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A countable dense homogeneous set of reals of size ℵ1
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Abstract. We prove there is a countable dense homogeneous subspace of R of size ℵ1.
The proof involves an absoluteness argument using an extension of the Lω1ω(Q) logic
obtained by adding predicates for Borel sets.

A separable topological space X is countable dense homogeneous (CDH)
if, given any two countable dense subsets D and D′ of X, there is a homeo-
morphism h of X such that h[D] = D′. The main purpose of this note is to
show the following.

Theorem 1. There is a countable dense homogeneous set of reals X of

size ℵ1. Moreover , X can be chosen to be a λ-set.

Recall that a set of reals is a λ-set if all of its countable subsets are
relatively Gδ. Theorem 1 and the fact that a λ-set cannot be completely
metrizable solve problems 390 and 389 from [5]. A construction of a CDH
metric space that is not completely metrizable necessarily uses some form of
the Axiom of Choice. In [8] it was shown that under sufficient large cardinal
assumptions every CDH metric space in L(R) is completely metrizable. Our
proof of Theorem 1 uses Keisler’s completeness theorem for the Lω1ω(Q)
logic (see §2), and a secondary purpose of this note is in explicitly stating
a somewhat general method for proving absoluteness of the existence of an
uncountable set of reals whose properties are described using Borel sets as
parameters.
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1. A meager set. Recall that every compact zero-dimensional subset
of R without isolated points is homeomorphic (even isomorphic as a linearly
ordered set) to the Cantor set.

Lemma 1.1. There is an uncountable Fσ-set F containing the rationals

Q as a relative Gδ-subset and there is an Fσ-equivalence relation E on F

all of whose equivalence classes are countable dense subsets of R and such

that for every dense A ⊆ Q there is a homeomorphism h : F → F satisfying

(1) h[Q] = A,
(2) h(x)E x for every x ∈ F .

Proof. Let F = Q∪D∪
⋃

n∈N Fn, where Q and D are disjoint countable
dense subsets of R and {Fn : n ∈ N} is a family of pairwise disjoint copies of
the Cantor set disjoint from both Q and D and such that every nonempty
open set contains one of the Fns. Obviously, Q is a relative Gδ-subset of F .
Denote by C the set of all relatively clopen subsets of all the Cantor sets Fn.
For every pair U,W ∈ C fix an increasing homeomorphism hU,W : U → W .
Let F be the (countable) family of all compositions of finitely many functions
of type hU,W and their inverses. Then define xE y if and only if x, y ∈ Q∪D
or y = h(x) for some h ∈ F . The relation E is then obviously an equivalence
relation all of whose equivalence classes are countable and dense; being a
countable union of compact sets, it is Fσ.

Let A ⊆ Q be dense. Enumerate C as {An : n ∈ N}, Q as {qn : n ∈ N},
D as {dn : n ∈ N}, D∪ (Q\A) as {cn : n ∈ N} and A as {an : n ∈ N}. Using
the back-and-forth argument of Cantor, construct the homeomorphism h :
F → F as an increasing union of strictly increasing partial homeomorphisms
hn so that, for every n ∈ N:

(1) hn extends hn−1,
(2) dom(hn) consists of a finite subset of Q ∪ D and a finite union of

elements of C,
(3) range(hn) consists of a finite subset of Q ∪D and a finite union of

elements of C,
(4) hn restricted to dom(hn) \ (Q ∪D) is covered by finitely many ele-

ments of F ,
(5) hn(q) ∈ A for every q ∈ Q ∩ dom(hn),
(6) hn(d) ∈ D ∪ (Q \A) for every d ∈ D ∩ dom(hn),
(7) {qm : m ≤ n} ∪ {dm : m ≤ n} ∪

⋃
{Am : m ≤ n} ⊆ dom(hn),

(8) {am : m ≤ n} ∪ {cm : m ≤ n} ∪
⋃
{Am : m ≤ n} ⊆ range(hn).

Then h =
⋃

n∈N hn is the desired homeomorphism of F . It maps Q onto A
by (5), (7) and (8). It is a bijection by (7) and (8) and both h and h−1 are
continuous as they are strictly increasing mappings of a dense set onto a
dense set (Q onto A and vice versa).
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Recall that if E is an equivalence relation then a set X is E-saturated

if for all xE y we have x ∈ X if and only if y ∈ X.

Lemma 1.2. Assume Q, D, F, E and F are as in Lemma 1.1 and its

proof. If X ⊆ F is an E -saturated set such that for every countable B ⊆ X

there is an E-saturated A ⊆ X containing B and a homeomorphism h :
X → X satisfying h[A] = Q, then X is countable dense homogeneous.

Proof. Fix a countable dense subset B of X. Let g be an autohomeo-
morphism of X such that g−1(Q) is an E -saturated set containing B. Then
A = g[B] is a dense subset of Q. By Lemma 1.1 there is an autohomeomor-
phism h of F such that h[Q] = A and h(x)E x for every x ∈ F . Therefore
h↾X is an autohomeomorphism of X. Then H = h−1 ◦ g is an autohomeo-
morphism of X such that H[B] = Q as required.

2. Absoluteness. The Lω1ω(Q) logic is an extension of first-order logic
obtained by adding the following two syntactical rules:

(1) If φn (n ∈ N) are formulas and the set of all variables that are free
in some of these formulas is finite, then

∧
n φn is a formula.

(2) If φ is a formula, then so is (Qx)φ.

Given a structure X of the appropriate signature, the satisfaction relation
X |= φ is defined by recursion on the complexity of φ. The new syntactic
constructions are interpreted in the intuitive way. First, X |=

∧
n φn(a) if

and only if X |= φn(a) for all n. The intended interpretation for Qx is ‘there
exist uncountably many’, and we define X |= Qxφ(x, a) if and only if the
set of b ∈ X such that X |= φ(b, a) is uncountable. (Here X denotes the
universe of X, and a is an element of X.) When Qx is defined (interpreted)
in this way we say that a model is standard.

The expressive power of Lω1ω(Q) is a bit higher than that of the first-
order logic. Nevertheless, the completeness of Lω1ω(Q) with respect to a
finite set of axioms and rules of inference was proved by Keisler ([10]): A
sentence φ has a standard model if and only if there is no proof for ¬φ. Proofs
in Lω1ω(Q) can be coded by well-founded countable trees, and therefore
the statement ‘there is no proof for φ’ is absolute between models of ZFC.
Keisler’s theorem is therefore useful for proving absoluteness of the existence
of certain objects of size ℵ1 (see [9, 1, 3, 6, 7, 11]).

Let LB
ω1ω(Q) be the extension of Lω1ω(Q) allowing countably many Borel

predicates in the following sense. For a Borel set A ⊆ (R)k(A), a Borel
function f : (R)l(f) → R (k(A) ∈ N, l(f) ∈ N) and a real b ∈ R we have
relation, function, and constant symbols A, f and b, respectively, where A

and f are of matching arity. We also add a unary predicate symbol R. If φ
is a sentence of LB

ω1ω(Q) we say that a model X of φ (with universe X) is
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correct if

(1) R is interpreted as R ∩X,
(2) A, f and b occurring in φ are interpreted as A∩Xk(A), f↾X l(f) and

b, respectively, and
(3) if A occurring in φ is countable, then A ⊆ X.

Theorem 2. An LB
ω1ω(Q)-sentence φ has a correct model whenever it

has a correct model in some forcing extension V P of the universe V .

More is true: An LB
ω1ω(Q)-sentence φ has a correct model if and only if

it has a correct model in some forcing extension V P of the universe V . See
Remark 2.2.

Let us postpone the proof of Theorem 2 for a moment. Fix an LB
ω1ω(Q)-

sentence φ. We shall associate an Lω1ω(Q)-sentence φM to φ. Let us treat
the case when φ involves a predicate for only one Borel set, A ⊆ R. Via a
standard coding argument this extends to cover the general case. First, the
language of φ is expanded by adding new symbols Q, {cq : q ∈ Q} and <.
Let ψ0 be the conjunction of sentences stating the following:

(1) (∀x)(Q(x) ⇔
∨

q∈Q x = cq),
(2)

∧
p<q cp < cq,

(3)
∧

p∈Q R(cp),
(4) < is a linear ordering of (the interpretation of) R,
(5) R(x) ∧ R(y) ⇒ (∃z)(Q(z) ∧ ¬(x < z ⇔ y < z)).

(The last clause states that the rationals are dense in <.) We can now define
a formula ψA(x) by recursion on the Borel complexity of A. If A is an open
set, then it can be written as a union of rational intervals

⋃
n(p(n), q(n)),

and we let ψA(x) be
∨

n(cp(n) < x ∧ x < cq(n)). If ψA has been defined, let

ψR\A(x) be ¬ψA(x). If ψAn has been defined, let ψ
⋂

n
An(x) be

∧
n ψ

An(x).
Let φM

0 be obtained from φM by replacing each occurrence of A with ψA,
and finally let φM be φM

0 ∧ ψ0.
The following is now obvious.

Lemma 2.1. An LB
ω1ω(Q)-sentence φ has a correct model if and only if

φM has a standard model.

Proof of Theorem 2. By Lemma 2.1, φ has a correct model if and only if
φM has a standard model. By Keisler’s completeness theorem for Lω1ω(Q)
([10]), φM has a standard model if and only if there is no proof for ¬φM .
However, a proof for ¬φM , being a well-founded tree, remains a proof in the
extension.

Remark 2.2. To see that the converse of Theorem 2 holds, note that if
φM has a model X in V then X is a weak model (see [10]) of φM in V P, and
again by Keisler’s theorem φM has a standard model in V P.



A countable dense homogeneous set of reals of size ℵ1 75

In the following lemma, A, B, C and D are unary relation symbols,
h is a unary function symbol and f is a binary function symbol. We say
that a property is expressible in LB

ω1ω(Q) if there is a sentence of LB
ω1ω(Q)

such that in each of its correct models the interpretations A,B,C,D, f, h of
these predicates satisfy the stated property. A linear order is ω1-like if it is
uncountable while each of its initial segments is countable.

Lemma 2.3. The following properties are expressible in LB
ω1ω(Q).

(1) A is countable.

(2) A binary relation < is an ω1-like linear order.

(3) h : A→ B is a surjection.

(4) h : A→ B is a continuous function.

(5) h : A→ B is a homeomorphism.

(6) h : A→ B and h[C] = D.

(7) f(x, ·) : A→ B is a homeomorphism for every x.

(8) x is in the closure of A.

(9) A is a dense subset of B .

(10) A is a relatively open subset of B.

(11) A is a relatively Gδ subset of B.

(12) B has a countable dense subset K that is relatively Gδ in B.

(13) X is E-saturated , for a given Borel equivalence relation E all of

whose equivalence classes are countable.

Proof. Items (3) and (6) are first-order definable, and (1) and (2) are
straightforward to define using Qx.

For (4), (5) and (8) one only needs to observe that since we have a stan-
dard model of Lω1ω(Q), quantifiers such as (∀ε > 0)(∃δ > 0) are evaluated
correctly. Item (7) is immediate from the preceding items, and (10) and (9)
are immediate from (8). For (11), introduce new predicates An (n ∈ N) and
require that each An is a relatively open subset of B and A =

⋂
nAn.

To see (12), add a predicate for A and then use (1), (2), (9) and (11).

Let E be as in (13). It is well known that there are Borel functions fn

(n ∈ N) such that xE y if and only if (∃n)x = fn(y), hence for (13) we only
need to add names for fn (n ∈ N) to our language.

It turns out that one cannot use Keisler’s theorem to extend LB
ω1ω(Q)

to include analytic sets as predicates. Moreover, obtaining absoluteness of
existential sentences involving the quantifier Qx and predicates for analytic
sets is not possible by using any means unless some large cardinal asssump-
tion is made. On the other hand, if there are class many Woodin cardinals
then the analogue of Theorem 2 holds not only for analytic sets, but even
when arbitrary universally Baire predicates are allowed (see [4]).



76 I. Farah et al.

3. Proof of Theorem 1. Assume Q, D, F, E and F = {gn : n ∈ N} are
as in Lemma 1.1 and its proof. By Lemma 1.2, an uncountable E -saturated
X ⊆ F with an ω1-like ordering < such that

(1) each E -equivalence class is an interval in <,
(2) there is a function H : X ×X → X such that for every x ∈ X:

(a) H(x, ·) is an autohomeomorphism of X,
(b) H(x, y) ∈ Q if and only if y < x

will be countable dense homogeneous. By Lemma 2.3, the existence of X
and H can be expressed in LB

ω1ω(Q), and by Theorem 2 it suffices to show
that X exists in some forcing extension. In order to ensure that X is
uncountable, we will force with a ccc poset. In [2] it was proved that if
{Cα : α < ω1} and {Dα : α < ω1} are two families of pairwise disjoint
countable dense subsets of R then some ccc forcing adds a homeomorphism
h :

⋃
α<ω1

Cα →
⋃

α<ω1
Dα such that h[Cα] = Dα for every α < ω1. There-

fore, if we pick any ω1-sequence of equivalence classes so that the first one
is Q∪D and let X be their union then a standard ccc forcing such that
MAℵ1

holds in the extension adds H with the required properties.

Since Q is a relatively Gδ-subset of F , it is a countable dense and rela-
tively Gδ-subset of X. By countable dense homogeneity, X is a λ-set.

References

[1] J. Bagaria, Fragments of Martin’s axiom and ∆
1

3 sets of reals, Ann. Pure Appl.
Logic 69 (1994), 1–25.

[2] S. Baldwin and R. E. Beaudoin, Countable dense homogeneous spaces under Martin’s

axiom, Israel J. Math. 65 (1989), 153–164.

[3] I. Farah, A coherent family of partial functions on N, Proc. Amer. Math. Soc. 124
(1996), 2845–2852.

[4] I. Farah and P. Larson, Absoluteness for universally Baire sets and the uncountable,
in preparation, 2005.

[5] B. Fitzpatrick Jr. and H.-X. Zhou, Some open problems in densely homogeneous

spaces, in: J. van Mill and M. Reed (eds.), Open Problems in Topology, North-
Holland, Amsterdam, 1984, 251–259.

[6] J. Hirschorn, Summable gaps, Ann. Pure Appl. Logic 120 (2003), 1–63.

[7] —, On the strength of Hausdorff’s gap condition, preprint, 2004.
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