SPACES IN WHICH EVERY DENSE SUBSET IS BAIRE

S. GARCÍA-FERREIRA, A. GARCÍA-MÁYNEZ AND M. HRUSAK

ABSTRACT. We deal with several types of spaces in which every dense subspace is Baire (*D*-Baire spaces). Baire almost *P*-spaces and open-hereditarily irresolvable Baire spaces are example of *D*- spaces. We give a characterization of *D*-Baire spaces and characterize a particular class of them. We give an example of a *D*-Baire space whose square is not Baire.

1. INTRODUCTION

There is a wide variety of topological spaces in which every dense subset is Baire. The most simple of them are those spaces which have a discrete open dense subset, like locally compact Hausdorff extensions of discrete spaces. Baire almost P-spaces are also D-Baire and the open-hereditarily irresolvable Baire spaces form a a class of D-spaces (it is known that irresolvable D-Baire spaces without isolates points exist only in some models of set theory (see [17] and [18])). Our purpose of this paper is to give several characterizations of D-Baire spaces and open-hereditarily irresolvable Baire spaces. We find some sufficient conditions on D-Baire spaces to be metrizable or to have a discrete dense subspace. We finally explore some invariance properties under finite products or under continuous open images.

2. Definitions and preliminary results

Our spaces will be T_3 . We recall the reader some basic definitions and after that we list five equivalent known definitions of Baire spaces (for the proofs we referred the reader to [12] which offers a complete survey on Baire spaces).

 $A \subseteq X$ is nowhere dense (respect to X) if $\operatorname{int} A^- = \emptyset$. A subset $A \subseteq X$ is a meager set (or of the first category) in X if A is a countable union of nowhere dense sets. A space is called *Baire* if the intersection of countably many open dense subsets of the space is dense.

Proposition 2.1. The following properties of a topological space X are equivalent:

- (1) X is a Baire space.
- (2) For every countable closed cover $\{H_n : n \in \mathbb{N}\}$ of X, the set $\bigcup_{n=1}^{\infty} \operatorname{int} H_n$ is dense in X.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54E52, 54F65. Secondary 54G99.

Key words and phrases. D-Baire spaces, D'-Baire spaces, D''-Baire spaces, Baire spaces, almost P-spaces, open-hereditarily irresolvable.

Research of the first named author was supported by CONACYT grant no. 81368-F and PAPIIT grant no. IN-101508, and the research of the third author was supported by PAPIIT no. IN-101608.

S. GARCÍA-FERREIRA, A. GARCÍA-MÁYNEZ AND M. HRUSAK

- (3) For every sequence V_1, V_2, \ldots of open sets with the same closure K, we
 - have $K = \left(\bigcap_{n=1}^{\infty} V_n\right)^-$.
- (4) Every meager G_{δ} -set in X is nowhere dense.
- (5) Every meager set has empty interior.

Every topological space which has a dense Baire subspace is evidently a Baire space. The converse is not true: for instance, the real line is a Baire space but the subspace of rationals is not. A useful necessary and sufficiente condition for a dense subset A of a Baire space to be Baire is given in the next theorem of J. M. Aarts and D. J. Lutzer [1] (for a proof see [12, Th. 1.24]):

Theorem 2.2. Let X be a Baire space and let $A \subseteq X$ be dense. Then A is a Baire space if and only if every G_{δ} -set in X contained in $X \setminus A$ is nowhere dense.

For the sake of completeness, we are going to give a proof of this theorem:

Lemma 2.3. Let X be a Baire space. If $G = \bigcap_{n \in \mathbb{N}} V_n$ is a nonempty nowhere dense G_{δ} -set of X, where V_n is an open subset of X for all $n \in \mathbb{N}$, then for every nonempty open subset V of X there is $n \in \mathbb{N}$ such that $int[(X \setminus V_n) \cap (V \setminus G^-)] \neq \emptyset$.

Proof. Let V be a nonempty open subset of X. Then, $V \setminus G^-$ is a nonempty open subset of X; hence, $V \setminus G^-$ is also Baire. Since $V \setminus G^- \subseteq \bigcup_{n \in \mathbb{N}} X \setminus V_n$ and each $X \setminus V_n$ is a closed subset of X, by the third clause of Proposition 2.1, there is $n \in \mathbb{N}$ such that $int[(X \setminus V_n) \cap (V \setminus G^-)] \neq \emptyset$.

Proof of Theorem 2.2. Necessity. Let $G = \bigcap_{n \in \mathbb{N}} V_n$, where V_n is an open subset of X for each $n \in \mathbb{N}$, that is contained in $X \setminus A$. Then, $A \subseteq \bigcup_{n \in \mathbb{N}} X \setminus V_n$. In virtue of Proposition 2.1, $\bigcup_{n \in \mathbb{N}} int_A (A \cap (X \setminus V_n))$ is dense in A. Suppose that $intG^- \neq \emptyset$. Then, there is $m \in \mathbb{N}$ such that $\emptyset \neq intG^- \cap int_A (A \cap (X \setminus V_m))$. On the other hand, we know that $G^- \subseteq V_m^- = (V_m \cap A)^-$. Hence,

 $\emptyset \neq intG^{-} \cap int_{A}(A \cap (X \setminus V_{m})) \subseteq (V_{m} \cap A)^{-} \cap A = cl_{A}(V_{m} \cap A)$

which implies that $intG^{-} \cap int_A(A \cap (X \setminus V_m)) \cap V_m \cap A \neq \emptyset$, but this is impossible.

Sufficiency. Assume that A is no Baire. According to Proposition 2.1, there is a countable closed cover $\{H_n : n \in \mathbb{N}\}$ of A such that $\bigcup_{n \in \mathbb{N}} int_A H_n$ is not dense in A. For each $n \in \mathbb{N}$, choose a closed subset C_n of X such that $H_n = A \cap C_n$ for each $n \in \mathbb{N}$. Let $G = \bigcap_{n \in \mathbb{N}} (X \setminus C_n)$ which is a G_{δ} -set of X contained in $X \setminus A$. If $G = \emptyset$, then $\{C_n : n \in \mathbb{N}\}$ would be a closed cover of X and, by Proposition 2.1, then $\bigcup_{n \in \mathbb{N}} intC_n$ would be dense in X which is not possible. So, $G \neq \emptyset$. Choose an nonempty open subset V of X such that $V \cap A \cap int_A H_n = \emptyset$, for all $n \in \mathbb{N}$. By Lemma 2.3, we can find $n \in \mathbb{N}$ such that $int[C_n \cap (V \setminus G^-)] \neq \emptyset$. Hence, $\emptyset \neq int[C_n \cap (V \setminus G^-)] \cap A \subseteq int_A(C_n \cap A) \cap V \cap A \subseteq int_A H_n \cap V \cap A$, but this is a contradiction. Thus, A is Baire. \Box

In this paper, we shall study the following class of Baire spaces inspired in Theorem 2.2.

Definition 2.4. We say a space X is *D*-*Baire* if every dense subspace of X is Baire.

An immediate consequence of Theorem 2.2 is the following:

Corollary 2.5. Let X be a Baire space. Then, X is D-Baire if and only if every G_{δ} -set in X with empty interior is nowhere dense.

A further corollary will be obtained after the next definition.

Following R. Levy [20], we say that a topological space X is an *almost P-space* if every non-empty G_{δ} -set in X has a non-empty interior.

Corollary 2.6. Every Baire almost P-space is D-Baire.

The following results are taken from [20]:

Theorem 2.7. a) If X is locally compact and realcompact, then $\beta X \setminus X$ is almost *P*-space.

b) A Tychonoff space X is almost P-space if and only if its Hewitt realcompactification vX is almost P-space.

c) If X is a Tychonoff space, then βX is almost P-space if and only if X is pseudocompact and almost P-space.

Corollary 2.8. If X is an infinite discrete space whose cardinality is not Ulam measurable, then $\beta X \setminus X$ is D-Baire and βX is not almost P-space.

3. *D*-BAIRE SPACES

To start this section we give several characterizations of *D*-Baire spaces. First, we need to recall the definition of the σ -algebra *PB*.

Given a space X, the class PB(X) is the σ -algebra in X generated by all open sets and all nowhere dense sets. In [19] it is proved that $A \subseteq X$ belongs to the class PB(X) if and only if A may be expressed in the form $A = L \cup D$, where L is a G_{δ} -set and D is meager. Obviously, the σ -algebra of Borel sets is contained in the class PB(X).

Theorem 3.1. The following seven conditions on a space X are equivalent:

- (1) X is D-Baire.
- (2) X is Baire and every G_{δ} -set with empty interior is nowhere dense.
- (3) Every meager subset $A \subseteq X$ is nowhere dense.
- (4) X is Baire and every dense G_{δ} -set has dense interior.
- (5) X is Baire and every set in the class PB(X) with empty interior is nowhere dense.
- (6) X is Baire and every Borel set with empty interior is nowhere dense.
- (7) X is Baire and the union of a G_{δ} -set with empty interior and a meager set of X is nowhere dense.

Proof. $(1) \iff (2)$. This es Corollary 2.5.

(2) \Longrightarrow (3). Let $A \subseteq X$ be a meager set. Assume $A = \bigcup_{n=1}^{\infty} H_n$ where H_n is nowhere dense for all $n \in \mathbb{N}$. Therefore, $L = X \setminus \bigcup_{n=1}^{\infty} H_n^- = \bigcap_{n=1}^{\infty} X \setminus H_n^-$ is a G_{δ} -set in X and L is dense in X because its complement is a meager set and X is Baire. Let V = int L. The set L - V clearly has empty interior. Hence, $L - V^-$ is a G_{δ} -set with empty interior, by hypothesis, $L - V^-$ is nowhere dense. Also $L \cap \text{Fr } V$ is a nowhere dense set. Therefore, $L - V = (L - V^{-}) \cup (L \cap \operatorname{Fr} V)$ is a nowhere dense set as well. On the other hand,

$$X \setminus V = (L \setminus V) \cup (X \setminus L) = (L \setminus V) \cup \bigcup_{n=1}^{\infty} H_n^{-1}$$

is a meager set. Since X is Baire,

$$\emptyset = \operatorname{int}(X \setminus V) = X \setminus V^{-}.$$

Therefore, $V^- = X$ and $A \subseteq X \setminus V = \operatorname{Fr} V$ is nowhere dense.

(3) \Longrightarrow (4). It follows from Proposition 2.1 that X is a Baire space. Let $L \subseteq X$ be a dense G_{δ} -set of X. Since $X \setminus L$ is a meager set, the hypothesis implies that $X \setminus L$ is nowhere dense, i.e. $(X \setminus L)^-$ has empty interior. Therefore, $V = X \setminus (X \setminus L)^- = \operatorname{int} L$ is an open dense subspace of X.

(4) \implies (2). Let G be a G_{δ} -set with empty. First observe that int $G^{-} \subseteq (G^{-} \setminus G)^{-}$. Since $G^{-} \setminus G$ is an F_{σ} -set with empty interior, $X \setminus (G^{-} \setminus G)$ is a dense G_{δ} -set of X. By assumption, int $(X \setminus (G^{-} \setminus G))$ is also dense in X. That is, $X \setminus (G^{-} \setminus G)^{-}$ is dense in X. Hence, int $(G^{-} \setminus G)^{-} = \emptyset$ and so int $G^{-} = \emptyset$.

 $(4) \Longrightarrow (5)$. We have already established above the equivalence among the clauses (1), (2), (3) and (4). The fifth clause follows directly from the properties of the class PB(X) (see [19]) and the clauses (2) and (3).

(5) \implies (6). This implication is obvious because the σ -algebra of Borel sets is contained in the class PB(X).

 $(6) \Longrightarrow (1)$. It is enough to observe that $(6) \Longrightarrow (2) \Longrightarrow (1)$.

 $(1) \implies (7)$. We know the first six statements are equivalent on to each other. Thus clause (7) follows directly from clauses (2) and (3).

 $(7) \Longrightarrow (1)$. This is a consequence of Theorem 2.1 and Corollary 2.5.

Corollary 3.2. Every open subset of a D-Baire space is also D-Baire.

Let us state some particular classes of *D*-Baire spaces.

Definition 3.3. Let X be a Baire space.

- (1) X is said to be D'-Baire if every set with empty interior is nowhere dense.
- (2) We say that X is D''-Baire if X has a dense discrete subspace.

As our spaces are T_1 , it is evident that in the definition of D''-space we may say that the space contains a dense subset of isolated points, and also we can removed the condition Baire in the definition of D''-Baire space. Thus, we have directly that every D''-Baire space is D'-Baire and every D'-Baire space is D-Baire. The simplest examples of non-discrete D''-space are those whose have only one nonisolated point, and the Stone-Čech compactifications of discrete spaces are also D''-Baire.

We give now equivalent formulations for D'-Baire spaces.

For brevity, we say that $A \subseteq X$ is a *boundary set* if int $A = \emptyset$ and let us consider the following subsets of a space X.

 $B_1 = \{A \subseteq X \mid \text{int } A^- = \emptyset\}, B_2 = \{A \subseteq X \mid A \text{ is a meager set in } X\}$

and

$$B_3 = \{ A \subseteq X \mid \text{int } A = \emptyset \}.$$

Obviously $B_1 \subseteq B_2$ and we also have that X is a Baire space iff $B_2 \subseteq B_3$.

Theorem 3.4. In a topological space X, the following properties are equivalent:

- (1) X is D'-Baire.
- (2) X is Baire and for each dense set $A \subseteq X$, int A is also dense in X.
- (3) X is Baire and each dense set contains a dense G_{δ} -set.
- (4) The concepts boundary set, nowhere dense set and meager set are equivalent.
- (5) If $\{H_n : n \in \mathbb{N}\}$ is a countable family of dense subsets of X, then $\bigcap_{n=1} H_n$

is also dense in X.

- (6) X is Baire and each finite intersection of dense sets in X is also dense in X.
- (7) The family of all boundary subsets of X is a σ -ideal.

Proof. The implications $(2) \implies (3)$ and $(5) \implies (6)$ and the equivalence $(4) \implies (4)$ are obvious.

(1) \Longrightarrow (2). Let $A \subseteq X$ be dense. As $X \setminus A$ has empty interior, by hypothesis, $X \setminus A$ is nowhere dense. Therefore, int $A = X \setminus (X \setminus A)^-$ is an open dense subset of X.

 $(3) \Longrightarrow (4)$. We only have to prove $B_3 \subseteq B_1$. Indeed, if $L \subseteq X$ has empty interior, $X \setminus L$ is dense in X and, by hypothesis, there exists a dense G_{δ} -set $H \subseteq X \setminus L$. Therefore, $X \setminus H$ is an F_{δ} -set with empty interior containing L. $X \setminus H$ and L are then meager sets and $B_2 = B_3$. The hypothesis implies also that X is D-Baire, since if $D \subseteq X$ is dense in X and C is a G_{δ} -set of X disjoint from D, then $C \subseteq X \setminus A$ where A is a dense G_{δ} -set of X contained in D. Therefore, $X \setminus A$ and C are meager sets. Being a meager G_{δ} -set in a Baire space, C is nowhere dense. Therefore, by Theorem 2.2, D is a Baire subspace of X and X is D-Baire. By Theorem 3.1, $B_1 = B_2$ and hence conclude that $B_3 = B_2 = B_1$.

(4) \implies (5). Let $\{H_n : n \in \mathbb{N}\}$ be a countable family of dense subsets of X. Then, for every $n \in \mathbb{N}, X \setminus H_n$ has empty interior and, by hypothesis, $X \setminus H_n$ is a meager set. Then

$$\bigcup_{n=1}^{\infty} \left(X \setminus H_n \right) = X \setminus \bigcap_{n=1}^{\infty} H_n$$

is also a meager set and, by hypothesis, it has empty interior. Therefore, $\bigcap_{n=1}^{\infty} H_n$ is dense in X

dense in X.

(6) \implies (1). Let $A \subseteq X$ be a set with empty interior and let $L = X \setminus A$. Define $V = \operatorname{int} L$. Since $L \setminus V$ is a set with empty interior, the set $X \setminus (L \setminus V) = V \cup A$ is dense in X. $L = X \setminus A$ is also dense in X. Therefore, by hypothesis, $(V \cup A) \cap (X \setminus A) = V$ is dense in X. Hence, $X \setminus V$ is a nowhere dense set. Since $A \subseteq X \setminus V$, we deduce that A is also a nowhere dense set and the proof is complete. \Box

The condition stated in clause (7) of Theorem 3.4 was considered in [21].

Corollary 3.5. Every D'-Baire space is D-Baire.

Proof. Use condition (3) from 3.1 and condition (4) in 3.4.

By using the equality between two of the sets B_1 , B_2 and B_3 , we obtain that X is a D-space iff $B_1 = B_2$ (Theorem 3.1) and:

Corollary 3.6. For a space X the following conditions are equivalent:

- (1) X is D'-Baire.
- (2) Every boundary set is meager.
- (3) Every boundary set is nowhere dense.

Corollary 3.7. Every nonempty open subset of a D'-Baire space is also D'-Baire.

Proof. Assume that X is a D'-Baire space and let $U \subseteq X$ be open and nonempty. It is known that U is also a Baire space (see [7, Ex. 3.9.J (a)]). Suppose that A is a dense subset of U. Since $A \cup (X \setminus U)$ is dense in X, by Theorem 3.4, int $(A \cup (X \setminus U))$ is also dense in X. Let $\emptyset \neq V \subseteq U$. Then, $\emptyset \neq V \cap$ int $(A \cup (X \setminus U))$ and it is clear that $V \cap$ int $(A \cup (X \setminus U)) \subseteq A$. This implies that $V \cap$ int $A \neq \emptyset$. This shows that int A is a dense subset of U. According to Theorem 3.4, U is D'-Baire.

Following E. Hewitt [13] we say that a topological crowded¹ space X is resolvable if X has a dense subspace D whose complement $X \setminus D$ is also dense in X. A space that cannot be split in two disjoint dense subsets is called *irresolvable*². Most of the spaces which we handle are resolvable. For example, it is shown in [13] that all metric crowded spaces and all compact crowded spaces are resolvable (maximally resolvable). In a more general setting, E. G. Pytke'ev [22] showed that every crowded k-space is resolvable. For more examples of resolvable spaces the reader is referred to [5]. However, we may find multiple examples of irresolvable spaces in the literature (see for instance [6], [8] and [13]).

A space X is called *open-hereditarily irresolvable* if every open subset of X is irresolvable. In the following corollary, we shall prove that the D'-spaces are precisely the open-hereditarily irresolvable Baire spaces. The proof of the next lemma is left to the reader.

Lemma 3.8. In a topological space X, the following properties are equivalent:

- (1) Every subset of X with empty interior is nowhere dense.
- (2) X is open-hereditarily irresolvable.

The following statement is a direct application of Theorem 3.4 and the previous lemma.

Corollary 3.9. A space X is D'-Baire iff X is Baire and open-hereditarily irresolvable.

Thus, we have that every D'-space must be irresolvable. Hence, by Corollary 2.8, $\beta \mathbb{N} - \mathbb{N}$ is *D*-Baire and, by Pytke'ev's Theorem, we obtain that $\beta \mathbb{N} - \mathbb{N}$ cannot be D'-Baire. Corollary 3.9 is a particular case of Proposition 1.2 from [17] and the implication $(1) \implies (2)$ of Theorem 3.4 lies, in a more general form, in [13].

It is shown in [18] (see also [17]) that if there is a Baire irresolvable crowded space, then there is a measurable cardinal in the inner model. Hence, if V = L, then every Baire space without isolated points is resolvable. Using this assertion and Corollary 3.9, we can prove that every D'-Baire space is D''-Baire in a model of ZFC where V = L.

¹A space without isolated points is called *crowded*.

 $^{^{2}}$ A space with at least one isolated points cannot be divided in two disjoint dense subset; hence, we may omit the condition crowded in the definition of irresolvable space.

Theorem 3.10. Under the assumption of V = L, the set of isolated points of a D'-Baire space is dense in the space. Thus, V = L implies that a space is D'-Baire iff it is D''-Baire.

Proof. Assume V = L. As we pointed above every Baire space without isolated points must be resolvable. Hence and from Corollary 3.9 we must have that every nonempty open subset of X has an isolated point. Therefore, X contains a dense discrete subset.

S. Shelah [23] showed the consistency (modulo reasonably large cardinals) of the existence of a topological Baire irresolvable space with no isolated points of size ω_1 . It is not hard to see that every Baire irresolvable crowded space must contain a nonempty open subset open-hereditarily irresolvable. Since every open subset of a Baire space is also Baire, Shelah's example contains a D'-Baire crowded subspace which cannot be D''-Baire. So, the existence of a D'-Baire space which is not D''-Baire is undecidable in ZFC.

Next, we state a sufficient condition on a *D*-Baire space to be D''-Baire.

Lemma 3.11. Let X be a crowded space. If X has a σ -locally finite π -base³, then X has a dense meager subset.

Proof. Let $\mathcal{B} = \bigcup_{n \in \mathbb{B}} \mathcal{B}_n$ be a π -base of X such that each family \mathcal{B}_n is locally finite. For each $n \in \mathbb{N}$, enumerate \mathcal{B}_n as $\{B_i^n : i \in I_n\}$ and choose $x_i^n \in B_i^n$ for each $n \in \mathbb{N}$ and for each $i \in I_n$. Now, we define $N_n = \{x_i^n : i \in I_n\}$ for every $n \in \mathbb{N}$. Clearly, N_n is discrete for every $n \in \mathbb{N}$. Since X is crowded, we must have that N_n is nowhere dense in X for all $n \in \mathbb{N}$. Thus, $N = \bigcup_{n \in \mathbb{N}} N_n$ is meager and dense. \Box

The following results follows directly from the previous lemma.

Theorem 3.12. Every D-Baire space with a σ -locally finite π -base is a D''-Baire space.

Proof. Suppose that X has a nonempty set U without isolated points. It is evident that U also has a σ -locally finite π -base and, by Corollary, U is a D-Baire crowded space. So, by Lemma 3.11, U has a dense meager subset which contradicts Theorem 3.1.

Corollary 3.13. Every metric D-Baire space is D''-Baire.

Proof. Suppose that the set of isolated points of X is not dense. For each $n \in \mathbb{N}$, let $\{B(d, \frac{1}{n+1}) : d \in D_n\}^4$ be a maximal pairwise disjoint family whose elements do not contain any isolated point of X. Put $U = \bigcup_{n \in \mathbb{N}} \bigcup_{i \in D_n} B(d, \frac{1}{n+1})$. Since U is an open subset of X, by Corollary 3, U is a metric D-Baire crowded space. Clearly U has a σ -locally finite π -base. By Theorem 3.12, U is a D"-Baire space and so contains a dense subset of isolated points which is a contradiction to the fact that U does not contain any isolated point of X.

Theorem 3.14. Let X be a D-Baire space. If there exists a dense set $L \subseteq X$ having a σ -discrete network, then X is D''-Baire. In particular, a D-Baire, separable space is D''-Baire.

³A family \mathcal{B} of nonempty open subsets of a space X is a π -base if every nonempty open subset of X contains an element of \mathcal{B} .

 $^{{}^{4}}B(x,\epsilon)$ denotes the ball with center x and radio ϵ in a metric space.

Proof. We may suppose, without loss of generality, that L = X. Let $\mathcal{H} = \bigcup \mathcal{H}_n$

be a network of X, where each family \mathcal{H}_n is discrete (with respect to X). Choosing a point in each member of \mathcal{H} , we may find a dense set $D \subseteq X$ which is a countable union of closed discrete sets $\{D_n : n \in \mathbb{N}\}$. Let $E_n = D_n - X^a$ and $F_n = D_n \cap X^a$.

The set $E = \bigcup_{n=1}^{\infty} E_n$ is open and discrete in X and each set F_n is nowhere dense. Hence $F = \bigcup_{n=1}^{\infty} F_n$ is a meager set. Since X is D-Baire, the set F is nowhere dense

(see condition 3) in 3.1). Since $D = E \cup F$, we deduce $X = E^- \cup F^-$. Necessarily $E^- = X$, because if $V = X \setminus E^- \neq \emptyset$, the open set V would be contained in F^- , contradicting the fact that F is nowhere dense. Therefore, E is an open discrete dense subspace of X and X is D''-Baire. \square

We give below a sufficient condition on a D'-Baire space to be D''-Baire. We give first a definition:

The *derived sets* of a space X are defined as follows:

$$X^{(0)} = X$$
$$X^{(1)} = X^{a}$$

Assuming $X^{(\alpha)}$ is already defined for an ordinal number α , we define $X^{(\alpha+1)}$ as the set of limit points of $X^{(\alpha)}$. If α is an infinite limit ordinal and if $X^{(\gamma)}$ is already defined for each $\gamma < \alpha$, we set:

$$X^{(\alpha)} = \bigcap_{\gamma < \alpha} X^{(\gamma)}$$

Therefore, there exists a minimum ordinal number β such that $X^{(\beta)}$ is crowded or empty, i.e., such that $X^{(\beta)} = X^{(\beta+1)}$. This set $X^{(\beta)}$ is called the *last derived set* of X.

Theorem 3.15. Let X be a D'-Baire space whose last derived set $X^{(\beta)}$ is resolvable. Then X is D''-Baire. In fact, $X \setminus X^a$ is dense in X.

Proof. Let $L \subseteq X^{(\beta)}$ be such that $L^- = (X^{(\beta)} - L)^- = X^{(\beta)}$. Clearly $D = \bigcup_{0 \le \alpha < \beta} \left(X^{(\alpha)} - X^{(\alpha+1)} \right) \cup L$

is dense in X. Because X is D'-Baire, int D is also dense in X.

But $(X \setminus \operatorname{int} D)^- = (X^{(\beta)} - L)^- = X^{(\beta)}$. Therefore, $\operatorname{int} D = X \setminus X^{(\beta)} = \bigcup_{\alpha \in A} (X^{(\alpha)} - X^{(\alpha+1)})$. We prove $X \setminus X^{(1)}$ is dense in $\operatorname{int} D$ and, hence, it is

dense in X. Suppose on the contrary, there exists a point

$$p \in (\operatorname{int} D) \cap \left[X \setminus (X \setminus X^{(1)})^{-} \right]$$

Therefore, there exists an open set $W \subseteq X$ such that

$$p \in W \subseteq \operatorname{int} D$$
 and $W \cap (X \setminus X^{(1)})^- = \emptyset$.

Let α be the minimum ordinal such that

$$W \cap \left(X^{(\alpha)} - X^{(\alpha+1)} \right) \neq \emptyset$$

and select a point $q \in W \cap (X^{(\alpha)} - X^{(\alpha+1)})$. Let T be an open set in X such that $T \cap X^{(\alpha)} = \{q\}$. Therefore, $W \cap T = \{q\}$ and $q \in X \setminus X^{(1)}$, a contradiction. Hence, the discrete set $X \setminus X^{(1)}$ is dense in X and X is D''-Baire.

Next, let us introduce a property that a D-space needs to be a D'-space.

Definition 3.16. A space X is called PB if $PB(X) = \mathcal{P}(X)^5$.

Theorem 3.17. A space X is D'-Baire iff X is PB and D-Baire.

Proof. Necessity. Assume that X is D'-Baire. By Corollary 3.5, X is D-Baire. Let $A \subseteq X$. We know that $A = \operatorname{int} A \cup (A \setminus \operatorname{int} A)$. Clearly int A is a G_{δ} -set and since $(A \setminus \operatorname{int} A)$ has empty interior, $(A \setminus \operatorname{int} A)$ is nowhere dense. Then, $A \in PB(X)$.

Sufficiency. Assume that $A \subseteq X$ has empty interior. By assumption, $A = G \cup M$, where G is a G_{δ} -set and M is meager. Since X is a D-space, by Theorem 3.1, we have that G is nowhere dense. So, A is nowhere dense. Therefore, X is a D'-space.

We now consider the following class of Baire spaces.

Definition 3.18. A space X is called *extremally Baire* if the union of a boundary G_{δ} -set and a meager set is boundary.

It follows from Theorem 2.1 that every extremally Baire space is Baire and from Theorem 3.1 that every *D*-Baire space is extremally Baire.

Theorem 3.19. If X is PB and extremally Baire, then X is D-Baire.

Proof. Let D be a dense subset of X. By hypothesis, $D = G_0 \cup M_0$ and $X \setminus D = G_1 \cup M_1$, where G_0 and G_1 are a G_{δ} -sets and M_0 and M_1 are meager. Without loss of generality, we may assume that $G_0 \cap M_0 = G_1 \cap M_1 = \emptyset$. We claim that G_0 is a dense subset of $G_0 \cup G_1$. Indeed, suppose that there is a nonempty open subset V of X such that $(G_0 \cup G_1) \cap V \subseteq G_1$. It is clear that $V \cap G_1$ is a boundary G_{δ} -set and since X is extremally Baire, we must have that $(V \cap G_1) \cup (V \cap M_0) \cup (V \cap M_1) = V$ is a boundary set which is a contradiction. Thus, G_0 is a dense subset of $G_0 \cup G_1$. But, it is not hard to see that $G_0 \cup G_1$ is a dense subset of X. So, G_0 is a dense G_{δ} -set of X and since X is a Baire space, we have that G_0 is also Baire. Therefore, D is also a Baire space.

4. Real-valued functions

Problem 109 of the Scottish Book posed by M. Katětov is the following: Is there a crowded space on which every real-valued function is continuous at some point? In a very nice paper, V. I. Malykhin [21] prove that there is a irresolvable Baire crowded space iff there is a space on which every real-valued function is continuous at some point. Years later, it was shown in [10] that a Baire space Xis open-hereditarily irresolvable iff every real-valued function on X has a dense set of points of continuity. In connection with these results, R. Bolstein [3] introduced the notion of almost-resolvability: A space is called *almost resolvable* if it is the

 $^{{}^{5}\}mathcal{P}(X)$ denotes the family of all subsets of a set X

countable union of boundary sets (it is clear that every resolvable space is almost resolvable). It is shown in [3] and [10] that a space X is almost resolvable iff one of the following equivalent conditions holds:

- (1) X admits an everywhere discontinuous real-valued function with countable range.
- (2) X admits an everywhere discontinuous real-valued function.

V. I. Malykhin [21] found a model of ZFC in which every topological space is almost resolvable, and in the model of Shelah [23] there is a crowded Baire space which is not almost resolvable. As a particular case of Proposition 1.2 from [17] is the next result.

Proposition 4.1. For every space X the following conditions are equivalent.

- (1) X is D'-Baire.
- (2) For every space Y of countable weight and for every function $f: X \to Y$ the set of points of continuity of f contains a dense open set.

From Corollary 3.7 and the previous proposition we have:

Corollary 4.2. A crowded space X is D'-Baire iff X does not contain a nonempty almost resolvable open subset.

It is pointed out in [2] that a space X is D''-Baire iff there is a dense subset D of X such that every function $f: X \to \mathbb{R}$, $f|_D$ is continuous. In the paper, [2], the D''-Baire spaces are called UB-spaces.

5. Invariance properties

It is a well known fact that the Baire property is invariant under open continuous maps. As far as the invariance under continuous maps is concerned, we can prove:

Theorem 5.1. Let $\varphi \colon X \to Y$ be open, continuous and onto. Then

- i) If X is D-Baire, Y is also D-Baire.
- ii) If X is almost P-space, Y is also almost P-space.
- iii) If X is D'-Baire, Y is also D'-Baire.
- iv) If X is D''-Baire, Y is also D''-Baire.

Proof. i). Let $E \subseteq Y$ be a dense subset. Then $D = \varphi^{-1}(E)$ is dense in X. By hypothesis, D is a Baire space. Since $\varphi \mid D: D \to E$ is continuous, open and surjective, we deduce that E is also a Baire space.

ii). Let $L \supseteq Y$ be a non-empty G_{δ} -set. Since $\varphi^{-1}(L)$ is also a non-empty G_{δ} -set, we have $\operatorname{int} \varphi^{-1}(L) \neq \emptyset$. Hence $\operatorname{int} L \supseteq \varphi(\operatorname{int} \varphi^{-1}(L)) \neq \emptyset$ and Y is an almost P-space.

iii). Let $E \subseteq Y$ be a dense subset of Y. Then $D = \varphi^{-1}(E)$ is dense in X. Since X is D'-Baire, int D is dense in X. Therefore, $\varphi(\operatorname{int} D)$ is dense in Y. But $\varphi(\operatorname{int} D) \subseteq E$. Hence, int E is dense in Y and Y is a D'-Baire space.

iv). Let $D \subseteq X$ be open, discrete and dense in X. To prove $\varphi(D)$ is discrete, select a point $x \in D$. Then $\{x\}$ is an open set in X contained in D. Therefore $\{\varphi(x)\}$ is an open set in Y contained in $\varphi(D)$ and $\varphi(D)$ is discrete. Therefore, Y is a D''-Baire space.

It is also obvious that the almost P-space and the D''-Baire properties are preserved under finite products. There are many examples in the literature of Baire spaces (even metrizable Baire spaces) whose square is not Baire (see [4] and [9]). On the other hand, there exist several topological properties P which imply the Baire property and are invariant under arbitrary products: For instance, either P = pseudocompleteness (see [1]) or P = weak pseudocompactness (see [11]).

We exhibit next a D-Baire space X whose square is not Baire. Obviously X cannot be an almost P-space.

Example 5.2. To construct our example we need some basic notions from Set Theory that the reader may find them in text books like [16] and [14]. We consider the first uncountable ordinal number ω_1 equipped with the order topology. Let Sbe a stationary subset of ω_1 . Then, we define X_S as the set of all compact subsets of S. For $A \in X_S$, we let let $con(A) = \{B \in X_S : A \subseteq B \text{ and } max(A) < min(B \setminus A)\}$, that is con(A) is the set of all end-extensions of A. It is clear that if $A, B \in X_S$ and $con(A) \cap con(B) \neq \emptyset$, then either A is an end-extension of B or B is an endextension of A. The topology on X_S is the topology generated by all cones and their complements. Obviously, by definition, X_S is zero dimensional and Hausdorff.

Claim 1. Let $D \subseteq X_S$. Then, D contains dense open subset of X_S if and only if for every A in X_S there is $B \in con(A)$ such that $con(B) \subseteq D$.

Proof of Claim 1. It suffices to show that $\mathcal{C} = \{con(A) : A \in X_S\}$ is a base for the topology of X_S . Indeed, suppose that $A \in X_S \setminus con(B)$. Without loss of generality, we may assume that $con(A) \cap con(B) \neq \emptyset$. Then, we must have that Bis a proper end-extension of A and so $con(B) \subseteq con(A)$. Let $\gamma = min(S \setminus max(B))$. Then, $A \in con(A \cup \{\gamma\}) \subseteq X_S \setminus con(B)$. This shows that \mathcal{C} is a base for X_S .

Claim 2. The intersection of countably many dense open sets contains a dense open set.

Proof of Claim 2. For each $n \in \mathbb{N}$ take a dense open subset D_n of X_S . Fix $A \in X_S$. We need to find an end-extension B of A so that $con(B) \subseteq \bigcap_{n \in \mathbb{N}} D_n$. In fact, let M be a countable elementary submodel such that $S, D_i \in M$ and $\gamma = M \cap \omega_1$ is in S. Choose an increasing sequence of ordinals γ_n converging to γ . Recursively construct an increasing sequence B_n of elements of $X_S \cap M$ so that:

- 1) $B_0 \in con(A)$,
- 2) $B_{n+1} \in con(B_n)$, for each $n \in \mathbb{N}$,
- 3) $\gamma_n \leq max(B_n)$, for each $n \in \mathbb{N}$, and
- 4) $con(B_n) \subseteq D_n$, for each $n \in \mathbb{N}$.

The construction of the B_n 's follows directly from Claim 1 using the fact that each D_n is dense open in X_S and M knows it. Put $B = (\bigcup_{n \in \mathbb{N}} B_n) \cup \{\gamma\}$. As $\gamma \in S$ and $\gamma_n \nearrow \gamma$, $B \in X_S$ and $con(B) \subseteq con(B_n)$, for all $n \in \mathbb{N}$. Another proof without using elementary submodels can be achieved by proving that the set

 $C = \{\gamma < \omega_1 : \text{ there is a sequence } (B_n)_{n \in \mathbb{N}} \text{ in } X_S \text{ such that:} \}$

1) $A \in con(B_0)$,

2) $B_{n+1} \in con(B_n)$, for each $n \in \mathbb{N}$,

- 3) $con(B_n) \subseteq D_n$, for each $n \in \mathbb{N}$, and
- 4) $(\bigcup_{n \in \mathbb{N}} B_n) \cup \{\gamma\} \in X_S\}$

is closed and unbounded in ω_1 .

Thus, according to Proposition 2.1, Theorem 3.1 and Claim 2, the space X_S is *D*-Baire.

Claim 3. If S and T are disjoint stationary subsets of ω_1 , then $X_S \times X_T$ is not Baire.

Proof of Claim 3. For $A \in X_S$ and $B \in X_T$ we let

 $osc(A, B) = |\{\alpha \in A \cup B : \alpha \in A \text{ iff } min((A \cup B) \setminus \alpha) \in B\}|;$

That is, osc(A, B) is the number of "changes" from A to B and vice-versa. Given $A \in X_S$ and $B \in X_T$, osc(A, B) is finite. Indeed, if α_n is an alternating element of A and B, for each $n \in \mathbb{N}$, then

 $\alpha = \sup\{\alpha_n : n \in \mathbb{N}\} = \sup\{\min((A \cup B) \setminus \alpha_n) : n \in \mathbb{N}\} \in A \cap B$

since both sets are compact, but this is impossible since S and T are disjoint. For each $n \in \mathbb{N}$, we define $E_n = \{(A, B) \in X_S \times X_T : osc(A, B) \ge n\}$. Is clear that each pair of elements $A \in X_S$ and $B \in X_T$ can extended to $A' \in X_S$ and $B' \in X_T$ by alternating members of S and T, respectively, making the osc(A', B') as large as desired. Thus, for each $n \in \mathbb{N}$ and for each $(A, B) \in X_S \times X_T$, we can find $(A', B') \in X_S \times X_T$ so that $A' \in con(A), B' \in con(B)$ and $cone(A') \times cone(B') \subseteq$ E_n . Therefore, E_n is a dense open subset of $X_S \times X_T$ for all $n \in \mathbb{N}$. Since for every $A \in X_S$ and $B \in X_T osc(A, B)$ is finite, we must have that $\bigcap_{n \in \mathbb{N}} E_n = \emptyset$. This shows that the product $X_S \times X_T$ cannot be Baire. Thus, our space is the topological sum $X = X_S \sqcup X_T$ where S and T are disjoint stationary subsets of ω_1 . We have that X is D-Baire but $X \times X$ is not Baire.

We end this section with the following question.

Question 5.3. Is there a D'-Baire space whose square is not Baire in some model of ZFC?

References

- J. M. Aarts and D. J. Lutzer. Pseudo-completeness and the product of Baire spaces. *Pacific J. Math.*, 48:1–10, 1973.
- [2] M. R. Ahmadi Zand, A. R. Aliabad and M. Namdari, On strongly blumerg spaces. Manuscrip.
- [3] R. Bolstein. Sets of points of discontinuity. Proc. Amer. Math. Soc. 38:193–197, 1973.
- [4] P. Cohen. Product of Baire spaces. Proc. Amer. Math. Soc. 55:119-124, 1976.
- [5] W. W. Comfort and S. Garcia-Ferreira. Resolvability: A selective survey and some new results. *Topology Appl.* 74:149–167, 1996.
- [6] F. K. van Douwen. Applications of maximal topologies. Topology Appl. 51:125–139, 1993.
- [7] R. Engelking. General topology. Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, 1989.
- [8] L. Feng, and S. Garcia-Ferreira. Some examples of MI-spaces and of SI-spaces. *Topology Proc.* 24: 153–164, 1999.
- [9] W. G. Fleissner and K. Kunnen. Barely Baire spaces. Fund. Math. 101:229-240, 1978.
- [10] J. Foran and P. Liebnitz. A characterization of almost resolvable spaces. Rend. Circ. Mat. Palermo 40:136–141, 1991.
- [11] S. García-Ferreira and A. García-Máynez, A. Szymanski and F. Tall. On weaklypseudocompact spaces. *Houston J. Math.* 20:145–159, 1994.
- [12] R. C. Haworth and R. A. McCoy. Baire Spaces. Dissertationes Mathematicae Vol. 141, PWN-Polish Scientific Publishers, 1977.
- [13] E. Hewitt. A problem of set-theoretic topology. Duke Math. J. 10:309–333, 1943.
- [14] T. Jech. Set Theory. Third millennium edition, Springer-Verlag, 2003.
- [15] K. Koratowski. Topology. Vol. I, Academic Press, 1966.
- [16] K. Kunen. Set Theory: An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics Vol. 102, North-Holland, 1983.
- [17] K. Kunen, A. Szymanski and F. Tall. Baire irresolvable spaces and ideal theory. Ann. Math. Sil. 14:98–107, 1986.

- [18] K. Kunen and F. Tall. On the consistency of the non-existence of Baire irresolvables. http://www.at.yorku.ca/v/a/a/27.htm(1998), Topology Atlas.
- [19] K. Koratowski. Topology. Vol. I, Academic Press, 1966.
- [20] R. Levy, Almost-P-spaces. Canad. J. Math. 29:284-288, 1977.
- [21] V. I. Malykhin. The resolvability of the product of two spaces and a problem of Katětov. Soviet Math. Dokl. 16:725-729, 1975.
- [22] E. G. Pytke'ev. Maximally decomposable spaces. Trudy Mat. Inst. Steklov. 154:209–213, 1983.
- [23] S. Shelah. Baire irresolvable spaces and lifting for a layered ideal. *Topology Appl.* 33:217–221, 1989.

INSTITUTO DE MATEMÁTICAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, CIUDAD UNI-VERSITARIA, D. F., 04510, MÉXICO

E-mail address: agmaynez@matem.unam.mx

INSTITUTO DE MATEMÁTICAS (CAMPUS MORELIA), UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, APARTADO POSTAL 61-3, XANGARI, 58089, MORELIA, MICHOACÁN, MÉXICO *E-mail address:* sgarcia@matmor.unam.mx, michael@matmor.unam.mx