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In this work we study the cardinal invariants of the ideal of strongly porous sets
on ω2. We prove that add(SP) = ω1 , cof(SP) = c and that it is consistent
that non(SP) < add(N), answering questions of [5]. We also find a connection
between the strongly porous sets on ω2 and the Martin number for σ -linked
forcings, and we use this connection to construct a model where all the Martin
numbers for σ -k-linked forcings are mutually different.
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1 Introduction

The notion of porosity is a concept of smallness. Intuitively, a subset of a metric
space is porous if it has holes that are big in some sense. The study of σ -porous sets
began in 1967 in [4] and since then, many applications have been found. One of these
applications can be found in [8], where the authors proved that, given a Banach space
X with a separable dual and a continuous convex function f on X , the set of points
which f is not Fréchet differentiable is σ -porous. Other applications can be found in
[2], [6], [9], [10] and [14].

We shall study the notion of strong porosity: Given a metric space 〈X, d〉, a subset
A ⊆ X is strongly porous if there is a p > 0 such that for any x ∈ X and any 0 < r < 1,
there is y ∈ X such that Bp·r(y) ⊆ Br(x) \ A. In this paper we will refer to strongly
porous sets as porous sets. We shall work mostly with porous sets in ω2: We will
say that a set A ⊆ ω2 is n-porous if for every s ∈ <ω2 there is a t ∈ n2 such that
〈sat〉 ∩ A = ∅. By sat we denote the concatenation of s followed by t , and by 〈s〉 we
denote the cone of s, that is 〈s〉 = {f ∈ ω2 : s ⊆ f}. It can be shown (see [5]) that a
set A ⊆ ω2 is porous if and only if there is an n ∈ ω such that A is n-porous. A set
A in a metric space 〈X, d〉 is σ -porous if and only if it is σ -lower porous (see [13]),
where A is lower porous if for every x ∈ X there exists ρx > 0 and r0x > 0 such that
for any 0 ≤ r ≤ r0x there is y ∈ X such that Bρx·r(y) ⊆ Br(x) \ A. Another classical
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notion of porosity is upper porosity: A set A in a metric space 〈X, d〉 is upper porous
if for every x ∈ X there is ρx > 0 and a sequence rn → 0 such that for every n ∈ ω
there is yn ∈ X such that Bρ·rn(yn) ⊆ Brn(x) \ A. We will denote the σ -ideal generated
by porous sets on ω2 by SP , the σ -ideal generated by n-porous sets by SPn , and the
σ -ideal generated by upper porous sets by UP. A detailed survey of the different types
of porosity can be found in [13].

Cardinal invariants of these σ -ideals have been studied in [3], [5], [10], [11] and [12].
Recall that, given a σ -ideal I over a set X , the following are the standard cardinal
invariants of I :

add(I) = min{|A| : A ⊆ I ∧
⋃
A /∈ I},

cov(I) = min{|A| : A ⊆ I ∧
⋃
A 6= X},

non(I) = min{|Y| : Y ⊆ X ∧ Y /∈ I},
cof(I) = min{|A| : A ⊆ I ∧ ∀B ∈ I(∃A ∈ A(B ⊆ A))}.

In [5] the authors proved that the cardinal invariants of the σ -ideal of lower porous
sets in the real line are the same as the cardinal invariants of SP . The authors proved
that non(SP) < mσ-centered is consistent, that cov(SP) > cof(N) is consistent, and
that cov(SP) < c is consistent, where mσ-centered is the smallest cardinal where the
Martin’s axiom for σ -centered forcings fails and N is the ideal of sets of Lebesgue
measure zero. In contrast with these results, there are some analogue inequalities
that holds for UP. In [12], M. Repický proved that non(UP) ≥ mσ-centered and
cov(UP) ≤ cof(N) holds. He also proved [10] that non(UP) ≥ add(N) and in [3], J.
Brendle proved that add(UP) = ω1 and cof(UP) = c holds. In [5], the authors asked
if those last three inequalities hold for the SP ideal. In this work we give an answer to
that question: We show that add(SP) = ω1 , cof(SP) = c and that it is consistent that
non(SP) < add(N).

Given k ∈ ω and a forcing notion P a subset A ⊆ P is k-linked if for every collection
{ai : i ∈ k} of k elements of A, there is an a ∈ P stronger than each ai , that is, for
every i ∈ k , a ≤ ai . P is σ -k-linked if P is the countable union of k-linked subsets of
P. We will denote mk the Martin number for σ -k-linked forcings, that is, the smallest
cardinal κ such that there is a σ -k-linked forcing P and κ P-dense subsets of P such
that no filter of P intersects them all.

If X,Y are sets, then YX is the set of all functions from Y to X and <ωX =
⋃

n∈ω
nX .

If T ⊆ <ωX is a tree, then by [T] we denote the set of branches of T , that is,
[T] = {f ∈ ωX : ∀n ∈ ω(f � n ∈ T)}. For end(T) we will denote the end nodes of T ,
that is the nodes of T without extensions. If σ, s ∈ <ω2, then we will denote that σ is
an initial segment of s by σ v s. In our forcing notation, the stronger conditions are
the smaller ones. For everything else, our notation follows [1].
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2 Additivity and cofinality.

The main goal of this section is to prove that add(SP) = ω1 and cof(SP) = c. We will
use the following notion.

Definition 2.1 Let k ∈ ω . A tree T ⊆ <ω2 is a k-porous tree if for every s ∈ <ω2
there is t ∈ k2 such that sat /∈ T .

Note that A ⊆ ω2 is k-porous if and only if there is a k-porous tree T such that [T]
contains A.

Theorem 2.2 There is a family {Tf : f ∈ ω2} of 2-porous trees such that for every
X ∈ SP , the set {f ∈ ω2 : [Tf ] ⊆ X} is countable.

Proof We will construct the family {Tf : f ∈ ω2} as follows: For every a ⊆ <ω2
such that |a| = 2n , let ϕa : a → n2 be a bijective function. For every i ∈ ω , let
ψi : {a ⊆ i2 : ∃k ∈ ω(|a| = 2k)} → ω \ {0} be an injective function. If a ⊆ i2 and
|a| = 2k , define

σa = 〈0, 1, . . . , 1︸ ︷︷ ︸
2ψi(a) times

, 0〉.

For each σ ∈ <ω2, we will recursively define a finite tree Tσ as follows: T∅ = {∅}
and if Tσ is defined, then

Tσai = {s ∈ <ω2 : ∃t ∈ end(Tσ)(∃j ∈ ω(∃a ⊆ |σ|+12

(|a| = 2j∧σai ∈ a∧ s v taσaa ϕa(σai))))}∪{s ∈ <ω2 : ∃t ∈ end(Tσ)(s v ta〈1, 1〉)}.

It is easy to see that, for each σ ∈ <ω2, Tσ is a finite 2-porous tree and that if σ v τ ,
then Tσ ⊆ Tτ . For each f ∈ ω2, define Tf =

⋃
n∈ω Tf �n . It follows easily that each Tf

is a 2-porous tree.

We will show that the family {Tf : f ∈ω 2} is the family we were looking for: Let
X ∈ SP . Without loss of generality we will assume that X =

⋃
i∈ω[Ti], where Ti

is an i + 1-porous tree. We must show that the set B = {f ∈ ω2 : [Tf ] ⊆ X} is
countable: For each s, t ∈ <ω2 and each n ∈ ω , define Bs,t,n = {f ∈ ω2 : t v
f , s ∈ Tt ∧ [Tf ] ∩ 〈s〉 ⊆ [Tn]}. We will see that B ⊆

⋃
s,t∈<ω2,n∈ω Bs,t,n : If f is

such that f ∈ B, then [Tf ] ⊆
⋃

n∈ω[Ti]. Using the Baire Category Theorem we can
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find s ∈ Tf and n ∈ ω such that [Tf ] ∩ 〈s〉 ⊆ [Tn]. Find k ∈ ω such that s ∈ Tf �k .
It follows that f ∈ Bs,f �k,n . To finish the proof we will see that each Bs,t,n has at
most 2n+1 − 1 elements: Suppose this is not the case and let s, t ∈ <ω2, n ∈ ω and
{fi}i<2n+1 ⊆ Bs,t,n . Extend s to σ such that σ ∈ end(Tt). Let j ∈ ω be such that the
set a = {fi � j : i < 2n+1} has 2n+1 elements and let

s = σa〈 1, . . . , 1︸ ︷︷ ︸
2·(j−|t|) times

〉aσa.

The tree Tn is n + 1-porous, so there is a τ ∈ 2n+1 such that saτ /∈ Tn . Find k < 2n+1

such that ϕa(fk|j) = τ and observe that saτ = saϕa(fk|j) ∈ Tfk . As a consequence,
[Tfk ] ∩ 〈t〉 * [Tn], but this contradicts the fact that fk ∈ Bs,t,n . This implies that each
Bs,t,n is finite, and therefore B is countable.

We can now prove the main result of this section.

Corollary 2.3 add(SP) = ω1, cof(SP) = c.

Proof Let {Tf : f ∈ ω2} be the family given by the theorem above. If H ⊆ ω2
is an uncountable set, then the set

⋃
{[Tf ] : f ∈ H} /∈ SP . As a consequence,

add(SP) = ω1 . On the other hand, if κ < c and if {Xα : α < κ} ⊆ SP , then there is
an f ∈ ω2 such that, for every α < κ, [Tf ] * Xα and therefore cof(SP) = c.

Observe that this last proof can be used to show that add(SPn) = ω1 = add(SP) and
cof(SPn) = c = cof(SP). In section 4 and 5 we will see that the behavior of the
uniformity number and the covering number is more complicated.

3 Uniformity number

In this section we will prove the consistency of non(SP) < add(N). We will also
develop some tools that we will use later in this paper. We will need the following
concept, inspired in the usual concept of a k-Sacks tree in <ωk .

Definition 3.1 Let k ∈ ω . A tree T ⊆ <ωk is a k-anti-Sacks tree if for every s ∈ T
there is i < k such that sa〈i〉 /∈ T . We will denote by ASk the σ -ideal generated by
the branches of k anti-Sacks trees.
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This notion corresponds to the analogue of the notion of 1-porous tree in <ωk and it
is closely related to the k-Sacks forcing. Recall that a k-Sacks tree T is a tree on <ωk
such that for every s ∈ T , there is a t ∈ T such that, for every i < k , tai ∈ T . The
k-Sacks forcing Sk is the collection of all k-Sacks trees ordered by reverse inclusion.
It is well-known that the k-Sacks forcing is equivalent to Borel(ωk)/ASk . There
is a natural connection between k2-anti-Sacks trees and k-porous sets given by the
following argument:

Let ϕk : 2k → k2 be a bijective function. Let ψk : ω(2k) → ω2 defined by ψk(x) =

ϕk(x|1)aϕk(x|2)a . . . Clearly A ∈ AS2n if and only if ψn(A) ∈ SPn. As a consequence,
the ideals AS2k and SPk share the same cardinal invariants, i.e. add(SPk) = add(AS2k ),
cov(SPk) = cov(AS2k ), non(SPk) = non(AS2k ) and cof(SPk) = cof(AS2k ). Using
a similar argument to the ones we gave in the last section, it is possible to show that
add(ASk) = ω1 and that cof(ASk) = c. Alternatively, a proof of this fact can be found
in [7].

We shall introduce a notion that we will use to keep non(SP) small in a forcing
extension.

Definition 3.2 Let P be a forcing notion and let A ⊆ 2ω be such that A /∈ ASk . We
say that P strongly preserves non(ASk) in A if for every P-name

.
X of a k-anti-Sacks

tree there is a Y ∈ ASk such that, for every x ∈ A, if x /∈ Y then P 
 “x /∈
.
X". We

will say that P strongly preserves non(ASk) if P strongly preserves non(ASk) in ωk .

It is easy to see that, if P strongly preserves non(ASk) in A, then 
 “P"A /∈ ASn and
if P strongly preserves non(ASk), then P strongly preserves non(ASn) in A for every
A ⊆ ωk . The following lemma will show the connecion between strongly preserving
non(ASk) and preserving non(SP) as a small cardinal.

Lemma 3.3 Suppose that a forcing notion P strongly preserves non(ASk) for every
k ∈ ω , then P 
 “ω2 ∩ V /∈ SP".

Proof Let {
.

Ci : i ∈ ω} be a collection of P-names such that each
.

Ci is a name for
an i-porous set. For each i ∈ ω , there is a collection {Ci

j : j ∈ ω} of i-porous sets

such that if x ∈ ω2 and x /∈
⋃

j∈ω Ci
j , then P 
 “x /∈

.
Ci" (this is achieved using

that P strongly preserves non(AS2n) and the properties of the function ψk defined
above). If x /∈

⋃
{Ci

j : i, j ∈ ω}, then P 
 “x /∈
⋃
{
.

Ci : i ∈ ω}". As a consequence,
P 
 “ω2 /∈ SP".
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The next lemma shows that there is a connection between porous sets and σ -k-linked
forcings.

Lemma 3.4 Let P be a forcing notion. If P is σ -k-linked, then P strongly preserves
ASk in ωk .

Proof Let {Pi : i ∈ ω} ⊆ P be a sequence of k-linked subsets such that P =
⋃

i∈ω Pi .
Let

.
A be a P-name of an k-anti-Sacks tree. Define Tn ⊆ ωk as follows:

Tn = {s ∈ <ωk : ∃p ∈ Pn(p 
 “s ∈
.
A")}

We claim that, for each n ∈ ω , Tn is a k-anti-Sacks tree. Suppose this is not the case,
so there is an s ∈ Tn such that, for every i ∈ k , sai ∈ Tn . For every i ∈ k , we can pick
a condition pi ∈ Pn such that pi 
 “sai ∈

.
A". Let p ∈ P be such that, for every i ∈ k ,

p ≤ pi . Then p 
 “∀i ∈ k(sai ∈
.
A)". This contradicts the fact that

.
A is a P-name of

a k-anti-Sacks tree.

To conclude the proof, note that for every x ∈ ωk , if p 
 “x ∈ [
.
A]", then x ∈ [Tn],

where n is such that p ∈ Pn .

The lemma above is optime in the sense that, for each k , there is a σ -k − 1-linked
forcing Pk such that Pk 
 “ωk∩V ∈ ASk" and therefore Pk does not strongly preserve
ASk . This will be proved in the next section.

We shall show that the property of strongly preserve non(ASk) is preserved along finite
support iterations.

Lemma 3.5 Let A ⊆ ωk and let P = {Pα,
.

Qα : α ∈ κ} be a finite support iteration
of c.c.c. forcings such that Pα 
 “

.
Qα strongly preserves ASk in A", then P strongly

preserves non(ASk) in A.

Proof We will proceed by induction over κ. It is easy to see that the lemma holds for
succesor ordinals, and if κ has uncountable cofinality we can use a standard reflection
argument to show that P strongly preserves non(ASk) in A, so it is enough to show
that the lemma holds for κ = ω : let

.
T be a P-name of a k-anti-Sacks tree. For each

n ∈ ω , let
.

Tn be a Pn -name for the following set.

Tn = {s ∈ ωk ∩ V : P(n,ω) 
 “s ∈
.
X"}.

It is easy to see that each
.

Tn is name for a k-anti-Sacks tree. Now we use that each Pn

strongly preserves non(AS) to find a family {T j
i : i, j ∈ ω} such that, for each n ∈ ω ,

if x ∈ A and If x ∈ A and x /∈
⋃

i∈ω[Tn
i ], then P 
 “x /∈ [

.
Tn]". It is easy to see that

the set Y =
⋃
{[T j

i ] : i, j ∈ ω} is the set we are looking for.
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For constructing the model we are looking for, we will use the amoeba forcing A with
the following presentation:

A = {B ∈ Borel(2ω) : µ(B) >
1
2
}

Borel(2ω) represents the collection of Borel subsets of the Cantor space and µ is the
standard Lebesgue measure over 2ω . The order is given by A ≤ B if and only if
A ⊆ B. The following lemma is well-known.

Lemma 3.6 The amoeba forcing is σ -n-linked for every n ∈ ω .

Proof Let n ∈ ω . For every clopen C in 2ω , define

AC = {A ∈ A : µ(C\A) <
1
n
· (µ(C)− 1

2
)}

We will show that A =
⋃
{AC : C is a clopen on 2ω}: Let A ∈ A and let ε > 0 such

that µ(A) = 1
2 + ε. Find an open set U ⊆ 2ω such that A ⊆ U and µ(U\A) < ε

n . Now
find a clopen set C ⊆ U such that µ(C) > 1

2 + ε. Then

µ(C\A) < µ(U\A) <
ε

n
=

1
n
· (1

2
+ ε− 1

2
) <

1
n
· (µ(C)− 1

2
).

Therefore A ∈ AC . Now we must show that, for every clopen set C ⊆ 2ω , the
intersection K of an arbitrary family {Aj : j ∈ n} ⊆ AC is an element of A. This is a
consecuence of the following calculations:

µ(C) ≤ µ(K) +
∑
j∈n

µ(C\Aj) < µ(K) +
1
n
· (
∑
j∈n

µ(C)− 1
2

) = µ(K) + µ(C)− 1
2
.

As a consecuence, 1
2 < µ(K). Therefore K ∈ A.

We are ready to prove the main result of this section. The method of the proof was
suggested to us by J. Brendle.

Theorem 3.7 If ZFC is consistent, then ZFC + non(SP) < add(N) is consistent.

Proof Start with a model V such that V |= CH . Let P = {Pα,
.

Qα : α < ω2} be a
finite support iteration of the amoeba forcing. It follows from the lemmas above that P
strongly preserves non(ASk) for every k ∈ ω and therefore P 
 “2ω ∩ V /∈ SP". As
a consequence, we have that V[G] |= non(SP) = ω1 . It is a known fact (see [1]) that
V[G] |= add(N) = ω2 , hence V[G] |= non(SP) < add(N).
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4 The Martin numbers of σ-k-linked forcings

It is easy to see that m2 ≤ m3 ≤ . . . and, for each k > 1, it is possible to get the
consistency of mk < mk+1 by forcing with a finite support iteration of σ -k + 1-linked
forcings over a model of CH. In this section we will construct a model where all the
Martin numbers mi are mutually different. In this model, all the cardinals non(ASi)
will be different all at once (as a consequence, the cardinals non(SPi) will differ from
each other). We will use the following forcing notions. Given k > 2 let

Pk = {〈s,F〉 : (a) s is a finite k-anti-Sacks trees of height ht(s),
(b) F ∈ [ωk]<ω, and dF � ∆Fe is a finite k-anti-Sacks tree,
(c) s ⊆ dF � ∆F + 1e},

where F � k = {f � k : f ∈ F}, dFe = {s ∈ <ωk : ∃f ∈ F(s ⊆ F)} and
∆F = min{n ∈ ω : |F � n| = |F|}. The order is defined by 〈s′,F′〉 ≤ 〈s,F〉 if and
only if s ⊆ s′ and F ⊆ F′ . We will be using the following proposition.

Proposition 4.1 Given a k > 2, Pk 
 “ωk ∩ V ∈ ASk".

Proof It is easy to see that, for every f ∈ ωk and n ∈ ω , the following sets are dense
in P:

Df = {〈s,F〉 ∈ Pk : ∃σ ∈ <ωk(σaf � (ω \ |σ|) ∈ F)},

En = {〈s,F〉 ∈ Pk : ∆F > n ∧ s = F � ∆F + 1}.

If G ⊆ Pk is a filter meeting all these dense sets, then, using that the sets En are dense,
it follows that T =

⋃
{s : ∃F(〈s,F〉 ∈ G)} is a k-anti-Sacks tree. If σ ∈ ωk and if

C[σ] = {σax � (ω \ |σ|) : x ∈ [T]}, then, using that the Df are dense, it follows that
ωk ∩ V ⊆

⋃
{C[σ] : σ ∈ <ωk} ∈ ASk .

The last proposition together with the Lemma 3.4 implies that Pk is not σ -k-linked.
In contrast of this last observation, we have the following proposition.

Proposition 4.2 For each k > 1, Pk+1 is σ -k-linked.

Proof For every s, t finite k-anti-Sacks tree of height ht(s), ht(t) respectively, define

P(s, t) = {〈s,F〉 ∈ Pk+1 : ht(t) > ∆F ∧ F � ht(t) = t}.

It is easy to see that Pk+1 =
⋃
{P(s, t) : s, t are finite k anti-Sacks trees }. We will

show that every P(s, t) is k-linked: Let {〈s,Fi〉 : i < k} ⊆ P(s,F) and let F =
⋃

i<k Fi .
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We must show that 〈s,F〉 ∈ Pk+1. The properties (a) and (c) are easily verified, so the
only thing left to do is to show that dF � ∆Fe is a k-anti-Sacks tree: Let s ∈ dF � ∆Fe.
If |s| < ht(t), then, because F � ht(t) = t , it is possible to find an i ∈ k such that
sa〈i〉 /∈ F � ∆F + 1. If |s| ≥ ht(t), then, for every i < k , s only has (at most) one
inmediate succesor in Fi and therefore it is always possible to find a j ∈ k such that
sa〈j〉 /∈ F � ∆F + 1.

From these last two propositions we get the following result.

Corollary 4.3 For each k > 1, mk ≤ non(ASk+1).

Proof It follows easily from the proof of the proposition 4.1 and the last proposition.

For the proof of the main theorem we will need the following notion.

Definition 4.4 Given a regular cardinal κ, k ∈ ω and L ∈ [ωk]κ , we will say that L
is 〈κ,ASk〉-Luzin if ASk � L = [L]<κ .

Recall that Cohen reals are added at every limit step of countable cofinality of a finite
support iteration of arbitrary length. One common application of Cohen reals is that
they are used to construct Luzin sets with special properties. The following lemma is
one of those applications.

Lemma 4.5 Let κ be a regular cardinal, let i > 2 and let L = 〈Lα,
.

Qα : α ∈ κ〉
be a finite support iteration of length κ such that Lα 
 “

.
Qα = Pi", then L 


“There is a 〈κ,ASi〉-Luzin set.".

Proof Working in V[G], let L = {fα : α ∈ κ ∧ α has countable cofinality } be a
family of Cohen reals such that each fα is added at the α-th stage of the iteration. Using
the proposition 4.1, it is easy to show that V[G] |= [L]<κ ⊆ ASi � L . On the other hand,
if T ∈ V[G] is such that V[G] |= T is an i anti-Sacks tree, then, by a standard reflection
argument, there is an intermediate model such that T ∈ V[G(β)]. As a consequence,
V[G] |= ∀γ > β(fγ /∈ [T]). This implies that V[G] |= ASi � L ⊆ [L]<κ .

The following theorem is the main tool we will use to prove the main result of this
section.



10 Osvaldo Guzmán, Michael Hrušák and Arturo Martı́nez-Celis

Theorem 4.6 If ZFC is consistent, then ZFC + ∀i ∈ ω (∃Li (Li is 〈ℵi,ASi〉-Luzin))
is consistent.

Proof Let L = 〈Lα,
.

Qα : α ∈ ωω〉 a finite support iteration of length ωω such
that, for each i > 1 and each α ∈ [ωi, ωi+1), Lα 
 “

.
Qα = Pi+1" (for α < ω2 ,

Lα 
 “
.

Qα = {∅}"). Using the lemma above, for each i > 2, in V[Gωi] there is a
〈ℵi,ASi〉-Luzin set Li . The only thing left to do is to show that Li remains 〈ℵi,ASi〉-
Luzin in V[G]. Using that L is c.c.c. it is easy to see that, in V[G], [Li]<ωi ⊆ ASi � Li ,
so we only need to show that ASi � Li ⊆ [Li]<ωi holds in V[G]: First observe that
L[ωi,ωω] strongly preserves non(ASi) in Li , so if

.
T is a L[ωi,ωω] -name of a i-anti-Sacks

tree, then, in V[Gωi], there is a X ∈ ASi � Li such that L[ωi,ωω] 
 “[
.
T] ∩ Li ⊆ X".

Then it follows that ASi � Li ⊆ [Li]<ωi holds in V[G].

The actual value of c in the model above may depend on V . For example, if V |= GCH,
then it is easy to see that V[G] |= c = ℵω+1 . The following lemma is the last tool we
need to prove the main result of this section.

Lemma 4.7 Let κ be a regular cardinal and let L ⊆ ωk be an 〈κ,ASi〉-Luzin, if P is
a forcing notion such that |P| < κ, then P strongly preserves non(ASi) in L .

Proof Let
.
A be a P-name of an i-anti-Sacks tree and let P = {pα : α ∈ µ}. For

each α ∈ µ define Tα = {s ∈ <ωk : pα 
 “s ∈
.
A"}. It follows that each Tα defines

an i-anti-Sacks tree. If Y =
⋃
{[Tα] ∩ L : α ∈ µ} then Y ∈ ASk . If x ∈ L and

pα 
 “x ∈ [
.
A]", then x ∈ [Tα] ∩ L ⊆ Y .

We are ready to prove the main result of this section.

Corollary 4.8 If ZFC is consistent, then ZFC + ∀k > 1 (mk = non(ASk+1) =

ℵk) + non(SP) = ℵω+1 is consistent.

Proof Start with V |= ∀i ∈ ω (∃Li (Li is 〈ωi,ASi〉-Luzin)) + c = ℵω+1 . Using a
standard bookkeeping argument, it is possible to construct a finite support iteration P
of length ωω+1 of σ -k-linked forcings of size smaller than ℵk+1 (for every k > 1),
such that any partial order which appears in an intermediate model is listed cofinally
along the iteration. Now, using all the preservation lemmas we proved on this article,
it is possible to show that, for every k ∈ ω , P strongly preserves non(ASk) in Lk . If
G ⊆ P is a generic filter over V , then V[G] |= non(ASk) ≤ ℵk+1 . We note that, as
each small σ -k-linked forcing appears in an intermediate model in the iteration, then
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V[G] |= ℵk+1 ≤ mk . As a consequence V[G] |= ℵk+1 = mk = non(ASk). To finish
the proof, use the fact that non(SP) does not have countable cofinality and that, for
every n ∈ ω , non(SPn) ≤ non(SP) to show that V[G] |= non(SP) = c = ℵω+1.

It follows from SP1 ⊆ SP2 ⊆ SP3 ⊆ . . . that ω1 = non(SP1) ≤ non(SP)2 ≤
non(SP3) ≤ . . . ≤ non(SP) and we proved in the theorem above that each inequal-
ity can be diferent. It is important to remark that each one of these numbers are
not comparable with mσ-centered (as a consequence, it is impossible to prove that
non(ASk+1) = mk ). An argument for this can be found in [5].

5 The covering number

We have some results about the covering number of the ideals mentioned in this article.
It follows from the fact that AS2 ⊆ AS3 ⊆ . . . that cov(SP) ≤ . . . ≤ cov(AS3) ≤
cov(AS2) = c. We can show that every pair of these numbers can be different.

Proposition 5.1 Let k > 1, if ZFC is consistent, then ZFC+cov(ASk+1) < cov(ASk)
is consistent.

Proof Let V be a model such that V |= cov(ASk) = c = ω2 . Let P be a finite
support iteration of length ω1 of the Pk+1 forcing defined above and let G ⊆ P
be a generic filter over V . It follows that P is an iteration of σ -k-linked forcing
notions and therefore P strongly preserves non(ASk). In V[G], consider the family
C = {V[Gα] ∩ ωk + 1 : α < ω1}. It is easy to see that V[G] |= C ⊆ ASk+1 and
V[G] |=

⋃
C = ωk + 1. As a consecuence we have that V[G] |= cov(ASk+1) = ω1 .

On the other hand, if {
.

Tα : α ∈ ω1} is a collection of P-names for k-anti-Sacks trees,
then we can use the fact that P strongly preserves non(ASk) to show that there is a
collection {Cα : α ∈ ω1} ⊆ ASk such that if x ∈ ωk and x /∈

⋃
{Cα : α ∈ ω1},

then P 
 “x /∈
⋃
α∈ω1

[
.

Tα]". This, together with V |= cov(ASk) > ω1 , imply that
V[G] |= cov(ASk+1) < cov(ASk).

An alternate proof of this proposition follows from the results proven in [7]. A tree T ⊆
<ωω is a k-tree if every s ∈ T has at most k immediate succesors. A forcing notion P
has the k-localization property if P 
 “∀f ∈ ωω(∃T ∈ V(T is a k-tree and f ∈ [T]))".
It is easy to see that if P has the k-localization property, then P 
 “

⋃
(ASk∩V) = ωk".

Let Sk = {T ⊆ <ωk : ∀s ∈ T(∃t ∈ T(∀i ∈ k(s v t∧tai ∈ T)))} be the k-Sacks forcing
ordered by inclusion. It turns out that Sk is forcing equivalent to Borel(ωk)/ASk and
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that if P is the countable support iteration or the countable support product of length ω2

of the forcing Sk , then P has the k-localization property (see [7]). As a consequence,
in the extension cov(ASk) = ω1 and cov(ASk−1) = ω2 .

Obviously it is impossible to have the analogous of the corollary 4.8 for cov(SPn), this
arises a natural question.

Question 5.2 How many of the cov(SPn) can be separated at the same time?

We do not know how to separate three of them. Another question we have is the
following:

Question 5.3 Is it possible to get the consistency of ZFC + ∀k ∈ ω(cov(SP) <
cov(SPn))?

We are also interested about the relationship between non(SP) and cov(SP). It fol-
lows from the fact that the Cohen forcing is σ -centered that, in the Cohen’s model,
non(SP) < cov(SP). However, we do not know if it is possible to construct a model
where non(SP) > cov(SP).

Question 5.4 Is non(SP) ≤ cov(SP)?

This question is strongly related to the question found in [7]. In this paper, the authors
asked about the relation between non(ASi) and cov(ASi). We do not know if there is
an i > 2 such that non(ASi) ≤ cov(ASi).
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[6] J Lindenstrauss, D Preiss, On Fréchet differentiability of Lipschitz maps between
Banach spaces, Ann. of Math. (2) 157 (2003) 257–288

[7] L Newelski, A Rosłanowski, The ideal determined by the unsymmetric game, Proc.
Amer. Math. Soc. 117 (1993) 823–831
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