2.5. Let G be an analytic group acting on a space Y . Suppose that Gy is of second
category in Y for every y ∈ Y . Then for every y ∈ Y , Gy is clopen in Y and the map
G→ Y defined by g 7→ gy is open.

Proof. Since G is analytic, it follows that Gy is analytic, hence it contains a dense Polish
subspace by Theorem 2.3. Moreover, Gy has nonempty interior, say U . It then clearly
follows that GU is a dense open subset of Gy. Assume that for some y ∈ Y we have that
there exists z ∈ Gy \ Gy. Then by what we just proved, the interior V of Gz is dense in
Gz ⊆ Gy. However, this is impossible since then Gz∩V and Gy∩V contain disjoint dense
Polish subspaces of V . This implies that Gy is closed in Y for every y ∈ Y , and hence
that Gy is a clopen subset of Y since it has, as we just observed, nonempty interior in Y .
Observe that the evaluation of G at a given point y ∈ Y is open, is a direct consequence
of Theorem 2.4. �

Now we are ready to state and prove the following generalization of Ungar’s Theorem.

Theorem 2.6. Let G be a Polish group acting on a Baire space X. Then the following
statements are equivalent:

(1) G makes X CDH,
(2) for every finite subset F of X and y ∈ X \ F , GFy is of second category in X,
(3) for every finite subset F of X and y ∈ X \ F , GFy is of second category in X.

Moreover, X is Polish.

Proof. We first prove that (2) ⇔ (3). Indeed, pick a finite F ⊆ X, and let y ∈ X \ F .
Since there is a finite subset A of G such that

GFy = (AGF )y =
⋃
a∈A

a(GFy),
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it follows that GFy is a second category subset of X if and only if GFy is.
Hence it suffices to prove that (1) ⇔ (3). For (1) ⇒ (3), pick an arbitrary finite

subset F ⊆ X and y ∈ X \ F . Striving for a contradiction, assume that GFy is a first
category subset of X. Since X is Baire, there is a countable dense subset D of X such that
D ⊆ X \ (F ∪GFy). By Proposition 2.2, we may pick g ∈ GF such that g(D ∪ {y}) ⊆ D.
However, this contradicts the fact that gy ∈ GFy ⊆ X \ D. For (3) ⇒ (1), first observe
that by Lemma 2.5 we have that GFy is clopen in X \ F for all finite subsets F ⊆ X and
y ∈ X \ F . Let D and E be countable dense subsets of X. Enumerate D as {dn : n ∈ N}
and E as {en : n ∈ N}, respectively. By the above, Gd0 is clopen, so we may pick g0 ∈ G
such that gd0 ∈ E. Let m = min{n ∈ N : en 6= gd0}. Consider the set F = {gd0} and the
point em ∈ X \ F . The set GF em is clopen in X \ F . Pick a very small symmetric open
neighborhood V of the identity of the neutral element e of GF . Then V em is open in X \F .
It therefore intersects D, say in the point d. Let h ∈ V be such that hd = em. Hence h
fixes gd0 and moves d to em by a small move. Continuing in this way by the standard back
and forth method will produce precisely such as in the proof of Theorem 3.3 in Ungar [23]
a sequence of elements of G that converges to an element of the Polish group G that takes
D onto E.

That X is Polish follows from the following observations. If x ∈ X, then Gx is clopen
in X. Hence by Theorem 2.4, the evaluation mapping g 7→ gx is an open surjection.
Hence Gx is Polish by Hausdorff’s Theorem in [10] that an open image of a Polish space is
Polish, cf. [1]. Hence X is Polish since {Gx : x ∈ X} is a clopen partition of X by Polish
subspaces. �

The promised strengthening of Ungar’s Theorem 2.1 (1)⇔ (3) follows by an application
of Lemma 2.5 and Theorem 2.6:

Corollary 2.7. Let X be a locally compact space. Then the following statements are
equivalent:

(1) X is CDH,
(2) for every finite subset F of X there is a partition U of X \F into relatively clopen

sets such that for every U ∈ U and every x, y ∈ U there is a homeomorphism h of
X such that h(x) = y while h(F ) = F ,

(3) for every finite subset F of X there is a partition U of X \F into relatively clopen
sets such that for every U ∈ U and every x, y ∈ U there is a homeomorphism h of
X such that h(x) = y while h�F = id.

That Theorem 2.1 (2)⇔ (3) holds requires a different application of the Effros Theorem,
see Ungar [22] for details.

3. Spaces with few types of countable dense sets

In this section we study the structure of spaces having fewer than c types of countable
dense sets. We are interseted mostly in locally compact spaces, but since our proofs only
require the existence of suitable actions by Polish groups, we formulate our results first in
the language of G-spaces.
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Let X be a G-space, for some topological group G, i.e., a space with a fixed action of G on
X. By the G-type of a countable dense set D ⊆ X we mean the collection {gD : g ∈ G}. We
are interested in the structure of G-spaces having κ G-types of countable dense sets, where
κ is a cardinal number below c. Different groups may yield different cardinal numbers, of
course. If X is a crowded space, then the trivial group G = {e} has c G-types of countable
dense sets. More importantly, if X is locally compact, then the number of H (X)-types of
countable dense sets is equal to the number of types of countable dense sets. Here H (X)
denotes the group of autohomeomorphisms of X. It is well-known, and easy to prove, that
for a locally compact space, H (X) can be endowed with a Polish group topology such
that the natural action

H (X)×X → X, (g, x) 7→ g(x) (g ∈H (X), x ∈ X),

is continuous. For details, see Kechris [15].

Here is our first structure theorem.

Theorem 3.1. Let G be a Polish group, and let X be a Baire G-space. Assume that X
has fewer than c G-types of countable dense sets. Then

S =
{
x ∈ X : Gx is of first category in X

}
is a closed and scattered (hence countable) subspace of X. Moreover, S has finite Cantor-
Bendixson rank, X is Polish, S is invariant under he action of G and, assuming X \ S is
connected, G makes X \ S homogeneous.

Proof. First note that if x ∈ S then Gx ⊆ S. Striving for a contradiction, assume first
that S is not scattered. Then it contains a copy Q of the space of rational numbers Q.
Put T =

⋃
x∈QGx. Then T is clearly of first category, hence Y = X \ T is dense and

Baire. By Lemma 4.3 below there is a family A consisting of c countable and pairwise
nonhomeomorphic subsets of T . LetD ⊆ Y be any countable dense set. Then the collection

{D ∪ A : A ∈ A }
is clearly a collection of c countable dense subsets of X pairwise non-equivalent under the
action of G. This contradicts our assumptions. Hence S is scattered, and so countable.

Now, given x ∈ S, the orbit Gx is scattered, hence discrete. We claim that there does
not exist an infinite collection of first category orbits. To this end, assume that there are
{xn : n ∈ N} in X such that Gxn is first category for every n, and Gxn ∩ Gxm = ∅ if
n 6= m. Let D ⊆ X \

⋃
n∈NGxn be a countable dense set. For every A ∈P(N), put

D(A) = D ∪
⋃
n∈A

Gxn.

It is clear that the collection {D(A) : A ∈ P(N)} is a collection of c pairwise non-G-
equivalent countable dense sets, which is a contradiction. Hence S has finite scattered
rank.

Next we claim that S is closed. Put Z = X \ S. Assume that there exists an element
z ∈ S \ S. Then Gz is clopen in Z by Lemma 2.5. Let U be an open subset of X such
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that U ∩ Z = Gz. Observe that U ∩ S is scattered and S does not contain an isolated
point (by definition). Hence U ∩ S is nowhere dense in U . This implies that there is an
element z′ ∈ U \ S. Pick g ∈ G such that gz′ = z. Since z ∈ S and gS = S, we get that
z′ = gz ∈ S. This is a contradiction.

The fact that X is Polish follows from the following observation: If z ∈ Z, then Gz is
clopen in Z. Hence by Theorem 2.4, the evaluation mapping g 7→ gz is an open surjection.
Hence Gz is Polish by Hausdorff’s Theorem in [10] that an open image of a Polish space
is Polish, cf. [1]. Hence Z is Polish since {Gz : z ∈ Z} is a clopen partition of Z by Polish
subspaces. As a consequence, X is Polish since S is closed in X.

That G makes Z homogeneous provided it is connected, is clear from the above. �

Corollary 3.2. Let X be a locally compact space with fewer than c types of countable
dense sets. Then there is a closed and scattered subset S of X of finite Cantor-Bendixson
rank which is invariant under all homeomorphisms of X. Moreover, X \S is homogeneous
provided it is connected.

In the remainder of this section we will present the proof of Theorem 1.1. Hence we
show that the Structure Theorem 3.1 can be improved if we additionally assume that the
number of types of countable dense subsets of X is countable. The question whether the
number of types of countable dense sets of a Polish space can be uncountable, but less
than c, is an open problem.

Again, we formulate and prove our results in terms of group actions.

Theorem 3.3. Let G be a Polish group, and let X be a Baire G-space with at most
countably many G-types of countable dense sets. Then

S =
{
x ∈ X : Gx is of first category in X

}
is closed, scattered of finite Cantor-Bendixson rank, invariant under the action of G. X is
Polish and G makes X \ S CDH.

Moreover, |S| ≤ n−1 if X has at most n G-types of countable dense sets.

Note that the bound |S| ≤ n−1 is not necessarily optimal, as there are examples of
locally compact spaces with n-types of countable dense sets for which |S| < n−1, e.g. if
X is the subspace of the plane consisting of the union of the following three objects: The
circle centered at (0, 0) of diameter 1, the line segment joining the points (1, 0), (2, 0) and
the geometric interior of the line segment joining the points (2, 1), (2,−1). Then X has 4
types of countable dense sets, yet S = {(1, 0), (2, 0)} has size 2.

In order to prove the theorem, let X, G and S be as in the theorem, and let Y = X \S.
Suppose that X has at most n G-types of countable dense sets. We will prove that |S| ≤
n−1. Assume that |S| ≥ n, and let A be a subset of S of size n. Observe that B = GA is
G-invariant and of first category. Let D be a countable dense subset of X \ B. For every
E ⊆ B, put DE = D∪E. Then DE is a countable dense subset of X for every E ⊆ B, and
clearly gDE 6= DE′ for E and E ′ contained in B of different cardinality. Simply observe
that B is G-invariant, and hence |gDE ∩ B| = |E| for every E ⊆ B. From this it follows
that X has more than n G-types of countable dense sets, which is a contradiction.
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Hence by Theorem 3.1 it suffices to prove that if X has countably many G-types of
countable dense sets, then Y = X \ S is CDH. In order to demonstrate this, we prove
several preliminary results. First note that:

Claim 1. Y is a topological sum of a discrete space and a crowded2 space.

To see this, denote by Is(X) the set of isolated points of X, and note that the set

C = Is(X) \ Is(X) of accumulation points Is(X) is contained in S (C is closed nowhere
dense and Gx ⊆ C for every x ∈ C).

So we can and will assume that the set Y is crowded.

For a space X and n ≥ 1, let

F n(X) = {x ∈ Xn : xi = xj iff i = j}.
This space is sometimes called the n-th configuration space of X. It is an open subset of
Xn. Hence if X is Polish, so is every F n(X).

The following lemma, crucial here, was proved by Ungar [23] for locally compact spaces.
We present it with a simpler proof that also works for Polish spaces.

Lemma 3.4. Let X be a Polish space. Let T be a first category subset of F n(X). Then
there is a countable dense D ⊆ X such that F n(D) ∩ T = ∅.

Proof. On X we choose some admissible complete metric. Let U = {Ui : i ∈ N} be a
countable open base for X such that Ui 6= ∅ for every i, and without loss of generality
write T as

⋃
i∈N Ti, where each Ti is closed and nowhere dense in F n(X). If

(U1 × · · · × Un) ∩ F n(X) = ∅,

then we shrink every Ui to a nonempty open set V 1
i such that V 1

i ⊆ V 1
i ⊆ Ui and diamV 1

i <
2−1; we put V 1

m = X for every m > n. If

(U1 × · · · × Un) ∩ F n(X) 6= ∅
then it contains a point not in T1. Hence we may assume that there are open subsets V 1

i

for 1 ≤ i ≤ n such that

(1) V 1
i ∩ V 1

j 6= ∅ iff i = j,

(2) V 1
i ⊆ V 1

i ⊆ Ui,
(3) diamV 1

i < 2−1,
(4) for every permutation π : {1, . . . , n} → {1, . . . , n},

(V 1
π(1) × · · · × V 1

π(n)) ∩ T1 = ∅.
Put V 1

m = X for every m > n. Now we continue in this way. In each step we do nothing
but a basic shrinking in case we run into a set having empty intersection with F n(X). The
conclusion is that we can find open subsets V 2

i for i ≤ n+1 such that

(5) V 2
i ⊆ V 2

i ⊆ V 1
i if i ≤ n,

(6) V 2
n+1 ⊆ V 2

n+1 ⊆ Un+1,

2A space is crowded if it has no isolated points.
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(7) diamV 2
i < 2−2,

(8) for every permutation π : {1, . . . , n} → {1, . . . , n} and every k ≤ n

(V 2
π(1) × · · · × V 2

π(k−1) × V 2
n+1 × V 2

π(k+1) × · · · × V 2
π(n)) ∩ T2 = ∅.

Put V 1
m = X for every m ≥ n+2. Continue in this way recursively.

At the end of the construction, for every k ∈ N, let qk be the unique point in the
intersection

⋂
i∈N V

i
k . Then D = {qk : k ∈ N} is clearly as required. �

The following result appears in van Mill [18] as Theorem 2.12. For the sake of com-
pleteness, we present its standard proof. Recall that given a cover U of a space X, a set
A ⊆ X and a function f : A→ X we say that f is limited by U if for every x ∈ A there
is a U ∈ U containing both x and f(x).

Lemma 3.5. Let G be an analytic group acting on a space Y such that Gy is a second
category subset of Y for every y ∈ Y . Then for every open cover U of Y and every compact
subset K ⊆ Y there is an open cover V of Y with the following property: for all V ∈ V
and x, y ∈ V there exists g ∈ G such that gx = y and g�K is limited by U .

Proof. By continuity of the action, for x ∈ K, we may pick an open neighborhood Vx of
the neutral element e ∈ G such that V 2

x x is contained in an element of U . Since every set
of the form Vxx is open by Lemma 2.5, there is a finite F ⊆ K such that

K ⊆
⋃
x∈F

Vxx.

Let V =
⋂
x∈F Vx, and let W be a symmetric open neighborhood of e such that W 2 ⊆ V .

Put V = {Wy : y ∈ Y }. Then V is an open cover by Lemma 2.5. We claim that V is as
required. To this end, pick arbitrary z, p, q ∈ Y such that p, q ∈ Wz. There are h, g ∈ W
such that hz = p and gz = q. Then ξ = gh−1 ∈ V and ξp = q. So it suffices to prove
that for y ∈ K there exists U ∈ U containing both y and ξy. Pick x ∈ F such that
y ∈ Vxx ⊆ V 2

x x. There is an element h ∈ Vx such that hx = y. Since ξy = (ξh)x ∈ V 2
x x

and V 2
x x is contained in an element of U , this completes the proof. �

Fix m ≥ 1. We let G act on Fm(Y ) as follows:

(g, (y1, . . . , ym)) 7→ (gy1, . . . , gym), g ∈ G, (y1, . . . , ym) ∈ Fm(Y ).

Lemma 3.6. For every (y1, . . . , ym) ∈ Fm(Y ) there exists a Cantor set K in G such that
the collection {

{gy1, . . . , gym} : g ∈ K
}

is pairwise disjoint.

Proof. Let % be an admissible metric on X.
The construction of K is, of course, similar to the standard construction of a Cantor set

in an uncountable analytic space. We only need to ensure that for all distinct g and h in
K we have

{gy1, . . . , gym} ∩ {hy1, . . . , hym} = ∅.
Pick an arbitrary (y1, . . . , ym) ∈ Fm(X). We need the following:
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Claim 1. For every neighborhood W of the neutral element e of G, there exist a ∈ W
such that

{ay1, . . . , aym} ∩ {y1, . . . , ym} = ∅.

Pick an open neighborhood V of e such that V m ⊆ W , and put F = {y1, . . . , ym}. Since
F is finite, there exists by Lemma 2.5 an element a1 ∈ V such that a1y1 6∈ F . Let
ε1 = %(a1y1, F ) and put δ1 = ε1/m. By Lemma 3.5 there exists an a2 ∈ G such that
(a2a1)y2 6∈ F and %((a2a1)y1, a1y1) < δ1. By continuing in this way, it is clear that in
m steps we have succeeded in making {ay1, . . . , aym} and {y1, . . . , ym} disjoint, where
a = am · · · a1.

Now, by using Claim 1 at each step of the standard construction of a Cantor set as a
nested intersection of finite unions of disjoint balls of smaller and smaller diameter in the
complete space G, we can construct K. �

In what follows, ω1 denotes the first uncountable cardinal and, at the same time, the set
of all countable ordinal numbers. It is a result in Baumgartner [2, Corollary 2.4], attributed
to Weiss, that there is a family A = {Aα : α ∈ ω1} of countable ordinal numbers such that

(1) if α < β ∈ ω1, then Aβ does not embed in Aα,
(2) for every α ∈ ω1, if S is a finite partition of Aα, then for some S ∈ S we have

that S and Aα are homeomorphic.

Proposition 3.7. If (y1, . . . , ym) ∈ Fm(Y ), then G(y1, . . . , ym) is of second category in
Fm(Y ).

Proof. Striving for a contradiction, assume that for some (y1, . . . , ym) ∈ Fm(Y ) we have
that T = G(y1, . . . , ym) is of first category in Fm(Y ). By Lemma 3.4, there is a countable
dense subset D of Y such that Fm(D) ∩ T = ∅. Let K ⊆ T be the Cantor set given by
Lemma 3.6. We may assume that the ordinal numbers from the family A above are all
contained in K. Observe that for every i ≤ m we have that the function K → Y defined
by g 7→ gyi, is an embedding. For every α ∈ ω1, put

Dα = D ∪
⋃
g∈Aα

{gy1, . . . , gym}.

Then for every α ∈ ω1, Dα is a countable dense subset of X. We claim Dα and Dβ are
not G-equivalent for distinct α and β. To this end, pick α < β ∈ ω1, and assume that
there is an element h ∈ G such that hDβ = Dα. Since Fm(D) ∩ T = ∅, for every g ∈ Aβ
there exists i(g) ≤ m such that hgyi(g) 6∈ D. By (2) above, we may assume that there are
B ⊆ Aβ and i ≤ m such that B is homeomorphic to Aβ while moreover hgyi 6∈ D for every
g ∈ B. Again by (2) there exist B′ ⊆ B and j ≤ m such that B′ and Aβ are homeomorphic
and hgyi ∈ Aαyj for every g ∈ B′. However, this shows that Aβ can be embedded in Aα,
which is a contradiction.

Hence we have created uncountably many G-types of countable dense sets in X, which
violates our assumptions. �
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Hence we conclude that every G-orbit of Fm(Y ) is clopen by Lemma 2.5. From this we
conclude by Theorem 2.6 that G makes Y CDH, and this is what we had to prove. This
completes the proof of Theorem 3.3, and hence also its corollary Theorem 1.1.

Corollary 3.8. Let X be a homogeneous locally compact space. If X is not CDH, then X
has uncountably many types of countable dense sets.

Question 3.9. Let S be the set in Theorem 3.1. Is it true that X \ S is CDH?

Question 3.10. Let X be a homogeneous locally compact space which is not CDH. Does
X have c types of countable dense sets?

4. Spaces with many types of countable dense sets

The aim of this section is to prove that every Borel space which is not completely
metrizable has c many types of countable dense sets (Corollary 4.6). This generalizes the
main result in Hrušák and Zamora Avilés [13]. Before we prove the theorem we recall
several known facts from descriptive set-theory (for more see e.g. Kechris [15]).

It is a well-known theorem of Souslin’s [15, 14.13] that every uncountable analytic space
contains a homeomorphic copy of a Cantor set. The following results and its corollary are
due to Hurewicz [14] (see also [17, pages 78 and 79]).

Theorem 4.1. If a space X is not a Baire space, then X contains a closed subspace
homeomorphic to Q.

A space X is completely Baire if all of its closed subspaces are Baire.

Corollary 4.2. A space X is completely Baire if and only if X does not contain a closed
copy of Q.

The following lemma can be found in Brian, van Mill and Suabedissen [5]. For the sake
of completeness, we include its simple proof.

Lemma 4.3. The number of distinct homeomorphism classes of countable subsets of R
is c.

Proof. Every countable subset of R can be embedded in Q, so the number of distinct
homeomorphism classes of countable subsets of R is at most |P(Q)| = c.

Let X ⊆ R. Let P be the largest crowded subset of X and let S = X \ P be the
scattered part of X. We define the scattered signature H(X) of X as follows: H(X) is
a set of ordinals, and α ∈ H(X) if and only if there is some p ∈ P such that p has
Cantor-Bendixson rank α in S ∪ {p}.

Let A = {αn : n ∈ N} be a countable subset of ω1. We show that there is a countable
subset of R with scattered signature A. On the interval [n+1/4, n+1/2], embed ωαn+1, mak-
ing sure that the point ωαn maps to the point n+1/2. Include the points Q∩ [n+1/2, n+3/4]
and call the resulting set X. It is a routine exercise to show that H(X) = A.

As there are c-many countable subsets of ω1, this proves that the number of distinct
homeomorphism classes of countable subsets of R is at least c. �
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Fitzpatrick and Zhou [9] proved the following useful lemma.

Lemma 4.4. A crowded space X is meager in itself if and only if there is a countable
dense D ⊆ X which is Gδ in X.

The main theorem of this section is:

Theorem 4.5. Let X be an analytic space with fewer than c types of countable dense sets.
Then X is completely Baire.

Proof. We can write X as A∪B, where A is open and scattered, and B is crowded. Observe
that A is countable and invariant under the homeomorphisms of X. Hence B is also an
analytic space with fewer than c types of countable dense sets. Moreover, B is completely
Baire if and only if X is completely Baire. It therefore suffices to consider the case that
A = ∅, hence that X is crowded.

Claim 2. X is nowhere countable.

Assume not, that is

V =
⋃
{U : U is a countable open subset of X}

is not empty. Then V is itself a countable open subset of X. Since V is crowded, V ≈ Q. By
Lemma 4.3, we may pick a family E consisting of c pairwise nonhomeomorphic nowhere
dense subsets of V . Let D be a countable dense subset of X \ V , and for E ∈ E , put
D(E) = (V \E)∪D. Since V is invariant under the homeomorphisms of X, clearly D(E)
and D(E ′) are not equivalent for E 6= E ′, which proves that X has c types of countable
dense sets. This is a contradiction.

Claim 3. X is Baire.

Suppose that it is not the case. Then there is a nonempty open subset U of X which is
meager in itself. Let V be a nonempty open subset of U such that V ⊆ U while moreover
U \ V 6= ∅. By Claim 1, V is uncountable, hence, being analytic, contains a Cantor set
K by Souslin’s Theorem. We may assume without loss of generality that K is nowhere
dense in X. Hence we may pick nonempty disjoint open sets W and W ′ in V \ K such
that K = W ∩W ′. Observe that this implies that the interior of the closure of W does
not intersect K. Hence we may assume without loss of generality that W is regular open.

Since W is meager in itself, we may pick a countable dense subset D0 ⊆ W which is
a Gδ-subset of W (Lemma 4.4). Let {Un : n ∈ N} be a countable basis for X \W . By
Claim 1 and Souslin’s Theorem, we may pick for every n a Cantor set Fn in Un. Choose
for every n ∈ N a countable dense subset Cn ⊆ Fn, and put D1 =

⋃
n∈NCn.

Note that D1 ∩O is not a Gδ-subset of O for every nonempty open subset O of X \W .
For if this were true, we could pick n ∈ N such that Fn ⊆ O which would imply that
D1 ∩ Fn would be Gδ in Fn. However, D1 ∩ Fn contains the dense set Cn. Hence D1 ∩ Fn
is a countable dense subset of Fn which is Gδ in Fn. This shows by Lemma 4.4 that Fn is
meager in itself, which contradicts the fact that Fn is compact.
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By Lemma 4.3, we may pick a family F consisting of c pairwise disjoint nonhomeomor-
phic countable subsets of K. For every F ∈ F put D(F ) = D0 ∪ F ∪ D1. Then D(F )
is dense in X for every F ∈ F , and we claim that D(F ) and D(F ′) are not equivalent if
F 6= F ′. To this end, pick distinct F, F ′ ∈ F , and let f : X → X be a homeomorphism
such that f(D(F )) = D(F ′). Since f(D0) is Gδ in f(W ), by the above we obtain that
f(W ) ⊆ W . For if A = f(W ) \W 6= ∅, it would follow that

f(D0) = f(W ∩D(F )) = f(W ) ∩ f(D(F )) = f(W ) ∩D(F ′),

and hence

f(D0) ∩ A = f(D0) \W = (f(W ) ∩D(F ′)) \W = (f(W ) \W ) ∩D1 = D1 ∩ A.
However, this is a contradiction since f(D0) ∩ A is a Gδ-subset of A while D1 ∩ A is not.
Since W is regularly open, this consequently implies that f(W ) ⊆ W . A similar analysis
with f replaced by f−1 gives us that f−1(W ) ⊆ W . Hence we conclude that f(W ) = W ,
and so f(W \W ) = W \W . From this we conclude that f(F ) = F ′, which is a contradiction.

Hence again we conclude that X has c types of countable dense sets, which contradicts
our assumptions.

We are now ready to show that X is completely Baire. By Claim 2 and Theorem 2.3
there is a Polish G ⊆ X which is dense in X. Let D0 be any countable dense subset of
G (and consequently also a dense subset of X). Note that D0 has the property that if
E ⊆ D0 is crowded, then E is not a Gδ-subset in E. For if E were Gδ in E, then E would
be Gδ in E∩G, but E∩G is Gδ in G, hence is Polish. This contradicts Lemma 4.4; simply
observe that E ∩G is crowded since E is.

Let Q be a closed homeomorphic copy of Q in X. We will derive a contradiction, which
means that we will be done by Corollary 4.2. We may assume without loss of generality that
Q∩G = ∅. Again by Lemma 4.3 we may fix a collection A of c pairwise nonhomeomorphic
nowhere dense subsets of Q. For every A ∈ A , put D(A) = (Q \ A) ∪D0. We claim that
the countable dense subsets D(A) and D(A′) are of different type if A 6= A′. To this end,
let f : X → X be a homeomorphism such that f(D(A)) = D(A′). Assume that there
exists x ∈ Q \ A such that f(x) 6∈ Q. Since Q is closed in X, there is a neighborhood U
of x in Q \ A such that f(U) ⊆ D0. However, Q \ A ≈ Q, hence U is crowded. Hence U

is Gδ in U , but by the above, f(U) is not Gδ in f(U). This is a contradiction. From this
we conclude that f(Q \ A) = Q \ A′, and hence, f(A) = A′. This again contradicts our
assumptions. �

By a result of Hurewicz every co-analytic completely Baire space is Polish (see [15,
21.21]). The following generalizes the main result in Hrušák and Zamora Avilés [13].

Corollary 4.6. If X is Borel and has fewer than c types of countable dense sets then X
is Polish.

In other words:

Corollary 4.7. If X is Borel and not an absolute Gδ set then X has c types of countable
dense sets.
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5. ω1-many types and Vaught’s Conjecture

The Vaught’s Conjecture is a conjecture in model theory posed by Vaught in 1961 [24].
It states that any first-order complete theory in a countable language has either at most
countably many or c many non-isomorphic countable models. Morley [21] showed that
number of countable models is at most ω1 or c. Morley’s proof led to the formulation
of the, so called, Topological Vaught’s Conjecture - the statement that whenever a Polish
group acts continuously on a Polish space, there are either countably or c many orbits.
The topological Vaught’s conjecture is, in fact, a stronger statement than the Vaught’s
conjecture,

The results contained in this paper suggest the following natural question:

Question 5.1. Is there a Polish space X with ω1 types of countable dense sets?

We will not answer the question here. We will show that it has a close connection to the
Topological Vaught Conjecture.

Let S∞ denote the group of all permutations of N with the topology of pointwise conver-
gence. Then S∞ is a Polish group. It admits a standard action on every infinite product
XN, as follows: (

π, (x1, x2, . . . )
)
7→ (xπ(1), xπ(2), . . . ),

where π ∈ S∞ and (x1, x2, . . . ) ∈ XN. Consider the Cantor set3 2N and the standard action
of S∞ on it. This action has countably many orbits. If we let G denote the subgroup of
S∞ consisting of the neutral element only, then its natural action on 2N has c orbits. For
an arbitrary closed subgroup G of S∞, it is unknown whether the number of the orbits of
its natural action on 2N is countable or c. This is a special case of the Topological Vaught
Conjecture, and we refer to Becker and Kechris [3] for more information on this.

The connection between the number of types of countable dense sets and the Topological
Vaught Conjecture is established by the following two results.

Theorem 5.2. Let G be a closed subgroup of S∞, and let κ be the number of orbits for
the canonical action G × 2N → 2N. Then there is an action of a Polish group H on
X = N× [0, 1) such that X has κ H-types of countable dense sets.

Proof. Let G act on X in the following natural way:

(g, (n, t)) 7→ (g(n), t) (g ∈ G, n ∈ N, t ∈ [0, 1)).

Put
F = {f ∈H (X) : (∀n ∈ N)(f(n, 0) = (n, 0))}.

Then F is a closed subgroup of H (X) and hence is Polish. Moreover, for any two countable
dense subsets D and E of N× (0, 1) there exists f ∈ F such that f(D) = E. Observe that
every g ∈ G commutes with every f ∈ F . This means that the Polish group H = F × G
acts on X as follows:

((f, g), x) 7→ (f ◦ g)(x) (f ∈ F, g ∈ G, x ∈ X).

3Following set theoretic notation we identify 2 = {0, 1}.
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A typical countable dense subset of X has the form D ∪ A, where D is a countable dense
subset of N× (0, 1), and A ⊆ N×{0}. By identifying P(N×{0}) and 2N in the standard
way, it is clear that we get what we want. �

Hence, in particular, an action with ω1 orbits would produce a space with ω1 H-types
of countable dense sets. We now aim at proving the converse.

Let X be a Polish space. Put

CD(X) = {x ∈ XN : {x1, x2, . . . } is dense in X}.

We think of CD(X) as the space of countable dense subsets of X.

Lemma 5.3. If X is Polish, then so is CD(X).

Proof. Let U = {Un : n ∈ N} be a countable open base for X. Now simply observe that
CD(X) is equal to

XN \
⋃
n∈N

(X \ Un)N

and hence is a Gδ-subset of XN. Hence since XN is Polish, so is CD(X). �

This leads us to the following result:

Theorem 5.4. Let G be a Polish group for which there is a Polish G-space X with κ
G-types of countable dense sets. Then there is an action of a Polish group H on a Polish
space Y having exactly κ orbits.

Proof. Consider the standard action of S∞ on XN. It is clear that CD(X) is invariant
under the action of S∞. We let G act on CD(X) as follows:(

g, (x1, x2, . . . )
)
7→ (gx1, gx2, . . . ).

Observe that for π ∈ S∞, g ∈ G and x ∈ CD(X) we have that πgx = gπx. Hence we can
let the Polish group H = S∞ ×G act on the Polish space CD(X) (Lemma 5.3) as follows:(

(π, g), (x1, x2, . . . )
)
7→ (gxπ(1), gxπ(2), . . . ).

It is left as an exercise to the reader to show that H has exactly κ orbits. �

Corollary 5.5. If there is a locally compact space X with κ types of countable dense sets,
then there is are Polish group G and a Polish G-space Y with κ orbits.

This suggests the following problem, equivalent to the problem whether ‘the Topological
Vaught Conjecture’ is true for locally compact spaces.

Question 5.6. Let X be a locally compact space. Does X have either at most ω or exactly
c types of countable dense sets?
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