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1 Introduction

An infinite family A ⊂ P(ω) is almost disjoint (AD) if the intersection of any
two distinct elements of A is finite. It is maximal almost disjoint (MAD) if
it is not properly included in any larger AD family or, equivalently, if given
an infinite X ⊆ ω there is an A ∈ A such that ∣A ∩X ∣ = ω.

Almost disjoint families and, in particular, MAD families with special com-
binatorial or topological properties are notoriously difficult to construct, yet
there are also only very few known negative consistency results. There is the
classical construction of a Luzin gap [109], the proof, due to Simon [145],
that there is a MAD family which can be partitioned into two nowhere MAD
families, and the construction of Mrówka of a MAD family the Ψ -space of
which has a unique compactification.

Recently, there have been several fundamental new developments in the
study of structural properties of almost disjoint families. The longstanding
problem of whether the minimal size of a MAD family a can be strictly
larger than the dominating number d was solved by Shelah in [140] using a
novel forcing technique of iterations along templates. The method was further
developed by Brendle [28–30] who used it to show that the cardinal invariant
a can consistently have countable cofinality [29].

Another important result and a new technique for constructing MAD fam-
ilies were presented by Shelah in [141]. Building on work of Balcar and
Simon [8, 10, 144], he showed that completely separable MAD families ex-
ist assuming c < ℵω. The technique was further developed and the original
proof was simplified by Mildenberger, Steprāns and Raghavan in [119] (see
also [136]). We present a version of the argument here.
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Almost disjoint families of graphs of functions were studied in various
contexts [37, 99, 133, 165] though many fundamental problems remain open.
An important contribution to the subject has recently been made by Ragha-
van [134] who showed that in ZFC there is an AD family of graphs of functions
which is a MAD family when augmented by the vertical sections. This an-
swered a longstanding problem of van Douwen.

An attempt to classify MAD families via Katětov order was initiated in [88]
and continued in [34, 68, 92] and [4]. One of the basic problems of [88] was
recently solved in [4] by consistently constructing a MAD family maximal
in the Katětov order. This is an ongoing project with many fundamental
problems open.

Almost disjoint families are also one of the natural combinatorial tools
used in topology, often via the corresponding Mrówka-Isbell spaces. These
spaces have proved to be rather flexible and versatile sources of examples
in many areas of topology ranging from the study of Fréchet and sequential
spaces [43, 45, 47, 145], hyperspaces [89] and continuous selections [85, 90]
to Cp-theory [51, 84] and functional analysis [59, 60, 101, 113, 114, 142]. For
instance, in [90] a Ψ -space which admits a continuous weak selection but is
not weakly orderable is constructed, answering an old problem of van Mill
and Wattel [162].

Many important contributions to the study of structural properties of
almost disjoint families and their applications to topology were made by
Dow. In [47] he showed that, assuming PFA, every MAD family contains
a Luzin subfamily. This fact was then used to bound the sequential order
of scattered sequential spaces for which the scattered height and sequential
order coincide. In [46] he constructed a consistent example of a MAD family
which can not be partitioned into two nowhere maximal AD families. In [54]
together with Zhou they used a variant of PFA to prove the existence of a
partitioner algebra which has a subalgebra not representable as a partitioner
algebra.

The article is divided into eleven sections. It contains almost no proofs
with four notable exceptions: We present the constructions of a Luzin family
(Theorem 2), Mrówka family (Theorem 16), and Shelah’s construction of
a completely separable MAD family from c < ℵω (Theorem 13), as well as
Simon’s proof of existence of a partitionable MAD family (Theorem 46) in
order to illustrate different techniques involved in the study of almost disjoint
families.

2 Notation, definitions and basic facts

Our set-theoretic notation is mostly standard and follows [104].
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A family I ⊆ P(X) is an ideal on a set X if it is non-empty, closed under
taking subsets and finite unions of its elements and proper (i.e. X /∈ I). Unless
otherwise specified all ideals are assumed to contain all finite subsets of X.

Given an ideal I on X we denote by I∗ the dual filter, consisting of com-
plements of the sets in I. Similarly, if F is a filter on X, F∗ denotes the dual
ideal.

We say that an ideal I on X is tall if for each Y ∈ [X]ω there is an I ∈ I
such that I ∩Y is infinite. Given an ideal I on a set X, we denote by I+ the
family of I-positive sets, i.e. subsets of X which are not in I. If I is an ideal
on X and Y ∈ I+, we denote by I ↾ Y the ideal {I ∩ Y ∶ I ∈ I} on Y .

Most of our ideals will be ideals on ω. We consider P(ω) equipped with the
natural topology induced by identifying subsets of ω with their characteristic
functions, hence identifying P(ω) with 2ω with the product topology. We
call an ideal or filter Borel (analytic, co-analytic,. . . ) if it is Borel (analytic,
co-analytic,. . . ) in this topology. Several Borel ideals will be considered in the
text. Some of them will not be ideals on ω but rather ideals on some other
countable set (ω × ω, Q, ω<ω, . . . ).

� ctbl = {A ⊆ Q ∶ A has countable closure},
� scattered = {A ⊆ Q ∶ A is scattered (as a topological space)},
� nwd = {A ⊆ Q ∶ A is nowhere dense }.
� tr(ctbl) = {A ⊆ ω<ω ∶ ∣{r ∈ ωω ∶ ∃∞n ∈ ω r ↾ n ∈ A}∣ ≤ ω}.
� ED = {A ⊆ ω × ω ∶ ∃m ∈ ω∀n ≥m ∣{k ∈ ω ∶ (n, k) ∈ A}∣ ≤m}.
� EDfin = ED ↾∆, where ∆ = {(m,n) ∶ n ≤m}.
� fin × fin = {A ⊆ ω × ω ∶ ∀∞n ∈ ω {m ∈ ω ∶ (n,m) ∈ A} is finite}.

The ideal fin × fin is the result of a Fubini product of ideals: Given I,J
ideals on ω we let

I ×J = {A ⊆ ω × ω ∶ {n ∈ ω ∶ {m ∈ ω ∶ (n,m) ∈ A} /∈ J } ∈ I}.

It should be clear that all of these ideals are Borel of a low Borel complexity,
all Fσ, Fσδ or Fσδσ.

Given an almost disjoint family A we denote by I(A) = {X ⊆ ω ∶X ⊆∗ ⋃B
for some finite B ⊆ A} the ideal generated by A and by I+(A) = P(ω)∖I(A)
the family of I(A)-positive sets. The following is the most basic observation
about almost disjoint families. We are not quite sure who proved it first,
though it is often attributed to Sierpiński. It appears in Sierpiński’s book
[143] but it had definitely been (at least implicitly) known a lot earlier (see
e.g. [3, 74,109,155]):

Proposition 1. 1. There is an AD family of size c.
2. Every MAD family is uncountable.
3. Every AD family can be extended to a maximal one.
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Part (1) can be proved as follows: Denote (for future reference) by Af =
{f ↾ n ∶ n ∈ ω} the branch through the tree 2<ω corresponding to a function
f ∈ 2ω. For X ⊆ 2ω let

AX = {Af ∶ f ∈X}.
It is immediate that AX is an AD family of size X. In particular, A2ω has
size c. To see (2) let {An ∶ n ∈ ω} be an AD family an let kn ∈ An ∖⋃j<nAj
then {kn ∶ n ∈ ω} is almost disjoint from all An. (3) follows directly from the
Kuratowski-Zorn lemma.

We will also denote by Aωω the AD family {{f ↾ n ∶ n ∈ ω} ∶ f ∈ ωω} of
subsets of ω<ω.

The minimal size of a MAD family is denoted by a. Other combinatorial
characteristics of the continuum mentioned here are the dominating number
d, the bounding number b, the distributivity number h, the splitting number
s, the tower number t, and the pseudo-intersection number p. It is well-
known [16,23] that p ≤ t ≤ h ≤ s ≤ d and h ≤ b ≤ min{d,a}.

A fundamental structural theorem for βω is the so called base tree theorem
of Balcar, Pelant and Simon [9]:

Theorem 1 ( [9]). There is a tree T ⊆ [ω]ω ordered by ⊇∗ of height h such
that

1. each A ∈ T has c-many immediate successors, and
2. for every B ∈ [ω]ω there is an A ∈ T such that A ⊆ B.

In other words, there is a collection {Aα ∶ α < h} of MAD families such
that (1) Aα refines Aβ for β < α and (2) ⋃{Aα ∶ α < h} is dense in [ω]ω.

See e.g. [16, 23] for definitions and further information about cardinal in-
variants.

Arguably the most useful basic combinatorial property of AD families is
presented by the following proposition which we prove.

Proposition 2 ( [8,116]). Given an AD family A and a decreasing sequence
{Xn ∶ n ∈ ω} ⊆ I+(A) there is an X ∈ I+(A) such that X ⊆∗ Xn for all n ∈ ω.

Proof. Let an AD family A and a decreasing sequence {Xn ∶ n ∈ ω} ⊆ I+(A)
be given. Without loss of generality, A is MAD (if not, extend A to a MAD
family so that each Xn remains positive). Choose for each n ∈ ω infinite sets
Yn and An so that Yn ⊆∗ Xi for all i ∈ ω, An ∈ A∖{Am ∶m < n}, Yn ⊆ An∩Xn

and so that Yn ∩⋃{Ai ∶ i < n} = ∅. Then X = ⋃n∈ω Yn is the desired set. ⊓⊔

It readily implies that I+(A) is a happy family in the language of [116] or
a selective co-ideal in the language of [57] for every AD family A:

Proposition 3 ( [8, 116]). Let A be an AD family:

1. For every ϕ ∶ [ω]2 → 2 there is an X ∈ I+(A) which is ϕ-homogeneous,
i.e ∣ϕ′′[X]2∣ = 1.
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2. For every h ∶ ω → ω there is an X ∈ I+(A) such that h ↾X is constant or
strictly increasing.

A stronger selective property of AD families was considered in [80]: An
almost disjoint family A is +-Ramsey if every tree T ⊆ ω<ω such that {n ∈
ω ∶ t⌢n ∈ T} ∈ I+(A) for every t ∈ T has a branch b ∈ [T ] such that rng(b) ∈
I+(A). Here [T ] = {b ∈ ωω ∶ ∀n ∈ ω b ↾ n ∈ T}. It is easy to see that the
property is indeed stronger, that is there is a MAD family A which is not
+-Ramsey.

Problem 1 ( [80]). Is there a +-Ramsey MAD family in ZFC?

The definition of a Mrówka-Isbell space [71, 93, 125, 126, 161] was without
a doubt motivated by the Niemytski plane. The terminology comes from
[71,161].

Definition 1. Given an AD family A, define a space Ψ(A) as follows: The
underlying set is ω∪A, all elements of ω are isolated and basic neighborhoods
of A ∈ A are of the form {A} ∪ (A ∖ F ) for some finite set F .

It follows immediately from the definition that Ψ(A) is a separable, scat-
tered, zero-dimensional, first countable, locally compact Moore space. The
extent of Ψ(A) is equal to the cardinality of A. The space Ψ(A) is metriz-
able if and only if A is at most countable. If A is infinite then Ψ(A) is not
countably compact and Ψ(A) is pseudocompact if and only if A is a MAD
family [125].

An example of a Ψ -space appears in [3][chapter V., paragraph 1.3]: A
topology on the real line is refined by declaring all rational points isolated. To
each irrational point a convergent sequence is chosen and the cofinite subsets
of the given convergent sequence are declared basic open neighbourhoods of
the irrational number. This, of course, also presents another proof of the fact
that there are AD families of size c.

A curious fact was noticed by Kannan and Rajagopalan in [98] and can
be taken as a short definition of a Ψ -space:

Proposition 4 ( [98]). A separable space X is homeomorphic to Ψ(A) for
some, not necessarily infinite, AD family A if and only if X is hereditarily
locally compact.

3 Luzin families and separation

Given an almost disjoint family A and two subfamilies B,C of A we say that
a set X ⊆ ω separates B and C if A ⊆∗ X for every A ∈ B and A ∩X =∗ ∅ for
every A ∈ C.
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3.1 Luzin families

One of the first contributions to the study of structural properties of families
of almost disjoint sets was the construction of Luzin [109] probably influenced
by the construction of the Hausdorff gap in [75].

Theorem 2 ( [109]). There is an uncountable almost disjoint family such
that no two uncountable subfamilies can be separated.

Proof. Recursively construct an AD family {Aα ∶ α < ω1} so that

∀α < ω1 ∀n ∈ ω {β < α ∶ Aα ∩Aβ ⊆ n} is finite.

To do this let {An ∶ n ∈ ω} be a partition of ω into infinite pieces. Having
constructed {Aβ ∶ β < α} enumerate it as {Bn ∶ n ∈ ω} and for each n choose
an ⊆ Bn ∖⋃j<nBj of size n. Let Aα = ⋃n∈ω an.

Now, assume that B,C are uncountable families of A which can be sepa-
rated. Then, for some m ∈ ω there are uncountable B′ ⊆ B and C′ ⊆ C such
that ⋃B′ ∩⋃C′ ⊆ m. However, as both families are uncountable, there is an
Aα ∈ B′ such that there are infinitely many β < α such that Aβ ∈ C′. Then,
however, Aα ∩Aβ /⊆m for one of these β, which is a contradiccion. ⊓⊔

Definition 2. An almost disjoint familyA is Luzin if it can be enumerated
as {Aα ∶ α < ω1} so that ∀α < ω1 ∀n ∈ ω {β < α ∶ Aα ∩Aβ ⊆ n} is finite.

Luzin families are fundamental examples of almost disjoint families. Re-
cently there has been a flurry of activity concerning consistency results in-
volving Luzin families. Abraham and Shelah [1] call an almost disjoint fam-
ily A inseparable if no two uncountable subfamilies can be separated and
they call A Luzin∗ if it can be enumerated as {Aα ∶ α < ω1} so that
∀α < ω1 ∀n ∈ ω {β < α ∶ ∣Aα ∩ Aβ ∣ < n} is finite. Obviously, every Luzin∗

AD family is Luzin and every Luzin family is inseparable.

Theorem 3 ( [1]).

1. (CH) There is an inseparable AD family which contains no Luzin sub-
family.

2. ( MA+¬CH) Every inseparable AD family is a countable union of Luzin∗

subfamilies.

Roitman and Soukup in [138] introduced the notion of an anti-Luzin fam-
ily: An AD family A is an anti-Luzin family if for every B ∈ [A]ℵ1 there are
C,D ∈ [B]ℵ1 which can be separated.

Typical examples of anti-Luzin AD families are the familiesAX for X ⊆ 2ω.

Theorem 4 ( [138]). (MA + ¬CH) Every AD family is either anti-Luzin or
contains an uncountable Luzin subfamily.
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Theorem 5 ( [138]). Assuming q,1 there is an uncountable almost disjoint
family which contains no uncountable anti-Luzin and no uncountable Luzin
subfamilies.

More recently, Dow [47] showed:

Theorem 6 ( [47]). (PFA) Every MAD family contains an uncountable
Luzin subfamily.

and Dow and Shelah in [50] showed that Martin’s Axiom does not suffice:

Theorem 7 ( [50]). It is relatively consistent with MA + ¬CH that there is
a maximal almost disjoint family which is ω1-separated, i.e. any disjoint pair
of ≤ ω1-sized subfamilies are separated.

A connection between Luzin families and Hausdorff gaps was studied by
Kalemba and Plewik in [97].

3.2 Normality and related properties

Separation characterizes normality of Ψ -spaces:

Proposition 5 ( [154]). Ψ(A) is normal if and only if B and A ∖B can be
separated for every B ⊆ A.

and leads to the solution of the normal Moore space problem for separable
spaces:

Theorem 8 ( [154]). The following are equivalent:

1. There is a non-metrizable separable normal Moore space.
2. There is an uncountable AD family A such that Ψ(A) is normal.
3. There is an uncountable Q-set, i.e. an uncountable set of reals every sub-

set of which is relatively Gδ.

The Jones’ Lemma implies that if Ψ(A) is normal then 2∣A∣ = c, so, in
particular, the Continuum Hypothesis implies that normality of separable
Moore spaces implies metrizability. On the other hand, Silver has shown that
every set of reals of size < p is a Q-set.

Luzin families provide examples of non-normal Ψ -spaces of size ω1. In fact,
they also provide examples of Ψ -spaces which are not countably paracompact
[82]. Historically, Luzin families have been often referred to as Luzin gaps.

However, the use of that term has recently shifted [58,157–159]:

1 Recall that q is the following weakening of CH: There is a family S ⊆ [ω1]
ω of size ℵ1

such that every uncountable subset of ω1 contains an element of S.
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Definition 3 ( [158]). A pair A = {Aα ∶ α < ω1}, B = {Bα ∶ α < ω1} of
subfamilies of [ω]ω is called a Luzin gap if there is an m ∈ ω such that

1. Aα ∩Bα ⊆m for all α < ω1, and
2. Aα ∩Bβ is finite yet (Aα ∩Bβ) ∪ (Aβ ∩Bα) /⊆m for all α ≠ β < ω1.

Obviously, every Luzin family A contains Luzin gaps. If A = {Aα ∶ α < ω1},
B = {Bα ∶ α < ω1} form a Luzin gap then (as essentially proved by Luzin)
the two families A and B can not be separated, hence, the space Ψ(A ∪ B)
is not normal. In fact, assuming PFA this (together with Jones’ Lemma)
characterizes normality:

Theorem 9 ( [73]). (PFA) Let A be an AD family. Then Ψ(A) is normal if
and only if ∣A∣ < c and A does not contain a Luzin gap.

It is not known at the moment whether MA suffices (see [73]).

A weaker form of separation was considered by Dow in [44] and Brendle
in [27]. Given an AD family A and two subfamilies B,C ⊆ A we say that a
set D ⊆ ω weakly separates B and C if D ∩ B is finite for every B ∈ B and
D ∩ C is infinite for every C ∈ C. Dow [44] used the notion to produce a
model of ZFC in which all compact separable radial spaces are Fréchet, while
Brendle [27] considered the cardinal invariant ap defined as the minimal size
of an AD family A which has a subfamily B such that B and A ∖ B can not
be weakly separated and compared it to other, related, cardinal invariants.
In particular, he showed that it is consistent with ZFC that every set of reals
of size ap is a Q-set.

Szeptycki and Vaughan [152, 153] (see also [40]) introduced the notion of
a soft AD family by declaring an almost disjoint family A soft if there is a
set intersecting each element of A in a finite but non-empty set. The reason
for this was

Proposition 6. The space Ψ(A) satisfies property (a)2 if and only if the
family {A ∖ f(A) ∶ A ∈ A} is soft for every f ∶ A→ ω.

They showed that there is a close connection between normality of Ψ(A),
weak separation and softness of A.

Theorem 10 ( [152]). Let A be an AD family of size < d. If for every B ⊆ A
the pair B and A ∖ B can be weakly separated, then A is soft.

It is an open question, whether the assumption on cardinality of A is
necessary.

Problem 2 ( [152]). Is every AD family A such that Ψ(A) is normal soft?

2 A space X has property (a) if for every open cover U of X and a dense set D ⊆ X there

is a closed discrete F ⊆ D such that st(F,U) = X.
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Separated and weakly separated almost disjoint families are often used for
coding, see e.g. [7, 106,107,115].

A stronger condition was introduced by Steprāns in [149] (attributed there
to Szymański and Zhou):

Definition 4 ( [149]). An almost disjoint family A is called a strong Q-
sequence if for every family {BA ∶ A ∈ A} such that BA ⊂ A there is an X ⊆ ω
such that X ∩A =∗ BA for every A ∈ A.

Steprāns [149] proved that while the existence of a strong Q-sequence
contradicts Martin’s Axiom, it is relatively consistent with MA(σ-centered).
The notion of a strong Q-sequence is closely related to the well known open
Katowice problem:

Problem 3. Can ω∗ = βω ∖ ω and ω∗1 = βω1 ∖ ω1 ever be homeomorphic?

Among the consequences of a positive solution are: d = ω1 and there is an
uncountable strong Q-sequence (see [127]). Recently, Chodounský [39] has
shown that the two consequences are mutually consistent.

4 Completely separable MAD families

A MAD family A on ω is completely separable, if for every M ∈ I+(A) there
is an A ∈ A such that A ⊆ M . The notion of completely separable MAD
family was introduced in 1971 by Hechler [77] who showed that such families
exist assuming Martin’s Axiom. In 1972, Erdös and Shelah [55] asked whether
completely separable MAD families exist in ZFC.

The question of existence of completely separable MAD families is closely
tied to the disjoint refinement property [8, 10–13]: Does I+(A) have an al-
most disjoint refinement for every MAD family A? This question, formally
stronger than the question of existence of a completely separable MAD family,
has natural topological reformulations:

Theorem 11 ( [10,146]). The following are equivalent:

1. I+(A) has an almost disjoint refinement for every MAD family A.
2. Every nowhere dense subset of ω∗ is a c-set, i.e. for every nowhere dense
N ⊆ ω∗ there is a family of c-many pairwise disjoint open subsets of ω∗

each containing N in its closure.
3. There are no maximal elements in the Veksler order on nowhere dense

subsets of ω∗. (The Veksler order is defined by M < N if M is a nowhere
dense subset of N).
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For more information consult [10] or [91]. We will present a proof of a
recent theorem of Shelah that assuming c < ℵω there is a completely separable
MAD family. A minor modification of the proof shows that under the same
assumption, I+(A) has an almost disjoint refinement for every MAD family
A.

Shelah’s original proof from [141] was split into three parts: s < a, s = a
and s > a where the second and third case needed a mild covering lemma type
requirement (see lemma 2) the failure of which requires large cardinals and
which can easily be shown to hold below ℵω. Then Mildenberger, Raghavan
and Steprāns [119] eliminated the use of the special assumption in the case
s = a and presented a unified proof covering the s < a and s = a cases and
hence have also given one single proof for all cases known previously: a = c,
b = d, d ≤ a and s = ω1 [8, 10,144].

Theorem 12 ( [119]). Assuming s ≤ a there is a completely separable MAD
family.

Throughout the rest of this section we will use the following convention:
Given a set x ⊆ ω we let x0 = x and x1 = ω ∖ x.

Lemma 1 ( [141]). Given a decreasing sequence {Bn ∶ n ∈ ω} of infinite
subsets of ω there is a family P = {cα ∶ α < b} of subsets of ω such that for
any AD family A such that for infinitely many n, Bn ∖Bn+1 almost contains
an An ∈ A and any set X ∈ I+(A) which intersects each An in an infinite set
there is an α < b such that X ∩ ciα ∈ I+(A) for i ∈ {0,1}.

Proof. It suffices to consider only MAD families. Given the sequence {Bn ∶
n ∈ ω} consider Cn = Bn ∖Bn+1. The lemma has a non-trivial content only
if there are infinitely many n such that Cn is infinite. Fix {fα ∶ α < b} an
<∗-increasing unbounded chain of strictly increasing functions from ω to ω.
For α < b let

cα = ⋃
n∈ω

fα(n) ∩Cn.

Now, let A be a MAD family such that Bn∖Bn+1 almost contains an An ∈ A
for infinitely many n and a let X ∈ I+(A) intersect each An in an infinite
set. Consider {Dk ∶ k ∈ ω} an infinite family of elements of A disjoint from
{An ∶ n ∈ ω} such that each Dk intersects X ∩⋃n∈ωAn in an infinite set, i.e
for each k there are infinitely many n such that Dk ∩An ∩X is non-empty
(and finite). For k, j ∈ ω let mk

j = min{l ≥ j ∶ Dk ∩Al ∩X is non-empty} and
let

gk(j) = min{m ∈ ω ∶Dk ∩Amkj ∩X ⊆m}.

Let g ∈ ωω dominate all gk, k ∈ ω and let α < b be such that fα /≤∗ g. Then
X ∩ c0α ∈ I+(A) as X ∩ c0α intersects all of the Dk in an infinite set, and
X ∩ c1α ∈ I+(A) as X ∩ c0α intersects all of the An in an infinite set. ⊓⊔
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Lemma 2. Let b ≤ κ < ℵω. There is a sequence {uα ∶ ω ≤ α < κ} such that:

1. uα is subset of α of order type ω,
2. for every X ⊆ κ of order type b there is an α < supX such that X ∩uα is

infinite.

Proof. It is well-known and easy to see that for κ < ℵω there is a family W
of countable subsets of κ which is cofinal, i.e every countable subset of κ is
contained in an element of W. On the other hand, it is known and just as
easy to prove (by induction on the order type of w), that for any infinite set
w of order type α < ω1 there is a family Ow of size b of subsets of w of order
type ω such that for any x ∈ [w]ω there is an o ∈ Ow such that o∩x is infinite.
Thus by replacing, W by ⋃w∈W Ow one gets

Claim. For every ordinal b ≤ α < ℵω there is a family Oα of size ∣α∣
consisting of sets of order type ω such that for any infinite X ⊆ α there is an
o ∈ Oα such that o ∩X is infinite.

We now proceed by induction on n, where κ = ωn.
For κ = b = ωn0 just enumerate Oκ as {uα ∶ ω ≤ α < κ} so that uα is subset

of α.
Assuming the lemma was proved for ωn fix the corresponding sequence

{uα ∶ ω ≤ α < ωn} and also fix Oβ for every ordinal β < ωn+1. For an ordinal
δ = ωn ⋅β +2 ⋅γ +1 (β > 0) let uδ = {ωn ⋅β +ξ ∶ ξ ∈ uγ}, and for β > 0 enumerate
Oωn⋅β as {uωn⋅β+2⋅γ ∶ γ ∈ ωn}. It should be obvious that this works. ⊓⊔

Now we are ready to prove the result.

Theorem 13 ( [141]). Assuming c < ℵω there is a completely separable MAD
family.

Proof. Fix a sequence {uα ∶ ω ≤ α < c} as in lemma 2. Slightly abusing nota-
tion we denote by uα(n) the n-th element of uα in its increasing enumeration.
Moreover, fix {Uα ∶ α < c} a partition of c such that

1. ∣U0∣ = c and ω ⊆ U0,
2. for α > 0, ∣Uα∣ = b and α ≤ minUα < supUα ≤ α + b.

Finally, enumerate [ω]ω as {xα ∶ α ∈ U0}.
Having fixed another enumeration of all infinite subsets of ω as {Bα ∶ α <

c}, we will recursively construct an AD family {Aα ∶ α < c} and a one-to-one
sequence {σα ∶ α < c} of elements of 2<c together with functions Cα ∶ 2<c →
P(ω) so that

1. Aα ⊆∗ Cα(σα ↾ ξ)σα(ξ) for every α < c and every ξ ∈ dom(σα),
2. Aα ⊆ Bα or Bα is almost covered by finitely many Aβ , β < α,
3. σα /⊆ σβ for every β < α < c.

The function Cα is definable from Aα = {Aβ ∶ β < α} and {σβ ∶ β < α} in
the following way:
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1. If η ∈ 2ξ and ξ ∈ U0, let Cα(η) = xξ.
2. If η ∈ 2ξ and ξ ∈ Uδ for some δ > 0 then define

Bα,ηn = ⋂
i≤n

[Cα(η ↾ uδ(i))η(uδ(i)) ∖Aη↾uδ(i−1)] ,

here Aη↾uδ(i−1) = Aβ (for some β < α) if η ↾ uδ(i−1) = σβ or Aη↾uδ(i−1) = ∅.
For the decreasing sequence {Bα,ηn ∶ n ∈ ω} fix a family Pη of size b as
in lemma 1. Enumerate Pη (once and for all) as {cηζ ∶ ζ ∈ Uδ} and let

Cα(η) = cηξ .

An important feature of the sequence of functions {Cα ∶ α < c} is that they
are coherent in the following sense:

Cβ(σβ ↾ ξ) = Cα(σβ ↾ ξ) for every β < α < c and every ξ ∈ dom(σβ).

This follows directly from the definition of Cα as the only way the values
would change is if there would appear a new Aη↾uδ(i−1) in the definition of
the Bα,ηn for one of the uδ. However, this is impossible by the third clause.
In particular,

Aα ⊆∗ Cβ(σα ↾ ξ)σα(ξ) for every α < β < c and every ξ ∈ dom(σα).

Having constructed Aα = {Aβ ∶ β < α} and {σβ ∶ β < α} and having defined
Cα as above, we show now how to find Aα and σα.

First, for any X ∈ I+(Aα) recursively define τX as follows

τX(ξ) = i if and only if X ∖Cα(τX ↾ ξ)i ∈ I(Aα).

If ξ is the first ordinal for which there is no such i (i.e. Cα(τX ↾ ξ) splits X
into two I(Aα)-positive sets), let τX = τX ↾ ξ. Note, that τX is well-defined
as each set gets eventually split (definitely on U0 if not elsewhere).

We will recursively construct/define ordinals αs,τs ∈ 2αs and Xs ∈ I+(Aα)
for s ∈ 2<ω so that

� Let X∅ = Bα if Bα ∈ I+(Aα), and let X∅ be another element of I+(Aα)
otherwise,

� τ∅ = τX∅
and α∅ = dom(τX∅

),
� Xs⌢i =Xs ∩Cα(τXs)i ∈ I+(Aα) for i ∈ {0,1},
� τs⌢i = τXs⌢i and αs⌢i = dom(τXs⌢i).

Note that these objects are uniquely defined. For f ∈ 2ω, let τf = ⋃n∈ω τf↾n,
let αf be the domain of τf and use lemma 2 to find a set Xf ∈ I+(Aα) such
that Xf ⊆∗ Xf↾n for all n. As α < c there is an f ∈ 2ω such that τf /⊆ σβ
for all β < α. We let σα = τf and assume for a moment that we can choose
Aα ⊆Xf ∩X∅ almost disjoint from all Aβ , β < α. Then

Aα ⊆∗ Cα(τf ↾ ξ)τf (ξ) for every ξ < αf .
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To see this recall, that Xf has not been split into two I(Aα)-positive sets by
any Cα(τf ↾ ξ), ξ < αf . That is for every ξ < αf there is a finite set Bξ ⊆ Aα
such that

Xf ∖Cα(τf ↾ ξ)τf (ξ) ⊆∗ ⋃Bξ.
This, however, implies that Aα ∩⋃Bξ is finite and so Aα ⊆∗ Cα(τf ↾ ξ)τf (ξ)
for every ξ < αf .

So the only thing missing is proving that Aα ↾Xf is not MAD.

Claim: Aα ↾Xf is not maximal.

Let
W = {ξ < αf ∶ (∃β < α) (∣Aβ ∩Xf ∣ = ω and

(τf ↾ ξ = σβ or ξ = min{ζ ∶ τf(ζ) ≠ σβ(ζ)}))}.
Now, if ∣Aβ ∩Xf ∣ = ω for β < α then there is a ξ ∈W such that

τf ↾ ξ = σβ or ξ = min{ζ ∶ τf(ζ) ≠ σβ(ζ)}

and for each ξ ∈W there is at most one β < α such that τf ↾ ξ = σβ and there
are only finitely many β < α such that ξ = min{ζ ∶ τf(ζ) ≠ σβ(ζ)}, each such
Aβ ∈ Bξ. So, it suffices to show that ∣W ∣ < b ≤ a.

Aiming toward a contradiction assume that ∣W ∣ ≥ b and let W0 be the
set of the first b-many elements of W . By lemma 2 there is a δ < supW0

such that uδ ∩W is infinite. This means that Xf satisfies the assumption of
lemma 1. Hence, there is a ξ ∈ Uδ such that Cα(τf ↾ ξ) splits Xf into two
I(Aα)-positive sets, i.e. αf ≤ ξ. This, however, leads to a contradiction as
this ξ < δ+b and below δ there are fewer than b elements of W and, obviously,
there are fewer than b elements of W between δ and ξ. ⊓⊔

An important feature of completely separable MAD families is that they
can be used as tools for recursively constructing other AD families, or re-
lated objects much in the way ultrafilters can be constructed along inde-
pendent families. One of the known applications of the existence of a com-
pletely separable MAD family is the existence of a Čech function - a func-
tion cl ∶ P(ω) → P(ω) such that (i) cl(∅) = ∅, (ii) A ⊆ cl(A) and (iii)
cl(A ∪B) = cl(A) ∪ cl(B) which is surjective yet not the identity.

Čech’s 1947 question as to whether such function exists was first solved us-
ing CH by Price [132], then Galvin noticed that the existence of a completely
separable MAD family is sufficient. Recently Galvin and Simon realized [64]
that maximality of the AD family was not necessary and that an almost
disjoint family constructed in [8] is sufficient.

The main problem, however, remains open:

Problem 4 ( [55]). Is there a completely separable MAD family in ZFC?
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5 Almost disjoint families of graphs of functions

Almost disjoint families on ω×ω consisting of graphs of functions and partial
functions received a lot of attention recently. A longstanding problem of van
Douwen (see [121]) as to whether there is an almost disjoint family of total
functions which is a MAD family when augmented by vertical sections was
recently answered by Raghavan in [134].

We say that two functions are eventually different (ED) if their graphs are
almost disjoint. We call a family of functions eventually different if any two
functions in the family are eventually different.

Theorem 14 ( [134]). There is a van Douwen MAD family, i.e. a family
of eventually different functions maximal with respect to partial functions.

Another basic problem that attracted much attention is relatively recent
and somewhat surprisingly hard:

Problem 5 ( [100]). Is there an analytic (or even closed) maximal family
of eventually different functions?

It is an old result of Mathias [116] that no MAD family is analytic (a co-
analytic MAD family was constructed by Miller [120] assuming V = L) and
there seems to be a consensus that the same should hold true here. However,
somehow the problem is still open. Steprāns (see [100]) introduced the notion
of a strongly maximal family of eventually different functions as follows:

Definition 5. An eventually different family E is strongly maximal if given
a family {fi ∶ i ∈ ω} of functions each not covered by finitely many elements
of E there is a g ∈ E such that ∣g ∩ fi∣ = ω for every i ∈ ω.

Steprāns showed that no strongly maximal eventually different family is
analytic ( [100]). Zhang and Kastermans [99] introduced a strengthening of
this notion:

Definition 6. An eventually different family E is very maximal if given a
cardinal λ < ∣E ∣ and a family {fξ ∶ ξ ∈ λ} of functions each not covered by
finitely many elements of E there is a g ∈ E such that ∣g ∩ fξ ∣ = ω for every
ξ ∈ λ.

Kastermans [99] showed that very maximal ED families exist assuming
Martin’s axiom, while Raghavan [133] showed that assuming b = c strongly
maximal ED families exist. He has also shown that it is relatively consistent
with b = c that very maximal ED families do not exist.

Theorem 15 ( [133]). Assuming cov(M) < non(M) there are no very max-
imal ED families.

In particular, it is consistent with ZFC that there are strongly maximal
ED families while there are no very maximal ones.
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Problem 6 ( [133]). Is it consistent that there are no strongly maximal ED
families?

Several papers, e.g. [33,78,99,165], studied families of eventually different
functions with special properties. Among these the most prominent is the
notion of a cofinitary group:

Definition 7. A permutation π ∈ Sym(ω) is cofinitary if it has only finitely
many fixed points. A group G ≤ Sym(ω) is cofinitary if all of its elements,
other than the identity are cofinitary.

Obviously, a permutation group G is cofinitary if and only if its elements
are mutually eventually different, i.e. it is a permutation group which is also
an ED family. For a nice survey of algebraic aspects of cofinitary groups
consult Cameron’s [37].

Truss [160] and Adeleke [2] showed that no countable cofinitary group is
maximal, while Cameron [37] showed that there is a (maximal) cofinitary
group of size c and asked what is the minimal size of a maximal cofinitary
group. In particular, he asked whether it is possible to have a maximal cofini-
tary group of size strictly less than c. Zhang answered the question in [165]
by showing that (1) assuming Martin Axiom every maximal cofinitary group
has size c and (2) it is consistent to have a maximal cofinitary group of size
strictly less than c. Brendle, Spinas and Zhang [33] showed that non(M) is
a lower bound on the minimal size of a maximal cofinitary group.

Similar to the case of ED families, it is an open problem whether there
can be an analytic maximal cofinitary group. On the other hand, Gao and
Zhang in [65] constructed, assuming V = L a maximal cofinitary group with
a co-analytic set of generators. Friedman and Zdomskyy [63] proved that it
is consistent with b = c = ω2 that there is a Π1

2 strongly maximal ED family.

6 Compactifications and partitioners

An important notion for studying topological and combinatorial properties
of almost disjoint families is the notion of a partitioner.

Definition 8. Given an almost disjoint family A a set X ⊆ ω is a partitioner
of A if A ∩X =∗ ∅ or A ⊆∗ X for every A ∈ A.

Note that if X is a partitioner for A than so is ω ∖X. A partitioner is
trivial if X ∈ I(A) or ω ∖X ∈ I(A).

6.1 Čech-Stone remainders of Ψ-spaces

Non-trivial partitioners correspond to clopen subsets of β(Ψ(A)) ∖ Ψ(A).
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Proposition 7 ( [18]). β(Ψ(A)) ∖ Ψ(A) is connected if and only if A has
no non-trivial partitioners.

Proof. If A has a non-trivial partitioner then it has a compactification with
exactly two points. Hence βΨ(A) ∖ Ψ(A) is disconnected.

On the other hand, if βΨ(A)∖Ψ(A) has a non-trivial clopen subset C, then
there are open (in Ψ(A)) sets U,V which separate C and (βΨ(A)∖Ψ(A))∖C.
Note that U ∪V covers βΨ(A)∖Ψ(A) so, F = A∩(βΨ(A)∖(U ∪V )) is finite.
So P = (U ∩ ω) ∖⋃F is a non-trivial partitioner of A. ⊓⊔

Mrówka in [126] constructed a MAD family, such that Ψ(A) has a unique
compactification, i.e. its Čech-Stone compactification and its one-point com-
pactifications coincide.

Definition 9. A MAD family A is called Mrówka if ∣β(Ψ(A)) ∖ Ψ(A)∣ = 1.

Theorem 16 ( [126]). There is a Mrówka family.

Proof. Extend the AD family A2ω to a MAD family B0. List B0 ∖ A2ω as
{Bf ∶ f ∈ Y } for some Y ⊆ 2ω. Let

B1 = {Af ∶ f ∈ 2ω ∖ Y } ∪ {Af ∪Bf ∶ f ∈ Y }

Claim. Every non-trivial partitioner of B1 contains c elements of B1.

Let X ⊆ 2<ω be a non-trivial partitioner. Consider Z = {f ∈ 2ω ∶ Af ⊆∗ X}
then Z is an uncountable set, as B1 ↾ X is MAD, and Z is Fσ (hence of size
c) as Z = {f ∈ 2ω ∶ ∃n ∈ ω ∀m ≥ n f ↾m ∈X}.

Enumerate all non-trivial partitioners of B1 as {Pα ∶ α < κ} for some κ ≤ c.
Recursively choose Aα ≠ Bα ∈ B1 ∖ {Aβ ,Bβ ∶ β < α} so that Aα ⊆∗ Pα and
Bα ∩ Pα =∗ ∅. (There is no problem choosing as there are always c-many
possibilities and less than c-many already chosen.) Then let

B2 = {Aα ∪Bα ∶ α < κ} ∪ (A ∖ {Aα,Bα ∶ α < κ}).

B2 is then a MAD family with no non-trivial partitioners.

Since B2 has no nontrivial partitioners, the remainder β(Ψ(B2)) ∖ Ψ(B2)
is connected. If it is a singleton, we already have the desired Mrówka family.
If not, enumerate as {fα ∶ α < c} all maps in [0,1]2<ω which extend to a
continuous function from Ψ(B2) onto [0,1]. Then recursively choose Aα ≠
Bα ∈ B2∖{Aβ ,Bβ ∶ β < α} so that if fα extends to a continuous onto function
F ∶ Ψ(B2)→ [0,1] then F (Aα) ≠ F (Bα). Then let

A = {Aα ∪Bα ∶ α < c} ∪ B2 ∖ {Aα,Bα ∶ α < c}.

A is then a MAD family and (1) β(Ψ(A)) ∖ Ψ(A) is connected since A
has no non-trivial partitioners (every non-trivial partitioner of A would be a
non-trivial partitioner of B2), and (2) β(Ψ(A))∖Ψ(A) is zero-dimensional (if
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not, there would be a continuous surjection F ∶ Ψ(A)→ [0,1], however, there
is no such F as F ↾ 2<ω was enumerated as fα and by the construction F is
not continuous at Aα∪Bα ∈ A). Being both connected and zero-dimensional,
∣β(Ψ(A)) ∖ Ψ(A)∣ = 1. ⊓⊔

Aside from presenting a fundamental and surprising example, the theorem
and its proof gave both a novel method for constructing special MAD families
and the starting point for investigation as to which spaces can appear as the
Čech-Stone remainders of Ψ(A) for MAD A. Terasawa showed in [156]

Theorem 17 ( [156]). For every compact metric space X without isolated
points there is a MAD family A such that β(Ψ(A))∖Ψ(A) is homeomorphic
to X.

A stronger result was proved by Bashkirov in [19].

Theorem 18 ( [19]). For every separable Fréchet compact space X there is
a MAD family A such that β(Ψ(A)) ∖ Ψ(A) is homeomorphic to X.

As noticed by Levy and Kulesza in [103], the strongest possible result
actually follows from CH and the results of Baumgartner and Weese [21]
mentioned in the next section:

Theorem 19 ( [103]). Assuming CH, for every continuous image X of βω∖
ω there is a MAD family A such that β(Ψ(A)) ∖ Ψ(A) is homeomorphic to
X.

On the other hand Dow [42] proved that it is consistent that every β(Ψ(A))
has size at most c.

Dow and Vaughan recently considered the problem of which ordinals can
be homeomorphic to the Čech-Stone remainders of Ψ -spaces in [53]. Accord-
ing to Terasawa, the space ω1 + 1 is a Čech-Stone remainder of a Ψ(A) for
MAD family A, a fact he attributes to Mrówka. Dow and Vaughan extended
the result by proving that

Theorem 20 ( [53]). Assume that there is a ⊆∗-increasing chain of order
type α. Then there is a MAD family A such that β(Ψ(A))∖Ψ(A) is homeo-
morphic to α + 1.

In particular:

Theorem 21 ( [53]). There is a MAD family A such that β(Ψ(A))∖Ψ(A)
is homeomorphic to α + 1 for every α < t+.

Dow and Vaughan also pointed out that Baumgartner and Weese [21]
showed that after adding more than ℵ2 many Cohen reals to a model of CH
there is no MAD family A such that β(Ψ(A)) ∖ Ψ(A) is homeomorphic to
ω2 + 1
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6.2 Partitioner algebras

Baumgartner and Weese in [21] introduced the notion of a partition (or par-
titioner) algebra of a MAD family A as the quotient Boolean algebra of the
subalgebra of P(ω) consisting of all partitioners modulo the ideal of parti-
tioners in I(A) as an attempt to classify MAD families. Using the method
of Mrówka they showed that:

Theorem 22 ( [21]). Every countable Boolean algebra is isomorphic to a
partition algebra.

and more generally:

Theorem 23 ( [21]). Assuming the Continuum Hypothesis, every Boolean
algebra of size at most c is isomorphic to a partition algebra.

On the other hand, they also showed that it is consistent with the negation
of the Continuum Hypothesis that any Boolean algebra which contains the
free algebra on ℵ2-generators is not representable as a partition algebra hence,
in particular, no infinite complete Boolean algebra is representable. They
conclude the paper with several interesting questions, many of which have
since been solved by Dow and co-authors:

Theorem 24 ( [49]). The free algebra on ℵ1-generators is representable as
a partition algebra.

Theorem 25 ( [48]). It is consistent with ZFC that there is a Boolean algebra
of size ℵ1 which is not representable as a partition algebra.

The model for this is any model where ω1 = s < b and the algebra is the
subalgebra of P(ω) generated by the small splitting family and finite sets.

The last two facts together show that:

Theorem 26 ( [48]). It is consistent with ZFC that the class of Boolean
algebras representable as partition algebras is not closed under homomorphic
images.

Frankiewicz and Zbierski [62] showed that it is relatively consistent with
MA(σ-linked) that c is arbitrarily large and every Boolean algebra of size at
most c is representable as a partition algebra. The last result on partition
algebras that we will mention is deep and difficult to prove.

Theorem 27 ( [54]). It is consistent, assuming a version of PFA, that there
exists a partitioner algebra which contains a subalgebra which is not repre-
sentable as a partitioner algebra.
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7 Almost disjoint families and Katětov order

Another attempt at classifying MAD families uses Katětov order.

Definition 10. Given two ideals I and J we say that I is Katětov below
J (I ≤K J ) if there is a function f ∶ ω → ω such that f−1[I] ∈ J , for all
I ∈ I. We say that I is Katětov-Blass below J (I ≤KB J ) if the function f
is finite-to-one.

Given two almost disjoint families A and B we shall write A ≤K B (resp.
A ≤KB B) if I(A) ≤K I(B) (resp. I(A) ≤KB I(B)). We shall write I ≃K J
if I ≤K J and I ≥K J .

Some elementary properties of Katětov order are listed here. Let I and J
be ideals on ω.

1. I ≃K fin if and only if I is not tall.
2. If I ⊆ J then I ≤K J .
3. If X ∈ I+ then I ≤K I ↾X.
4. I ⊕J ≤K I and I ⊕J ≤K J .
5. I,J ≤K I ×J .

Here I ⊕ J denotes the disjoint sum and I × J the Fubini product of I
and J (see section 2). Properties (4) and (5) show that Katětov order is
both upward and downward directed. It is easily seen that the family of
maximal ideals is cofinal in Katětov order, while the ideals generated by
MAD families are coinitial among tall ideals in Katětov order. The definable
ideals sit somewehere in the middle and can be used to classify both maximal
ideals (dually, ultrafilters) and MAD families.

For more information about Katětov order in general and Katětov order on
Borel ideals in particular consult the recent survey [87]. Before, we turn our
attention to MAD families let us briefly summarize an analogous classification
of ultrafilters.

7.1 Ultrafilters and Katětov order

We only consider free ultrafilters, i.e. ultrafilters consisting of infinite sets.
The most important classes of ultrafilters, arguably, are: selective ultrafil-
ters, P-points, Q-points, rapid ultrafilters and nowhere dense ultrafilters. An
ultrafilter U on ω is:

� selective if for every partition {In ∶ n ∈ ω} of ω into sets not in U there is
U ∈ U such that ∣U ∩ In∣ = 1 for every n ∈ ω.

� a P-point if for every partition {In ∶ n ∈ ω} of ω into sets not in U there is
U ∈ U such that ∣U ∩ In∣ is finite for every n ∈ ω.
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� a Q-point if for every partition {In ∶ n ∈ ω} of ω into finite sets there is
U ∈ U such that ∣U ∩ In∣ = 1 for every n ∈ ω.

� rapid if the family of increasing enumerations of elements of U is dominat-
ing.

� nowhere dense (or a nwd-ultrafilter) if for every map f ∶ ω → R there is a
U ∈ U such that f[U] is a nowhere dense subset of R.

Baumgartner introduced the following definition in [20]. Let I be a family
of subsets of a set X such that I contains all singletons and is closed under
subsets. An ultrafilter U is an I-ultrafilter if for every F ∶ ω → X there is an
A ∈ U such that F [A] ∈ I.

Proposition 8. Let I be an ideal on ω. Then an ultrafilter U on ω is an
I-ultrafilter if and only if I /≤K U∗.

Most standard combinatorial properties of ultrafilters are characterized in
this way by Borel ideals of a low complexity (see e.g. [61] for details). Let U
be an ultrafilter and U∗ the dual ideal. Then

� U is selective iff ED /≤K U∗ iff R /≤K U∗,
� U is a P-point iff fin × fin /≤K U∗ iff conv /≤K U∗,
� U is a nowhere dense ultrafilter iff nwd /≤K U∗,
� U is a Q-point iff EDfin /≤KB U∗,
� U is rapid iff I /≤KB U∗ for any analytic P-ideal I.

The moral of the story is that upward cones of Borel ideals nicely strat-
ify/classify non-definable objects e.g. ultrafilters. We will see that the same
happens for downward cones and MAD families.

7.2 Destructibility of ideals by forcing and Katětov
order

Definition 11. Given an ideal I and a forcing notion P, we say that P de-
stroys I if there is a P-name Ẋ for an infinite subset of ω such that ⊩P “I ∩Ẋ
is finite for every I ∈ I”.

It turns out that Katětov order is an indispensable tool for studying de-
structibility of ideals by forcing. In [92], Katětov order is used to fully char-
acterize destructibility of ideals for a large class of forcing notions: the proper
forcings of the type PI of I-positive Borel subsets of the Baire space ωω or-
dered by inclusion, where I is a σ-ideal on ωω, (see [164]) which have the
Continuous Reading of Names (CRN) 3, see [92,164].

3 If PI is a proper forcing then it has the CRN if for every Borel function f ∶ B → 2ω with

an I-positive Borel domain B there is an I-positive Borel set C ⊆ B such that f ↾ C is

continuous.
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Many of the commonly used proper forcing notions can be naturally pre-
sented as forcings of the form PI with the CRN which are, moreover, contin-
uously homogeneous i.e. for every I-positive Borel set B there is a continuous
function F ∶ ωω → B such that F −1(A) ∈ I for all A ∈ I ↾ B. Now, given a
σ-ideal I on ωω, its trace ideal tr(I) is an ideal on ω<ω defined by

tr(I) = {a ⊆ ω<ω ∶ {r ∈ ωω ∶ ∃∞n ∈ ω r ↾ n ∈ a)} ∈ I}

.
It turns out that the trace ideals are critical, in the Katětov order, with

respect to PI -destructibility.

Theorem 28 ( [92]). Let PI be a proper forcing with CRN, which is continu-
ously homogeneous, and let J be an ideal on ω. Then the following conditions
are equivalent:

1. PI destroys J
2. J ≤K tr(I).

We now return to the study of Katětov order restricted to MAD families.

7.3 Katětov order on MAD families

Particular cases of the results of the preceding section can be expressed as
follows.

Theorem 29 ( [34,86,92,105]). Let A be a MAD family. Then:

1. A is Sacks-indestructible if and only if A /≤K tr(ctbl),
2. A is Miller-indestructible if and only if A /≤K scattered,
3. A is Cohen-indestructible if and only if A /≤K nwd.

It is easy to see that A ≤K fin×fin for every MAD family A. Moreover, the
Katětov order on MAD families is sufficiently complex, hence worth studying.

Theorem 30 ( [88]). Let A be a MAD family. Then

(1) there is a ≤K-antichain below A of cardinality c and
(2) there is a ≤K-decreasing chain of length c+ below A.

It follows that there are no K-minimal MAD families. Recently, in [4] it
has been proved that consistently there are MAD families, which are K-
maximal among MAD families. Call a MAD family A weakly tight provided
that (∀⟨In ∶ n ∈ ω⟩ ⊆ I+(A))(∃A ∈ I(A))(∃∞n ∈ ω) ∣A ∩ In∣ = ℵ0. The weakly
tight families are “almost” maximal:
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Proposition 9 ( [88]). Let A be a weakly tight MAD family and let B be a
MAD family. If A ≤K B then there is an X ∈ I+(A) such that B ≤K A ↾X.

As a corollary, it was noted in [88] that a MAD family which is both weakly
tight and K-uniform (K-equivalent to all of its restrictions to positive sets) is,
in fact, K-maximal. Assuming a version of Martin’s Axiom both weakly tight
and K-uniform MAD families were constructed in [88]. In [4] it was shown
that it can be done simultaneously:

Theorem 31 ( [4]). Assuming t = c there is a MAD family A which is both
weakly tight and K-uniform, hence K-maximal.

It is not known, whether weakly tight, or even K-maximal MAD families
exist in ZFC. Raghavan and Steprāns [136] have modified Shelah’s argument
for constructing a completely separable MAD family (see section 4) to prove
that

Theorem 32 ( [136]). Assuming s ≤ b there is a weakly tight MAD family.

Surprisingly, we do not even know, in ZFC, whether there is no K-largest
MAD family. However, at least consistently, there is not.

Theorem 33 ( [88]). Assuming b = c, for every MAD family A there is a
MAD family B such that A and B are K-incomparable.

The notion of a weakly tight MAD family is a weakening of a more natural
notion of tight MAD family closely related to Cohen-indestructibility. A MAD
family A is tight (or ℵ0-MAD [105,111]) if

(∀⟨In ∶ n ∈ ω⟩ ⊆ I+(A))(∃A ∈ I(A))(∀n ∈ ω) ∣A ∩ In∣ = ℵ0.

The next proposition provides a useful characterization of tight MAD fami-
lies.

Proposition 10 ( [88]). A MAD family A is tight if and only if ∀f ∶ Q→ ω
∃A ∈ I(A) f−1[A] is either dense or has non-empty interior.

It immediately follows that each tight MAD family is Cohen-indestructible,
and that being tight is upward closed in the Katětov order. The relation with
Cohen-idestructibility is extremely close:

Proposition 11 ( [105]). For every Cohen-indestructible MAD family A
there is an X ∈ I+(A) such that A ↾X is tight.

The existence of a tight (or, equivalently, Cohen-indestructible) MAD fam-
ily is known to follow from b = c, a < cov(M) and ♢(d) (see [124]). It is an open
question whether Cohen-indestructible MAD families exists in ZFC alone:

Problem 7 ( [150]). Is there a Cohen-indestructible MAD family?
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In fact, it is not even known, whether there is a Sacks-indestructible MAD
family. In [86] it is shown that

Proposition 12 ( [86]). There is a MAD family A such that A /≤K ctbl.

which is there (in [86]) falsely identified as Sacks-indestructible. Interesting
open questions concern the notion of K-maximality:

Problem 8. 1. Is there a K-maximal MAD family in ZFC?
2. Is there is a K-uniform MAD family in ZFC?
3. Is every K-maximal MAD family (weakly) tight?
4. Is it consistent that there a K-maximal MAD family of size less than c?
5. Is it true that there is no K-largest MAD family?

8 Hyperspaces and selections

The hyperspace of a topological space X (denoted by 2X) consists of all non-
empty closed subsets of X and is equipped with the Vietoris topology, i.e. the
topology generated by sets of the form:

⟨U ;V0, . . . , Vn⟩ = {F ∈ 2X ∶ F ⊆ U and F ∩ Vi ≠ ∅ for every i ≤ n} ,

where U,V0, . . . , Vn are nonempty open subsets of X.

8.1 Hyperspaces of Mrówka-Isbell spaces

Mrówka-Isbell spaces have been succesfully used in the study of continuous
selections and psedocompactness of hyperspaces. Concerning countable com-
pactness and pseudocompactness of 2X Ginsburg [72] proved the following

Theorem 34 ( [72]). (a) If every power of a space X is countably compact
then so is 2X .

(b) If 2X is countably compact (pseudocompact) then so is every finite
power of X.

and asked: Is there any relationship between the pseudocompactness of Xω

and that of the hyperspace 2X? Cao, Nogura and Tomita [38] gave the fol-
lowing partial answer:

Theorem 35 ( [38]). If X is a homogeneous Tychonoff space such that 2X

is pseudocompact then Xω is pseudocompact.
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Cao and Nogura then explicitly asked whether 2X is pseudocompact for
some/every Mrówka-Isbell space X. This problem was considered in [89]
where it was shown that

Proposition 13 ( [89]). The space (Ψ (A))ω is pseudocompact for every
MAD family A.

while

Theorem 36 ( [89]).

1. (p = c) 2Ψ(A) is pseudocompact for every MAD family A, and
2. (h < c) There is a MAD family A such that 2Ψ(A) is not pseudocompact.

The assumption in (2) can actually be weakened to the existence of a
base tree for P(ω)/fin (see section 2) without branches of length c. Rather
surprisingly, the following problem is open:

Problem 9. Is there in ZFC a MAD family A such that 2Ψ(A) is pseudocom-
pact?

Inspired by theorem 36 the authors answered Ginsburg’s question as fol-
lows:

Theorem 37 ( [89]). There is a subspace X of βω such that Xω is pseudo-
compact yet 2X is not.

8.2 Ψ-spaces and selections

A function ϕ defined on 2X (or some subspace of 2X) is a selection if ϕ(F ) ∈ F
for every F ∈ dom(ϕ). A selection is continuous if it is continuous with respect
to the Vietoris topology. In particular, a weak selection is a selection defined
on [X]2, the set of all two-element subsets of the space X.

The study of continuous selections was initiated by Michael in [118] in
1951. The general question studied by Michael is: When does a space admit
a continuous (weak) selection? Michael himself showed that a sufficient con-
dition for a space X to admit a continuous weak selection is that it admits a
weaker topology generated by a linear order, i.e. that the space is weakly or-
derable. The natural question, whether this characterizes spaces which admit
continuous weak selections, implicit in Michael’s paper, was stated explicitly
in a paper by van Mill and Wattel [162].

The answer is positive for (a) connected spaces [118], (b) compact spaces
[162] and even (c) pseudocompact spaces (see [6,67]). However, in [90] it was
shown that

Theorem 38 ( [90]). There is an almost disjoint family A such that the
space Ψ (A) admits a continuous weak selection but is not weakly orderable.
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In fact, the Ψ -space constructed in [90] admits a continuous selection for
all compact sets, yet is not weakly orderable. It is also shown there that a
separable space which admits a continuous weak selection admits, in fact, a
continuous selection for all finite sets. On the other hand:

Theorem 39 ( [90]). There is an almost disjoint family A such that the
space Ψ (A) admits a continuous selection for triples but no continuous weak
selection.

Selections on Ψ -spaces have also been considered in [85]. There it is shown
that Ψ (A) does not admit a selection for closed sets for any uncountable
AD family A. For more on continuous selections see Gutev’s article in this
volume.

9 Spaces of continuous functions

9.1 Ψ-spaces and Lindelöf Cp

Recall that Cp(X,Y ) denotes the space of all continuous functions from X to
Y with the topology of pointwise convergence, i.e the topology inherited from
the Tychonoff product Y X . The space Cp(X,R) is denoted simply by Cp(X).
The first result on Cp(Ψ(A)) we are aware of is due to Just, Sipacheva and
Szeptycki:

Theorem 40 ( [96]). Assuming ♢ there is an almost disjoint family A such
that the space Cp(Ψ(A)) has countable extent but is not normal.

The main interest in the study of spaces of continuous functions over Ψ -
spaces stems from trying to understand the Lindelöf property in spaces of
the form Cp(X). Buzyakova [36] showed that Cp(X) is Lindelöf where X is
the set of successor ordinals and ordinals of countable cofinality below any
ordinal α. This result inspired a study of the Lindelöf and related properties
in function spaces over Mrówka-Isbell spaces:

Theorem 41 ( [51]). The space Cp(Ψ(A)) is not Lindelöf for any MAD
family A.

The situation for Cp(X,2) is somewhat more interesting:

Theorem 42 ( [51,84]).

1. (b > ω1) The space Cp(Ψ(A,2)) is not Lindelöf for any MAD family A.
2. (CH) There is a maximal almost disjoint family A such that the space
Cp(Ψ(A,2)) is Lindelöf.
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The family constructed is a Mrówka family, i.e. MAD family with unique
compactification (see section 6.1). In particular, assuming CH one can con-
struct two Mrówka MAD families A0 and A1 such that Cp(Ψ(A0,2)) is Lin-
delöf while Cp(Ψ(A1,2)) is not. This clearly demonstrates the complexity of
the problem of characterizing Lindelöf property in function spaces.

For a compact scattered space K the topology of pointwise convergence
and the weak topology on C(K) coincide. We were informed by Koszmider
that several of the above results were obtained already by Pol in [131]. They
were also used in [147] in relation to problems posed in [102].

9.2 Almost disjoint families in functional analysis

According to [94]: “almost disjoint families of N have found many applications
in the theory of Banach spaces, some classical cases include Whitley’s short
proof of Philips’ theorem in [163], Haydon’s constructions of Grothendieck
spaces in [76], or Johnson and Lindenstrauss’ counterexamples concerning
weakly compactly generated Banach spaces in [95].” The most common (see
[76, 163]) use of almost disjoint families in the theory of Banach spaces is
as follows: Given a bounded sequence {xn ∶ n ∈ ω} of elements of a Banach
space, one wishes to find an A ⊆ ω such that the sequence {xn ∶ n ∈ A} is in
some sense good. The argument is that if {Aξ ∶ ξ < ω1} is an AD family then
not all Aξ can be bad. Banach spaces of the form C(Ψ(A)) were probably
first considered by Johnson and Lindenstrauss in [95] and Moltó in [123].

It is well known that if K is an infinite compact Hausdorff and scattered
space, then the Banach space C(K) of continuous functions on K has com-
plemented copies of c0, i.e., C(K) ∼ c0 ⊕ X ∼ c0 ⊕ c0 ⊕ X ∼ c0 ⊕ C(K).
Koszmider in [101] addresses the question if this could be the only type of
decompositions of C(K) /∼ c0 into infinite-dimensional summands for an infi-
nite scattered space K.

Theorem 43 ( [101]). Assuming p = c there is an almost disjoint family A
such that the Banach space C(Ψ(A)) has the following properties:

1. Every operator T ∶ C(Ψ(A))→ C(Ψ(A)) is of the from cI +S, where c is
a real number and S has range included in a subspace isomorphic to c0.

2. The only decompositions C(Ψ(A)) = A⊕B into two infinite dimensional
complemented subspaces are such that A ∼ c0 and B ∼ C(Ψ(A)) or B ∼ c0
and A ∼ C(Ψ(A)).

Koszmider posed the obvious problem:

Problem 10 ( [101]). Is the assumption p = c necessary?

as well as the following (we denote by F (A) the one point compactification
of Ψ(A), see section 10.2):
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Problem 11 ( [101]).

1. Suppose MA. Is it true that if ∣A∣ = ∣A′∣ < c, then C(F (A)) is isomorphic
to C(F (A′))?

2. Suppose MA. Is it true that if ∣A∣ < c, then C(F (A)) is isomorphic to its
square?

3. Are there two AD families A and A′ of the same cardinality such that
C(F (A)) is not isomorphic to C(F (A′))?

For more on C(Ψ(A)) consult [59] and [60].

Marciszewski and Pol [113,114] considered the spaces C(F (A)) equipped
with the weak topology . Marciszewski [113] answered a question of Corson by
proving:

Theorem 44 ( [113]). There is an almost disjoint family A such that the
Banach space C(F (A)) with the weak topology is not homeomorphic to
C(F (A)) ×C(F (A)).

In [114] Marciszewski and Pol also studied the Banach spaces C(F (A2ω))
and C(F (Aωω)) and showed that C(F (A2ω)) is weak-norm-perfect while
C(F (Aωω)) is not4.

A different application of almost disjoint families to functional analysis
was presented by Shelah and Steprāns in [142]. It deals with the notion of
masa i.e. maximal abelian self-adjoint subalgebras of C∗-algebras. It was
known that if the Continuum Hypothesis is assumed, then there is a non-
liftable masa in the Calkin algebra generated by its projections (consult [56]
for non-defined notions). Shelah and Steprāns in [142] introduced the notion
of a strongly separable MAD family as follows

Definition 12 ( [142]). Given an almost disjoint family A let

I+∗ (A) = {H ⊆ [ω]<ω ∖ {∅} ∶ ∀I ∈ I(A) ∃a ∈H a ∩ I = ∅}.

An almost disjoint family A is strongly separable if for every H ∈ I+∗ (A)
there are c-many A ∈ A such that for every n ∈ ω there is an a ∈H such that
a ⊆ A ∖ n.

They showed that

Theorem 45 ( [142]). If there is a strongly separable almost disjoint family
then there is a masa in the Calkin algebra generated by its projections which
does not lift to a masa of B(H).

Raghavan in [135] showed that it is consistent with ZFC that strongly
separable MAD families do not exist (see section 10.2).

4 A Banach space E is weak-norm-perfect if every norm-open subset of E is Fσ in the

weak topology.
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10 Fréchet and sequential spaces

Recall that a topological space X is sequential if any set which is not closed,
contains a sequence converging to a point outside of the set. Given A subset of
a sequential space X, let Â = {x ∈X ∶ x is a limit of a sequence of elements of

A}. For an ordinal α < ω1 we define A(α) recursively: A(0) = A, A(α+1) = ˆA(α)

and A(λ) = ⋃α<λA(α) for λ limit. In a sequential space X for any A ⊆ X
the closure of A is equal to A(α) for some α ≤ ω1. We denote by σ(A) the
minimal such α. The sequential order of a sequential space X is defined as
the supremum of σ(A) for A ⊆X.

A space X is Fréchet-Urysohn or just Fréchet if it is sequential of sequen-
tial order 1, i.e. every point in the closure of a subset of X is a limit point of
convergent sequence from the set.

10.1 Compact Fréchet and sequential spaces

Let A be an AD family. The one-point compactification of Ψ(A) is often
referred to as a Franklin compactum and is denoted by F (A). It is a sequential
space of sequential order at most two.

We call an AD family A nowhere maximal or nowhere MAD if for every
X ∈ I+(A) there is a B ∈ [X]ω which is almost disjoint from every element
of A. The following simple observation characterizes when Ψ(A) is Fréchet:

Proposition 14. F (A) is Fréchet if and only if A is nowhere MAD.

Michael in [117] asked whether the product of compact Fréchet spaces
is Fréchet. Malykhin [110], Olson [129], and Boehme and Rosenfeld [24] all
independently constructed counter-examples of the same kind - Franklin com-
pacta, assuming various set-theoretic axioms. The main point of the proofs
was another rather simple observation:

Proposition 15. Assume that A is a MAD family which is partitioned as
A = A0 ∪A1 so that each Ai, i ∈ 2, is nowhere MAD. Then F (A0) × F (A1)
is not Fréchet.

It is straightforward to show that if F (Ai) = Ψ(Ai) ∪ {∞} then the set
∆ = {(n,n) ∶ n ∈ ω} ⊆ F (A0) × F (A1) has the point (∞,∞) in its closure,
but no sequence from ∆ converges to it.

Hence, the problem reduces to finding a “partitionable” MAD family. Now,
doing this is easy asssuming, for instance, the Continuum Hypothesis or even
just the existence of a completely separable MAD family. However, Simon
[145] found an ingenious and simple way of proving the existence of such a
family in ZFC:
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Theorem 46 ( [145]). For every MAD family A there is an X ∈ I+(A) such
that A ↾X = A0 ∪A1 so that each Ai, i ∈ 2, is nowhere MAD.

Proof. The proof proceeds by contradiction. Assume that A is such that:

(∗) for every X ∈ I+(A) and every partition A ↾ X = A0 ∪A1 there is a
Y ⊆X, Y ∈ I+(A) such that Ai ↾ Y is maximal for some i ∈ 2.

List such A as {Af ∶ f ∈ Z} for some Z ⊆ 2ω. Recursively, construct a
function g ∈ 2ω and a decreasing sequence {Xn ∶ n ∈ ω} ⊆ I+(A) so that for
every n ∈ ω

Ag(n)n ↾Xn is maximal,

where Ain = {Af ∶ f ∈ Z such that f(n) = i}. This can be done, as a direct
consequence of (∗).

Now, use proposition 2 to find X ∈ I+(A) such that X ⊆∗ Xn for every
n ∈ ω. As X ∈ I+(A) there are infinitely (even uncountably) many f ∈ Z
such that Af ∩X is infinite, in particular, there is an f ≠ g such that Af ∩X
is infinite. Then, however, there is an n ∈ ω such that g(n) ≠ f(n), hence

Af /∈ Ag(n)n , hence, Af ∩Xn is finite and, consequently, Af ∩X is finite, which
is a contradiction. ⊓⊔

It was not clear for a long time whether the positive restriction in Simon’s
theorem is, in fact, necessary. Recently, Dow [46] showed that it is necessary
indeed.

Theorem 47 ( [46]). It is consistent with ZFC that there is a MAD family
A of size ω2 such that every B ⊆ A of size ω2 is somewhere MAD, i.e. not
nowhere MAD.

That is, every partitionable restriction of A has size ω1 and, in particular
A itself is not partitionable.

Berner in [22] constructed, assuming a = c, a non-compact space X such
that βX is Fréchet. Apparently a ZFC example of such a space has since been
constructed by Reznichenko (unpublished).

If A is not nowhere MAD then F (A) is a compact sequential space of
sequential order 2. Bashkirov in [17] constructed a whole scale of compact
sequential spaces assuming the Continuum Hypothesis:

Theorem 48 ( [17]). Assuming CH, there are compact sequential spaces of
sequential order α for every α ≤ ω1.

Amazingly, 2 is the highest sequential order of a compact sequential space
known in ZFC.

Problem 12 ( [5]). Is there, in ZFC, a compact sequential space of sequential
order 3? of infinite sequential order?
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After much labour Dow in [45] constructed a compact sequential space
of sequential order 4, assuming Martin’s Axiom. We quote from [45]:“There
is a compelling motivation for determining the maximum possible sequential
order in the presence of the Proper Forcing Axiom, PFA, which comes from
the Moore-Mrówka problem (see [14]]). First of all, it is quite remarkable that
the best known lower bounds are 2 in ZFC and now 4 under PFA. Secondly,
Balogh proved that each compact space of countable tightness is sequential
if PFA is assumed (which is known to imply Martin’s Axiom and c = ω2). If
there is some finite bound on the sequential order of compact sequential spaces
in models of PFA, it would mean that compact spaces of countable tightness
are literally but a few steps away from being Fréchet-Urysohn.”

The question whether there is consistently some non-trivial upper bound
on the sequential order of compact sequential spaces remains open. Some
impressive progress has been made by Dow [47] though:

Theorem 49 ( [47]). Assuming PFA there is no compact scattered space of
height greater than ω in which the sequential order and the scattering heights
coincide.

10.2 Fréchet groups and strongly separable MAD
families

There are many problems in set theory and set-theoretic topology which re-
quire that certain ideals be destroyed while the tallness of others is being pre-
served in forcing extensions of the universe. This section discusses instances
of this phenomenon related to the study of Fréchet groups and almost disjoint
families.

A classical theorem of Kakutani and Birkhoff states that a T1 topological
group is metrizable if and only if it is first countable. The natural question
as to what extent can the first countability be weakened was addressed by
Malykhin, who asked if there is a separable (equivalently, countable) Fréchet-
Urysohn group that is not metrizable?

There are known consistent positive solutions under either of the follow-
ing assumptions: p > ω1 (Malykhin), the existence of an uncountable γ-set5

(Gerlits-Nagy [69]) and p = b (Nyikos [128]). In fact, by a recent result of
Tsaban and Ohrenstein [130] the existence of an uncountable γ-sets is the
weakest of the assumptions.

The problem was very recently proved idependent in [79]:

5 A separable metric space X is called a γ-set if every ω-cover of X has a γ-subcover. An
open cover U = {Un ∶ n ∈ ω} is an ω-cover if for every finite F ⊆ X there is a n ∈ ω such

that F ⊆ Un; U = {Un ∶ n ∈ ω} is a γ-cover if for every x ∈ X and for all but finitely many

n ∈ ω, x ∈ Un.
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Theorem 50 ( [79]). It is relatively consistent with ZFC that every separable
Fréchet topological group is metrizable.

The method of the proof is based on an earlier result form [31]:

Theorem 51 ( [31]). It is consistent with the continuum arbitrarily large
that no uncountably generated filter of character less than c is a FUF-filter.6

The question as to what extent is algebra involved in the problem was
raised by I. Juhasz:

Problem 13 (Juhász). Is there in ZFC a countable Fréchet space of un-
countable π-weight?

A consistency result here seemed probable given that

Theorem 52 ( [79]). It is consistent with the continuum arbitrarily large
that every countable Fréchet space of π-weight less than c is metrizable.

complemented by a results of Barman and Dow [15]

Theorem 53 ( [15]). It is consistent with ZFC that every countable Fréchet
space has π-weight at most ℵ1.

However, Dow [41] has recently shown that

Theorem 54 ( [41]). There is a countable Fréchet space of uncountable π-
weight, assuming b = c.

Which combined with an earlier result of Nyikos shows that there is a
countable Fréchet space of uncountable π-weight, assuming c ≤ ℵ2.

The method of proof of theorem 51, together with a clever Ramsey theo-
retic argument, was used by Raghavan in [135] to answer a question of Shelah
and Steprāns [142] (see section 9):

Theorem 55 ( [135]). It is consistent with ZFC that there are no strongly
separable MAD families.

6 A filter F on ω is a FUF-filter if given a family H ⊆ [ω]<ω ∖{∅} such that every element
of F contains an element ofH there is a sequence {an ∶ n ∈ ω} ⊆H such that every element

of F contains all but finitely many an’s. Reznichenko and Sipacheva in [137] noted that
a FUF-filter (short for Fréchet-Urysohn for finite sets) produces a group topology on the

Boolean group [ω]<ω which is always Fréchet and is metrizable if and only if the filter has

countable character.



32 Michael Hrušák

11 Concluding remarks

There are many important topics on almost disjoint families that have been
omitted. For instance continuous functions on Ψ -spaces were considered by
Bashkirov, Garćıa-Ferreira, Kulesza, Levy, Malykhin and Tamariz-Mascarúa
in [18,66,103,112].

In several cases the reason for omission was that the topic was too set-
theoretic without immediate connection to topology. Such is the case of the
study of cardinal invariants of the continuum related to almost disjoint fam-
ilies. We will mention the main results rather telegraphically here.

It is well known that the almost disjointness number a is larger or equal
to the boundedness number b. The fact that the strict inequality b < a is
consistent was proved by Shelah in [139] by a countable support iteration of
proper forcings. It was later re-proved by Brendle in [26] by finite support
iteration of σ-centered posets, with the added advantage that the continuum
and the values of b and a can be made arbitrarily large (though the proof
gives that a is the successor of b). The longstanding open problem whether d
can be strictly smaller than a was quite recently solved also by Shelah in [140]
by introducing a new type of non-linear iteration technique called iteration
along templates. The method was used and further developed by Brendle
in [28–30] and used to show, among other results, that the cardinal invariant
a can have countable cofinality. The surprising feature of the method is that
it works only for cardinals above ω1. So the following problem attributed to
Roitman remains open:

Problem 14. Is it consistent that d = ω1 yet a > ω1?

In [81] a combinatorial principle called ♢d was introduced as a slight
strengthening of the assumption d = ω1 and it is showed there that ♢d implies
that a = ω1. It was noticed by Brendle that the template method producing
a model of d = ω1 would produce a model of ♢d and hence is not suitable for
answering Roitman’s question. The idea of associating a guessing principle
to a cardinal invariant was further explored in [124] where a whole scheme of
♢-like principles was introduced and studied.

Another class of cardinal invariants related to almost disjoint families in-
volves extensions of AD families to MAD families. Probably the first of these
was considered by Leathrum in [108]. The cardinal invariant o is defined as
the minimal size of an almost disjoint family A on 2<ω such that A2ω ∪A is a
MAD family (see [26,108]). A whole variety of similar cardinal invariants was
introduced by Fuchino, Geschke and Soukup in [70]. Fixing an AD family A
they define a+(A) as the minimal size of an almost disjoint family B such that
B∪A is a MAD family. In this notation o = a+(A2ω). They also introduce the
cardinal invariant a+(κ) as the supremum of a+(A) for A an AD family of
size κ and show that both a < a+(ℵ1) = c and a+(ℵ1) < c are consistent with
ZFC. However, in their second model a+(ℵ1) = ℵ2 < c so they ask the natural
question:
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Problem 15. [70] Is it consistent that a+(ℵ1) = ℵ1 < c?

Another subject we did not consider is treating almost disjoint families
themselves as topological spaces, as subspaces of P(ω). It is easy to check
that every AD family is both meager and of Lebesgue measure zero. There are
no analytic MAD families [116] though assuming V = L there is a co-analytic
one as shown by Miller [120]. Recently, Brendle and Khomskii [25] showed
that it is consistent with b > ℵ1 that there is a co-analytic MAD family,
answering a question of Friedman and Zdomskyy. Törnquist, unpublished,
(see [25]) showed that the existence of a Σ1

2 MAD family is equivalent to the
existence of a Π1

1 MAD family.
Miller in [122] has constructed a consistent example of a MAD family which

is a Q-set. Brendle and Piper [32], assuming the Continuum Hypothesis,
constructed a MAD family which is a σ-set and another MAD family which
is concentrated on a countable set.7

We have also not considered the combinatorics of almost disjoint families
on uncountable cardinals. The area is too vast and too detached from topol-
ogy to venture even briefly into it. We will mention only a few recent topolog-
ical constructions involving strongly almost disjoint (i.e. almost disjoint mod
finite) families on uncountable cardinals. The main point being, that to any
strongly almost disjoint family A of subsets of an uncountable cardinal κ one
can naturaly associate a generalized Mrówka-Isbell space Ψ(κ,A) defined on
κ ∪A in the obvious way. The first such space was probably considered by
Solomon in [148], where the author gave an example of a scattered Tychonoff
space which is not zero-dimensional (see [156] for separable examples).

Szeptycki in [151] proved, assuming c = b+, that for every MAD family A
of countable subsets of ω1 the space Ψ(ω1,A) is not countably metacompact
while Burke [35] did the same assuming a = c.

Dow and Vaughan [52, 53] considered ordinal remainders of spaces of the
form Ψ(κ,A). First, in [52], they showed, extending results of Mrówka [126],
that for every κ ≤ c there is a MAD family A of countable subsets of κ
such that the space Ψ(κ,A) has unique compactification and then in [53]
they proved that for every infinite cardinal κ ≤ c+ there is a maximal almost
disjoint family A of countable sets such that the Čech-Stone remainder of
Ψ(κ,A) is homeomorphic to κ+1. In [83] another version of Mrówka family is
constructed: It is shown there that there is a maximal strongly almost disjoint
family A of subsets of κ = (2ω1)+ such that for every B ⊆ A of size ℵ1 and
every D ⊆ κ of size ℵ1 there is an A ∈ A such that (B∖D)∩A ≠ ∅ for all B ∈ B.
This implies that not only does Ψ(κ,A) have a unique compactification, but
also that every function f ∶ Ψ(κ,A) → R continuous with respect to the
Gδ-topology on Ψ(κ,A) is constant on a co-countable subset of A.

7 Recall that a set of reals X is a σ-set if every Gδ subset of X is Fσ , and X is concentrated

on a countable set D ⊆ X if every open set containing D contains all but countably many

elements of X.
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of filters in Boolean algebras. Trans. Amer. Math. Soc., 267(1):265–283, 1981.
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16. T. Bartoszyński and H. Judah. Set theory. On the structure of the real line. A K

Peters, Ltd., 1995.
17. A. I. Bashkirov. The classification of quotient maps and sequential bicompacta. Dokl.

Akad. Nauk SSSR, 217:745–748, 1974.
18. A. I. Bashkirov. On continuous maps of Isbell spaces and strong 0-dimensionality.

Bull. Acad. Polon. Sci. Sér. Sci. Math., 27(7-8):605–611 (1980), 1979.
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127. Peter Nyikos. Čech-Stone remainders of discrete spaces. Open problems in topology

II, pages 207–216, 2007.
128. Peter J. Nyikos. Subsets of ωω and the Fréchet-Urysohn and α i-properties. Topology
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