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Abstract. We show that the existence of a countable dense homogeneous metric space
which is connected and meager in itself is independent of ZFC.

1. Introduction

All spaces under discussion are separable and metrizable.
Recall that a space X is countable dense homogeneous (CDH) if, given any two countable

dense subsets D and E of X, there is a homeomorphism f : X → X such that f [D] = E.
This classical notion isolated by Bennett in [1] dates back to the works of Cantor, Brouwer,
Fréchet, and others. Examples of CDH-spaces are the Euclidean spaces, the Hilbert cube
and the Cantor set. In fact, every strongly locally homogeneous Polish space is CDH, as
was shown by Bessaga and Pe lczyński [2].

A space X is called a λ-set if every countable subset of X is Gδ in X. Fitzpatrick and
Zhou in [4] noted that every meager in itself CDH space is a λ-set. On the other hand, in
[5] it is shown that there is a meager in itself CDH space of size κ if and only if there is a
λ-set of the same size. Uncountable λ-sets exist in ZFC, though the existence of a λ-set of
size c it is independent of ZFC ([9, Theorem 22]).

The natural question, whether meager in itself CDH spaces can be connected and, more
generally, whether λ-sets can be connected arose recently. The above considerations show
that the answer to both questions is consistently negative: If there are no λ-sets of size c,
then every λ-set and, in particular, every meager in itself CDH space is of size less than c,
hence is zero-dimensional, ergo not connected ([4]). In this note we shall see the consistency
of a positive answer to the questions.

2. A connected λ-set

As a warm up, we present the proof of the following:

Theorem 2.1. The following are equivalent:

(1) There is a λ-sets of size c, and
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(2) there is a connected λ-set.

Proof. As every infinite connected space has size c it suffices to show that (1)⇒(2).
Let Y ⊆ 2ω be a λ-set of size c which is c-dense, i.e. has intersection of size c with

every non-empty open subset of 2ω. To see that such a set exists let Y ′ be a λ-set of
size c contained in its completion Z. Let G be a Gδ subset of 2ω for which there exists
a continuous one-to-one surjection f : G → Z . Note that f−1[Y ′] is a λ-set of size c
contained in 2ω. Then let

P = 2ω \
⋃
{U : U ⊆ 2ω : |f−1[Y ′] ∩ U | < c}

and note that P is a perfect subset of 2ω, hence is homeomorphic to 2ω, and Y = P∩f−1[Y ′]
is a λ-set c-dense in P .

We shall construct the connected space X as a subspace of the one-point compactification
(2ω × [0, 1)) ∪ {∞} of 2ω × [0, 1).

Claim: There is a function f : Y → [0, 1) such that f ∩ g 6= ∅ for every Borel g : U →
[0, 1), where U is a non-empty open subset of 2ω.

The proof of the claim is a straightforward diagonalization.

Having fixed a function f as above and identifying f with its graph, consider the space
X = f ∪ {∞}.

To see that X is a λ set it suffices to see that any countable subgraph of f is relatively
Gδ, but this trivially follows from the fact that its domain is Gδ in Y . Now we shall check
that X is connected. To see this, consider V,W disjoint open subsets of 2ω × [0, 1) ∪ {∞}
both intersecting X. It suffices to show that X \ (V ∪W ) 6= ∅. Since ∞ ∈ X we may
consequently assume that ∞ ∈ W . Now, let (x, f(x)) ∈ X ∩ V . There are open U ⊆ 2ω

and U ′ ⊆ [0, 1) such that (x, f(x)) ∈ U × U ′ ⊆ V . Define g : U → [0, 1) by

g(x) = max{z ∈ [0, 1) : (x, z) 6∈ W}.
As ∞ ∈ W and U × U ′ ⊆ V , the function is well defined, and is Borel, in fact of Baire
class 1. Observe that for every y ∈ U we have that (y, g(y)) belongs to the closure of W but
not to W . By the claim there is a y ∈ U such that f(y) = g(y). Hence (y, f(y)) ∈ X \W
and, moreover, (y, f(y)) ∈ X \ V since V and W are disjoint and (y, g(y)) belongs to the
closure of W . �

Note that the space constructed is homeomorphic to a subspace of the plane.
Similar arguments as in the proof of Theorem 2.1 can be found in Zindulka [11] and

Mazurkiewicz and Szpilrajn [6] where λ-sets of positive dimension were constructed.

3. A connected meager in itself CDH space from CH

In this section we shall prove the main result of this note, namely we prove that assuming
the Continuum Hypothesis there is a connected CDH meager in itself subspace of the Hilbert
cube. Together with the above mentioned observation that consistently every λ-set has
size less than c this shows that the existence of a countable dense homogeneous metric
space which is connected and meager in itself is independent of ZFC.
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CONNECTED λ-SET 3

We first review relevant material concerning the topology of the Hilbert cube.

3.1. Topology of the Hilbert cube. Let Q =
∏∞

n=1[−1, 1]n denote the Hilbert cube
with with product metric

d(x, y) =
∞∑
n=1

2−n|xn − yn|.

The pseudo-boundary of Q is

B(Q) = {x ∈ Q : (∃n ∈ N)(|xn| = 1)}
and its pseudo-interior

s =
∞∏
n=1

(−1, 1)n

is the complement of B(Q). Observe that B(Q) and s are dense in Q, and that both are
connected.

Recall that a closed set A ⊆ Q is a Z-set if given a continuous function f : Q→ Q, and
an ε > 0 there is a continuous function g : Q→ Q such that g[Q]∩A = ∅ while d(f, g) < ε,
i.e. if d(f(x), g(x)) < ε for every x ∈ Q. A set B ⊆ Q is a σZ-set if it is a countable union
of Z-sets. We shall denote by Z (Q) the collection of all Z-sets of Q, and Zσ(Q) denotes
the family of all σZ-sets of Q. Many examples of Z-sets are given by the following simple
lemma:

Lemma 3.1 ([7, Lemma 6.2.3 (ii)]). A closed A ⊆ Q such that there are infinitely many
n ∈ N such that πn[A] 6= [−1, 1] is a Z-set of Q.

In particular, it follows that B(Q) ∈ Zσ(Q), and that any compact subset K of s is a
Z-set.

We denote by H (Q) the group of autohomeomorphisms of Q. Given ε > 0, call a
homeomorphism h ∈H (Q) ε-small if d(h, id) < ε, i.e. if d(x, h(x)) < ε for every x ∈ Q.

Theorem 3.2 ([7, Theorem 6.4.6]). Let f : E → F be a homeomorphism between two

Z-sets of Q such that d(f, idE) < ε. Then f extends to an ε-small homeomorphism f̃ ∈
H (Q).

Theorem 3.3 ([7, Theorem 6.4.8]). Let A be closed subset of a compact space X, and let
f : X → Q be a continuous map such that f�A is an embedding and f [X] is a Z-set of Q.
Then for every ε > 0 there is an embedding g : X → Q such that g�A = f�A and f [X] is
a Z-set.

A set A ∈ Zσ(Q) is

(1) a capset if there is a homeomorphism f : Q→ Q so that f [A] = B(Q).
(2) an absorber if for every ε > 0 and every pair of Z-sets K,L there is an ε-small

h ∈H (Q) such that h � K = id and h[L \K] ⊆ A.
(3) a skeletoid if A can be written as an increasing union of Z-sets An, n ∈ N, so

that for every ε > 0, n ∈ N and every Z-set K there are an m ∈ N and ε-small
h ∈H (Q) such that h � An = id and h[K] ⊆ Am.
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Basic properties of these sets are given by the following result:

Theorem 3.4 ([7, Theorem 6.5.2]). Let A and B be absorbers in Q.

(1) h[A] is an absorber for any h ∈H (Q),
(2) A ∪ C is an absorber for any C ∈ Zσ(Q), and
(3) for every ε > 0 there is an ε-small h ∈H (Q) such that h[A] = B.

It turns out that a σZ-set is a capset if and only if it is an absorber if and only if it is
a skeletoid (see [7, §6.5] for details (in particular, Theorems 6.5.1, 6.5.5 and 6.5.8). The
pseudo-boundary B(Q) is the standard capset of Q. There are, however, many more.

Theorem 3.5. Let F be an infinite co-infinite subset of N, and let {xn : n ∈ F} ⊆ [−1, 1].
Then the set

Σ = {y ∈ Q : for all but finitely many n ∈ F , yn = xn}
is a capset.

Proof. The proof is standard and is similar to [7, Proposition 6.5.4]. Write F as
⋃∞
n=1 Fn,

where every Fn is finite and Fn ⊆ Fn+1. For every n, put

Mn = {y ∈ Q : (∀m ∈ F \ Fn)(ym = xm)}.

Then Mn ≈ Q since F is co-infinite, and Mn projects onto a point in infinitely many
coordinate directions, hence it is a Z-set by Lemma 3.1. Also Mn ⊆Mn+1, and

⋃∞
n=1Mn =

Σ. Hence Σ ∈ Zσ(Q). Put E = N \ F , and for every n, put

Qn = {y ∈Mn : (∀m ∈ E ∪ Fn)(|ym| ≤ 1−1/n}.

Then Qn ≈ Q, Qn ⊆ Qn+1, and there is a natural retraction rn : Q→ Qn defined by

rn(y)i =


−1+1/n (yi ≤ −1+1/n, i ∈ E ∪ Fn),

yi (−1+1/n ≤ yi ≤ 1−1/n, i ∈ E ∪ Fn),

1−1/n (−1+1/n ≤ yi, i ∈ E ∪ Fn),

xi (i ∈ F \ Fn).

Observe that for every ε > 0, there exists N ∈ N such that for every n ≥ N , rn moves no
point more than ε. Also observe that Qn is a Z-set in Qn+1 by Lemma 3.1.

We now aim at proving that the sequence (Qn)n witnesses the fact that
⋃
n∈NQn is a

skeletoid. To this end, let K be a Z-set, let ε > 0, and let n ∈ N. There is an N ∈ N
such that n < N , and such that the standard retraction rN : Q → QN moves the points
less than 1/2ε. Since Qn is a Z-set in QN , Theorem 3.2 implies that we can adjust rN a
little so that its restriction to K ∪ Qn is an embedding and is the identity on Qn. This
embedding can be extended to an ε-small homeomorphism of Q by Theorem 3.3, and this
homeomorphism is the one we are looking for.

Hence
⋃∞
n=1Qn is an absorber as every skeletoid is an absorber, and hence

⋃∞
n=1Mn is

an absorber as well, being a σZ-set by Theorem 3.4, and finally
⋃∞
n=1Mn is a capset as

every absorber is a capset. �
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Corollary 3.6. Let A be a Gδ-subset of [−1, 1] such that [−1, 1]\A 6= ∅. Then B(Q)\A∞
is a capset.

Proof. Observe that B(Q) \ A∞ is σ-compact, hence belongs to Zσ(Q). Pick an arbitrary
x ∈ [−1, 1] \ A, and split N into three pairwise disjoint infinite sets, say Y0, Y1 and Y2.
For every n ∈ Y1, put xn = 1, and for every n ∈ Y2, put xn = x. The the set Σ defined
in the previous theorem with the sequence xn, n ∈ Y1 ∪ Y2, is contained in B(Q) \ A∞.
Hence B(Q) \ A∞ contains a capset by Theorem 3.5, and therefore is a capset itself by
Theorem 3.4. �

Variations of the following lemma are well known.

Lemma 3.7. Let M and N be capsets in Q. In addition, let D0 be a countable dense
subset of Q \M containing the dense subset E0 such that F 0 = D0 \ E0 is dense as well.
Moreover, let D1 be a countable dense subset of Q\N containing the dense subset E1 such
that F 1 = D1 \ E1 is dense as well. Then there is a homeomorphism h of Q such that
h[M ] = N , h[E0] = E1 and h[F 0] = F 1.

Proof. Write M =
⋃∞
n=1Mn and N =

⋃∞
n=1Nn, where the sequences (Mn)n and (Nn)n

witness the fact that M and N are skeletoids.
Let i ∈ {0, 1}. Write Ei as

⋃∞
n=1E

i
n, where each Ei

n is finite and Ei
n ⊆ Ei

n+1. Write F i

similarly as
⋃∞
n=1 F

i
n.

It is clear that there is n1 > 0 and an embedding f1 : M1∪E0
1∪F 0

1 → Nn1∪E1
n1
∪F 1

n1
such

that f1[M1] ⊆ Nn1 , f1[E
0
1 ] ⊆ E1

n1
, and f1[F

0
1 ] ⊆ F 1

n1
. We can extend f1 to a homeomorphism

h1 of Q (Theorem 3.2). Now let ε > 0. There clearly exists n2 > 1 and an embedding
f2 : Nn1 ∪E1

n1
∪ F 1

n1
→ h1[Mn2 ∪E0

n2
∪ F 0

n2
] such that f2[Nn1 ] ⊆ h1[Mn2 ], f2[E

1
n1

] ⊆ h1[E
0
n2

]
and f2[F

1
n1

] ⊆ h1[F
0
n2

], while moreover f2�h1[M1 ∪ E0
1 ∪ F 0

1 ] = id and d(f2, id) < ε. We

can extend f2 to a homeomorphism g2 of Q such that d(g2, id) < ε. Now put h2 = g−12 .
Then (h2 ◦ h1)[M1] ⊆ Nn1 ⊆ (h2 ◦ h1)[Mn2 ], (h2 ◦ h1)[E0

1 ] ⊆ E1
n1
⊆ (h2 ◦ h1)[E0

n2
], and

(h2 ◦ h1)[F 0
1 ] ⊆ F 1

n1
⊆ (h2 ◦ h1)[F 0

n2
]. And we can choose h2 as close to the identity as we

please. By the Inductive Convergence Criterion in [8, Theorem 1.6.2], we can consequently
construct a sequence of homeomorphisms (hn)n of Q the infinite left product of which is a
homeomorphism h with the properties as stated in the lemma. �

3.2. The construction. Let us first note that both s and B(Q) intersect every compact
subset K of Q which disconnects Q.

It is known that every non-empty separable metric space can be represented as the
union of an increasing transfinite ω1-sequence consisting of zero-dimensional subspaces
(Smirnov [10]). These zero-dimensional sets are contained in zero-dimensional Gδ-sets
(Engelking [3, 1.2.14]), but is is unclear whether one can choose them to be increasing.
But under CH, an increasing such sequence for [−1, 1] can quite easily be constructed by a
transfinite construction, for example by additionally assuming that every set involved has
Lebesgue measure 0.

So assume CH, and write [−1, 1] as
⋃
α<ω1

Aα, so that A0 = ∅, each Aα is a Gδ-subset of
[−1, 1], Aα ⊆ Aβ if α < β, and [−1, 1] \ Aα 6= ∅.
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6 MICHAEL HRUŠÁK AND JAN VAN MILL

Enumerate all closed subsets of Q that separate Q by {Kα : α < ω1}, and enumerate all
pairs of countable dense subsets of Q by {(Eα, Fα) : α < ω1} such that each pair is listed
ω1-many times.

We shall recursively construct a decreasing sequence {Bα : α < ω1} of capsets and an
increasing sequence {Dα : α < ω1} of countable subsets of Q, together with an increasing
sequence {Hα : α < ω1} of countable subgroups of H (Q) so that (denoting Q \Bα by sα)
for every α < ω1:

(1) Dα is a countable dense subset of sα, and Dα ∩Kα 6= ∅,
(2) there exists an ordinal f(α) < ω1 such that B(Q) \ A∞f(α) ⊆ Bα,

(3) Dα, sα and Bα are invariant under Hα,
(4) if Eα ∪Fα ⊆ Dα, and Dα \ (Eα ∪Fα) is dense, then there exists an element h of Hα

such that h[Eα] = Fα,
(5) if γ < α, Dα \Dγ is a dense subset of Q contained in sα \ sγ.

To start, put s0 = s and B0 = B(Q), and let D0 be any countable dense subset of s0
which meets K0. Then consider the pair (E0, F0). Assume first that E0 ∪ F0 ⊆ D0, and
that D0 \ (E0 ∪ F0) is dense. Then there is by Lemma 3.7 a homeomorphism h of Q such
that h[E0] = F0, h[D0] = D0 and h[B(Q)] = B(Q). Observe that h[s0] = s0. Let H0 denote
the countable subgroup of H (Q) generated by {h}. If E0 ∪ F0 6⊆ D0 or if D0 \ (E0 ∪ F0)
is not dense, then we let H0 denote the subgroup of H (Q) consisting only of the identity.

Now suppose that for some α < ω1 we constructed for every β < α the sets Dβ, sβ and
Bβ and a countable subgroup Hβ of H (Q) satisfying the conditions (1)-(5) above.

Put B =
⋂
β<αBβ, S = Q \ B, and H =

⋃
β<αHβ, respectively. Observe that H is a

countable subgroup of H (Q), and by (3), B and S are H-invariant.
By (2), we may pick an ordinal number ξ < ω1 such T = B(Q) \ A∞ξ ⊆ B. Since T is a

capset by Corollary 3.6, it intersects Kα, say in the point x0. Let X be a countable dense
subset of T which contains x0. Since the set P = {h(x) : x ∈ X, h ∈ H} is countable
and dense in Q, and each point of Q has countably many coordinates only, there exists
ξ < η < ω1 such that P ⊆ A∞η . Consider the capset T ′ = B(Q) \A∞η . It is contained in T
and hence in B, and it misses P . Clearly, S ∪ P is H-invariant. Hence it misses the set

T ′′ =
⋃
h∈H

h[T ′].

Observe that T ′′ is a capset since it contains the capset T ′ and is contained in B(Q) (hence
is a countable union of Z-sets). Moreover, T ′′ contains B(Q) \ A∞η .

Define Bα = T ′′, sα = Q \ Bα, Dα = D ∪ P , and f(α) = η. Then all our inductive
hypotheses are satisfied, except perhaps (4). However, we are basically back at the first
step of the construction, so this can easily be taken care of. This completes the recursive
construction.

Put D =
⋃
α<ω1

Dα. Then D is connected as D is dense in Q and by (1) intersects every
closed set separating Q. To see that the set D is a λ-set note that every countable subset
C of D is contained in one of the Dβ, which in turn is a Gδ subset of D as Dβ = D∩ sβ by
(5). Hence C itself is Gδ subset of D since Dβ \C is countable, in particular, Fσ. To prove
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CONNECTED λ-SET 7

that D is CDH, let E and F be arbitrary countable dense subsets of D. Pick α < ω1 such
that E ∪ F ⊆ Dα. Then Dα+1 \Dα is a countable dense subset of D which misses E ∪ F .
Let β > α+1 be such that (E,F ) = (Eβ, Fβ). Then at stage β we took care of E and F .

4. Concluding remarks

There are several natural related questions. We suspect that a similar construction could
be performed already in the plane:

Question 4.1. Is there, assuming CH, a connected meager in itself CDH space in the plane?

It is not clear to us to what extent the assumption of CH can be weakened. In light of
Theorem 2.1 it is natural to ask:

Question 4.2. Is it consistent with ZFC that there is a connected λ-set yet there is no
connected meager in itself CDH space?

Finally, let us note that every arc-connected CDH space is Baire, in particular, no arc-
connected CDH space is meager in itself.
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