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MAD families and the rationals

Michael Hru�s�ak

Abstract. Rational numbers are used to classify maximal almost disjoint (MAD) families
of subsets of the integers. Combinatorial characterization of indestructibility of MAD
families by the likes of Cohen, Miller and Sacks forcings are presented. Using these it
is shown that Sacks indestructible MAD family exists in ZFC and that b = c implies

that there is a Cohen indestructible MAD family. It follows that a Cohen indestructible
MAD family is in fact indestructible by Sacks and Miller forcings. A connection with
Roitman's problem of whether d = !1 implies a = !1 is also discussed.
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variants of the continuum
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Recall that an in�nite family A � [!]! is an almost disjoint (AD) family if
every two distinct elements of A have �nite intersection and it is maximal (MAD)
if it is maximal with that property. A standard construction of a MAD family uses
the structure of the real line. For every real number r pick an increasing sequence
Ar of rational numbers converging to r. Then fAr : r 2 Rg is an AD family of
subsets of the rationals which can be, by a routine application of Zorn-Kuratowski
Lemma, extended to a maximal one. P. Simon, in a private conversation, raised a
question whether there is an \essentially di�erent" construction of a MAD family
in ZFC. This question is one of the motivations for the work presented here.

The other motivating factor is the general question of when is a particular
MAD family destroyed by a given forcing P. K. Kunen in [Ku] constructed a
Cohen-indestructible MAD family assuming CH. Later J. Stepr�ans (see [St]) asked
whether there is a Cohen-indestructible MAD in ZFC. We provide a combinatorial
characterization of Cohen-indestructible MAD families and give partial answers
to Stepr�ans' question and analyze the situation for other standard forcing notions.

The used set theoretic notation is mostly standard and follows [Ku]. Familiarity
with the method of forcing is assumed. If A is a MAD family then I(A) denotes
the ideal of all subsets of ! which can be almost covered by �nitely many elements
of A, the dual �lter is denoted by I�(A). Given a forcing notion P a MAD family
A is P-indestructible if A remains MAD after forcing with P. This is obviously
equivalent to P not diagonalizing (not adding a pseudo-intersection to) I�(A).
If a MAD family is not P-indestructible we say that it is P-destructible. The
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de�nitions are extended to proper ideals I on ! containing all �nite sets. All
ideals considered in this paper are proper, contain all �nite subsets of ! and are
tall , i.e. I� does not have a pseudo-intersection. Note that for an AD family A,
I(A) is tall if and only if A is MAD.

Recall that the Sacks forcing S consists of perfect subtrees of 2<! ordered by
inclusion. A p � 2<! is a perfect tree provided that 8s 2 p 8n 2 ! s � n 2 p and
8s 2 p 9n 2 ! 9t 6= t0 2 2n \ p such that s � t; t0. For p a perfect tree we let
[p] = ff 2 2! : 8n 2 ! f � n 2 pg. If p 2 S and s 2 p then ps = ft 2 p : t � s

or s � tg. Given a p 2 S let Br(p) = ft 2 p : ta0 2 p and ta1 2 pg and
Brn(p) = ft 2 Br(p) : jfs 2 Br(p) : s � tgj = ng.

0 denotes the constant zero function with domain !. Q denotes the set of
rational numbers, identi�ed with ff 2 2! : 81n f(n) = 0g n f0g. Similarly the
reals are identi�ed with the Cantor set 2!. If q 2 Q then let sq = q � n where

n = maxfk : q(k) = 1g + 1 and if s 2 2<! then qs = sa0. Recall that a set P
subset of 2! is perfect (non-empty without isolated points) if and only if P = [p]
for some p 2 S. For each p 2 S let Qp = fqsa1 : s 2 Br(p)g. We let QP = Qp if
P = [p]. Note that Qp is order isomorphic to Q and p � q if and only if Qp � Qq .

Note that Qp n Qp � [p], where the closure is taken in 2!.

Theorem 1. Let I be an ideal on !. Then the following are equivalent:

(1) I is S-indestructible,

(2) I is P-indestructible for some forcing notion P adding a real,

(3) 8f : Q �! ! 9I 2 I f�1[I ] is uncountable.

Proof: (1) implies (2) trivially. For (2) implies (3) consider the contrapositive,

i.e there is an f : Q �! ! such that f�1[I ] is countable for every I 2 I. Let

r 2 2! be a new real. Then r 2 2!n
S
ff�1[A] : A 2 Ag as no new real is contained

in a countable closed set coded in the ground model. Let A = f [fqr�n : n 2 !g].

First note that A is in�nite, as r 2 f�1[A]. To see that A, indeed, \destroys"
I assume that there is an I 2 I such that A \ I is in�nite. This, however

implies that qr�n 2 f�1[I ] for in�nitely many n 2 !, hence, r 2 f�1[I ] which is
a contradiction.

To see that (3) implies (1) let I be an ideal satisfying (3) and assume that
there is a p 2 S and an S-name _x for an in�nite subset of ! such that p 
 \8I 2
I j _x \ I j < @0". Using a standard fusion argument �nd a p0 � p such that for
every s 2 Brn(p

0) p0s decides _x \ n. Identify Q with Qp0 .

Note that, even though, in general Qp0 is not homeomorphic to Q (typically,
Qp0 is discrete, as a subspace of Q), it is order-isomorphic to Q. Note also that
a subset of the rationals has an uncountable closure if and only if it contains a
subset order-isomorphic to Q.

De�ne a function f : Qp0 �! ! by

f(q) = maxfk : p0sq 
 \k 2 _x"g:



MAD families and the rationals 345

Note that f is well-de�ned as I is a tall ideal. By (3) there is an I 2 I such that

f�1[I ] is uncountable. In particular, there is a p00 2 S such that Qp0 0 � Qp0 , hence

p00 � p0, and [p00] � f�1[I ]. This, however, means that p00 
 \j _x \ I j = @0" which
is a contradiction. �

Now we return to Simon's question. Note that the standard construction of
a MAD family as outlined in the introduction produces an A which is Sacks-
destructible (any new real diagonalizes I�(A)). The following proposition pro-
vides an answer to the question. Recall that a denotes the minimal cardinality of
a MAD family.

Proposition 2. There is an S-indestructible MAD family in ZFC.

Proof: First note that if A is a MAD family of size less that c then A is S-
indestructible. If not then by Theorem 1 there is a function f : Q �! ! such that

f�1[A] is countable for everyA 2 I(A). It is enough to pick an r 2 2!n
S
ff�1[A] :

A 2 I(A)g. Then the set B = f [fqr�n : n 2 !g] is in�nite and B is almost disjoint
from all A 2 A contradicting the maximality of A.

So without loss of generality we can assume that a = c. Enumerate all functions
from Q to ! as ff� : ! � � < cg. Construct recursively A = fA� : � < cg a
sequence of in�nite subsets of ! so that:

a) fAi : i < !g is a partition of ! into in�nite sets

and for every ! � � < c

b) 8� < � jA� \ A� j < @0 and

c) 9� � � f�1� [A� ] is uncountable.

Assume �rst that the induction can be carried through. Then A is a MAD
family (if not then letting f be a bijection between Q and a set almost disjoint
from all elements ofA provides a contradiction as f is listed as some f�). Similarly,
A is S-indestructible by clause (3) of Theorem 1.

To see that we can proceed with the induction let � be an in�nite ordinal less
than c and assume that A� has been de�ned for every � < �. Consider f�. If

there is a 
 < � such that f�1� [A
 ] is uncountable, let A� be any in�nite subset
of ! almost disjoint from all A� , � < �. We can do this as a = c.

If not, then let X =
S
ff�1� [A� ] : � < �g. Note that jX j < c as f�1� [A� ] is

countable for every � < �. Note also that f�1� (n) is countable for every integer

n as otherwise f�1� [Ai] would be uncountable for some i < ! � �. Hence f�[QP ]
is in�nite for every perfect subset of 2!. Now, let P be a perfect subset of 2!

disjoint from X . Such a set exists as 2! can be partitioned into c-many perfect
sets and X can not intersect them all. Let A� = f�[QP ]. Then A� is an in�nite

subset of ! and f�1� [A�] is uncountable. All that is left to prove is that A� \A�

is �nite for every � < �. To that end assume the contrary and pick si 2 2<! for
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each i 2 ! so that f(qsia1) 2 A� \A� and f(qsia1) 6= f(qsja1) for distinct i and

j. By K�onig's lemma there is a g 2 fqsia1 : i 2 !gnfqsia1 : i 2 !g that, however,

contradicts the fact that P \ f�1� [A� ] = ;. �

How does the above answer Simon's question? Well, every S-destructible MAD
family is (at least locally) essentially the same as the \standard" MAD by clause
(3) of Theorem 1. So in some sense Proposition 2 gives an a�rmative answer to
the question. The reason why the answer may not be quite satisfactory is that we
do not know whether there is an S-indestructible MAD family of size c in ZFC.

Question 3. Is it consistent that no MAD family of size c is S-indestructible?

We suspect that there is no such MAD family in the Sacks model (i.e. a model
obtained from a model of CH by countable support iteration of Sacks forcing of
length !2). For a similar observation about Cohen-indestructible MAD families
see Proposition 7.

Let us turn our attention towards other standard forcing notions. Miller forcing

M consists of perfect subtrees p of !<! such that for every t 2 p jfn : tan 2
pgj 2 f1; !g. For p 2 M de�ne Br(p) and Brn(p) as for the Sacks forcing. An
alternative description views Miller forcing as the set of those p 2 S such that
Q\[p] is dense in [p]. The order isomorphism is induced by a map � : !<! �! 2<!

de�ned by �(;) = ; and �(san) = �(s)a0a : : :a 0a1, the sequence of 0's being
of length n. Note that the above considerations show that M is isomorphic to
fA � Q : A ' Qg, where A ' B means that A and B are homeomorphic as
opposed to S, which is isomorphic to fA � Q : A ' Qg, where A ' B here means
that A and B are order isomorphic. For p 2 M denote by Qp the set [�\p] \ Q.
Miller forcing is often referred to as rational perfect set forcing. Recall that a
perfect set P � 2! is a rational perfect set if P \ Q is dense in P .

Theorem 4. Let I be an ideal on !. Then the following are equivalent:

(1) I is M -indestructible,

(2) 8f : Q �! ! 9I 2 I f�1[I ] contains a rational perfect set.

Proof: The proof follows closely the proof of Theorem 1. For (1) implies (2)
consider the contrapositive and note that a Miller real is not included in any
ground model closed set which has a scattered intersection with the rationals.

To see that (2) implies (1) let I be an ideal satisfying (2) and assume that
there is a p 2 M and an M -name _x for an in�nite subset of ! such that p 
 \8I 2
I j _x \ I j < @0". Use fusion to �nd a p0 � p such that p0s decides _x \ n for every

s 2 Brn(p
0). Identify Q with Qp

0

. De�ne a function f : Qp
0

�! ! by

f(q) = maxfk : p0sq 
 \k 2 _x"g:

Again, f is well-de�ned. By (2) there is an I 2 I such that f�1[I ] contains

a rational perfect set. In particular, there is a p00 2 M such that Qp
0 0

� Qp
0

(p00 � p0) and Qp
0 0

� f�1[I ]. Then p00 
 \j _x \ I j = @0" which is absurd. �
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Next we prove an analogous result for Cohen forcing. Cohen forcing C is
construed here as 2<! ordered by extension.

Theorem 5. Let I be an ideal on !. Then the following are equivalent:

(1) I is C -indestructible,

(2) 8f : Q �! ! 9I 2 I f�1[I ] has non-empty interior,

(3) 8f : Q �! ! one-to-one 9I 2 I f�1[I ] has non-empty interior.

Proof: (1) implies (2) as a Cohen real is not contained in any closed nowhere
dense set coded in the ground model.

To see that (2) implies (1) let I be an ideal satisfying (2) and assume that
there is an s 2 C and a C -name _x for an in�nite subset of ! such that s 
 \8I 2
I j _x \ I j < @0". De�ne a function f : Q �! ! by

f(q) = maxfk : sasq 
 \k 2 _x"g:

f is well-de�ned as I is a tall ideal. By (2) there is an I 2 I such that f�1[I ]
is somewhere dense, that is there is a t 2 C such that for every r � t there is
a q 2 f�1[I ] such that r � q. This, however, means that sat 
 \j _x \ I j = @0"
which is a contradiction.

(2) obviously implies (3). To see that (3) implies (2) assume that there is an

f : Q �! ! such that f�1[I ] is nowhere dense for every I 2 I. It is easy to see
that there is a one-to-one function h such that dom(h) is a dense subset of Q,
rng(h) = rng(f) and h(q) = f(q) for every q 2 dom(h). By identifying Q with
the domain of h, h is a one-to-one function from Q to ! such that for every I 2 I

h�1[I ] is nowhere dense. This �nishes the proof. �

Now we return to the question of existence of Cohen-indestructible MAD fam-
ilies. J. Stepr�ans in [St] observed that there is one in any model obtained by
adding @1-many Cohen reals and asked whether there is one in ZFC. The fol-
lowing two propositions provide a partial answer to his question. Recall that b

denotes the minimal cardinality of an unbounded (undominated) subset of !!

ordered by eventual domination. cov(M) is the minimal cardinality of a family
of nowhere dense subsets of 2! covering 2!. Recall that b � a.

Proposition 6. Each of the following implies that there is a C -indestructible

MAD family:

(1) a < cov(M),
(2) b = c.

Proof: For (1) note that if A is a MAD family of size a < cov(M) then A is
C -indestructible. To see this let M be an elementary submodel of H(c+) of size
a such that A � M . As jM j < cov(M) there is a real c Cohen over M and A
remains maximal in M [c] hence is C -indestructible.
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In order to prove (2) enumerate all one-to-one functions from Q to ! as ff� :
! � � < cg. Let fAi : i 2 !g be a partition of ! into in�nite sets. Inductively
construct sets A� so that:

a) 8� < � jA� \ A� j < @0 and

b) 9� � � f�1� [A� ] is somewhere dense.

It is obvious that if we can ful�ll these requirements then the family fA� : � < cg
is MAD and C -indestructible.

At stage � consider the function f�. If there is a � < � such that f�1� [A� ] is
somewhere dense let A� be any in�nite subset of ! satisfying a). If not, enumerate
a basis for the topology on Q as fUi : i 2 !g. Recursively choose �i < �

distinct such that jf�1� [A�i ] \ Uij = @0. Note that you can always do this as

by our assumption f�1� [A� ] is nowhere dense for every � < �. Now for every
� 2 � n f�i : i 2 !g let

g�(i) = max(A� \ A�i):

As � < c = b There is a g : ! �! ! which dominates all g� . Pick for every i 2 !

ki 2 fm 2 A�i : f
�1
� (m) 2 Ui and m > g(i)g n

[

j<i

A�j

and let A� = fki : i 2 !g. Then A� is almost disjoint from all A� , � < �, and

f�1� [A�] is dense. �

Proposition 7. It is relatively consistent with ZFC that no MAD family of size

c is C -indestructible.

Proof: Let V be a model of CH and let G be C !2 -generic over V , where C !2
denotes the standard poset for adding @2-many Cohen reals. The resulting model
is often referred to as the Cohen model . Let G� denote the restriction of G
to C � .

Let _A be a C !2 -name for a C -indestructible MAD family. Then there is an

� < !2 such that, in V [G�], the family _A[G�] is C -indestructible. To see this use
clause (3) of Theorem 5. Now, as every real in V [G] is contained in V [G�][H ]

,whereH is C -generic over V [G�], _A[G�] = _A[G] and hence j _A[G]j = !1 < c = !2.
�
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The main question, however, still remains unanswered.

Question 8 (Stepr�ans). Is there a Cohen-indestructible MAD family in ZFC?

Note that Theorems 1, 4 and 5 show that every Cohen-indestructible MAD
family is Miller-indestructible and hence also Sacks-indestructible.

One of the most interesting open problems about the cardinal invariants of the
continuum is the problem as to whether d = !1 implies a = !1. This problem
is sometimes attributed to J. Roitman. Recall that d denotes the minimal cardi-
nality of a dominating subset of !!. The framework for the anticipated negative
solution is set up by the preservation theorems of S. Shelah (see [Sh]). Hence, the
question reduces to the following: Assume CH and let A be a MAD family. Is

there a proper !!-bounding forcing P destroying A? For some more on the di�-
culties connected with this problem see [Hr]. C. La
amme (in [La]) made progress
towards the solution by showing that every F� ideal can be diagonalized by an
!!-bounding forcing. The following questions seem natural and the answers to
them necessary for the solution of Roitman's question. It would be su�cient to
answer them in the context of CH.

Question 9. Let A be C -indestructible MAD family. Is there an !!-bounding

forcing P destroying A?
Is there a characterization of Random-indestructibility in the spirit of this paper?
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