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Abstract. Building on previous work of Balcar, Pelant and Si-
mon we investigate σ-closed partial orders of size continuum. We
provide both an internal and external characterization of such par-
tial orders by showing that (1) every σ-closed partial order of size
continuum has a base tree and that (2) σ-closed forcing notions of
density c correspond exactly to regular suborders of the collapsing
algebra Coll(ω1, 2ω).

We further study some naturally ocurring examples of such par-
tial orders.

Introduction

A partially ordered set (P,≤) is σ-closed if every countable decreas-
ing sequence of elements of p has a lower bound. In this note we study
σ-closed partial orders of size continuum. Orders of this type natu-
rally arise in combinatorial and descriptive set-theory, topology and
analysis.

An essential example is the collapsing algebra Coll(ω1, 2
ω), i.e. the

completion, in the sense of Boolean algebra, of the complete binary
tree of height ω1. This forcing notion has several presentations:

• (Fn(ω1, {0, 1}, ω1),⊇) - ordering for adding a new subset of ω1,
• (Fn(ω1,R, ω1),⊇) - ordering for the consistency of the contin-

uum hypothesis,
• (Fn(2ω, {0, 1}, ω1),⊇) - ordering for adding c-many subsets of

ω1,
• the natural ordering for adding a ¦-sequence,
• Jech’s forcing for adding a Suslin tree by countable conditions.

All these orderings are forcing equivalent, in fact, they have isomor-
phic base trees (see Theorem 2.1 for the term base tree).
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Consider now the set [ω]ω of all infinite sets of natural numbers
ordered by inclusion. This order is not σ-closed, but it is also not sep-
arative.1 The separative quotient of ([ω]ω,⊆) are the positive elements
in the Boolean algebra P(ω)/fin. In [1] the surprising fact that also
P(ω)/fin has a base tree was established. It was then studied in [8],
[10], [12].

Since then many other naturally occuring examples were studied
([2],[3]) and in each case the methods of [1] were used used to prove
the corresponding Base Tree Theorem.

In this note we prove this general fact for all partial orders with a
dense σ-closed subset of size continuum. We also identify the σ-closed
forcings of size continuum as the regular subalgebras of the collapsing
algebra Coll(ω1, 2

ω).
We then present some of the standard examples and review the rel-

evant published results.

1. Main results

The height of a partial order (P,≤), h(P ) shortly, is the minimal
cardinality of a system of open dense subsets of P such that the in-
tersection of the system is not dense; i.e. h(P ) = min{|H| : ∀D ∈
H(D is open dense )∧⋂

H is not dense}. For a Boolean algebra B we
define h(B) as the height of the ordering (B \ {0},≤), where ≤ is the
canonical ordering on B. If B is complete, it coincides with its distrib-
utivity number. We will deal mostly with non-atomic orderings but for
completeness we allow atomic orderings in the definition too. Thus, if
(P,≤) is atomic, i.e. there is a set of minimal elements such that every
other element is above one of them, then we set h(P ) = ∞.

The height is a forcing invariant, that means every dense subset of
an ordering has the same height. In particular, h(P ) = h(RO(P )).

Fact 1.1. For an ordering P , h(P ) is the minimal cardinal κ such that
forcing with P adds a new subset of κ. In particular, forcing with P
preserves all cardinals less than κ.

An ordering P is homogeneous in h (homogeneous in height) if for
every p ∈ P h(↓ p) = h(P ). The following proposition shows that every
partial order can be decomposed into factors homogeneous in density.
For complete Boolean algebras there is a canonical such decomposition.

1Recall that a partial order P is separative if whenever p, q are elements of P
such that p 6≤ q, there is an r ∈ P such that r ≤ p and r ⊥ q.
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Proposition 1.2. Let B be a complete Boolean algebra. Then B ∼=∏
b∈I B ¹ b, where I is a partition of unity and B ¹ b is homogeneous

in the height for every b ∈ I.
Moreover, h(B ¹ a) 6= h(B ¹ b) if a 6= b for a, b ∈ I.

Proof. Let A be the set of all atoms, ↑ A = {b ∈ B : ∃a ∈ A (a ≤ b)},
then B ¹

∨ ↑ A is the first factor homogeneous in the height ∞.
Next, we work with an atomless complete algebra B0 = B ¹ (−∨ ↑

A) (B ∼= B0×B ¹
∨ ↑ A). Let (Dα)α<h(B0) be the system of open dense

subsets of B0 such that
⋂

α<h(B0) Dα is not dense. Let A1 be the subset

of elements of B0 witnessing the non-density, i.e. ↓ a∩⋂
α<h(B0) Dα = ∅

for every a ∈ A1. We claim that for every a ∈ A1 B ¹ a is homogeneous
in the height (with height h(B0)). Assume not, then there is some
a ∈ A1 and b < a such that h(B ¹ b) < h(B ¹ a). Thus, there is a
system (Sα)α<h(B¹b) of open dense subsets of B ¹ b with a non-dense
intersection below b. But if we set Dα = Sα ∪ B0\ ↓ b then we get a
system of open dense subsets in B0 without a dense intersection less
than h(B0), that is a contradiction.

We take a join
∨

A1 of all elements from A1 and the factor B ¹
∨

A1

is homogeneous in the height. We continue with the remainder B1 =
B0 ¹ (−∨

A1) and by the same way get a set A2 of elements witnessing
the non-density of the intersection of a system of open dense subsets
of size h(B1). It is possible that h(B1) = h(B0). In this case, we join
elements of A2 with elements of A1. In the opposite case, B1 ¹

∨
A2 is

a new factor homogeneous in the height.
We continue similarly until we treat all elements of B. We end up

with the desired decomposition. ¤
Definition 2 (Base tree property). An ordering (P,≤) has the base
tree property (we shall shortly say it has the BT-property) if it contains
a dense subset D ⊆ P with the following three properties:

- it is atomless; i.e. for every d ∈ D there are elements d1, d2 ∈ D
below d such that d1 ⊥ d2

- it is σ-closed
- |D| ≤ c

It can be easily seen that assuming the Continuum Hypothesis,
all partial orders with the BT-property are forcing equivalent with
Coll(ω1, 2

ω) and, consequently have a tree base. In fact, the follow-
ing is true in ZFC.

Theorem 2.1 (The base tree theorem). Let (P,≤) be an ordering
homogeneous in the height with the BT-property. Then there are h(P )
maximal antichains (Tα)α<h(P ) ⊆ P such that:
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(i) (T =
⋃

α<h Tα,≥) is a tree of height h(P ), where Tα is the α-th
level of the tree,

(ii) each t ∈ T has c immediate successors,
(iii) T is dense in P .

T is called the base tree of P .

Proof. We need to work with some dense subset guaranteed by the defi-
nition of the BT-property rather than with P itself. To avoid introduc-
ing next new symbols and sets, we assume P itself has the properties.

We use the definition of the height. So we have a system (Aα)α<h(P )

of open dense subsets with a non-dense intersection. We need to ensure
the intersection to be empty. Suppose

⋂
α<h(P ) Aα is not empty. Since

for each a ∈ ⋂
α<h(P ) Aα h(↓ a) = h(P ) we have a system (Āα)α<h(P ) of

open dense sets below a of the same size such that their intersection
is non-dense below a. For each such a we replace ↓ a ∩ Aα by Āα (i.e.
(Aα\ ↓ a) ∪ Āα). We get a new system of open dense subsets with
a non-dense intersection. If this intersection is again non-empty we
repeat the same procedure for each element from the intersection. We
repeat this procedure as long as necessary to get the system (Bα)α<h(P )

of open dense subsets with an empty intersection.
Next, we extract from each open dense set Bα a maximal antichain

Cα. We claim that for every p ∈ P there is at least one maximal
antichain Cα and elements a, b ∈ Cα such that p is compatible with
both of them. Suppose that for some p ∈ P and for every α < h(P )
there is only one element cα from Cα that is compatible with p. But
then p is in fact below cα (since if p � cα then there is a p0 ≤ p that
is disjoint with cα but necessarily compatible with another element of
Cα). But this means that p ∈ ⋂

α<h(P ) ↓ Cα ⊆
⋂

α<h(P ) Bα and that is
a contradiction with the fact the intersection is empty.

Before constructing the levels of T we modify the antichains into
more suitable form, more accurately we modify them into the system
(Dα)α<h(P ) where Dβ refines Dα if α < β. This can be easily done if
we set Dα to be the common refinement of (Cγ)γ≤α and (Dγ)γ<α.

The levels of the tree T will be the maximal antichains. What we
need to care is to ensure that T is dense and that every element of T
has c immediate successors. We begin by showing that for each element
p ∈ P there is an antichain Dα with c-many elements compatible with
p. There is some Dα0 and elements d0, d1 ∈ Dα0 compatible with p,
i.e. there are elements p0 ≤ d0, p1 ≤ d1 below p. Then again there is
some Dα1 and elements d00, d01, d10, d11 ∈ Dα1 , the first two compatible
with p0, the last two with p1 (note that this is the place where we need
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the antichains to be refining; since in general there would be some
Dβ1 with compatible elements with p0 and some Dβ2 with compatible
elements with p1 but in our case we can take α1 to be sup{β1, β2}).
We again get pζ ≤ p for each ζ ∈ 2{0, 1}. We continue until we get an
appropriate pζ ≤ p for each ζ ∈ <ω{0, 1}. For every ξ ∈ ω{0, 1} we have
a descending chain p ≥ pξ¹{0} ≥ . . . pξ¹n ≥ . . . with a lower bound (due
to σ-closedness) pξ. pξ1 ⊥ pξ2 for ξ1 6= ξ2. Thus we see that there is a
maximal antichain of size c below p; we denote it A(p). Each such pξ

is compatible with some element dξ of Dα where α = sup{αn : n ∈ ω}.
And again ξ1 6= ξ2 implies dξ1 6= dξ2 .

Let Pα = {p ∈ P : p is compatible with c-many elements of Dα}. We
see that P =

⋃
α<h(P ) Pα. Since |Pα| ≤ c for each α there is an injective

mapping fα : Pα → ω2 such that pfα(p) ≤ p for every p ∈ Pα, where
pfα(p) is from the construction above.

Now we are ready to start the construction. We set T0 = D0 and for
each α+1 we set Tα+1 to be the common refinement of Dα+1, A(p) for
all p ∈ Tα and {pfα(p) : p ∈ Pα}. For α limit, Tα is just the common
refinement of (Tγ)γ<α.

Note that by refining A(p) for all p ∈ Tα we ensure that each element
of the tree has c-many immediate successors and by refining {pfα(p) :
p ∈ Pα} that T is dense. This finishes the proof. ¤
Corollary 2.2. The following statements for an ordering (P,≤) are
equivalent:

(i) P has the BT-property,
(ii) P has a dense subset with the BT-property,
(iii) Every dense subset of P has the BT-property,
(iv) RO(P ) has the BT-property.

Proof. Note that (i)⇒(ii) and (iii)⇒(iv) follow from the definition. It
suffices to prove (ii)⇒(iii), (iv)⇒(i) is then a consequence.

We need to find a dense subset of a given dense subset that is more-
over σ-closed. Atomlessness is determined by the whole ordering, the
restriction on size will be clear.

Assuming (ii), we have a base tree T , we are given a dense subset D
and we show there is a σ-closed dense subset S ⊆ D.

We make S from maximal antichains. For every t ∈ T0 we find a
maximal antichain At ⊆ D below.

⋃
t∈T0

At is a first maximal antichain
S0.

Then for every s ∈ S0 we find a maximal antichain Ms ⊆ T below s.
Let P1 ⊆ T be a maximal antichain from T refining

⋃
s∈S0

As and T1.
We again for every p ∈ P1 find a maximal antichain Ap ⊆ D from D,
the union

⋃
p∈P1

Ap is S1.
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Next isolated steps are treated similarly. We need not to omit Pα to
be refining the tree level Tα. Then we refine it to Sα ⊆ D.

For a limit α we take a refinement Pα of all Pβ’s for β < α (which is
also a refinement of Sβ’s) and of Tα. Then we again refine it to Sα ⊆ D.

The resulting set S =
⋃

α<h(P ) Sα is dense and σ-closed. We ensured
denseness by refining all levels of T . For σ-closedness observe that
for every countable descending chain s0 ≥ s1 ≥ . . . from S, where
sn ∈ Sαn , there is an inserted descending chain p0 ≥ p1 ≥ . . . such that
p0 ≥ s0 ≥ p1 ≥ s1 ≥ . . ., where pn ∈ Pαn . This inserted chain has
a lower bound p in Pα, where α = sup{αn : n ∈ ω}, and p has some
successor s ∈ S. 2

¤
In other words, having a σ-closed dense set is preserved by forcing

equivalence among separative partial orders of size continuum. On
the other hand, Zapletal in [13] has constructed a model in which the
Continuum Hypothesis holds and there are two forcing equivalent sep-
arative partial orders of size ℵ2 one σ-closed and the other without a
σ-closed dense set. One has to wonder whether such a pair exists in
ZFC.

Question 2.3. Are there, in ZFC, two forcing equivalent separative
partial orders, such that one is σ-closed and the other does not have a
σ-closed dense set?

Finally, using this internal characterization of the partial orders with
the BT-property one can easily deduce the following external charac-
terization.

Theorem 2.4. Let (P,≤) be an arbitrary ordering with the BT-property.
Then RO(P ) is a regular subalgebra of Coll(ω1, c).

Proof. Let D ⊆ P be its dense subset witnessing the BT-property.
Then D×Fn(ω1, {0, 1}, ω1) with induced Cartesian ordering clearly has
the BT-property. And the height is ω1, thus it determines the complete
Boolean algebra Col(ω1, c). Note that there is a regular embedding
e : D → D × Fn(ω1, {0, 1}, ω1) defined as e(d) = (d, 1) where 1 is the
biggest element in Fn(ω1, {0, 1}, ω1), i.e. the empty set. e is extended
to ē : RO(P ) → Col(ω1, c) mapping RO(P ) on a regular subalgebra of
Col(ω1, c). ¤

3. Classical examples

The Boolean algebra P(ω)/fin is a prototype of an ordering with
the BT-property. Recall the definitions of the cardinal invariants p, t, h
[6].
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The second fundamental example is (Dense(Q),⊆), where Dense(Q)
is a set of all dense subsets in rationals. The situation here is sim-
ilar with the previous example, it is not separative and the ordering
(Dense(Q),⊆) itself does not satisfy the BT-property. We move to the
separative modification. The separative modification is (Dense(Q),⊆nwd

), where A ⊆nwd B if A\B is nowhere dense in Q, has the BT-property.
This ordering is studied in [2].

Let pQ, tQ, hQ be the cardinal invariants of (Dense(Q),⊆nwd) defined
in the same way as their counterparts in ([ω]ω,⊆∗). It was proved in
[2] that pQ = p and tQ = t whereas hQ and h are incomparable in ZFC,
hQ < h and hQ > h are both consistent (see [2] and [7]); and hQ = h
too of course.

For the third example, let A be the Cantor algebra, i.e. the algebra of
all clopen subset of 2ω, and consider the countable product Aω modulo
the ideal Fin ⊆ Aω, where Fin = {f ∈ Aω : |{n : f(n) 6= 0}| < ω}. It
satisfies the BT-property, moreover, Aω/Fin is homogeneous.

t(Aω/Fin) = t and h(Aω/Fin) ≤ min{h, add(M)} ([3]) and it is
consistent that h(Aω/Fin) < h ([3],[9]).

For any Boolean algebra B let us consider an infinite product Bω. Let
J be an ideal on ω. By IJ ⊆ Bω we denote the ideal {f ∈ Bω : {n ∈ ω :
f(n) 6= 0} ∈ J}. The quotient algebra Bω/IJ consists of equivalence
classes where f, g ∈ Bω are equivalent if {n : f(n) 6= g(n)} ∈ J
(f 4 g ∈ IJ equivalently). We state and prove a simple criterion for
when such a product has the BT-property.

Theorem 3.1. Let B be a Boolean algebra and J an ideal on ω. Then
the reduced product Bω/IJ has the BT-property if and only if B con-
tains a dense subset of size c and either P(ω)/J is σ-closed or J is a
maximal ideal and B is atomless.

Proof. Since Bω/IJ contains a dense subset of size c if and only if B
contains a dense subset of size less or equal to c the requirement on the
cardinality is satisfied.

Suppose that P(ω)/J is not σ-closed. Let (Xn)n∈ω be a descending
chain of infinite subsets of ω such that the chain ([Xn])n∈ω does not
have a lower bound in P(ω)/J , where [Xn] is the equivalence class
containing Xn. We define the descending chain ([fn])n∈ω ⊆ Bω/IJ as
follows: fn(i) = 1 if i ∈ Xn and fn(i) = 0 otherwise (it is the image of
the chain ([Xn])n∈ω via the regular embedding of P(ω)/J into Bω/IJ).
Suppose that it has a lower bound [f ]. Then the support of f , i.e. the
set {i : f(i) 6= 0}, would determine a lower bound for ([Xn])n∈ω.
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Next we use the fact mentioned in [3] that Bω/IJ can be written as
an iteration P(ω)/J ?Bω/U̇ , where U̇ is a name for an ultrafilter added

by P(ω)/J . For [f ] ∈ Bω/IJ We define Φ([f ]) = ({i : f(i) 6= 0}, ˙[f ]),

where ˙[f ] is a name for an equivalence class containing f in Bω/U̇ . Φ
is easily verified to be a dense embedding which proves the fact.

Now observe that an ultrapower of any Boolean algebra is σ-closed.
For a countable descending chain we can choose representants of equiv-
alence classes (fn)n∈ω so that support f0 = ω, support f1 ⊇ support
f2 ⊇ support f3 ⊇ . . . and

⋂
n∈ω support fn = ∅ since the ultrafilter

is non-principal. Then we set f(i) = fn(i) if n is the smallest number
such that i ∈ support fn\ support fn+1. f clearly determines the lower
bound for the chain. Hence, we conclude that Bω/IJ is σ-closed since
an iteration of two σ-closed forcings is.

To check atomlessness, if J is not maximal then for any f ∈ Bω,
where the support of f is not in J , we can always split the support of f
into two disjoint infinite sets both outside of J , restrict f on these sets
and make two disjoint elements of Bω/IJ below [f ]. This is no longer
possible in case J is a maximal ideal. For such a case we required B
to be atomless and we find two disjoint successors coordinatewise. ¤

4. Orderings made of ideals

We shall deal with orderings that consist of ideals on ω of some
concrete type ordered by reverse inclusion.

For an illustration let us consider the following simple example.

4.1. Non-tall ideals. An ideal I on ω is tall if for every X ∈ [ω]ω

there is infinite Y ⊆ X that belongs to I. Consider the set T of all
non-tall ideals on ω ordered by reverse inclusion.

At first, this ordering is not separative. However, for every A ∈ [ω]ω

consider the ideal IA of all subsets of ω that have a finite intersection
with A. IA is a non-tall ideal and B ⊆∗ A implies IB ⊇ IA. Moreover,
for every non-tall ideal I and some infinite set A almost disjoint with
every element of I, IA ⊇ I. Thus we see that ([ω]ω,⊆∗) is isomorphic
with a dense subset of (T,⊇) and of its seprative modification showing
that the separative modification of (T,⊇) has the BT-property, however
it is forcing equivalent to ([ω]ω,⊆∗).

4.2. Summable ideals. The study of summable ideals is in fact mainly
the study of sequences because we approach summable ideals via se-
quences in most cases. We shall focus on an ordering (c+

0 \`1,≤∗) where
c+
0 is the set of all sequences of positive reals that tend to zero and `1
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the set of all sequences of reals whose sum converges. The order re-
lation ≤∗ is almost domination, i.e. f̄ ≤∗ ḡ if {n : gn > fn} is finite.
The investigation of this ordering was initiated by P. Vojtáš in [11].
(c+

0 \ `1,≤∗) is not separative but we will show the separative quotient
is isomorphic to the set IΣ of all summable ideals ordered by inverse
inclusion.

We check it has the BT-property. Let us verify atomlessness. Let I
be a summable ideal determined by a sequence (an)∞n=0, and let A ∈ I.
Then

∑
i∈ω\A ai diverges; we divide ω \ A into two infinite subsets B1

and B2 such that the appropriate sums both diverge. We make new
sequences (bn)∞n=0 and (cn)∞n=0 so that bi = ai for i ∈ A ∪ B1 and
bi = zi for i ∈ B2, where (zn)∞n=0 is an arbitrary converging sequence of
positive reals. (cn)∞n=0 is defined similarly, just B1 and B2 change their
roles. Both (bn)∞n=0 and (cn)∞n=0 diverge. We denote the appropriate
summable ideals Ib and Ic. It is clear that Ib, Ic ⊇ I and that they are
disjoint.

Let (Ij)j∈ω be an increasing (in inclusion) sequence of summable
ideals. Let (aj

n)∞n=0 be the sequence of positive reals that determines the
ideal Ij. We may assume that (a0

n)∞n=0 ≥ (a1
n)∞n=0 ≥ . . .. Let n0 be such

that
∑

j≤n0
a0

j > 1. We set an = a0
n for n ≤ n0. Then we find a n1 > n0

such that
∑n1

j=n0+1 a1
j > 1 and set an = a1

n for n0 < n ≤ n1. And so on

to obtain the whole sequence (an)n∈ω so that (an)n∈ω ≤∗ (aj
n)n∈ω for all

j ∈ ω.
To verify separativness, consider ideals Ia and Ib, corresponding se-

quences (an)∞n=0 and (bn)∞n=0, such that Ia + Ib, i.e. there is a set
B ∈ Ib which does not belong to Ia. That means

∑
k∈B bk < ∞ but∑

k∈B ak = ∞. If ω\B belongs to Ia then Ia and Ib are already disjoint,
if this is not that case then we make a new sequence (cn)∞n=0 such that
cn = an for n ∈ B and

∑
k∈ω\B ck < ∞. The corresponding ideal Ic is

below Ia and disjoint with Ib.
It is easy to check that if (an)∞n=0 ≈sep (bn)∞n=0, i.e. ∀(cn)∞n=0 ∈

(c+
0 \ `1,≤∗)((cn)∞n=0 ⊥ (an)∞n=0 ⇔ (cn)∞n=0 ⊥ (bn)∞n=0), then (an)∞n=0

and (bn)∞n=0 determine the same summable ideal and the mapping
Φ : (c+

0 \ `1,≤∗) → (IΣ,⊇), defined as Φ((cn)∞n=0) = {A ⊆ ω :∑
n∈A cn < ∞}, is an onto homomorphism of orderings preserving the

disjointness relation. And the preimage of each summable ideal is pre-
cisely an equivalence class of sequences in ≈sep.

Proposition 4.1. t((c+
0 \ `1,≤∗)) = t.
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Proof. Let (āα)α<κ be a descending chain of sequences from (c+
0 \`1,≤∗)

of length κ < t. We use the methods from [5] to show it has a lower
bound.

For each α < κ let hα : ω → ω be a function such that ∀n ∈
ω( 1

hα(n)
≤ āα,n). Since κ < t ≤ b, there is a function h ∈ ωω that

almost dominates all hα’s, i.e. h ≥∗ hα for all α < κ.
Similarly, for each α < κ let fα : ω → ω be a function such that

∀n ∈ ω(
∑

fα(n)≤i<fα(n+1) āα,i > 1). Since κ < t ≤ b, there is a function
f ∈ ωω that almost dominates all fα’s, i.e. f ≥∗ fα for all α < κ. Define
g ∈ ωω recursively so that g(0) = f(0) and g(n+1) = f(g(n)+1). Note
that for every α < κ and all but finitely many n’s

∑
g(n)≤i<g(n+1) āα,i > 1

since g(n) < fα(g(n)) < fα(g(n) + 1) ≤ g(n + 1). We denote In the
interval [g(n), g(n + 1)).

For every n, we denote Fn the set {F : dom(F ) → Q+ : dom(F ) ⊆
In ∧ rng(F ) ⊆ { 1

2|In| ,
2

2|In| , . . . , 1} ∧
∑

i∈dom(F ) F (i) > 1
2
}. Let F =⋃

n∈ω Fn. In the following we shall treat F as ω.
For every āα, let Xα be the set {F : ∃n(F ∈ Fn∧∀i ∈ dom(F )(F (i) ≤

āi))}. An easy pigeon-hole type argument shows it is infinite for every
α < κ. It is also clear that Xβ\Xα is finite for α < β. Since κ < t, there
is a lower bound X ⊆ F. By reducing if neccessary, we can assume that
|X ∩ Fn| ≤ 1 for every n. Finally, we define a sequence ā as follows:

For every m ∈ ω, if there exists F ∈ X such that m ∈ dom(F ) then
we set ām = F (m). Otherwise, we set ām = 1

h(m)
. It is now easy to

check that ā is the desired lower bound.
To prove the converse, let us at first prove that t((c+

0 \ `1,≤∗)) ≤ b.
Suppose the contrary. Let (bα)α<b be a system of almost increasing
functions from ωω without an upper bound, π : N×N→ N a bijection
and (ln)∞n=0 a strictly decreasing sequence from `1 such that ln < 1

n
for

every n. We define a descending chain of sequences from (c+
0 \ `1,≤∗)

(āα)α<b as follows: ā0,π(1,k) = lk for k ≤ b0(0), for l > b0(0) we set
ā0,π(1,l) = 1

l
; generally, ā0,π(n,k) = lk for k ≤ b0(n− 1), for l > b0(n− 1)

we set ān,π(n,l) = 1
l
. āα for other α is defined in the same way.

Let ā be a lower bound for this chain. Define a function f by f(n) =
min{k : āπ(n,k) > lk}. It is easy to check that f almost dominates
(bα)α<b, a contradiction.

Now assume that t < t((c+
0 \ `1,≤∗)). Let (Xα)α<t ⊆ [ω]ω be a

descending chain without a lower bound. We define fα ∈ ωω for every
α < t so that fα(n) = k such that |Xα∩[fα(n−1), fα(n))| ≥ n+1. Since
t < t((c+

0 \`1,≤∗)) ≤ b, by the already used method we find g ∈ ωω such
that for every α < t and for almost all n’s |Xα∩[g(n−1), g(n))| ≥ n+1.



BASE TREE PROPERTY 11

Define a chain (āα)α<t of sequences as follows: āα,n = 1
k

if n ∈
Xα ∩ [g(k − 1), g(k)); if no such k exists then let āα,n = ln.

Finally, let ā be a lower bound for this descending chain and define
a lower bound X = {n : ān > ln} for the chain (Xα)α<t. ¤

4.3. Meager and null ideals. Next we consider the set of all meager
ideals M and the set of all ideals N of measure zero; i.e. those ideals
that are meager sets and null sets respectively in the Cantor space
topology. Simultaneously, we study the set of all hereditary meager
and null ideals, where an ideal I is hereditary meager (null) if for every
X ∈ I+ the restriction I ¹ X = {A ∈ I : A ⊆ X} is meager (null) in
the Cantor space 2X .

It is obvious they are both σ-closed. We show they are atomless,
what their separative quotient is and that there is no dense subset of
these orderings that has cardinality c. In fact, there is 2c mutually
disjoint elements in both orderings.

We will use the following characterization of meager ideals.

Proposition 4.2 (Talagrand; see for example Theorem 4.1.2 [4]). An
ideal I is meager if and only if there a partition (Pi)i∈ω of ω into finite
sets such that

⋃
i∈A Pi ∈ I iff A is finite.

Proposition 4.3. There are mappings Φ : (M,⊇) → (M,⊇) and Ψ :
(N,⊇) → (N,⊇) such that ∀X ∈ M∀Y ∈ N(Φ(X) ⊇ X ∧ Φ(X) ≈sep

X ∧Ψ(Y ) ⊇ Y ∧Ψ(Y ) ≈sep Y ).

Proof. For a meager ideal I consider the set Ĩ = {A ⊆ ω : I ¹
A is not meager}. Let (Pn)n∈ω be the partition of ω witnessing it is
meager. Ĩ is a hereditary meager ideal containing I. To see that it
is meager check that (Pn)n∈ω still works. Let A ∈ Ĩ+ be arbitrary.
Since A /∈ Ĩ we have I ¹ A is meager, so there is a partition (Qn)n∈ω

of A into finite sets such that
⋃

i∈C Qi ∈ I iff C is finite. If Ĩ ¹ A
were not meager then there would be an infinite set C ⊆ ω such that
B =

⋃
i∈C Qi ∈ Ĩ ¹ A. I ¹ B would have to be nonmeager but then

there would be an infinite set D ⊆ C such that
⋃

i∈D Qi ∈ I ¹ A, a
contradiction.

For a null ideal I consider the set Ĩ = {A ⊆ ω : I ¹ A is not null}. To
show it has measure zero consider the following subset P = {(A,B) :
A ⊆ ω ∧ B ∈ I ¹ A} of 2ω × 2ω. P has measure zero and it follows
from Fubini theorem that Ĩ = {A : PA is not null} has measure zero.
It is easy to check that Ĩ is downward close in inclusion and use Fubini
theorem again to check it is closed under finite unions proving it is a
null ideal.
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Set I0 = I, I1 = Ĩ0, In+1 = Ĩn and Ī =
⋃

n∈ω In. It is a null ideal and
moreover it is hereditary null since for every A ∈ Ī+ Ī ¹ A =

⋃
n∈ω In ¹

A is a countable union of null sets. ¤

Corollary 4.4. (M,⊇) and (N,⊇) are atomless, not separative, their
separative quotient is isomorphic to the ordering (MH,⊇) of all hered-
itary meager ideals via the mapping Φ and (NH,⊇) the ordering of all
hereditary null ideals via Ψ, respectively.

Proof. To prove they are atomless, let X be an arbitrary meager ideal,
let A and B be two infinite subsets of ω such that A∪B = ω and neither
A nor B is in Φ(X) (Φ(X) is meager, thus not maximal). Extend X
by A and by B to obtain two disjoint ideals XA and XB that are easily
verified to be meager. The proof for null ideals is the same.

We claim they are not separative. Consider some maximal ideal
M on odd natural numbers and the ideal F of finite sets on even
numbers. Then let I = {A ∪ B : A ∈ M ∧ B ∈ F} and J =
{A∪B : A is an arbitrary subset of odd natural numbers ∧B ∈ F} be
two ideals, both easily verified to be meager and null. But Φ(I) = Φ(J)
and Ψ(I) = Ψ(J) which proves the claim.
On the other hand, if X and Y are two hereditary meager (null) ideals
such that X + Y , then there is an infinite set A ∈ Y that is not in X.
Let Z be an ideal generated by X ∪ {ω \ A}, it is clearly meager and
Φ(Z) ⊇ X is disjoint with Y .

It remains to show that Φ and Ψ define isomorphisms between sep-
arative quotients of (M,⊇) and (N,⊇) and orderings (MH,⊇) and
(NH,⊇).

Φ and Ψ obviously preserve the inclusion relation and the disjointness
between ideals, it suffices to prove that Φ(X) ≈sep X and Ψ(Y ) ≈sep Y
for any X ∈ M and Y ∈ N. But obviously if a meager ideal I is
compatible with a meager ideal J , then Φ(I) is compatible with Φ(J)
and so also with J . The same holds for null ideals. Each equivalence
class of meager (null) ideals has its minimal element, the corresponding
hereditary meager (null) ideal. ¤

Finally, we show there is no dense subset of these orderings with size
c, thus preventing them to have the BT-property.

Theorem 4.5. There are 2c ideals that are both meager and null and
they are mutually disjoint (in both (M,⊇) and (N,⊇)).

In particular, neither (M,⊇) nor (N,⊇) has the BT-property.

Proof. Let (In)n∈ω be a partition of ω into intervals such that |In| = n+
1. For any X ⊆ ω let XI be the set

⋃
m∈X{k ∈ ω : ∃n(k is the m-th element of In}.
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It is clear that if J is an ideal on ω then {XI : X ∈ J} is a base of an
ideal; we shall denote this ideal as IJ .

Now let M be the set of all maximal ideals on ω, its size is 2c. For
any J ∈ M, we make an ideal IJ and obtain a system I of 2c ideals.
The disjointness of two ideals J1, J2 ∈M is easily seen to be preserved
for IJ1 and IJ2 .

Claim 1 I is a system of meager ideals.

The interval partition (In)n∈ω works for all ideals from I. Assume
that some set set X ∈ IJ , where IJ ∈ I, contains a union of infinitely
many intervals. It is easy to check that once it contains the whole
interval In then it contains all previous intervals. Thus, we conclude
that X = ω which is a contradiction.

Claim 2 I is a system of null ideals.

We use characterization of null ideals (resp. filters) from [4] Theorem
4.1.3. For m ≤ n, let imn be the m-th element of In. Let An = {an =
{inm : n ≤ m ≤ 2n − 1}}. These sets satisfy the first three conditions
from the theorem. Let X ∈ IJ , where IJ ∈ I, be a given set. X ⊆ Y I

for some Y ∈ J . Then it is easy to check that An∩X = ∅ for n ∈ ω \Y
and |ω \ Y | = ω; thus we also verified the last fourth condition and
proved that every IJ is null. ¤

5. Iterations and products

If P and Q are two orderings with the BT-property then their prod-
uct P × Q has again the BT-property and the height is less or equal
to the minimum of heights of the original orderings. To see this, just
realize that if B is a regular subalgebra of C then h(B) ≥ h(C), and
that RO(P ) is a regular subalgebra of RO(P × Q). The same holds
for countable products and iterations. For iterations (or products) of
length greater than ω we restrict on countable support and we have to
ensure that

∏cs
α<κ Pα has size c, where Pα’s are the orderings or their

dense subsets witnessing the BT-property.
However, if κ ≥ ω1 then the height of such an iteration is ω1.

Fact 5.1. Let Pκ be an iteration of length κ ≥ ω1 where P1 has the
BT-property and for every isolated α > 1 °Pβ

Q̇α has the BT-property,
where α = β + 1. Then assuming the condition on the size is satisfied
the iteration has the BT-property and has the height ω1.
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Proof. Atomlessness is clear, σ-closedness folklor. Let A1 ⊆ P1 be some
maximal antichain. For α = β+1 and α < ω1, let °Pβ

Ȧα is a maximal

antichain in Q̇α.
We let D1 = {p ∈ Pκ : ∃a ∈ A1(p(0) ≤ a)} and for other α = β + 1

Dα = {p ∈ Pκ : p ¹ β ° ∃ȧ ∈ Ȧα(p(β) ≤ ȧ}. Dα’s are dense open sets
and any element from the intersection would have to have a support of
size at least ω1. ¤
Proposition 5.2. For the ordering ([ω]ω,⊆∗)α, where α ≤ ω, there is
a dense subset D such that ∀d ∈ D∀i, j ∈ dom(d)(i 6= j ⇒ d(i)∩d(j) =
∅).
Proof. It is easy when α < ω. For α = ω, let f ∈ ([ω]ω,⊆∗)ω be given.
We look for some infinite subset d(0) ⊆ f(0) such that

(1) ∀n > 0(|f(n) \ d(0)| = ω)

Let {aγ : γ < ω1} be some AD system of size ω1 on f(0). For every
n > 0 there is at most one γ such that |f(n) \ aγ| < ω. Thus there is
some aδ that satisfies the condition (1). We set d(0) = aδ and subtract
d(0) from f(n) for every n > 0. We continue similarly and finally
obtain d = 〈d(n) : n ∈ ω〉 ∈ D below f . ¤
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lic, Žitná 25, Prague, Czech republic

E-mail address: m.doucha@post.cz
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