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Abstract. Answering a question of M. Scheepers we show that
that the cardinal invariant d is a lower bound on irr the minimal
weight (equivalently, minimal π-weight) of a countable regular ir-
resolvable space. We consider related cardinal invariants such as
rscat the reaping number of the quotient algebra P(Q) mod the
ideal of scattered subsets of the rationals and prove that ♦(rscat)
implies that irr = ω1.

1. Introduction

All topological spaces considered are regular and crowded, i.e., have
no isolated points. A topological space X is said to be irresolvable
provided there are no disjoint dense subsets Y, W ⊆ X. Otherwise, X
is resolvable.

It is easy to see that Q is a resolvable space. It follows, due to a well
known theorem of W. Sierpiński, that every countable first countable
crowded regular space is resolvable. So, if X is a countable regular
irresolvable space, w(X) should be uncountable. In fact, the same is
true for countable regular spaces with countable π-weight.

M. Scheepers [6] defines the irresolvability number as follows:

irr = min{πw((ω, τ)) : τ ⊆ P(ω) is an irresolvable T3 topology on ω}
It is folklore knowledge that r ≤ irr ≤ i (see [6, 3]), where r denotes

the reaping number (the minimal size of a reaping (or unsplittable)
family, i.e. the minimal size of a family R ⊆ [ω]ω such that for any
X ∈ [ω]ω there is an R ∈ R such that R ⊆ X or R ∩ X = ∅), and i
is the minimal size of maximal independent family (see [5, 3]). In [6],
M. Scheepers asks whether the equality r = irr is provable in ZFC. We
will show that the dominating number d (see [5]) is also a lower bound
for irr hence, in particular, it is relatively consistent with ZFC to have
r < irr. We also consider related cardinal invariants such as the reaping
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number of the quotient algebra P(Q) mod the ideal of scattered subsets
of the rationals and compare them to the cardinal invariants already
mentioned.

2. The cardinal invariant irr and other cardinals.

The following proposition tells us that we can replace the π-weight
by weight in the definition of irr.

Proposition 2.1. The irresolvability number irr is equal to the mini-
mum weight of a countable irresolvable T3 space.

Proof. It is clear that irr is less or equal to the minimum weight of a
countable irresolvable T3 space.

Let τ be an irresolvable T3 topology on ω of minimal π-weight and let
B be a π-base witnessing the minimality of πw((ω, τ)). We claim that
there is an X ⊆ ω and a topology τ ′ on X such that (X, τ ′) is irresolva-
ble T3 and has weight at most irr. Let X =

⋃
B, and for each U ∈ B,

and each pair of distinct points x, y ∈ U , pick Wx(U, x, y),Wy(U, x, y)
disjoint clopen sets such that x ∈ Wx(U, x, y), y ∈ Wy(U, x, y), and
Wx(U, x, y), Wy(U, x, y) ⊆ U . Now, consider the following family of
sets:

B′ = {Wx(U, x, y),Wy(U, x, y) : U ∈ B, x, y ∈ U, x 6= y}∪
{X \Wx(U, x, y), X \Wy(U, x, y) : U ∈ B, x, y ∈ U, x 6= y}.

Finally, let τ ′ be the topology on X generated by B′. Then (X, τ ′)
is a countable irresolvable T3 space of weight at most irr. �

Recall that a set X ⊆ Q is scattered if every non-empty Y ⊆ X has
an isolated point. The collection of all scattered subsets of Q forms a
proper ideal which will be denoted by scat, and the family P(Q) \ scat
of scat-positive sets will be denoted by scat+.

Definition 2.1. A family R ⊆ scat+ is called scattered-reaping, if for
every X ∈ scat+, there is a Y ∈ R such that Y ⊆ X or X ∩ Y = ∅.
The scattered-reaping number, which we denote by rscat, is defined as
the minimum size of a scattered-reaping family

rscat = min{|R| : R ⊆ scat+

(∀X ∈ scat+)(∃Y ∈ R)(Y ⊆ X ∨ Y ∩X = ∅)}.

It is easy to see that rscat is equal to r(P(Q)/scat) - the reaping
number of the Boolean algebra P(Q)/scat.

Proposition 2.2. rscat ≤ irr.

Proof. Let τ be an irresolvable topology on ω, and let M 4 H(θ) be
a countable elementary submodel with τ ∈ M, and B a π-basis for τ .
Take B′ = τ ∩M. Due to Sierpiński’s theorem, B′ generates a topology
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τ ′ which is homeomorphic to the topology of Q, so we can assume that
scat = scat(ω,τ ′). Note that every non-empty U ∈ τ is a scat-positive
set. Let X ∈ scat+. Since (ω, τ) is irresolvable, one of X and ω \ X
has non-empty τ -interior. If intτ (X) is not empty, we get U ∈ B such
that U ⊆ X. If intτ (ω \ X) 6= ∅, we get basic open U ∈ B such that
U ∩X = ∅. So, B is a scattered-reaping family. �

Lemma 2.1. For every A ∈ scat+, there is a crowded closed nowhere-
dense set B such that B ⊆ A.

Proof. Let A ∈ scat+. Without loss of generality A is a crowded set.
For each n ∈ ω, let {Bn,m : m ∈ ω} be a local basis of clopen sets at n.
Recursively, construct an increasing sequence {Fm : m ∈ ω} of finite
subsets of A, and an increasing sequence of clopen sets {Um : m ∈ ω}
satisfying the following:

a) For all n ∈ ω, there is m such that n ∈ Fm or n ∈ Um.
b) For all m ∈ ω, Fm ∩ Um = ∅.
c) For all m ∈ ω, for all k ∈ Fm and all i > m, Bk,i ∩Fi \ {k} 6= ∅.

Suppose both sequences have been sucessfully constructed. Put F =⋃
n∈ω Fn. The clause c) ensures that F is a crowded set, while a) and

b) tell us that F is closed. Since every Fn is a subset of A, we have
F ⊆ A. If F is not nowhere dense, replace it by any of its closed
crowded nowhere dense subsets.
In order to carry out the construction, let k0 = min(A) and F0 = {k0}.
Pick a clopen set U0 such that {i : i < k0} ⊆ U0 and k0 /∈ U0. Now,
suppose that Fm and Um have been defined . Then Fm ⊆ A \ Um and
A \ Um is crowded. For each k ∈ Fm, pick nk ∈ Bk,m+1 ∩ A \ Um, and
let Fm+1 = Fm ∪{nk : k ∈ Fm}. Finally, let j = min(A \ (Fm+1 ∪Um)),
and pick a clopen set V such that j ∈ V and V ∩ Fm+1 = ∅, and let
Um+1 = Um ∪ V . Obviously a), b) and c) are satisfied. �

Proposition 2.3. d ≤ rscat.

Proof. Let F ⊆ scat+ be a collection of crowded sets of cardinality less
than d. We will find a set Y ∈ scat+ such that for all X ∈ F , both
X∩Y and X \Y are in scat+. By Lemma 2.1, we can assume that each
X ∈ F is a crowded closed nowhere dense set. Also, we can assume
that ω =

⋃
F . For each n ∈ ω, let Cn be the set of all X ∈ F such

that n ∈ X. Note that Cn has size less than d. Recursively, construct
two sequences {An : n ∈ ω}, {Bn : n ∈ ω} of subsets of ω such that:

i) A0 = B0 = ∅.
ii) For all n, An ∩Bn = ∅.
iii) For all n, An, Bn ∈ scat.
iv) For all n, An ⊆ An+1, Bn ⊆ Bn+1.
v) For all n, n ∈ Ān+1 ∩ B̄n+1.

vi) For all n and for all X ∈ Cn, An+1 ∩X 6= ∅ and Bn+1 ∩X 6= ∅.
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It is clear from the construction that A =
⋃
n∈ω An and B =

⋃
n∈ω Bn

are disjoint dense sets, and item vi) implies that for all X ∈ F , A∩X
and A \X ⊇ X ∩B are both infinite.
Suppose that both An, Bn have been defined. If n ∈ Ān ∩ B̄n put
An+1 = An and Bn+1 = Bn. If n /∈ Ān, let {Wm : m ∈ ω} be a
partition of ω \ (Ān ∪ B̄n ∪ {n}) into clopen sets. Note that none of
them has n in its closure, so for all X ∈ Cn and all k ∈ ω, X * Wk.
Moreover, for infinitely many k ∈ ω, Wk ∩ X is infinite (otherwise X
would be a scattered set with n as its unique limit point). For each
X ∈ Cn, let X̃(k) to be the minimum i ≥ k such that X ∩Wi 6= ∅.
Then define the following function:

fX(i) = min(X ∩WX̃(i)) + 1

Since |Cn| < d, there is an increasing function f which is not domi-
nated by {fX : X :∈ Cn}. Having fixed such f let

An+1 = An ∪
⋃
k∈ωWk ∩ f(k)

It is easily seen that An+1 satisfies i) - vi). Now, consider W ′
k = Wk \

An+1. Note that again, for all X ∈ Cn there are infinitely many k ∈ ω
such that X ∩W ′

k is infinite. Let X̃ ′(k) be the minimum i ≥ k such
that X ∩W ′

i 6= ∅. Define a new family of functions {gX : X ∈ Cn} as
follows:

gX(i) = min(X ∩W ′
X̃′(i)

) + 1

Again, fix an increasing function g : ω → ω which is not dominated
by {gX : X ∈ Cn} and let

Bn+1 = Bn ∪
⋃
k∈ω

W ′
k ∩ g(k)

Then Bn+1 satisfies i) to vi). �

Corolary 2.1. max{r, d} ≤ rscat ≤ irr.

Let us turn our attention to the question of M. Scheepers. It is well
known that in the Miller model (see [2, 4]) r < d. In particular, in this
model r < rscat = irr holds.

Corolary 2.2. It is relatively consistent with ZFC that r < irr.

3. A diamond for rscat

It is well known that for many non-Borel cardinal invariants there is a
Borel cardinal invariant such that its associated ♦-principle implies the
former to be equal to ω1 (see [5]). Some examples of this phenomena
are the cases of b and a, r and u, and rQ

1 and i (see [1, 5]). This section

1rQ = r(P(Q)/nwd) is the reaping number of the Boolean algebra P(Q)/nwd,
where nwd denotes the the ideal of nowhere dense subsets of the rationals



COUNTABLE IRRESOLVABLE SPACES AND CARDINAL INVARIANTS 5

is devoted to proving that the relation between rscat and irr has the
same flavor.

Definition 3.1. ♦(rscat) is the following statement:

♦(rscat) For every Borel function2 F : 2<ω1 → scat+ there is a g : ω1 →
scat+ such that for all f ∈ 2ω1 the set {α ∈ ω1 : g(α) ⊆ F (f �
α) ∨ F (f � α) ∩ g(α) = ∅} is stationary.

The function g given by ♦(rscat) is called a ♦(rscat)-guessing sequence
for F .

Theorem 3.1. ♦(rscat) implies irr = ω1

Proof. By a suitable coding, we will assume that the domain of our F
is the set of all ordered pairs (A, ~I), where ~I = 〈Iβ : β < α〉 ⊆ P(ω)
is a sequence of lenght α ∈ ω1, and A is a subset of ω. Define F as
follows:

• If {Iβ : β < α}∪{ω\Iβ : β ∈ α} is not a subbasis for a topology

homeomorphic to the usual topology on Q, then F (A, ~I) = Q.
• If {Iβ : β < α} ∪ {ω \ Iβ : β ∈ α} is a subbasis for a topology

homeomorphic to the usual topology on Q, and A is scattered
relative to this topology, then F (A, ~I) = Q.
• If {Iβ : β < α} ∪ {ω \ Iβ : β ∈ α} is a subbasis for a topo-

logy homeomorphic to the usual topology on Q, and A is not
scattered relative to this topology, pick h~I : ω → Q a recursive

homeomorphism, and define F (A, ~I) = h~I [A].

Here the homeomorphism h~I depends (in a recursive, or Borel way)

only on ~I, in particular, it is the same homeomorphism for all pairs
(A, ~I) with the same second coordinate.

Now, let g : ω1 → scat+ be a ♦(rscat)-guessing sequence, and recur-
sively define a family of subbases as follows:

(1) Let B0 = 〈Un : n ∈ ω〉 be a basis for the usual topology on Q.
(2) Suppose we have defined Bβ for all β < α. If α is a limit ordinal,

then make Bα =
⋃
β<α Bβ. For α = β + 1, look at g(β) ∈ scat+.

By lemma 2.1, there is a perfect nowhere-dense set Bβ contained
in g(β). Also 〈Uγ : γ < α〉 generates a topology homeomorphic
to the usual topology on Q, so in the definition of F , we make
use of the recursive homeomorphism hBα . Let Uα = h−1Bα [Bα]. It
is not hard to see that Bα = Bβ ∪ {Uα} ∪ {ω \ Uα} generates a
topology homeomorphic to the rationals.

We claim that {Uα : α ∈ ω1} generates an irresolvable T3 topology
τω1 on ω. Since we are making each Uα clopen, then the topology we
get is 0-dimensional. Let us see that it is irresolvable. That means,

2A function F from 2<ω1 to a metric space X is Borel if all of its restrictions to
levels 2α are Borel. Here we consider scat+ as a subspace of P(Q) endowed with
the product topology.
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for every A ⊆ ω either A or ω \ A has non-empty interior in τω1 . We
only have to worry about of the sets A ∈ scat+τω1 (if A ∈ scatτω1 then

obviously ω \ A has non-empty interior in τω1). Pick one of such A.
Then, in particular, A ∈ scat+. If g guesses (A, 〈Uα : α ∈ ω1〉) at
γ, then h〈Uα:α<γ〉[A] ⊇ g(γ) or h〈Uα:α<γ〉[A] ∩ g(γ) = ∅. So, either A
or ω \ A has non-empty interior in τω1 . In the former case, we have
A ⊇ Uγ, and in the later case A∩Uγ = ∅, so it is not possible for A be
both dense and codense. By Proposition 2.1 we are done. �

4. Related facts and questions

In [1], it is proved that cof(M) ≤ rQ ≤ i.

Proposition 4.1. rscat ≤ rQ.

Proof. Let {Dα : α ∈ κ} be a Dense(Q)-reaping family, and B a basis
for the usual topology on Q. The following family witness a scattered-
reaping family:

RS = {A ∩ U : A ∈ R ∧ U ∈ B} �

The following diagram summarizes some of the results related with
those presented here:

cof(M) // rQ // i

d

OO

// rscat

OO

// irr

OO

r

OO

Some inequalities are folklore knowledge. The inequalities cof(M) ≤
rQ ≤ i were proved in [1]. We have the following questions concerning
some of the cardinal invariants in the above diagram:

(1) Is rscat = rQ?
(2) Is rscat = max{d, r}?
(3) Is there a model where rscat < irr?
(4) Is irr = i?
(5) Is cof(M) ≤ rscat?
(6) Are cof(M) and irr provably comparable?
(7) Are rQ and irr provably comparable?
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