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Abstract. We consider several game versions of the cardinal invariants t, u and a. We show
that the standard proof that parametrized diamond principles prove that the cardinal invariants
are small actually shows that their game counterparts are small. On the other hand we show that
t < tBuilder and u < uBuilder are both relatively consistent with ZFC, where tBuilder and uBuilder
are the principal game versions of t and u, respectively. The corresponding question for a remains
open.

1. Introduction

The main purpose of this paper is to propose a measure of robustness of transfinite constructions.
The general question is whether a transfinite recursive construction of an object A with a property
ϕ can survive outside interference. This is formulated in terms of a transfinite game where two
players, the Builder and the Spoiler, take turns in constructing the object A. The Builder tries
to make sure the resulting object has property ϕ and the Spoiler wins if the resulting object does
not satisfy the property ϕ. The construction envisioned by the Builder is robust if it produces a
winning strategy in the game.

Even though the natural scope of such research is much wider, we have restricted ourselves to the
case of cardinal invariants of the continuum, and constructions of length ω1. For the vast majority
of cardinal invariants such considerations are moot as the invariants are super-robust in the sense
that the existence of a winning strategy for the Builder is equivalent to the cardinal invariant in
question being ℵ1. The winning strategy for the Builder would be described by simply taking a
witness and playing its elements one by one independently of the moves of the Spoiler. This is
the case for instance of all Borel cardinal invariants in the sense of [11]. There are, however, a
few cardinal invariants with structure for which such a simplistic strategy fails, e.g. the almost
disjointness number a, the tower number t, and the ultrafilter number u. In these games the
Builder and the Spoiler agree that they construct an almost disjoint family (resp. decreasing
chain) of infinite subsets of ω of size (length) ω1, and hence can not ignore each other’s moves, the
distinguishing property ϕ being maximality for a and t, and being a reaping1 family for u.
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1Recall that a family R ⊆ [ω]ω is reaping if for every A ⊆ ω there is an R ∈ R such that R ⊆ A or A ∩R = ∅.
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2 BRENDLE, HRUŠÁK, AND TORRES-PÉREZ

The starting point for our investigations is the observation that recursive constructions of length
ω1 produced by the (parametrized) ♦ principles tend to be robust in this sense.

We first review briefly the genesis of the relevant ♦-like principles. Jensen’s Diamond principle ♦
[7] holds if there is a sequence of functions 〈fα : α < ω1〉 such that fα ∈ 2α for every α ∈ ω1, and
such that for every f ∈ 2ω1 , the set

{α < ω1 : f�α= fα}

is stationary.

Devlin and Shelah’s weak diamond principle Φ (see [5]) asserts that for every F : 2<ω1 → 2, there
is g : ω1 → 2 such that for every f : ω1 → 2, the set

{α < ω1 : F (f�α) 6= g(α)}

is stationary.

Devlin and Shelah showed that Φ is equivalent to 2ℵ0 < 2ℵ1 , and suffices for some of the weak
consequences of ♦. On the other hand,

Proposition 1.1 (folklore). If ♦ holds and R ⊆ A × B is a relation with dom(R) = A, then for
every F : 2<ω1 → A, there is a function g : ω1 → B such that for every f ∈ 2ω1, the set

{α < ω1 : F (f�α)Rg(α)}

is stationary.

Proof. Let 〈fα : α < ω1〉 be a diamond sequence. For F : 2<ω1 → A, let g(α) be any b ∈ B such
that F (fα)Rb. This is the desired g. �

Following [11], we say that a triple (A,B,R) is an invariant if

(1) A and B are sets of cardinality at most c,
(2) R ⊆ A×B,
(3) for every a ∈ A, there is b ∈ B such that (a, b) ∈ R,
(4) for every b ∈ B, there is a ∈ A such that (a, b) /∈ R,

and its evaluation 〈A,B,R〉 is given by

〈A,B,R〉 = min{|X| : X ⊆ B and ∀a ∈ A∃b ∈ X(aRb)}.

Finally, an invariant (A,B,R) is Borel if A,B and R are Borel subsets of some Polish spaces.
Given a Borel subset A of some Polish space, a map F : 2<ω1 → A is Borel if for every δ < ω1, the
restriction of F to 2δ is a Borel function.

Definition 1.1 ([11]). Let (A,B,R) a Borel invariant. ♦ (A,B,R) denotes the statement: for
every Borel map F : 2<ω1 → A, there is g : ω1 → B such that for every f : ω1 → 2, the set

{α ∈ ω1 : F (f�α)Rg(α)}

is stationary.
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Note that ♦ is equivalent to ♦(2ω, 2ω,=). The main point for introducing these principles is that
for many standard cardinal invariants of the continuum j, there are Borel invariants (A,B,R) such
that j = 〈A,B,R〉, and the use of ♦ can be measured by the parametrized ♦-principles much in
the same way as the use of CH can be measured by the cardinal invariants of the continuum. When
a cardinal invariant has a natural representation as an evaluation of a Borel invariant, we abuse
the notation and identify the invariant with its evaluation. In particular,

• the unbounding number b = 〈ωω, ωω, 6≥∗〉, where f ≥∗ g if {n ∈ ω : f(n) < g(n)} is finite,
and
• the reaping number r = 〈[ω]ω, [ω]ω,R〉, where ARB if B ⊆∗ A or A ∩B =∗ ∅2.

In general, we write♦ (A,R) instead of♦ (A,A,R) and, in particular, ♦ (2, 6=) instead of♦ (2, 2, 6=).

A sequence 〈Xα : α < δ〉 of infinite subsets of ω is a tower if

(1) Xα ⊆∗ Xβ for all β < α < δ, and
(2) for every X ∈ [ω]ω there is α < δ such that X 6⊆∗ Xα.

A family {Aα : α < δ} of infinite subsets of ω is a maximal almost disjoint (MAD) family if

(1) Aα ∩ Aβ is finite for all β < α < δ, and
(2) for every X ∈ [ω]ω there is α < δ such that X ∩ Aα is infinite.

The first condition in both definitions defines the structure we mention above, while the second
condition is the requirement of maximality. We denote by a the minimal size of an infinite MAD
family, and by t the minimal length of a tower. Finally u denotes the minimal character of a
non-principal ultrafilter on ω. For more on cardinal invariants of the continuum see e.g. [4].

It is well known (see [11]) that:

• Assuming ♦(2, 6=) there is a tower of length ω1, i.e. t = ω1.
• Assuming ♦(b) there is a MAD family of size ω1, i.e. a = ω1.
• Assuming ♦(r) there is an ω1-generated ultrafilter, i.e. u = ω1.

We have already mentioned that these and similar constructions are robust in the above mentioned
sense - the existence of a winning strategy for the Builder in the corresponding game, as we shall
see in what follows. Then we shall consider the question of whether the cardinal invariant being
ω1 is sufficient for the existence of a winning strategy for the Builder.

We fix the following notation for the rest of the paper: Given an infinite countable ordinal δ, we
fix a bijection eδ : ω → δ. We denote by pair(ω1) the ordinals of the form β + 2k, with β limit and
k ∈ ω, and let odd(ω1) = ω1\pair(ω1).

2Here B ⊆∗ A means that B \A is finite, and A ∩B =∗ ∅ says that A ∩B is finite.
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2. The tower number game

Consider the tower game Gt of length ω1 played as follows: Players Builder and Spoiler take turns
playing a ⊆∗-decreasing transfinite sequence 〈Yα : α < ω1〉 of infinite sets of ω, the Builder playing
at even stages pair(ω1), and the Spoiler playing at odd stages odd(ω1).

Builder Y0 · · · Yα · · ·
Spoiler Y1 · · · Yα+1 · · ·

The Builder wins the match if 〈Yα : α < ω1〉 is a tower; otherwise, the Spoiler wins.

The first instance of the phenomenon discussed in the introduction is the following:

Proposition 2.1. Assuming ♦(2, 6=), the Builder has a winning strategy in the game Gt.

Proof. Given an infinite ⊆∗-decreasing sequence s = {Y s
ξ : ξ < δ(s)} with δ(s) limit, we will

define a strictly increasing sequence {lsi : i ∈ ω} of natural numbers. Fix an increasing sequence
{δi : i ∈ ω} ⊆ δ(s) converging to δ(s). Let

ls0 = min
(
Y s
δo

)
,

and

lsi+1 = min

( ⋂
j≤i+1

Y s
δj
\(lsi + 1)

)
.

For a decreasing ⊆∗-sequence s = {Y s
ξ : ξ < δ(s)} of length an infinite limit ordinal and X ⊆ ω

infinite, define F (s,X) as follows3:

F (s,X) =

{
0 if X ⊆∗ {ls2i : i ∈ ω} ,
1 otherwise.

Let g : ω1 → 2 be a ♦(2, 6=)-sequence for F . We are going to use g to define a winning strategy
for the Builder.

Suppose s = {Y s
ξ : ξ < δ(s)} is a partial play of the game with δ(s) an infinite limit ordinal. The

Builder is going to choose Yδ(s) as follows:

Yδ(s) =

{
{ls2i : i ∈ ω} if g(δ(s)) = 0,
{ls2i+1 : i ∈ ω} otherwise.

Let s = {Y s
ξ : ξ < ω1} be a complete match played by the Builder according to the strategy

described above. Let X ⊆ ω. Then if δ is an infinite limit ordinal such that F (s�δ, X) 6= g(δ), it is
straightforward to see that X 6⊆∗ Yδ = Y s

δ (note that δ(s�δ) = δ). �

Observe that it was not required that the diamond sequence guesses in stationary many points,
but just that it finds one infinite limit ordinal. The previous Lemma has non-trivial content as we
shall see next.

3By a standard coding argument we may assume that the domain of the function F consists of such pairs.
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Theorem 2.1. It is consistent with ZFC that t = ω1 and the Builder does not have a winning
strategy in Gt.

Before embarking on the proof, let us do some preparation.

Let F be a filter on ω. The Laver-Prikry forcing associated with F , denoted by LF consists of
subtrees T ⊆ ω<ω which have a stem σ ∈ T , denoted by stem(T ), such that for every τ ∈ T , either
τ ⊆ σ or τ ⊇ σ. Besides, for every τ ∈ T extending σ, the set {n ∈ ω : τ_〈n〉 ∈ T} belongs to F .
The order on LF is given by inclusion.

Assume CH. Let Y = (Yα : α < ω1) be a tower. Let (fα : α < ω1) list all partial functions from
ω → ω with infinite range. Construct (Aα : α < ω1) and (Bα : α < ω1) so that for all α < ω1,

• Aα ⊆∗ Bα ⊆∗ Aβ for β < α,
• Bα is chosen according to a given rule, and
• if ran(fα�Bα) is infinite, then ran(fα�Aα) is almost disjoint from some Yβα .

To choose Aα note that there is βα < ω1 such that ran(fα�Bα)\Yβα is infinite because Y is a tower.
Now let Aα = Bα ∩ f−1α (ran (fα�Bα) \Yβα). This is as required. Let F be the filter generated by
the Aα. Consider Laver forcing LF with F .

We claim:

Lemma 2.1. LF preserves Y.

Proof. Let Ẋ be a name for an infinite subset of ω. Without loss of generality, we may assume its
increasing enumeration (also denoted by Ẋ) dominates the generic Laver real. Fix n ∈ ω. Say
that σ ∈ ω<ω favours Ẋ(n) = k if given any T ∈ LF with stem(T ) = σ, there is S ≤ T such that
S  Ẋ(n) = k (alternatively, no T ∈ LF with stem(T ) = σ forces Ẋ(n) 6= k). Note that if σ
favours Ẋ(n) = k, then |σ| > n. Define the rank rkn by recursion as follows:

• rkn(σ) = 0 if σ favours Ẋ(n) = k for some k ∈ ω,
• for α > 0, rkn(σ) = α if ¬(rkn(σ) < α) and {i : rkn(σ_i) < α} ∈ F+.

Claim 2.1. For all σ and n, rkn(σ) is defined.

Proof. Suppose rkn(σ) is undefined. Build a tree T ∈ LF with stem(T ) = σ such that rkn(τ) is
undefined for all τ ∈ T with τ ⊇ σ. Let S ≤ T be such that S decides Ẋ(n), say S  Ẋ(n) = k.
Let τ = stem(S). Then rkn (τ) = 0 because τ favours Ẋ(n) = k, a contradiction. �

Fix a pair n, σ such that rkn (σ) = 1. So σ does not favour Ẋ(n) = k for any k but {i :
σ_i favours Ẋ(n) = k for some k} belongs to F+. Define a partial function f : ω → ω as fol-
lows: dom(f) = {i : σ_i favours Ẋ(n) = k for some k} and, for i ∈ dom(f), let f(i) be some k
such that σ_i favours Ẋ(n) = k. Note that since rkn (σ) 6= 0, f−1({k}) /∈ F+ for all k ∈ ω. There
is α = α(n, σ) such that f = fα. Let β be larger than all the βα(n,σ).

Claim 2.2.  Ẋ 6⊆∗ Yβ.
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Proof. Fix m ∈ ω and T ∈ LF . It suffices to find k > m, k /∈ Yβ, and S ≤ T such that S  k ∈ Ẋ.
Let σ = stem(T ) and n > max{m, |σ|}. In particular, rkn (σ) > 0. By extending σ if necessary,
we may assume rkn (σ) = 1. By construction, there is F ∈ F such that ran

(
fα(n,σ)�F

)
is almost

disjoint from Yβ. Since f−1α(n,σ)({k}) /∈ F+ for all k ∈ ω and dom
(
fα(n,σ)

)
∩ F ∩ succT (σ) ∈ F+, we

may find i ∈ dom
(
fα(n,σ)

)
∩ F ∩ succT (σ) and k ∈ ω such that fα(n,σ)(i) = k and k /∈ Yβ. Hence

σ_i favours Ẋ(n) = k, and there is S ≤ T with stem(S) ⊇ σ_i such that S  Ẋ(n) = k. Clearly
k ≥ n > m, and we are done. �

This finishes the proof of the lemma. �

Recall the generalized version of the Diamond Principle. For a given uncountable regular cardinal
κ and a stationary set E ⊆ κ, we say that the principle ♦E holds if there is a sequence 〈dα : α ∈ E〉
such that for every X ⊆ κ, the set {α ∈ E : X ∩α = dα} is stationary. Now we are ready to prove
the theorem:

Proof of Theorem 2.1. Assume ♦Eω2ω1 and CH. Fix a tower Y = (Yα : α < ω1) as above. Use the

diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite

support iteration
(
Pγ, Q̇γ : γ < ω2

)
. At stage γ force with Q̇γ = LḞ where Ḟ is constructed from

Ȧα and Ḃα as above and the Ḃα are obtained from the Ȧβ, Ḃβ, β < α, using Builder’s (name of a)
strategy handed down by ♦Eω2ω1 . Force with Pω2 .

Since towers are preserved in limit steps of finite support iterations, the lemma implies that Y is
still a tower in V Pω2 . In particular t = ω1.

On the other hand, for each strategy Σ of the Builder in V Pω2 , there is γ < ω2 such that Σ�V Pγ is
a strategy in V Pγ and was used to construct the Bα and F . Hence there is a game according to Σ
which the Builder looses, as witnessed by the LF -generic set added in V Pγ+1 . �

Given this theorem, it is natural to define tBuilder as the least ordinal α such that the Builder
has a strategy that makes her win in Gt in at most α many steps, where we now consider games
of arbitrary length and not just those of length ω1. The previous result then says t < tBuilder is
consistent. We note:

Lemma 2.2. tBuilder is a regular cardinal.

Proof. Let α be minimal such that the Builder has a strategy Σ that makes her win in at most
α moves. Let {γξ : ξ < cf(α)} be a club subset of α such that for even ξ, γξ is also even and
γξ+1 = γξ + 1. We construct a strategy Σ′ for the Builder that makes her win in at most cf(α)
steps such that for each run Ā = {Aη : η < ξ} according to Σ′ of length an even ξ, there is a run
B̄ = {Bγ : γ < δξ} according to Σ of length δξ such that Bγη = Aη for all η < ξ and

δξ =

{
γξ if ξ is limit
γζ + 1 if ξ = ζ + 1 is even successor.

Suppose we are at step ξ. If ξ is a limit ordinal, then either Ā has no pseudointersection and the
Builder already won or, since Ā is a cofinal subsequence of B̄, we can let Σ′(Ā) be Σ(B̄). If ξ is
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an even successor, say ζ + 1, consider the corresponding game B̄ whose final move is Bγζ = Aζ .
Notice that since there is no strategy which makes the Builder win in less than α steps, Σ cannot
make the Builder win below the set Aζ in less than α steps. In particular, there must be a game
according to Σ and extending B̄ which still has a move, with the Builder following Σ, at stage γξ.
Let B̄′ be this extension of length γξ and let Σ′(Ā) be this move Σ(B̄′).

This describes the strategy Σ′. It is clear that the Builder must win after at most cf(α) steps. �

We may also define tSpoiler as the supremum of all ordinals α such that the Spoiler has a winning
strategy in the game Gt with α moves. It is easy to see that the Spoiler has no winning strategy
in Gt with exactly tSpoiler moves (for otherwise the game could be continued one further move and
would still be winning for the Spoiler). Hence, tSpoiler can be characterized alternatively as the
least α such that the Spoiler has no winning strategy in the game with α moves. Again we see:

Lemma 2.3. tSpoiler is a regular cardinal.

Proof. Suppose tSpoiler = α is minimal such that no strategy of the Spoiler of the game with α
moves is winning. Let Σ be a strategy of the Spoiler of the game with cf(α) moves. We need
to see that Σ is not winning. As in the previous proof, let {γξ : ξ < cf(α)} be a club subset of
α such that for even ξ, γξ is also even and γξ+1 = γξ + 1. . We shall build a strategy Σ′ of the
Spoiler with α moves such that for every run B̄ = {Bγ : γ < α} according to Σ′ there is a run
Ā = {Aη : η < cf(α)} according to Σ such that Aη = Bγη . Since Σ′ is not winning, one such run
B̄ is won by the Builder. But then the Builder also wins the corresponding run Ā according to Σ,
as required.

As in the previous proof, let

δξ =

{
γξ if ξ is limit
γζ + 1 if ξ = ζ + 1 is even successor

for even ξ.

Now suppose ξ is even and Σ′ has been constructed for a run B̄ = {Bγ : γ < δξ}. Let Ā =
{Aη : η < ξ} be the corresponding run according to Σ. If ξ is limit, consider the move Bγξ of
the Builder. Let Aξ = Bγξ be the corresponding move of the Builder in the other game. Then let

Bγξ+1
= Σ′(B̄ ∪ {Bγξ}) = Σ(Ā ∪ {Aξ}) = Aξ+1, that is, the Spoiler plays in Σ′ what Σ tells her to

play in the other game. If ξ = ζ + 1 is successor, the last move of the Spoiler was Bγζ . Note that
δξ ≤ γξ are both even ordinals. So, let εξ be such that δξ + εξ = γξ. Since εξ < α, the Spoiler has a
winning strategy of length εξ below the set Bγζ . Let Σ′ in the interval [δξ, γξ) be this strategy. Let

B̄′ = {Bγ : γ < γξ} be an extension of B̄ following this strategy. Now continue as in the limit case:
let Bγξ be the next move of the Builder (such a move exists because the strategy of the Spoiler was

winning so far); let Aξ = Bγξ and let Bγξ+1
= Σ′(B̄ ∪ {Bγξ}) = Σ(Ā ∪ {Aξ}) = Aξ+1. Clearly this

works. �

By modifying the proof of Theorem 2.1 a little we see:

Theorem 2.2. It is consistent that t = tSpoiler = ω1 < tBuilder = ω2 = c.

Proof. We first observe:
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Lemma 2.4. Assume CH and let Σ be a strategy of the Builder (of length ω1). Also assume there
are towers (Yβ : β < ω1). Then there is a filter F containing a run of the game according to Σ
such that LF preserves all Yβ.

To see this simply redo the construction before Lemma 2.1 by diagonalizing against ω1 towers
instead of just one.

Now, as in the proof of Theorem 2.1, assume ♦Eω2ω1 and CH. Use the diamond to guess (initial

segments of) names of strategies for both the Builder and the Spoiler. Simultaneously construct

a finite support iteration
(
Pγ, Q̇γ : γ < ω2

)
and a sequence of (names of) towers

(
Ẏβ : β < ω2

)
such that

(
Ẏβ : β ≤ γ

)
∈ V Pγ . At stage γ first consider the (name of the) strategy of the Spoiler

handed down by ♦Eω2ω1 . Since CH still holds while there are 2ω1 many games following the strategy,

one of these games must be winning for the Builder, that is, there is a tower Ẏγ ∈ V Pγ that is a
run according to the strategy. Now, as in the proof of Theorem 2.1, use the lemma to get a filter
Ḟ containing a run of the game according to the (name of the) Builder’s strategy handed down by

♦Eω2ω1 such that Q̇γ = LḞ preserves all Ẏβ, β ≤ γ.

By the argument of Theorem 2.1, a strategy of the Builder of length ω1 cannot be winning.
Similarly, if Σ is a strategy of the Spoiler of length ω1, there is γ < ω2 such that Σ �V Pγ is a
strategy in V Pγ and was guessed by the diamond. This means that the tower Yγ is preserved as a
run of the game according to Σ which is won by the Builder. �

However we do not know:

Open question 2.1. Is t < tSpoiler consistent?

On the other hand, tBuilder ≤ h, where h = min{height(T ) : T ⊆ ([ω]ω, ∗⊇) is a base tree}4 is the
distributivity number of P(ω)/fin.5 To see this note that the Builder can simply make sure to play
along a branch of the base tree T which, of course, produces a winning strategy. In particular,
h = ω1 is sufficient for the existence of a winning strategy for the Builder in the game Gt (of length
ω1).

This proof actually gives a little more. Note that in general the Builder has a distinct advantage
over the Spoiler in that her moves appear on a closed unbounded subset of ω1 (pair(ω1) ∈ Club(ω1),
while odd(ω1) is not stationary). Let G∗t be the game in which the players switch places, that is,
the Builder plays at odd steps while the Spoiler plays at even steps. It is obvious that a winning
strategy of the Builder in G∗t gives her a winning strategy in Gt as well, while the implication
goes the other way round for the Spoiler. Furthermore, the winning strategy described here from

4A base tree is a set T ⊆ [ω]ω which is a tree when ordered by ⊇∗ and is such that every element of [ω]ω contains
an element of T . The existence of such a tree was proved by Balcar, Pelant and Simon in [2], see also [1].

5Remember that 〈[ω]ω,⊆∗〉 is a preorder. Therefore, the set of its classes of equivalence, P(ω)/fin, defined by
X ≡fin Y if and only if X ⊆∗ Y and Y ⊆∗ X, defines a partial order 〈P(ω)/fin,≤fin〉, where [X]fin ≤fin [Y ]fin if and
only if X ⊆∗ Y . Given a partial order 〈P,≤〉, we say that a set D ⊆ P is dense if for every p ∈ P , there is q ∈ D
such that q ≤ p. A subset set D ⊆ P is open if whenever p ∈ D and q ≤ p, then q ∈ D. As usual, we refer only to
P as the partial order if the order is clear from the context. For a partial order P , we define its distributive number
h(P ) as the minimum α such that every collection {Dξ : ξ < α} of open dense sets, its intersection

⋂
ξ<α

Dξ is empty.
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h = ω1 is robust in the sense that it is irrelevant in which order the players play; that is, the latter
hypothesis implies a winning strategy for the Builder even in G∗t . We now show that ♦(2, 6=) is
not sufficient for this.

Define t∗Builder and t∗Spoiler similarly as the unstarred versions. The four cardinal numbers tBuilder,
tSpoiler, t

∗
Builder and t∗Spoiler are due to Vojtáš [13] in a more general context, where he also showed

they are regular cardinal numbers [13, Theorem 6 and Theorem 7]. Also

h ≥ t∗Builder ≥ max{t∗Spoiler, tBuilder} ≥ min{t∗Spoiler, tBuilder} ≥ tSpoiler ≥ t

is obvious.

A straightforward modification of the proof of Theorem 2.2 actually shows the consistency of
tBuilder > t∗Spoiler. As in Question 2.1, we do not know whether t∗Spoiler > t is consistent.

The following Lemma is a special case of a result by Foreman [6].

Lemma 2.5. t∗Builder = h.

Proof. It is immediate after [6, page 718] and realizing that given a cardinal λ, the Builder has a
winning strategy in λ steps in the game G∗t if and only if I has a winning strategy in the game GII

λ+

played in P(ω)/fin described in [6]. �

The lemma together with the Theorem 2.1 then says that t∗Builder > tBuilder is consistent.

By the above discussion, both ♦(2, 6=) and h = ω1 imply the existence of a winning strategy for
the Builder in the game Gt in ω1 many steps. Both are consequences of CH. The two statements
are independent, however: in the Mathias model, ♦(2, 6=) holds and h > ω1, while in a model of
Judah and Shelah [9], h = ω1 and ♦(2, 6=) fails6. In particular we have:

Corollary 2.1. The Builder having a winning strategy in Gt does not imply ♦(2, 6=).

Corollary 2.2. It is consistent that ♦(2, 6=) holds and the Builder has no winning strategy in G∗t .

Another classical upper bound of t is the additivity add(M) of the meager ideal M, that is, the
least κ such that there is a family of κ many meager sets whose union is not meager. Since, as
observed in the Introduction, cardinals like add(M) are equal to their game versions, one might
conjecture that tBuilder ≤ add(M) holds in ZFC. However, this is not what the proof of t ≤ add(M)
gives for the latter uses towers of dense sets of rationals and not just of arbitrary sets of natural
numbers. And, in fact, we show the following:

Theorem 2.3. tBuilder = c = ω2 > add(M) = ω1 is consistent.

Before starting with the proof we review some notions and some facts. Recall that a non-principal
ultrafilter U on ω is Ramsey if for every partition {An : n ∈ ω} of ω such that An /∈ U for all n ∈ ω,
there is X ∈ U such that X ∩ An has one element for all n ∈ ω. Say a function ϕ : ω → [ω]<ω is
a slalom if |ϕ(n)| ≤ n + 1 for all n ∈ ω. A forcing notion P has the Laver property if given any

condition p ∈ P, any function h ∈ ωω and any P-name ḟ for a function bounded by h, there are

6They prove, in fact, that it is consistent there is a Q-set of reals while the null ideal has a basis of size ω1. The
latter implies h = ω1 while by Theorem 6.16 in [11], ♦(2, 6=) implies there are no Q-sets.
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q ≤ p and a slalom ϕ such that q  ∀n (ḟ(n) ∈ ϕ(n)). A forcing with the Laver property does
not add Cohen reals (see Lemma 7.2.3 in [3]) and thus in particular preserves the additivity of
the meager ideal, that is, if add(M) = ω1 holds in the ground model, it still holds in the generic
extension. Like standard Mathias forcing (Lemma 7.2.2 and Corollary 7.4.7 in [3]) used in the proof
of the previous theorem, Mathias forcing with a Ramsey ultrafilter U , which is forcing equivalent
to Laver forcing LU with U (see e.g. Theorem 1.20 in [8]), has the Laver property. Furthermore,
the Laver property is preserved in countable support iterations (Theorem 6.3.34 in [3]).

Proof of Theorem 2.3. As in the proof of Theorem 2.1 we assume ♦Eω2ω1 and CH. We use the

diamond again to guess (initial segments of) names of strategies for the Builder. Construct a

countable support iteration
(
Pγ, Q̇γ : γ < ω2

)
. At stage γ consider (the name of) Builder’s strategy

Σ̇ handed down by ♦Eω2ω1 . As in the argument before Lemma 2.1, we can construct, in V Pγ , a run of

the game according to Σ̇ such that the ω1-sequence of the sets played generates a Ramsey ultrafilter
U̇ . Now let Q̇γ = LU̇ . Force with Pω2 .

By the discussion in the paragraph preceding the proof, the whole iteration has the Laver property,
and add(M) = ω1 thus follows.

To see tBuilder = ω2, assume Σ is a strategy of Builder for a game of length ω1. By ♦Eω2ω1 there is

γ < ω2 such that Σ�V Pγ is a strategy and was used to construct the ultrafilter U . Hence there is a
game following Σ which the Builder looses, as witnessed by the LU -generic set added in V Pγ+1 . �

Note that this gives an alternative proof of Theorem 2.1. However, the original argument is more
direct in that it uses less black-boxed forcing theory. Also, in Theorem 2.1, we additionally have
the consistency of t < tBuilder = add(M).

The order relationship between the cardinals we considered in this section can be summarized in
the following diagram.

t

tSpoiler

tBuilder t∗Spoiler add(M)

t∗Builder = h

b

@@

@@ ��

�
�
�
�

�� @@ @
@

@
@��

3. The ultrafilter number game

Recall that a filter F on ω is a P-filter if for each countable collection {Yn : n ∈ ω} ⊆ F there is
a Y ∈ F such that Y ⊆∗ Yn for every n ∈ ω. A non-principal ultrafilter F on ω is called a P-point
if it is a P-filter.
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The ultrafilter game Gu is played as before, the Builder and the Spoiler taking turns constructing
a ⊆∗-decreasing sequence 〈Uα : α < ω1〉 (the Builder playing at pair(ω1)-stages, while the Spoiler
plays at odd(ω1)-stages).

Builder U0 · · · Uα · · ·
Spoiler U1 · · · Uα+1 · · ·

The difference is in how we declare a winner. The Builder now has a harder task as she wins the
match if the filter generated by {Uα : α < ω1} is an ultrafilter; otherwise, the Spoiler wins.

Again, the proof of the following result mimicks closely the proof of Theorem 7.8 in [11]. We
include it for the benefit of the reader.

Proposition 3.1. ♦ (r) implies the Builder has a winning strategy in the game Gu.

Proof. For a ⊆∗-decreasing infinite sequence s = {U s
ξ : ξ < δ(s)}, we define the strictly increasing

sequence {ksi : i ∈ ω} ⊆
⋃

ξ<δ(s)

U s
ξ as follows: Remember that we have fixed a bijective function

eδ : ω → δ for every infinite ordinal δ < ω. Let

ks0 = min
(
U s
eδ(s)(0)

)
,

and

ksi+1 = min

( ⋂
j≤i+1

U s
eδ(s)(j)

\(ksi + 1)

)
.

Given C ⊆ ω and an infinite ⊆∗-decreasing sequence s, we define F as follows: F (s, C) = {i ∈ ω :
ksi ∈ C} if {i ∈ ω : ksi ∈ C} is infinite, and F (s, C) = {i ∈ ω : ksi /∈ C} otherwise.

Let g be the respective ♦(r)-guessing function for F . We will show that g defines a winning
strategy for the Builder as follows: If s = {U s

ξ : ξ < δ(s)} is a partial match with δ(s) even, let
Uδ(s) = {ksi : i ∈ g(δ(s))}. It is not difficult to see that any complete match s = {U s

ξ : ξ < ω1}
according to the strategy defined by g is a ⊆∗-decreasing sequence. It is also straightforward to
show that the set Fs = {X ∈ [ω]ω : ∃δ < ω1(U

s
δ ⊆∗ X)} is a filter. We are done if Fs is an

ultrafilter.

Let C ⊆ ω. Since g is a ♦(r)-sequence, we can find δ < ω1 such that either |g(δ) ∩ F (s�δ, C)| < ℵ0
or |g(δ)\F (s�δ, C)| < ℵ0.

We will show that either Uδ ⊆∗ C or Uδ ⊆∗ ω\C where Uδ = U s
δ (note that δ(s�δ) = δ).

Case 1: |g(δ) ∩ F (s�δ, C)| < ℵ0. Let j ∈ ω such that g(δ) ∩ F (s�δ, C) ⊆ j. Then Uδ\ks�δj ⊆ C if

{i ∈ ω : ks�δi ∈ C} is finite, and Uδ\ks�δj ⊆ ω\C otherwise.

Case 2: |g(δ)\F (s�δ, C)| < ℵ0. Let j ∈ ω such that g(δ)\j ⊆ F (s �δ, C). Then Uδ\ks�δj ⊆ C if

{i ∈ ω : ks�δi ∈ C} is infinite, and Uδ\ks�δj ⊆ ω\C otherwise. �

Note that it was enough that the set of guesses of the diamond sequence was just non-empty. It is
a simple exercise left to the reader to show that

Lemma 3.1. CH implies that the Builder has a winning strategy in Gu.
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In fact, the stronger statement that the Builder has a winning strategy also in the game G∗u where
the Builder and the Spoiler switch places easily follows from CH. Since CH does not imply ♦(r) by
Proposition 8.2 and Theorem 8.3 in [11], we have the following:

Corollary 3.1. The Builder having a winning strategy in Gu does not imply ♦(r).

Again, we will show that all of this is not gratuitous.

Theorem 3.1. u = ω1 does not imply that the Builder has a winning strategy in the game Gu.

Rather than constructing an ad hoc forcing model for this we show that this holds in a model
constructed by Shelah in [12]. We shall review some standard facts about ultrafilters first. Given
two ultrafilters U ,V on ω, we recall the Rudin-Keisler order ≤RK defined as follows: U ≤RK V if
and only if there is a function f : ω → ω such that U = {X ∈ ω : ∃Y ∈ V(f [Y ] ⊆ X)}, and they
are RK-equivalent, denoted by U ≡RK V if such f exists which is, moreover, bijective. We recall
the following fact, which shows that Ramsey ultrafilters are ≤RK-minimal:

Fact 3.1. Let U and U ′ be two ultrafilters with U Ramsey and U ′ ≤RK U . Then U ′ ≡RK U .

Proof of Theorem 3.1. Let V |= CH+ 2ω1 = ω2, let Pω2 be the countable support iteration used by
Shelah to construct a model with a unique P -point (Theorem 4.1, Chapter XVIII in [12]), and let
G be Pω2-generic.

We shall show that V [G] is the model we need. We will be able to deduce this from the following
two facts which hold there:

(1) In V there is a Ramsey ultrafilter U0 such that U0 remains an ultrafilter in V [G], and thus
V [G] |= u = ω1.

(2) On the other hand, for every P -point V not RK-equivalent to U0 appearing along the
iteration, there is a stage α < ω2 with V ∈ V [Gα] and in V [Gα+1], V no longer generates
an ultrafilter (Lemma 4.2, Remark 4.2A).

We shall show that in V [G], the Builder does not have a winning strategy. Suppose that Σ is a
winning strategy for the Builder in V [G]. Then by a standard reflection argument, there is α < ω2

such that Σ0 = Σ ∩ V [Gα] is a winning strategy in V [Gα].

Now as V [Gα] |= CH, there are ℵ1-many P -points in V [Gα] RK-equivalent to U0.

On the other hand in V [Gα], there are 2ω1 possible legal Σ0-plays of the game. In particular, there
is a Σ0-legal play which produces a P -point V not RK-equivalent with U0. Then, however by (2)
above, V does not generate an ultrafilter in V [G], but the sequence generating V in V [Gα] remains
a Σ-legal play in V [G]. However, the Spoiler wins this run of the game as V does no longer generate
an ultrafilter, so the strategy is not winning for the Builder. �

Let us state the following here explicitly:

Open question 3.1. Does the Builder have a winning strategy in the game Gu if and only if she
has a winning strategy in the game G∗u?
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It would be tempting to define now cardinals uBuilder and uSpoiler as we did in Section 2 for the
generalized tower game. This, however, is problematic, for the following reason. Consider the
Cohen model, that is, the model obtained by adding at least ω2 Cohen reals over a model of CH. In
this model, all ⊆∗-decreasing sequences have length some ordinal γ < ω2 while on the other hand
u = c ≥ ω2. This means that the game Gu is always won by the Spoiler, no matter what its length
is. The reason for this problem is that a win of the Builder in Gu produces a P-point generated by
a decreasing chain and not just an arbitrary ultrafilter.

So let us consider the modified ultrafilter game G′u in which the Builder and the Spoiler take turns
in building a filter base {Uα : α < ω1}, with the Builder playing at even steps. The Builder wins
again if the filter generated by {Uα : α < ω1} is an ultrafilter; otherwise the Spoiler wins. G′∗u is
defined similarly, with the players switching places. It turns out that for plays of length ω1 these
games are equivalent to the original ones, in the following sense.

Lemma 3.2. (1) The Builder has a winning strategy in Gu if and only if she has a winning
strategy in G′u.

(2) The Builder has a winning strategy in G∗u if and only if she has a winning strategy in G′∗u .

Proof. (1) First assume Σ is a winning strategy of the Builder in Gu. We construct a strategy Σ′

of the Builder in G′u by associating with each game Ā = {Aξ : ξ < ω1} according to Σ′ a game
C̄ = {Cξ : ξ < ω1} according to Σ with Aξ = Cξ for even ξ. This means that if the Builder wins
C̄ then she also wins Ā and, thus, Σ′ is a winning strategy.

If ξ = ζ + 1 is odd, we let Cξ := Aξ ∩ Cζ and note that this set must be infinite because Cζ = Aζ
and the players build a filter base in G′u. Also Cξ is a legal move of the Spoiler in Gu. For even ξ,
simply let Aξ = Σ′(Ā) := Σ(C̄) = Cξ. Again this is clearly a legal move of the Builder in G′u.

Now assume Σ′ is a winning strategy of the Builder in G′u. Construct a strategy Σ of the Builder
in Gu by associating with each run C̄ = {Cξ : ξ < ω1} according to Σ a run Ā = {Aξ : ξ < ω1}
according to Σ′ with Aξ = Cξ for odd ξ.

If ξ is odd, let Aξ := Cξ and note this is a legal move for the Spoiler in G′u. For even ξ let
Cξ = Σ(C̄) be a pseudointersection of the Cζ for ζ < ξ and Aξ = Σ′(Ā). Such a pseudointersection
exists because these sets form a countable filter base. Clearly, if the Builder wins Ā, she also wins
C̄.

(2) Similar. �

This lemma should be thought of as saying that producing an ω1-generated ultrafilter by a game
is equally difficult as producing a P-point generated by a ⊆∗-decreasing ω1-chain. It is unknown,
however, whether u = ω1 implies the existence of an ω1-generated P-point7.

Now consider the game G′u of arbitrary length and define uBuilder and uSpoiler as in the previous
section: the former is the least ordinal α such that the Builder has a strategy that makes her win

7One may also consider the same games in the context of the previous section: declare the Builder the winner if the
sequence {Uα : α < ω1} has no pseudointersection. Since these games are naturally related to the pseudointersection
number p, denote them by Gp and G∗p. The analogue of Lemma 3.2 obviously holds: the Builder has a winning
strategy in Gp iff she has a winning strategy in Gt, and similarly for the starred games. This can be seen as the
game-theoretic version of the classical result stating that p = ω1 iff t = ω1 (see e.g. Theorem 6.25 in [4]). The much
deeper p = t was proved by Malliaris and Shelah [10].
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in G′u in at most α many steps, while the latter is the supremum of all ordinals α such that the
Spoiler has a winning strategy in the game G′u with α moves. Clearly u ≤ uSpoiler ≤ uBuilder and
Theorem 3.1 says that u < uBuilder is consistent. Apart from that we know little:

Open question 3.2. (1) Is u < uSpoiler consistent? Is uSpoiler < uBuilder consistent?
(2) Are uBuilder and uSpoiler cardinals?

Finally note that if we also consider G′∗u of arbitrary length and the corresponding ordinals, we still
have:

Fact 3.2. uBuilder ≤ u∗Builder and uSpoiler ≤ u∗Spoiler.

Proof. To see for example the former, let Σ be a winning strategy of the Builder of length α =
u∗Builder in G′∗u . We produce a winning strategy Σ′ of the same length in G′u such that whenever
{Aγ : γ < α} is a run according to Σ′ then {Bγ : γ < α} is a run according to Σ with Bγ+2 = Aγ+1

for all γ and Bγ+1 ∩Bγ = Aγ for limit γ. Clearly this works. �

4. The maximal almost disjoint number game

The last example we consider here is the maximal almost disjoint game Ga, which is played as
follows. To avoid trivialities, it starts by fixing a partition {An : n ∈ ω} of ω into infinite pieces,
and then the Builder and the Spoiler take turns extending it to an AD family {Aα : α ≤ β} (the
Builder playing at stages in pair(ω1), while the Spoiler plays at ordinals in odd(ω1)).

Builder A0 · · · Aα · · ·
Spoiler A1 · · · Aα+1 · · ·

The Builder wins the match if the family {Aα : α < ω1} is a maximal almost disjoint family;
otherwise, the Spoiler wins.

We could also consider the game G∗a played according to the same rules but the Spoiler playing at
pair(ω1), while the Builder plays at odd(ω1). However, in this case it is easy to see that the two
games are equivalent:

Lemma 4.1. The Builder has a winning strategy in the game Ga if and only if she has a winning
strategy in the game G∗a.

Proof. First assume Σ is a winning strategy of the Builder in Ga. We construct a strategy Σ′ of
the Builder in G∗a by associating with each game Ā = {Aξ : ξ < ω1} according to Σ′ a game
B̄ = {Bξ : ξ < ω1} according to Σ such that Aξ ∪ Aξ+1 = Bξ ∪ Bξ+1 for all even ordinals ξ. Thus,
since the Builder wins B̄, she must also win Ā, and the strategy Σ′ is winning.

At even ξ, let Bξ = Σ(B̄�ξ) be the move of the Builder according to Σ. Let Aξ be an arbitrary move
of the Spoiler in G∗a. Next choose Aξ+1 almost disjoint from Ā�ξ+1 such that Bξ ⊆ Aξ ∪ Aξ+1 and
(Aξ ∪ Aξ+1) \ Bξ is infinite. This is clearly possible by the inductive assumption on the sequences
Ā�ξ and B̄�ξ. Let Σ′(Ā�ξ+1) = Aξ+1 and put Bξ+1 = (Aξ ∪Aξ+1)\Bξ. Note that this is a legal move
of the Spoiler in Ga. This clearly works.
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Now assume Σ is winning for the Builder in G∗a and construct Σ′ winning for her in Ga. This is
almost the same except that this time, when associating with the Σ′-game Ā = {Aξ : ξ < ω1} the
Σ-game B̄ = {Bξ : ξ < ω1}, we guarantee that Aξ ∪ Aξ+1 = Bξ ∪ Bξ+1 for all odd ordinals ξ and
Aξ = Bξ for all limit ordinals ξ. Details are left to the reader. �

Proposition 4.1. ♦ (b) implies the Builder has a winning strategy in Ga.

Proof. Let F be the Borel function into ωω defined in Theorem 7.2 in [11] which we reproduce here.
For every infinite countable ordinal, consider the bijective function eδ : ω → δ. The domain of F
is the set of all pairs (s, B) such that:

(1) s = {Asξ : ξ < δ(s)} with δ = δ(s) an infinite countable ordinal,
(2) the collection s ∪ {B} is an almost disjoint family of infinite subsets of ω,

(3) the set I(s, B) =

{
i ∈ ω : B ∩ Aseδ(i)\

⋃
j<i

Aseδ(j) 6= ∅

}
is infinite.

Choose an increasing enumeration I(s, B) = {is,Bk : k ∈ ω} and define F as follows:

F (s, B)(k) = min

B ∩ As
eδ(is,Bk )\

⋃
j<is,Bk

Aseδ(j)

 .

Let g : ω1 → ωω be a ♦(b)-sequence for F , i.e. for any almost disjoint sequence s = {Asξ : ξ ∈ ω1}
and every B ⊆ ω infinite, the set

Ss,B = {δ < ω1 : F (s�δ, B) 6≥∗ g(δ)}
is stationary.

Observe that we can modify g such that the functions in the sequence are increasing. For example
consider the function g′(δ)(n) = max{g(δ)(i) : i ≤ n}. It is routine to verify that g′ is also a
♦(b)-guessing sequence which consists of increasing functions.

We show that g allows us to construct a winning strategy for the Builder as follows. Let s = {Asξ :
ξ < δ(s)} be a partial match of the game Ga with δ = δ(s) ∈ pair(ω1). The Builder plays Asδ as
follows: if

A = ω\
⋃
i∈ω

(
Aseδ(i)\

(⋃
j<i

Aseδ(j) ∪ g(δ)(i)

))
is infinite, we let Asδ = A. Otherwise Asδ is an arbitrary infinite set almost disjoint from the members
of s.

We will see that {Asξ : ξ ≤ δ} is an almost disjoint family. Observe first that the set

Aseδ(i) ∩

(
g(δ)(i) ∪

⋃
j<i

Aseδ(j)

)
=
(
Aseδ(i) ∩ g(δ)(i)

)
∪

(
Aseδ(i) ∩

⋃
j<i

Aseδ(j)

)

is finite for every i ∈ ω. Therefore for i ∈ ω, the intersectionAseδ(i)∩A ⊆ Aseδ(i)∩

(
g(δ)(i) ∪

⋃
j<i

Aseδ(j)

)
is finite.
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We show that this is a winning strategy. Let s = {Asξ : ξ < ω1} be a complete match where the
Builder played according to the strategy defined by g. We show that s is maximal. Let B ⊆ ω.
We should find δ < ω1 such that B ∩Asδ is infinite. Let δ ∈ Ss,B be an infinite ordinal. If (2) above
fails we are done. So assume that s�δ ∪{B} is almost disjoint.

We have two cases:

Case 1: I(s, B) is finite.

Take k such that

B ∩ Aseδ(i)\
⋃
j<i

Aseδ(j) = ∅

for every i ≥ k. Note that A defined above is infinite in this case and so Asδ = A. Furthermore,
if ` ∈ B \

⋃
j<k

Aseδ(j) then, by induction, for all i ≥ k, ` /∈ Aseδ(i) \
⋃
j<i

Aseδ(j), and therefore ` ∈ A by

definition of the latter set. Thus B ⊆∗ Asδ follows, and we are done.

Case 2: I(s, B) is infinite.

Let {ik = is�δ,Bk : k ∈ ω} be the increasing enumeration of I(s, B). For k ∈ ω, let lk = F (s, B)(k),
i.e.

lk = min

(
B ∩ Aseδ(ik)\

⋃
j<ik

Aseδ(j)

)
.

Observe that the family {Aseδ(i)\
⋃
j<i

Aseδ(j) : i ∈ ω} is disjoint, so the application k 7→ lk is injective.

Since δ ∈ Ss,B, we have F (s, B) 6≥∗ g(δ). So the set

X = {lk : g(δ)(k) > F (s, B)(k)}

is infinite. It is enough to show X ⊆ Asδ. Indeed let lk ∈ X. Then lk < g(δ)(k) ≤ g(δ)(ik) and so

lk /∈ Aseδ(ik) \

(⋃
j<ik

Aseδ(j) ∪ g(δ)(ik)

)
.

Since g(δ) is increasing we see that for all i ≥ ik,

lk /∈ Aseδ(i) \

(⋃
j<i

Aseδ(j) ∪ g(δ)(i)

)
.

This implies that lk ∈ A. In particular, A is infinite and Asδ = A. Hence X ⊆ Asδ follows. �

Observe that we only required that the diamond sequence guessed just one limit ordinal. An even
simpler task is to show that

Lemma 4.2. If CH holds, then the Builder has a winning strategy in Ga.

Proof. Let {Xα : α ∈ odd(ω1)} be an enumeration of [ω]ω.

Fact 4.1. Any infinite countable almost disjoint sequence can be extended.



CONSTRUCTION WITH OPPOSITION 17

If 〈Aξ : ξ < α〉 is a partial match for α an infinite limit ordinal, using Fact 4.1 let the Builder play
any infinite set Aα extending the sequence.

Let 〈Aξ : ξ ≤ α〉 be a partial match of infinite length, where the Spoiler has played Aα with
α ∈ odd(ω1). If there is ξ ≤ α such that Aξ ∩ Xα is infinite, then let the Builder play any Aα+1

disjoint from the previous ones using again Fact 4.1. Otherwise, let Aα+1 = Xα. It is clear now
that any complete match 〈Aξ : ξ < ω1〉 defines a maximal almost disjoint family. �

Since CH does not imply ♦(b) by Proposition 8.2 and Theorem 8.3 in [11], we have the following:

Corollary 4.1. The Builder having a winning strategy in Ga does not imply ♦(b).

We have still the following open question:

Open question 4.1. Does a = ω1 imply the Builder has a winning strategy in Ga?

As in the preceding sections, we may now consider longer games and the corresponding ordinals
aBuilder and aSpoiler. Obviously a ≤ aSpoiler ≤ aBuilder, and a more general version of the preceding
question asks whether these three numbers are equal. As for u, we even do not know whether
aBuilder and aSpoiler necessarily are cardinals.

Also, if we define tNoSpoiler as the minimum ordinal where the Spoiler does not have a winning
strategy in the game Gt of length α, we have mentioned in Section 3 that tNoSpoiler = tSpoiler. With
similar definitions, we do not know neither if uNoSpoiler = uSpoiler nor if aNoSpoiler = aSpoiler.
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