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COUNTABLE DENSE HOMOGENEITY OF DEFINABLE SPACES
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(Communicated by Alan Dow)

Abstract. We investigate which definable separable metric spaces are count-
able dense homogeneous (CDH). We prove that a Borel CDH space is com-
pletely metrizable and give a complete list of zero-dimensional Borel CDH
spaces. We also show that for a Borel X ⊆ 2ω the following are equivalent:
(1) X is Gδ in 2ω, (2) Xω is CDH and (3) Xω is homeomorphic to 2ω or
to ωω. Assuming the Axiom of Projective Determinacy the results extend
to all projective sets and under the Axiom of Determinacy to all separable
metric spaces. In particular, modulo a large cardinal assumption it is rela-
tively consistent with ZF that all CDH separable metric spaces are completely
metrizable. We also answer a question of Steprāns and Zhou, by showing that

p = min{κ : 2κ is not CDH}.

0. Introduction

A separable topological space X is countable dense homogeneous (CDH) if given
any two countable dense subsets D, D′ ⊆ X there is a homeomorphism h of X such
that h[D] = D′. The first result in this area is due to Cantor, who, in effect, showed
that the reals are CDH. Fréchet [Fr] and Brouwer [Br], independently, proved that
the same is true for the n-dimensional Euclidean space Rn. In 1962, Fort [Fo]
proved that the Hilbert cube is also CDH.

Systematic study of CDH spaces was initiated by Bennett [Be] in 1972. Since
then, a number of papers were published on the topic, most of which are mentioned
in the references. The focus remained on separable metric spaces. Under some
set-theoretic assumptions such as the Continuum Hypothesis or Martin’s Axiom, a
variety of examples of countable dense homogeneous metric spaces were constructed:
assuming CH, Fitzpatrick and Zhou constructed a CDH Bernstein subset of Rn and
a CDH subset of R which is meager in itself; Baldwin and Beaudoin constructed a
Bernstein subset of R under Martin’s Axiom for countable partial orders.

In this paper, we are concerned mostly with the countable dense homogeneity of
definable separable metric spaces. Our principal result states that every analytic
CDH space is completely Baire. We use it to give a complete list of zero-dimensional
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Borel CDH spaces and to show that for a Borel X ⊆ 2ω the following are equivalent:
(1) X is Gδ in 2ω, (2) Xω is CDH and (3) Xω is homeomorphic to 2ω or to ωω.
These provide partial answers to the following problems of [FZ3]:

387. For which 0-dimensional subsets of R is Xω homogeneous? CDH?
and

389. Does there exist a CDH metric space that is not completely metrizable?

1. Descriptive set theory

In this section, we review some of the classical results of descriptive set theory.
For proofs and further references consult e.g. [Ke]. Recall that a separable com-
pletely metrizable space is called a Polish space. We call a separable metric space
Borel if it is Borel in its completion. A separable metric space is analytic if it is a
continuous image of the Baire space ωω. A space is co-analytic if it is a complement
of an analytic subspace of some Polish space. Recall that a space is Borel if and
only if it is both analytic and co-analytic. This is an old result of Souslin as is the
following:

Theorem 1.1. Every uncountable analytic space contains a homeomorphic copy of
2ω.

Recall that a subset A of a Polish space X is said to have the Baire property if
there is an open set U ⊆ X such that the symmetric difference A�U is meager in
X.

Theorem 1.2. Every analytic subspace of a Polish space has the Baire property.

A topological space X is Baire if the complement of every meager subset of X
is dense in X. Note that being Baire and having the Baire property are quite
different notions. We will use the following corollary of Theorem 1.2 proved in a
more general context by Levi [Le] (see also [vM2]):

Theorem 1.3. Every analytic Baire space has a dense completely metrizable sub-
space.

Proof. Let X be an analytic Baire space and let X̄ be its completion. By Theorem
1.2, there is an open set U ⊆ X̄ such that X�U is meager in X̄. That is, X�U =⋃

n∈ω Fn, where each Fn is nowhere dense in X̄. Note that U is a dense open subset
of X̄. Let G = U \

⋃
n∈ω F̄n. Then G is completely metrizable as it is Gδ in X̄, and

G is a dense subset of X as X is Baire. �
A topological space X is completely Baire if all of its closed subspaces are Baire.

The following theorem is due to Hurewicz (see [Ke]).

Theorem 1.4. Every co-analytic completely Baire space is completely metrizable.

Under the Axiom of Projective Determinacy (PD) all of the above theorems hold
for all projective sets. Similarly under the Axiom of Determinacy (AD) they hold
for all separable metric spaces. For proof of the analogues of Theorems 1.1 and 1.2
(and hence also Theorem 1.3) in this context see e.g Theorem 27.9 of [Ka]. The
fact that the variants of Theorem 1.4 hold follows from the proof of Theorem 4 of
[KLW].

The following characterization of zero-dimensional Polish spaces can be found in
[Ke] and [vM2].
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Theorem 1.5. (i) Every zero-dimensional separable compact completely metrizable
space without isolated points is homeomorphic to 2ω.

(ii) Every zero-dimensional separable locally compact non-compact completely
metrizable space without isolated points is homeomorphic to 2ω \ {0}.

(iii) Every zero-dimensional separable completely metrizable space without iso-
lated points in which all compact sets are nowhere dense is homeomorphic to ωω.

2. Analytic CDH spaces

In the article Some open problems in densely homogeneous spaces of Open Prob-
lems in Topology, Fitzpatrick and Zhou ask (Question 389) whether there is a CDH
metric space which is not completely metrizable. We answer this question in the
negative for Borel spaces. The following simple lemma ([FZ2]) will be used many
times in what follows.

Lemma 2.1. A separable metric space X without isolated points is meager in itself
if and only if there is a countable dense D ⊆ X which is Gδ in X.

Proof. The reverse implication is obvious. For the forward implication, let X =⋃
n∈ω Fn, where each Fn is a closed nowhere dense subset of X. Enumerate a basis

for the topology of X as {Un : n ∈ ω} and recursively pick xn ∈ Un \
⋃

m≤n Fm. Set
D = {xn : n ∈ ω}. D is obviously a countable dense subset of X. To see that it is
Gδ in X note that D intersects each Fn in a finite set; hence X \D =

⋃
n∈ω(Fn \D)

is Fσ in X. �

Next we prove a decomposition lemma for CDH spaces.

Lemma 2.2. Every CDH space X can be written as a disjoint topological sum
X = I ⊕ L ⊕ R, where I is the set of isolated points in X, L is locally compact
without isolated points and R has the property that every compact subset or R is
nowhere dense in R.

Proof. First we show that the set I of all isolated points of X is clopen in X.
Note that I is countable as X is separable. If I is not closed, pick x ∈ Ī \ I
and a set C ⊆ X \ Ī countable dense in X \ Ī. Let D0 = I ∪ C and D1 =
D0 ∪ {x}. The sets D0 and D1 are then countable dense subsets of X, and
we reach a contradiction by noting that there is no homeomorphism of X send-
ing D1 to D0, for x is not isolated but every neighborhood of x contains an
isolated point, whereas all points in D0 are either isolated or have a neighbor-
hood which does not contain any isolated points. Let Y = X \ I. Consider
L = {x ∈ Y : ∃U ⊆ Y a locally compact neighborhood of x} andR = {x ∈ Y :
∃ U ⊆ Y a neighborhood of x, s.t. ∀ K ⊆ U compact, int(K) = ∅}. Obviously, L
and R are disjoint open subsets of Y . To finish the proof it suffices to show that
Y = L ∪ R. First note that L ∪ R is dense in Y , as if x ∈ Y � (L ∪ R) then i.p.
x ∈ Y � R, which implies that for every U ⊆ X neighborhood of x, there is a
K ⊆ U compact such that int(K) 	= ∅; hence x ∈ L.

Now, suppose that Y � (L∪R) 	= ∅. Pick x ∈ Y � (L∪R) and a countable dense
D0 ⊆ L ∪ R and let D1 = D0 ∪ {x}. Again, D0 and D1 are clearly countable in
X and there is no homeomorphism h of X sending D1 to D0 as then h(x) ∈ L or
h(x) ∈ R but x 	∈ L ∪ R. �

Theorem 2.3. Every analytic CDH space X is completely Baire.
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Proof. By Lemma 2.2, we can assume that X has no isolated points.
Claim 1. Every open subset of X is uncountable.
Assume not, that is, V =

⋃
{U : U is a countable open subset of X} is not empty.

Then V is itself a countable open set. Choose C a countable dense subset of X \V
and x ∈ V . Let D0 = C ∪ V and D1 = C ∪ V \ {x}. The sets D0 and D1 are then
countable dense subsets of X. As X is CDH there is a homeomorphism h of X
such that h[D1] = D0. Then, however, h(x) 	∈ V and, unlike x, h(x) does not have
a countable neighborhood, which contradicts the fact that h is a homeomorphism.

Claim 2. X is Baire.
Suppose it is not the case. That means that there is an open set U ⊆ X which

is meager in itself. By Lemma 2.1, there is a C ⊆ U countable dense in U which is
Gδ in U . Let D0 be a countable dense subset of X such that D0 ∩ U = C.

Let {Un : n ∈ ω} be an enumeration of some countable basis for the topology on
X. By Claim 1, each Un is uncountable, and as every open subset of an analytic
space is itself analytic, by Theorem 1.1, each Un contains a subset Fn homeomorphic
to 2ω. Choose, for every n ∈ ω, a countable Cn ⊆ Fn dense in Fn and set D1 =⋃

n∈ω Cn. The set D1 is then a countable dense subset of X.
Note that D1 ∩ V is not Gδ in V for any open set V ⊆ X. To see this, let V

be an open subset of X. There is an n ∈ ω such that Un ⊆ V ; hence Fn ⊆ V . If
D1 ∩V were Gδ in V , then D1 ∩Fn would be Gδ in Fn. As Cn ⊆ D1 ∩Fn it follows
that D1 ∩ Fn is dense in Fn. Lemma 2.1 then implies that Fn is meager in itself,
which contradicts the Baire Category Theorem for 2ω.

To finish the proof of the claim it suffices to notice that the countable dense sets
D0 and D1 have different (relative) topological properties in X. Hence there is no
homeomorphism of X sending one to the other, which contradicts the fact that X
is CDH.

We are now ready to show that X is completely Baire. By Claim 2 and Theorem
1.3, there is a completely metrizable G ⊆ X which is dense in X. Let D0 be any
countable dense subset of G (and consequently also a dense subset of X). Note
that D0 has the property that if E ⊆ D0 has no isolated points, then E is not Gδ

in Ē, for if E were Gδ in Ē, then E would be Gδ in Ē∩G, but Ē∩G is a Gδ subset
of G, hence, is completely metrizable. However, by the Baire Category Theorem
this does not happen.

Aiming toward a contradiction again, assume that X is not completely Baire.
That is, there is a closed set F ⊆ X which is meager in itself. By Lemma 2.1, there
is a countable dense C ⊆ F which is Gδ in F . Let D1 = C ∪ (D0 \ F ). The set D1

is clearly a countable dense subset of X and has the property that there is a subset
of it without isolated points which is Gδ in its closure (C being a witness to this).

So, again, the countable dense sets D0 and D1 have different (relative) topological
properties in X. Hence there is no homeomorphism of X sending one to the other,
contradicting the countable dense homogeneity of X. �

Corollary 2.4. Every Borel CDH space X is completely metrizable.

Proof. This follows directly from Theorem 2.3 and Theorem 1.4. �

Corollary 2.5. Let X be a zero-dimensional Borel CDH space without isolated
points. Then X is homeomorphic to one of the following five spaces: 2ω, ωω,
2ω � {0}, ωω ⊕ 2ω or ωω ⊕ 2ω � {0}.
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Proof. By the previous corollary, X is completely metrizable. By Lemma 2.2,
X = L ⊕ R, where L is locally compact without isolated points and R has the
property that every compact subset of R is nowhere dense in R. By Theorem 1.5,
R is either empty or homeomorphic to ωω and L (if non-empty) is homeomorphic
either to 2ω or 2ω � {0}, depending on whether it is compact or not. �

A natural question is whether the above results can be extended beyond analytic
or Borel sets. The answer depends on set-theoretic assumptions. For possible ex-
tensions, note that all arguments presented so far use only the validity of Theorems
1.1, 1.3, 1.4 and only the countable Axiom of Choice, a consequence of the Axiom
of Dependent Choice.

Corollary 2.7. (i) (PD) Every projective CDH space is completely metrizable.
(ii) (AD) All separable metric CDH spaces are completely metrizable.

So in particular, it is consistent with ZF that every zero-dimensional metric CDH
space without an isolated point is homeomorphic to one of the following spaces: 2ω,
ωω, 2ω � {0}, ωω ⊕ 2ω or ωω ⊕ 2ω � {0}.

To conclude the section we show that Theorem 2.3 and Corollary 2.4 are consis-
tently sharp by proving the following:

Theorem 2.6. (MA + ¬CH + ω1 = ωL
1 ) Let X be an ℵ1-dense subset of 2ω. Then:

(i) X is a co-analytic meager in itself CDH space.
(ii) 2ω \ X is an analytic completely Baire CDH space which is not completely

metrizable.

Proof. A theorem of Martin and Solovay (see [Mi]) states that, assuming MA +
¬CH + ω1 = ωL

1 , every set of reals of size ℵ1 is co-analytic. MA implies that X is
meager in itself. It is easy to see that 2ω \X is completely Baire and not completely
metrizable (and of course analytic).

The fact that both X and 2ω \ X are CDH follows directly from Lemma 3.1 of
[BB]. �

3. Products of CDH spaces

Products of CDH spaces need not be CDH. A simple example, pointed out by
the referee, is the pair R and ωω. On the other hand, infinite products of spaces
which are not CDH can be CDH, an example being the Hilbert cube [0, 1]ω ([Fo]).
Lawrence [La] showed that Xω is homogeneous, for every X ⊆ 2ω (see also [DP])
answering half of Question 388 of ZH3. The other half asks for which X ⊆ 2ω is Xω

CDH. It was known that not for all X as Fitzpatrick and Zhou in [FZ2] showed that
Qω is not CDH, where Q denotes the space of rational numbers. In this section,
we characterize those Borel subsets of 2ω whose power is CDH.

Theorem 3.1. Let X be a separable metric space such that Xω is CDH. Then X
is a Baire space.

Proof. The proof of this theorem is quite analogous to the proof of Claim 2 of
Theorem 2.3. Suppose that X has at least two elements. It suffices to note that
(1) if X is not Baire, then Xω is meager in itself, and (2) every open subset of Xω

contains a copy of 2ω. �
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Theorem 3.2. Let X ⊆ 2ω be Borel. Then the following are equivalent:
(1) Xω is CDH,
(2) X is Gδ in 2ω,
(3) |Xω| = 1 or Xω is homeomorphic to 2ω or Xω is homeomorphic to ωω.

Proof. Suppose that |Xω| > 1. (1) implies (2) by Theorem 2.3 as Xω is Borel if
and only if X is and, moreover, Xω is completely metrizable if and only if X is.

To see that (2) implies (3), note that if X is Gδ in 2ω, then Xω is completely
metrizable. Moreover, if X is zero-dimensional, then so is Xω and Xω does not
contain any isolated points. Now, if X is compact, then so is Xω; hence, Xω is
homeomorphic to 2ω by Theorem 1.5 (i). If X is not compact, then all compact
subsets of Xω are nowhere dense and Xω is homeomorphic to ωω by Theorem 1.5
(ii).

(3) implies (1), as both 2ω and ωω are CDH. �
Just like in the previous section this theorem can be strengthened assuming PD

or AD. The following question, however, remains open.

Question 3.2. Is there a non-Gδ subset of 2ω such that Xω is CDH?

We will conclude this section and the paper by considering uncountable products.
Recall that a family F ⊆ [ω]ω is centered if every non-empty finite subfamily of
F has an infinite intersection. An infinite set A ⊆ ω is a pseudo-intersection of
a family F ⊆ [ω]ω if A \ F is finite for every F ∈ F . The cardinal invariant p

is defined as the minimal cardinality of a centered family F ⊆ [ω]ω which has no
infinite pseudo-intersection.

Steprāns and Zhou in [SZ] showed that 2κ is CDH for every κ < p and asked
whether 2p is provably not CDH. We show that it follows from known results that
the answer is positive.

Theorem 3.3. p = min{κ : 2κ is not CDH}.
Proof. The fact that min{κ : 2κ is not CDH} ≤ p was proved in [SZ]. In [Ma]
and [HS], it is shown that there is a countable dense set D ⊆ 2p and a point
x ∈ 2p such that no sequence in D converges to x. On the other hand, it is easy
to construct a countable dense set C ⊆ 2p such that for every c ∈ C there is a
sequence 〈cn : n ∈ ω〉 ⊆ C \ {c} converging to c.

Now, notice that there is no homeomorphism of 2p sending C to D ∪ {x} as if
c = h−1(x) and 〈cn : n ∈ ω〉 ⊆ C \ {c} is a sequence converging to c, then the
sequence 〈h(cn) : n ∈ ω〉 does not converge to x, contradicting continuity of h. �
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[Fr] M. Fréchet, Les dimensions d’unensemble abstrait, Math. Ann 68 (1910), 145–168.
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