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COFINITARY GROUPS, 
ALMOST DISJOINT AND DOMINATING FAMILIES 

MICHAEL HRUSAK, JURIS STEPRANS, AND YI ZHANG 

Abstract. In this paper we show that it is consistent with ZFC that the cardinality of every maximal 

cofinitary group of Sym(co) is strictly greater than the cardinal numbers D and a. 

?1. Introduction. We say that two permutations f, g C Sym (co) are almost dis- 
joint (a.d.) if I f n g I < co, that is, that {n C co I f (n) = g(n)} is finite. An a.d. 
permutation family A C Sym (co) is a subset of Sym (co) such that If n gI < co, for 
any f, g C A. A permutation g C Sym (co) is cofinitary if g has only finitely many 
fixed points. A group G < Sym (co) is cofinitary if every non-identity element is 
cofinitary. It is easily seen that G < Sym (co) is cofinitary if and only if G is both an 
almost disjoint family of permutations and a group. For a discussion of different 
aspects of cofinitary groups, the reader can consult the well-written survey paper by 
P. Cameron (see [3]). Since the union of a chain of cofinitary permutation groups is 
cofinitary, Zorn's Lemma implies that maximal cofinitary groups exist, and indeed 
any cofinitary group is contained in a maximal one. The following theorem was 
proved by Truss [9] and Adeleke [1]. 

THEOREM 1.1. If G < Sym(co) is a maximal cofinitary group, then G is not count- 
able. 

Also, P. Neumann proved the following result. 

THEOREM 1.2. There exists a maximal cofinitary group of cardinality 2'. 

PROOF. See Proposition 10.4 and its proof in [3] for a detailed discussion. -A 

Thus P. Cameron (in [3]) asked the following question. 

QUESTION 1.3. If the Continuum Hypothesis (CH) fails, is it possible that there 
exists a maximal cofinitary group G such that I G I < 2w? 

In [11] (or [13]), this question was answered by proving the following results. 

THEOREM 1.4. (MA) If G < Sym(co) is a maximal cofinitary group, then G has 
cardinality 2'. 
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THEOREM 1.5. Let M F (ZFC + --CH). Let E, C M be a cardinal such that 
co, < , < 2t = A. Then there exists a c.c.c. notion of forcing G such that the 
following statements holds in MG. 

(1) 2, = A. 
(2) There exists a maximal cofinitary group G < Sym(co) of cardinality S,. 

Hence we can consider the following cardinal number. 

DEFINITION 1.6. Let a., be the least A such that there exists a maximal cofinitary 
group of cardinality A. 

It would be interesting to compare a., with some other well-known cardinal 
invariants of the continuum (see [10]). For example, we consider the following 
cardinals, 

(1) a is the least A such that there exists an infinite maximal almost disjoint family 
of V(co) with the size A; and 

(2) D is the least A of a dominating family in (wco, <*) with size A. 

In [14], we proved the following result. 

THEOREM 1.7. Let M F (ZFC + CH). There is a maximal cofinitary group 
G < Sym (co) of size co, in M such that for any Cohen generic H over M, G remains 
a maximal cofinitary group in M[H]. 

It is an easy corollary of Theorem 1.7 that it is consistent with ZFC that a = a. = 
co, <0D = 2w. 

Notice that ag. looks similar to a and lots of well-known results about a can also 
be proved for ag. (see [11] and [13]). In this paper, we are interested in finding the 
difference between a and ag. We want to consider the following questions. 

QUESTION 1.8. Can we separate a from ag? 

QUESTION 1.9. Is it consistent that 0 < ag? 

Note. The consistency of D < a is one of the main unsolved problems in the area of 
cardinal invariants of the continuum. 

To answer these questions 1.8 and 1.9, we shall construct two different forcing 
models. In section 2, we sketch a proof of the consistency of a = co, < ag = D = 
es = 2w, where es can be any regular cardinal. In section 3, we give a detailed proof 
of the consistency of a-D = col < ag = 0)2 = 2w. 

The set-theoretic notation used is standard (see either [5] or [4]). If EP is a notion 
of forcing and p, q C P, then q < p means that q is stronger than p. M (or, V) 
always denotes a countable transitive model of large enough fragment of ZFC. 

?2. The consistency of a < a.g = D. In this section, we shall force with a c.cc. 
partially ordered set G, which is defined in Definition 2. 1, over a ground model M 
such that M F (ZFC + GCH). We shall prove that it is consistent with ZFC that 
a = co I < a.g D = 2' = Es, where E, can be any regular cardinal such that Es ?> a0. 

We first define several concepts as follows: 
Let Fpf (a) = {f C Sym(co) I f is fixed point free}. 
We define that f g iff If n g I = co. 

Note. The relation is not an equivalence relation. 
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Let W consist of words gxnfg2...gtXntgt+l which actually involve x such that 
gl E Fpf (o) except possibly gi = id or gt+l id, here id = {(n, n) I n C C}. If 
w(x) C W and s is a 1-1 finite partial function from co to co, then w(s) denotes the 
partial function obtained by substituting s for x in w (x). 

We say wo is an almost conjugate (a. c.) subword of w if w= UlWOU2 with 
Ul 

u2 l-, i.e., if 
U1 = flxm ---fkxmkfk+l, 

then 

U2 - (Yf +1)-1X-mk (f )-... X-ml(If /)-I 

Here fi f' and f iC Fpf (co) for each i C { 1, ..., k + 1} except possibly f I = id 
orfk+l id. 

We define a c.c.c. partially ordered set: 

DEFINITION 2.1. Define a partial order G which consists of all conditions of the 
form (s, F) such that 

(1) s is a 1-1 finite partial function from co to co; 
(2) F is a finite set of words from W. 

We define (s2, F2) < (si, F1) iff 
(a) sICs2andF1CF2; 
(b) for every a. c. (reduced) subword wo of w C Fl, the following holds: suppose 

that for any ? C co, if wo (s I) I and wo(s2)(?) =, then there exists some 
z E W such that z is an a. c. subword of wo = u1 zu2 and the computation for 
Wo(s2)(t) has the following form, 

(nil, n12)(n2l, nil)...(nkl, nk-1,1)Z(Sl)(nk-ll, nkl)...(nl, n2l)(nl2, nll)(?) =, 

where z(sl)(nkl) = nk1 , n12 = a, and each (nj, nj,) is either in S2 or gi, 
i = 1, ..., t + 1, and we use T to denote the computation is undefined. 

In G, define 

Dn= {(s,F) C G I n C dom(s)}; 

En= f{(s,F) G I n C rang(s)}. 

By a very complicated argument, we can prove that Dn and En are dense in G for 
any n C co (for details see [14]). Thus by a standard density argument, we know 
that the following lemma holds. 

LEMMA 2.2. Assume M l= ZFC. Let G be any cofinitary group in M, and let H 
be G-generic over M. Then M[H] contains a permutation g* C Sym(co) such that 
g* V G and G * (g*) is a cofinitary group. 

Let M F (ZFC + GCH). We proceed with a system of iterated forcing of length 
es with finite support as follows: 

Define Gc, for ao < e, as follows: 

(1) Go = GM; 
(2) Ga~i = * (()M a, where (V)MGa is a Ga name such that 

IFSG (AMGY = G). 
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It is easy to see that M[H,j I e = c= 2= 
The following lemma is crucial for proving that a < ast. Define w (x, 5) to be a 

form of words, where 5 = (yiy, y,) stands as variables which can be substituted 
for any n-tuple g = (g1, Xg) of fixed point free permutations in (Fpf (w))). 

LEMMA 2.3. Suppose IFG T C co, s E Wo<W is infective and {w (x,)I. wt(Xy)} 

is a form of words. Then there exists an H C [co]< such that for any F E [ W]<', if 
F has the form 

{wj(X,5 ).Wt(X,y)} 
then 

]p < (s, F) (p IF-G T E H). 
PROOF. We prove the lemma by proving the following equivalent proposition. 
Let A = {(tn, Fn) C G I n < co} be an antichain which is maximal subject 

to the condition that s C tn. Then there exists a k < co such that for any F = 
{wl(X, ),...,wt(Xg)} C [W]t, there exists a I < k such that (s,F) 11 (tIF,); 
i.e., for each F - {W1(XI),)...,Wt(Xg)}, there exists a I < k, such that for any 
a. c. subword wio in wi (x, g) C F, for any j, C co, if 

wi0 (ti k) (j-) = j and wio(s, g)(ji) I, 
then the condition 2. 1-(b) holds. 

Assume this is not the case. Then the following hypothesis S holds: 
For any 1, k < co (with I < k), there is a F = {wI (XI g), . .., wt (X, g)} such that 

there exist some wiO which is an a. c. subword of wi (x, g) E F, and some jI CO c 
such that 

wi,0(t1,X g)(j) = j' and wio(sX )(ji) I, 
but for any subword z of wi,o = U1ZU2, if z is an a. c. subword of wiO, then the 
computation of wiO(t1, -)(jl) is not in the following form: 

(nll, n12)(n2l, nll)... (nkl, nk- 11)Z(S)(nk- 1, nkl)... (nll, n21)(nl2, nll)(), 

where z(s)(nkl ) = nkl , n12 = / and each (nj, no) is either in t1 or in gi. 
We shall use the above hypothesis to construct a tree. 
First, we define some terminology. 
Let wio(xI ) - gi_ xkil gi2Xki2 ...xk "i gi.,,+l, where gij may equal to gi,, when j 7 h. 

And let (hij,, hij,2) C gij such that 

(of) (hi,,I, hi,,2)t Il (hi2,1, hi2,2)t I..t )^I (hsi~l,,,, hi,,i+1,2) 01) = il 

(,6) (hi,1,, hi, 2)Skil (hi2, 1, hi2 2)Sk12 .Skill,, (hi,,+,,,, hin,,+,2)(j1) . 

We define 

ci = max{hi.,o I I < i < t, 1 < j < im+1,O =1, or 2}. 

for any I < k. 
Let T = Um<w< Tn be a naturally ordered tree such that p C Tn) if 

(1) pi is an t-tuple of finite partial functions p- {wI (x, q), ...Wt (x, ) }, where 
q is an n-tuple of fixed-point-free 1-1 finite functions of co, and for any q C q, 

dom(q) C max{61, ..., Em} + 1, 
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rang(+) C max{ci, *--, Em,} + 1; 

(2) for any I < m, there exists some wi (x, q) c a, in which wi, o(x, q) is an 
conjugate subword of wi (x, 0), and there exists some j E o such that 

wi~o(t1, 0)(j) j, and 

wio(s,4) (j) , and 

for any z which is a conjugate subword of wio, wi,o(ti, 0)(j) is not in the 
following form: 

(nilI, n12) ... (nk,l I nk-l,l)z(S)(nk-lfl I nk,l) ... (nI2, nil) (j), 

where z (s)(nk,l) =nk,1, nl2 j and each (nu, np,) is either in t1 or in hi. 

It is easily seen that Tm is a nonempty finite set for all m < co. 

CLAIM. T is a well-defined co-tree. 

PROOF OF THE CLAIM. Without loss of generality, we may assume that for any 
I < m, when we construct the tree in T1, we make sure that whenever 

(oi') ( l,h2)t Ih2, h22)t i2...t I i, +1 i +12)) = i, 

(/3') (hl1,, hf skii (hi 1, hfSki2 ... Skii . h 2)(Jl) I, 

hold, then for each hi in (a') and (/3'), 

hir < 61. 

In the following, we will prove that, for any m > 0, if 

W/= Wi (x, 0) I I < i < t} C TM, 

then there exists a wi' {wi(x, q') 1 I < i < t} C Tm-i such that 

V0 C q 3'q C $'(' C '$). 

Given wi (x, q) C p, we define wi (x, q') as follows: for any q C q, let 

0'(k) = (k), if k C dom(q) n (max{1,...,Emi} + 1); 

5' (k) is undefined, otherwise. 

Letq5' (q5, ..., 0/). And let' {w (x')., wt (x,')}. 
We prove that pi' satisfies (1) and (2). 
Obviously pi' satisfies (1). For (2), if there exists a k such that Em < Ek, then pi' 

satisfies (2). (See Lemma 3, [12].) Assume otherwise, there is a I < m such that, 
for any wi(x, q') E @/', if w,,o(x,5') - qX'nil q xni2 ...40'; xni i, + is a conjugate 
subword of wi, there is not any 

( (hi , l, hi, f2), X ..., (hi,,,i +1l ,l hii +1 32) ) 

such that (ar) and (/3), where each h i, < max{cc, , Ein- 1}. This is a contradiction 
to the statement W. Hence we proved that oi' satisfies (2). 

Therefore it is clear that p/' c Tm-i. Then T is a well-defined co-tree. -A 
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By K6nig's Lemma, there is an infinite branch 

B = {bm I bm C Tm} 

through T, where bm = {wI (xqm), ..Wt(x, m)} and (Om (qm, i .q m,n) 
Define 

F' = i { X.( U q Iml. * U ?)mn)) ...Kt X,( U qm,1. -- U mn)} 
mFEco m{Eco mKEco mEco 

Then F' is a set of partial words, where each 

?Oi =U Om'i 
m Eco 

is a fixed point free 1-1 partial function of w. Let 

q5 = (q>1, i. On), 
then for any m c co, there exist some wi (x, q) c F', in which wi,o(x, q) is some 
conjugate subword of wi (x, q), and there exists some j c co such that 

wio(tm, q)(j) = j and wio(s, q)(j) I, 

but for any z which is conjugate subword of wio = uzu-1, there is no n c co such 
that z(s)(n) = n with u(tm)(n) = j. 

CLAIM. There exists a F* c [ W] such that, for all (tm, Fm) C A 

(s, F *) V (tm, Fm). 
PROOF OF THE CLAIM. We shall use F' to construct a F*. For each wi (x, q) e F', 

we may assume that 

Wi (X' O)= il X'il Oi2 Xki2 ... Xki,,i Oi ,i X 

where each qj1 is a fixed point free 1-1 partial function of wt except possibly qil = id 
or Oi, +I = id. We shall use qij to construct two permutations fJ, f on co as the 
follows. 

If Oij is a permutation on co, let fi f = ij. Otherwise, we will do the 
following: 

We arrange all elements 
ri. ri. r3. rj, 1j, 1j 

in dom(qij5) in an increasing order, i.e., 

ri. < r?. < r'.. 

We define 

.Kl = co)( f {ij (rn+l ) n c co and r2n+1 c dom(Oij) }, and 

K? = cle W f 1ij (r~n) I n c co and r2n c dom(0i, 
To define f ilJ, we assume { f (m) I m < k} has been defined, where 0 < k < w. 

Now we define f J (k) as follows: 

if k = r.2+1 for some n c co, let f J (k) =bj (k); 
1i i 

otherwise, let f J (k) = the least I c Kj {ff (m) I m < k} such that I :& k. 
To define f we assume {J (m) I m < k} has been defined. 
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if k = r7?n for some n c co, let f (k) = Oij (k); 
otherwise, let f2 (k) - the least I E K' -. {ff7f (m) I m < k} such that / I k. 

We define 

Wi, = Wf! Xkil f xki2 ...fJ xkin, 
I 

wi,2ti+=-1 f Xkil f2 xki f2 xkii f 

- Xkif f72 Xki2 ...f . xkill fI 

Let F* {wi , 1 < i < t and 1 < ] < 2ni?+}. Obviously, (s, F*) is a member of 
G. 

Next we shall prove that for any m c co, there exists some w (x, f ) c F *, in which 
wo(x, f ) is an a. c. subword of w(x, f ), and there exists some j C co such that 

W0(tm, f )(j) = j and Wo(S, f )(j) I' 

but for any a. c. subword z in wo, W0(tm, f )(j) is not in the following form: 

(ni I, n12) ... (nk,l , nk-1,1)z(S)(nk-1,1 nkil) ... (n12, nII) (j), 

where z(s)(nk,l) = nk,1, n12 = j and each (nj,npi) is in either fi or tm. Hence 
(s, F*) V (tm, Fm), for any (tm, Fm) c A. 

By the above tree argument, we know that, for any m c co, there exists some 
wi (x, q) c F' in which wo(x, q) is a conjugate subword of wi(x, q) and there is 
some jm c co such that 

Wo (tm, 6/) (jm) = mX 

wijo((s, )(jm) , and 

there is no conjugate subword z in wo = uzu1 such that z(s)(n) = n with 

u (tm) (n) = jm- 

We may assume that 

Wi,0(X, Oil Xki I i2Xk'2 ...)Xkini i , , 

where qi1 may equal to Oi, when j :& h. As we did above, we used each qij to 
obtain ff and f7. We know that f preserves all (r7+, Oqi, (r7i+')) E qfi,; and 

f ?. preserves all (r2n, Oij (r n)) ce . Also we know that 

WiOtzn,6/))jm) ki tm ?Oi2 ..tmk?in,i+l (jm) = jm' 

Wi,O(S4 /)(jm) I, 

and there is no conjugate subword z in wo = uzu-1 such that z(s)(n) = n with 
u(tm)(n) = jm. Then, for each j E {1, ..., m +? 1}, there is a pair (hi,, qi5 (hij)) such 
that 

k{l kin 

(hi, il(h,) I M ..tMi (hmil i~l,, (in,+))~ j )- In. 
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Since for any j c {1, ..., mi + 1}, hij is either at an even or at an odd place of the 
sequence 

ri., ri., r.,. 

so by our construction of wjj, .. Wi,2i+l, there is a Wik, where 1 < k < 2(ni+1), such 
that there exists some WikO which is an a. c. subword of Wik and 

Wi,k,O(tm, fi,k)(jm) = jmI 

Wi,k,O (s, fi,k) (m) I, 
and for any a. c. subword z in Wi,k,OX WikO (tm, fi,k) (Jm) is not in the following form: 

(nil, n12) ... (nk 1, nk, I) z (s) (nk - 1, 1 nk, I)... (n 12, n I ) (j), 

where z(s)(nk,I) = nk, 1, n12 = j and each (nj, nj,) is in either fj or tm. 
Therefore, we have proved the claim. A 

The claim, however, tells us that A is not a maximal antichain, which is a contra- 
diction. Hence, the lemma is proved. - 

By induction, we can prove Lemmas 2.4 and 2.5. 

LEMMA 2.4. For any p C G,M, there exists some q < p, such thatfor all a C supt(q), 
there exist some invective function sat coE'@ and some na, t, < co such that 

IFG,, (q(a!) = (s, G)forsomeG E [W]fa 

which has the form {w1 (x, J),...,Wta (x, J)}), 
where 3(YK, , Yia) stands as variables which can be substitutedfor any n,-tuple 
g= (gg1, gn, )offixedpointfree permutations in(Fpf(w))f. 

We shall say that a condition q E G,, is canonical if it satisfies the conclusion 
of Lemma 2.4; and from now on we shall assume that all conditions in G,< are 
canonical. (This is harmless since the canonical conditions are dense in G?,.) If 
q CE G, a! c supt(q) and 

IF, (q(al) = (se, G) for some G C [W]la 

which has the form {w1 (x, W),.Wta (x, 3) }), 

then we shall write nq n_ and sq - sa. 
LEMMA 2.5. Suppose FGsK - C co, and given F C [K,]<'. For each a! C F, 

we have na, t.> c co, s. c co<W infective, and Ga Cz [W]ta which has the form 
{wl(x, )I...wta(x,I )}, where = (YI, ,Yna) stands as variables which can be 
substituted for any n,-tuple 

- 
= (g1, gna) of fixed point free permutations in 

(Fpf (wo))fna, then there exists a H c [oW]<@ such that 

Vq C G, ((supt(q) = F A Va c F((Gaq C [ Wf, 

which has the same form as Ga) A (sqg = s)) -- p < q(p IF? G C H)). 

Using Lemmas 2.4 and 2.5, we can prove the following: 

LEMMA 2.6. Let M - (ZFC + GCH). There is a m.a.d.family F in M such that 
for all a < co, if Ha is Ga-generic over M, then F remains to be maximal in M[Ha]. 

PROOF. The proof is similar to the one of Lemma 2.6 in [12]. - 

By absoluteness, we can prove the following lemma. 
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LEMMA 2.7. The following statement holds Jbr G,. 

M[H,] n co= U {M[Ha] n co" I a < co, Ha C M[H<]. 

and H., is G,-generic over M}. 

PROOF. For a sketched proof, see [6] or [14]. -A 

Together with Lemma 2.6, this shows that there exists a m.a.d. family Y in M 
such that if H,. is G,-generic over M, 5V remains maximal in M[H,J]. 

Thus we can conclude this section with the following theorem. 

THEOREM 2.8. It is consistent with ZFC that a = co, and O = a. = Es = 2C. 

?3. The consistency of a = < at. In this section. we give a detailed proof of 
the following theorem. 

THEOREM 3.1. It is consistent with ZFC that a = D co, and ag = 2W0= (02. 

The model in which the above holds will be constructed using countable support 
iteration of proper cow-bounding forcing adding generically a permutation which can 
be adjoined to any ground model cofinitary group maintaining that the generated 
group would still be cofinitary. Finally we will show that there is a maximal almost 
disjoint family in the ground model indestructible by the iteration. 

3.1. Combinatorics. We introduce the basic combinatorial tools used in the forc- 
ing construction. Let k < n < mn be positive integers and let f: k - n be a 
one-to-one function. We shall use the following notation: 

S(f, n, m) = {g : n - ilf C g.g one-to-onek C rang(g)}. 

The set of cofinitary permutations in Syn (co) will be denoted by A. An A-word 
is a finite sequence wow, ...Wk-l, where wi C A or wi C {x,x-}. An A-word 
w = wo ... wj -I is a reduced A-word if 

wi :& id for all i 
wi C A Xwi+ X A 

Wi = X X Wi+l X-1 

Wi =X-1 XWi+l: +X 

wo WX-1 

wo c A and wj_1 C A X wj_1 o wo c A. 
If w = wo ... wj Iq is a reduced A-word, call j the length of w. If w is an A-word, 
B(w) denotes the set {h C A : :i wi = h}. Let w = wo ... wj;- be a reduced 
A-word. We shall call v a (cyclical) subword of w if for some 0 < I < k < j either 
V = WI ... .Wk or v= Wk ... WjlWo ... W.I 

If w = wo ... wj-1 is an A-word, f a (partial) one-to-one function from co to co. 
we put 

f 
E(f.w)=w$o o ...l'w1 

where 
{wi if wi (EA 

Wf if wi = x 

ft-1 if Wi = x-1. 

E (f, w) is a partial function and we denote by Fix (f , w) the set of fixed points of 
E(f, w). 
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DEFINITION 3.2. Let k < n < m be positive integers and f k - n be a one- 
to-one function. For every j C o define a norm vj on subsets of S(f, n, m) as 
follows: 

V.(X) > 0 for every nonempty X C S(f, n, m) 
V1 (X) > 1 if whenever w is a reduced A-word of length less than j 

such that Vh C B (w) Fix (h) C k then 
there is a g C X such that Fix(f, w) = Fix(g, w) 

Vj (X) > i + 1 if whenever X = AO U AI then there is an 1 C {0, 1} 
such that vj (Al) > i 

v; (X) = i if i is maximal such that vj (X) > i. 

The rest of this section is devoted solely to proving that we can always find sets 
of arbitrarily big norms. To that end we have to introduce yet another definition. 

DEFINITION 3.3. Let X C S(f, n, m), u, j integers. We will say that X is (u, j)- 
big if for every collection {w1 }If ' of reduced A-words, each of them of length less 
than j and such that Vh C B(wl) Fix(h) C k, there is a g C X such that Vl < u 
Fix(f, wl) = Fix(g, wl). 

LEMMA 3.4. Let f : k - n be one-to-one, k < n < m, u, j E a). If X C 
S(f, n, m) is (2u, j)-big then vj(X) > u. 

PROOF. We shall prove the claim by induction on u. 
u = 0: Trivial. 
u = 1: The definition of X being (2, j)-big immediately implies vj (X) > 1. 
u =v + 1: Let X C S(f, n, m) be (2u, j)-big. Assume that vj(X) <u. Then there 
is a partition X = AO U A1 such that vj(AO) < v and v}(Ai) < v. By our induction 
hypothesis there are two collections Wo = {wf }w12 and WI {w= }I i2 of reduced 
A-words with all fixed points in dom(f) such that there is no g in Ai, i E 2, such 
that Fix (f, wJ) = Fix (g, wJ) for all I C {f1 ... 2v }. Then there would be no g in X 
such that Fix(f, w) =Fix(g, w) for every w E {w }'1i 2. That would contradict, 
however, the assumption that X was (2u, j)-big. H 

LEMMA 3.5. Let X C S(f, n, m), w a reduced A-word of length less than j such 
that Vh E B (w) Fix (h) C dom(f ). Then 

v({g E X : Fix(f, w) = Fix(g, w)}) > vj(X) - 1. 

PROOF. For vj (X) < 1 it is completely trivial. 
If vj (X) > 1 then either vj ({g E X : Fix (f, w) Fix (g, w) }) > vj (X) - 1 

or vj({g E X : Fix(f,w) z& Fix(g,w)}) > vj(X) -1. The latter contradicts, 
however, the fact that vj (X) > 1. H 

LEMMA 3.6. For every k, j, u E co there are n, m E co, k < n < m such that 
S(f, n, m) is (u, j)-bigfor every one-to-one f :k - n. 

PROOF. We have to show that there are n, m E co such that, given a collection 
of u-many words of length less than j such that fixed points of all permutations 
involved are contained in the domain of f, there is a g E S(f, n, m) not adding 
new fixed points. The argument is basically just a simple counting argument. 

Let f: k ) n be a one-to-one function w a reduced A-word of length less 
than j with all fixed points contained in k (we use this to abbreviate Vh E B (w) 
Fix (w) C k) and let d :& r be a pair of integers such that f U { (d, r) } is a one-to-one 
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function. We shall say that (d, r) is (f, w)-good if Fix (f U { (d, r)}, w) = Fix (f, w). 
If a pair (d, r) is not (f, w)-good we shall say that it is (f, w)-bad. 

CLAIM 1. If (d, r) is (f, w)-bad then one of the following holds: 

(1) There is a subword v of w such that E(f, v)(d) = r or E(f, v)(r) = d 
(2) There are subwordsVd, vr ofw such that E (f,Vd)(d) = d or E (f, vr.) (r) = r. 

Let w = wo ... wj1. If (d, r) is (f, w)-bad then there is a 

t E Fix(f U { (d, r)}, w) \ Fix(f, w). 

That is E(f U { (d, r)}, w)(t) = t but E(f, w)(t) is undefined. Let I < j be maximal 
such that E(f, wo ... .wl-1)(t) = d or E(f, wo . . . W1 - )(t) = r. Similarly, let ' < j 
be minimal such that E(f, wl' .. . Wj_)(t) r or E(f, w1' . .. wjd)(t) d. Note 
that such I and 1' have to exist since t is a new fixed point and for the same reason 
I < 1'. Then one of the following holds: 

(1) E(f, w, / ... wjjw0 ... wl-1)(d) r 
(2) E(f, wul ... wj_1w0 ... wlii)(r) d 
(3) E(f, w~l . .. wj_jw0 . .. wl-l )(d ) =d 
(4) E(f, w~l . .. wj_jw0 . .. wl-l )(r) =r 

If one of the first two clauses holds, we are done. So assume that either (3) or 
(4) holds. As the situation is symmetrical assume that (3) holds and let Vd = 

W. .. Wj-1Wo ... Wl-1. Note that the word w, ... wl' is of the form xw'x1- by 
maximality (resp. minimality) of I and 1'. Now consider the word w' and note that 
E(f U {f(d, r)}, w')(r) = r. Let v be a subword of w' such that E(f, v)(r) e {d, r}. 
It is easy to see that in any case this finishes the proof of the Claim. 

CLAIM 2. Given j, f, d ' dom(f ), w there are at most k + 2' -many r such that 
(d, r) is (f, w)-bad and, similarly, for r ' rang(f) there are at most k + 2'-many d 
such that (d, r) is (f, w)-bad. 

This follows immediately from Claim 1, since there are at most 2' -many subwords 
of w. We added k to the bound since we have to make sure that f U { (d, r)} is a 
one-to-one function. 

CLAIM 3. Given j, f, d , dom(f) and {wj} j1 a collection of reduced A-words 
with allfixed points contained in the domain of f there are at most k + u 2J -many r 
such that (d, r) is (f, wl)-badfor some I and, similarly, for r f rang(f) there are at 
most k + u 2j -many d such that (d, r) is (f, wl)-badfor some 1. 

Each word has at most 2' -many subwords which could cause (d, r) to be bad and 
we have u-many words to deal with. 

Notice that the bounds depend neither on f nor on the particular words involved 
but only on j, u and k. Therefore it is not difficult to find n and m (n > k' u * 2' 
and m > n2 u .2' should work) so that, given a family of u-many reduced A-words, 
one can inductively extend f to a g : n ) m so that k = dom(f) C rang(g) 
and Fix (f, w) = Fix (g, w) for every w listed. To that end put fo = f . Having 
defined f i find a pair (di, ri) which is (f i, w)-good for every w involved and such 
that d < n and r e k \ rang(fi). Then put f?i+ = fi U {(di, ri)} and continue until 
k C rang(f 1). Then proceed by finding (di, ri) which is (f i, w)-good for every w 
involved and such that d < n and r < m. Then put fi+I = fi U { (di,ri)} and 
continue until dom(f i) = n. Then put g = f i. Since we have not added any bad 
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pairs to f, g does not add any new fixed points and this is exactly what we wanted 
to prove. 1 

LEMMA 3.7. There is a strictly increasing function n : co - C such that 

vi(S(f. n(i + 1), n(i + 2))) > i 

for every i coand every f :n(i) ) n(i + 1). 

PROOF. Construct n by induction using Lemma 3.6 and Lemma 3.4. -H 

3.2. Single step forcing. Let n: co - C be as in Lemma 3.7. We shall define a 
forcing notion IP as follows: p e IP if 

(1) p is a finite branching tree of height co 
(2) (Vt e p) dom(t) e co 
(3) (Vt e p) t(0): n(0) - n(1) and t(i + 1) e S(t(i), n(i + 1), n(i + 2)) 
(4) (Vj / co) {t e p : vltl(succ(t)) < ji} < co 

where succp(t) {t' e p: t C t' and dom(t') = dom(t) + 1}. As usual p < p' if 
p C p/ 

Forp e IP. t e pweput?p(t) = vjtj(succ,(t)). We shall call p ak-tree with stem 
5 if 

(1) (Vt e p) t C s ors C t and 
(2) (Vt e p) s C t p ?)(t) > k 

If M e c and p. p' E IF we shall say that 

P ?<1 p, if Vt e p op,(t) < n > succp(t) = succp,(t) 
OEP, (t) > n Op ()(t) > n. 

A partial order IP satisfies Axiom A if there is a sequence { < ,: n e co} of orderings 
on IP such that 

(1) p <0 q if p < q for every p,q eE P 
(2) p <?n+l q >p <? q for all p, q e P 
(3) If fPn : n e co} is such that Vn Pn+1 ?<n Pn then 3p e P IVn e CO p <n pn 
(4) VW a maximal antichain in IP, Vp e IP and Vn e co 3q <n p such that 

{r e s: r is compatible with q} is countable. 

A forcing IP is co-bounding if for every IP-name -c and every p E IP such that 
p H- " - co " there is a q < p and there is a g E coC such that q IF- "-c < g". It 
is well known that every forcing satisfying Axiom A is proper and that a countable 
support iteration of proper co-bounding forcings is co-bounding (see [7]). 

LEMMA 3.8 (The Fusion Lemma). Let {pn n e co} be such that Vn e W P1+?1 ?<1 

Pn. Thenp= {pn:neCcoIEPandVnecop <?, p,,. 

PROOF. Left to the reader. H 

LEMMA 3.9. IP is a non-trivial co-bounding forcing satisfying Axiom A. 

PROOF. The fact that P is a non-trivial forcing follows immediately from Lemma 
3.7. For the rest of the proof we shall utilize the following: 

CLAIM. Let -c be a P-name, p e P such that p 1F " e V" and n e o. Then there 
is a p' <?n p and F afinite set such that p' IF " E F". 
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Using the Claim and Lemma 3.8 it is easy to see that P indeed satisfies Axiom A. 
The condition (4) even holds in a stronger sense since, for every antichain W and 
p e P there is a p' <n p such that {q e W : q is compatible with p'} is finite. 

To show that IP is co-bounding let - and p be such that p IF "- is a function from 
co to co". Construct a sequence {pn: n e co} and a sequence {Fn n c co} such 
that 

(1) Po ? P 
(2) Pn+1 <n Pn and 
(3) Pn I- "T(n) e Fn 

Let p be the fusion of the sequence and g e coY@ is defined by g(n) = max(Fn n c). 
Then p I- "- < g". 

PROOF OF THE CLAIM. Let p, n and - be given. For t e p define a rank r(t) as 
follows: 

r(t) = 0 if 3n-tree q < p with stem t such that 

3Aq e V: q IF "= Aq 

r(t)= i + 1 if r(t) : i and 

vltl({s c succp(t): r(s) < i}) > ?p(t) - 1. 

Vt e p 3i e cow: r(t) = i: If not, then 3t e p such that 

vltj({s e succp(t) : r(s) is not defined }) > Op (t) - 1. 

By induction we can then construct a tree p' C p such that Vs e p' 

vll ts' e succp(s): r(s') is not defined }) > O(p(s) - 1 

and 
succp,(s) {s' e succp(s) : r(s') is not defined }. 

From the construction it is obvious that p' e P. This contradicts, however, the fact 
that the set 

{qeP:Ie V qIF"P A"} 

is dense in P. 
Fix k e co such that Vt e p: It > k p Op(t) > n. The fact that such a k exists 

follows immediately from the definition of P. Define p' C p as follows: 

(1) Vt e p: ItI < k ? t e p' 
(2) If t e p', ItI > k and r(t)=i > 0 then 

succp, (t) = {s e succp (t) : r (s) < i} 

(3) If t E p't, It > k, r(t) = 0 and r(t F dom(t) - 1) > 0 then choose a qt < P 
an n-tree with stem t and an Aqt such that q, IF "T = Aqt". Let t C s. Then 
s e p' if and only if s e qt 

Put F = {Aqt : t e p', t minimal such that r(t) = 0}. F is a finite set since 
the tree p is finitely branching and r is well-founded. Obviously p' <?n p and 
p'H- "I e F. H 

LEMMA 3.10. Let G be a P-generic filter. Let 7c U n G. Then 7c e Sym(co) and 
for every ground model cofinitary group G < Sym (co), the group G * (7r) is cofinitary. 
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PROOF. For every n e co is the set of p e P with stem t such that n C dom(U t) n 
rang(U t) dense. Therefore T is indeed a permutation. 

If G * (7c) was not cofinitary then there would be a reduced A-word w such that 
B (w) C G and E (7, w) has infinitely many fixed points. Let j be greater than the 
length of w and such that Vh e B (w) Fix(h) C j. Using Lemma 3.1.4 it is easy to 
see that the set of p with stem s of length bigger than j such that 

p H- "Fix(r, w) = Fix(U s, w)" 

is dense, which is a contradiction. H 

3.3. Iteration. In this section we utilize ideas from [2] and [8]. The first three 
Lemmas are a reformulation of results from [2]. The main result of this section is 
Lemma 3.16. 

We will call Seq(P) the set of all finite sequences t such that dom(t) e co, 
t (O): n (O) ) n (l) and t (i + 1) c S (t(i), n (i + 1), n (i + 2)). Seqn (P) will denote 
the set of sequences in Seq (P) of length n. For p e P and s e Seq (P) we let 
Ps = {t e p: t C s or s C t}. Notice that ps e P if and only ifs e p. 

P, denotes a countable support iteration of P of length a. In order for this to be 
well defined notice that the conclusion of Lemma 3.7 is finitary, hence absolute. A 
version of the Fusion Lemma will be needed also for P. If p, q Et P,, n e co and 
F e [dom(q)]<w we will write p <Fn q when p < q and VPl e F p / P - "p(/B) <n 

LEMMA 3.1 1 (The Fusion Lemma). Let { (pi, mi, F ) : i e wt } be such that pi e 

Pa, mi C co , mi / oo, Fi C Fi+,, UFi = Udom(pi) and Pi+, <Fini pi for 
every i. Define p so that dom(p) = U{dom(pi): i e co} and VPl e dom(p) 
p(/) = {pi(/) / e dom(pi)}. Then p e P,. 

PROOF. Proof is an easy induction using Lemma 3.8. H 

Let p e P,, F e [dom(p)]<' and a: F - Seqn (P). We shall denote p [ a the 
function with the same domain as p such that 

{p(/3X (p) if 3 e F 

p a doesn't have to be a condition. We'll say that a is consistent with p if 

p [a e P, (i.e. if VP3 e F (p a a) /3 I F "a(/3) e p(,B)"). We shall say that p is 
(F, n)-determined provided that Va: F ) Seqn (P) either a is consistent with p or 
3,B e F s.t. a [ (F n /3) is consistent with p and (p a a) / P IPF "a(/3) X p(/3)". 

LEMMA 3.12. Let p e P,, F e [dom (p)], n e co and a : F Seqn(P)). Then: 

(1) If max F < B < a then (p L a) ,= (p a.,) La. 
(2) p is ({O}, n)-determinedfor every n e co. 
(3) If k > n, F C G, q <G,k p and p is (F, n)-determined then so is q. 
(4) If max F < B < a then p is (F, n)-determined if and only if p / P is (F, n)- 
determined. 

(5) There is q c P, q < p such that q = q [ - for some -: F Seqn (P) 
(6) If p is (F, n)-determined and q < p then there is - : F - Seqn (P) such that 
- is consistent with p, and q and p [ - are compatible. 
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PROOF. The only parts which are not completely obvious are (5) and (6) and (6) 
follows from (5), so all we have to prove is (5). Let /i, . . ./, k be an increasing 
enumeration of F. By induction on i < k find qi and Ci: { PI,. / . } i Seq, (P) 
such that p > qo > ?.. > qk and qi L vi =qj. Let qo p andco =0. Given qi 
and 0i find q < qi j pi+I and s E Seq,(P) such that q I "s E qi(Pi+,)". Then let 
0i+1 = vi U (Pi+,, s)} and 

(q () if f < Pi+, 

qi+l (f) = i (q3)s if = fl3i+ 

qi(/3) if /3>/?i. i+ 

We shall say that p C PK, is continuous if VF E [dom(p)]<` Vn C co 3m > n 
3G C [dom(p)]<' F C G so that p is (G, m)-determined. For q C P, n, m C co we 
shall say that m is an n-bound in q if Vt C q ItI > m X. Oq(t) > n. Let q C Pa,, 
F a finite subset of dom(q) and n C co be given. Then we shall call an m C co an 
(F, n)-bound in q if VfP c F q / P IF "nm is an n-bound in q(/3)". 

LEMMA 3.13. Let p C P1,, n C co and F C [dom(p)]<w. There is a q <Fn p and 
an m C co such that q is (F, n)-determined and m is an (F, n)-bound in q. 

PROOF. We shall prove this by induction on a. 
a = 1: This is true since every p C PI is ({O}, n)-determined for every n and the 
existence of m follows immediately from the definition of P. 
a = ? + 1: We only have to consider the case when P3 C F. There are Pp -names 
q and mh such that p / P IH- "q <n p(p) and mh is an n-bound in q". By our 
inductive hypothesis there are q' and m' such that q' is (F \ {fP}, n)-determined, 
q' <F\{f},n p /P and m' is an (F \ {/3}, n)-bound. For every a consistent with q' 
let m, be such that q' C aH "Im = mi. Then put q = q'7j and 

mi max{{nm'} U {ima : a is compatible with q'} + 1. 

a-limit: Choose /3 such that maxF < /P < a. Let q' C IPp, m C co be such that 
q' <Fn P 3, m is an (F, n)-bound in q' and q' is (F, n)-determined. Then put 

{P(Y) if Y > P 

It is left to the reader to check that this works. - 

LEMMA 3.14. For every p C P., there is a continuous q < p. 

PROOF. We shall construct qn, Mn and Fn by induction so that 

(1) po = p, no = 1, 0 {min (dom(p))} 
(2) Pn+I <Fnmn Pn 

(3) Pn+1 is (Fn, Mn)-determined 
(4) Mi+n is an (Fn, Mnn) bound in Pn 

(5) U{Fn : n C co} = U{dom(pn) : n c co. 
Let q be the fusion of this sequence. - 

We shall make use of the fact that every continuous condition q is fully de- 
scribed by a sequence {(Fi, min i) : i E co} where Fi, mi are as above and 
Ei = c{ : Fi - Seqm, (P) such that C is consistent with q}. The important 
property of this representation is that (informally) each condition is forced to 
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branch enough between levels mi and mi+i. This is being ensured by the fact that 
mi+1 is an (Fi,mi)-bound in p. Notice that if f(Fimi, i): i C co} is a repre- 
sentation of a continuous q and f E coo is a strictly increasing function, then 
{(Ff (i), mf (i), If (i)): i E co} also represents the same q. 

LEMMA 3.15. Let q < p C P0, be continuous. Then there is a representation 
{(Fy, m7, Xl) : i co} of q and a representation {(FiP, mi P) : i co } of p such 
that 

Vi e t Fiq dom(p) C Fip andm7 < mJ < m71. 

PROOF. Let {(Fi h ) o i E c}and {(Fip, mih7 ,i7): i E w } be representations 
of q and of p. We shall define new representations {(Fiq, m, q) : i E co} and 
{(FiP, m, I) co } of p and q using the previous remark. By induction define 
functions f and g. Put g(O) = 0 and having defined g(i) let f (i) be the least j 
such that Fq n dom(p) C FP and M ] < m*. Similarly having defined f (i) let 

g (i + 1) be minimal j such that m (i) < mj. Then the desired representations are 

{(Fg(j), rng(j)^g(j)): i E co} and {(F}'(i), man(i) f (i)) i E C}. 

Let a* be a countable set of ordinals we define Pa * as a countable support iteration 
of P with domain a *. Pa* is isomorphic to P,3 where 3 is the order type of a *. Even 
though in general it is not obvious that every condition in Pa* can be viewed as a 
condition in P29, it is obviously so for continuous ones. Since the set of continuous 
conditions is dense and closed under fusion we can (and will) from now on assume 
that all conditions mentioned are continuous. 

LEMMA 3.16. Let a* be a countable subset of a < 0)2. Let p* E Pa*, q E P, such 
that q < p*. Then there is a q* E Pa*, q* < p* such that if q is incompatible with an 
r* E Pa* then q* is incompatible with r*. 

PROOF. Let q < p* be given (WLOG we can assume that dom(p) = a*) and let 

{(F/', m/, Eq) : i E c)} and {(FfP*, mf*, Ei*) : i C co} be their representations as in 
Lemma 3.15. We shall define q* via a representation by putting for every i E co 

Fiq = Fi n 

mi* = m7* and 
q -{ca GE :rEXl+l1Vfl cFr(f)C (fl)}. 

It is easy to see (using the fact that the representations were as in Lemma 3.15) 
that this indeed defines a representation of a condition. Another way of describing 
the same procedure is as a fusion of pi = U{p - : -C E 1l}. So q* E Pa* and 
obviously q* < p*. 

Let r* E Pa* be compatible with q*. Let s* G Pa* be their common extension. 

Let {(Fi ,m7, X) i E (D} and {(FPm ,' ) i E o} be representations of 

q and s* such that for every i E w() Fis C Fiq and W* < mq < m4. As in 
Lemma 3.15 this is very easy to provide. Notice that here we are using possibly 
different representation of q than before. However, for notational simplicity, we 
denote it the same way. We shall define a common extension t of s* and q by 
putting 

Ft = Fiq, 

m = mrq and 
S {c C e E +lVe E Fis x(3) c (f)j. 
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The condition t also has an alternative description using fusion. It should be 
obvious that t < q, s*. That finishes the proof. H 

3.4. Proof of the Main Theorem. 

LEMMA 3.17. [CH] For every proper co-bounding forcing P with a dense subset of 
size N, there is a P-indestructible MAD family. 

PROOF. Using the properness of P and [CH] it is possible to construct a sequence 
{ (pa, a) : a < co I}, where p, E IP, -, is a P-name, so that if -c is a P-name and 
p IF "- E [co]"' then there is an a E co, such that p, < p and p, 1F- "c= ha". 
Having fixed such a sequence we shall construct the almost disjoint family a' 
{AD: a < co, } by induction. 

Let {Ai: i E co} be a partition of co into infinite sets. At stage a look at the pair 
(pa, ha). If pa, ,V "44V < a 1-c n A0 1 < co" then let A, be any set almost disjoint 
from {A: / < al}. 

If pa F- "4V/ < a 1-c n Ap1 < co" then enumerate A/t: / < a} as {Bn: n E co} 
and let Co = Bo and C,+1 = B,+1 \ U{Bi: i < n}. Let p be a name such that 
pa IF- "p e coW and Vm C.. n 0d, C p(m)". (Let p = {(p, m, n): p < p n = 
min{k: p 1F "Cnm n d, c k"}}.) Since IP is co-bounding, there is an f E coo and a 
q < p, such that q IF "p < f". Put 

a U C11 n f(m 
/11 G co 

To finish the proof it is sufficient to show that Vp "S? is MAD". To that end 
assume the contrary, that is there is a IP-name for a real -c and a condition p E IP 
such that p 1F "Va < coi: 1A n SA, < co". There is a / such that p# < p and 
pp 1F "-c = A". Then, however, pp 1F- "- C As" which is a contradiction. 

COROLLARY 3.18. [CH] There is a 1Po -indestructible MAD family. 

PROOF. Even though Iffy itself does not have cardinality co, it has a dense subset 
of cardinality co,. Take for instance the set of continuous conditions. H 

LEMMA 3.19. [CH] Every PK,, -indestructible MAD family is IPot2-indestructible. 

PROOF. Let a be an Po,,-indestructible MAD family. Assume that there is a 
IP.-name -c for a real and a p E 1P, such that p IF-p "VA E -c n Al < c. Let N 
be an elementary submodel of H(w02) such that p, a, -c, ? E N. Let 

D, = {p: p decides whether n E - }. 

We assume all conditions involved to be continuous hence absolute. Let a * a a n N 
an let q* < p be (N. IP,)-generic such that q* E Pa* Then 

(1) Vn C co D,, n N is predense below q* and D, n N C P,* 
(2) There is a Pa* -name a' such that q* I1 "c = " 

Since a is P,, -indestructible it is also P,* -indestructible. Using this and the exis- 
tential completeness of forcing 

3r* E P,*r* < q`1A C ar* p,* "IA n-l = co". 

However since r* < p and p I-1F "VA C 1-c 0 AI < co" 

q E P"q < r*OM coq 1p " n A c M" 
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which means that q is incompatible with those elements of D, for n > M, n E A 
which force n C -. By Lemma 3.16 there is s* E IPa*, s* < r* such that every 
t* E a* incompatible with q is also incompatible with s*. Therefore s* I[p, 
'"r n A C M" which is contradictory to the fact that r* I[-p, "A n -c = ". -1 

THEOREM 3.20. It is consistent with ZFC that a co1 and ag = 2o =0W2. 

PROOF. Let V I= CH and let G be PW2-generic over V. The proof of the fact 
that 2w= C02 is standard and so is the proof of D = co1 since P.2 is c-bounding. 
Corollary 3.18 and Lemma 3.19 give us a = coli. So the only thing that still requires 
a little bit of an argument is the fact that a. = g92. 

Assume on the contrary that there is a maximal cofinitary group G of Sym (co) of 
size co, in V[G]. Then this group would have to appear in V[G,] for some a < Cw2. 

Let 7C, be the generic permutation added by QJ[G]. Then by Lemma 3.10 the 
group G * (7h,) is cofinitary which contradicts our assumption of maximality of 
G. -1 
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