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Abstract We study an extensive connection between quotient forcings of Borel
subsets of Polish spaces modulo a σ -ideal and quotient forcings of subsets of countable
sets modulo an ideal.
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1 Introduction

In recent years there has been a wave of interest in partial orders given as quotients.
We will discuss two kinds of them: a σ -ideal I on a Polish space X comes with the
quotient poset of I -positive Borel sets ordered by inclusion, denoted by PI ; and an
ideal J on some countable set Y comes with the quotient poset of all J -positive sets
ordered by inclusion, denoted by Q J or Power(X)/J for an ideal J on a countable set
X . The former turned out to be very close to traditional forcings adding a real, and they
allow of a comprehensive theory [20]. From the forcing point of view, the latter are
harder to understand [5]. In this paper we describe a close relationship between the two
classes of posets. The connecting link is the following definition due to Brendle [3]:
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720 M. Hrušák, J. Zapletal

Definition 1.1 For a σ -ideal I on ωω the trace ideal tr(I ) on ω<ω is defined by
a ∈ tr(I ) ↔ {r ∈ ωω : ∃∞n r � n ∈ a} ∈ I . Similarly for the Cantor space.

First we show that the quotient forcings PI and Qtr(I ) are very close for a large
class of σ -ideals I described in the following definition:

Definition 1.2 Let I be a σ -ideal on a Polish space such that the forcing PI is proper.
The forcing PI has the continuous reading of names if for every I -positive Borel set
B and a Borel function f : B → 2ω there is an I -positive Borel set C ⊂ B such that
the function f � C is continuous.

Theorem 1.3 Suppose that I is a σ -ideal on X = ωω. If PI is a proper forcing with
continuous reading of names, then Qtr(I ) is a proper forcing as well and in fact Q is
naturally isomorphic to a two step iteration of P and an ℵ0-distributive forcing.

This result makes it easy to generate and understand a large variety of quotients
Q J of ideals on ω. Our methods provide many ideals J for which these quotients are
proper as well as examples of ideals for which the quotient forcings are improper.
Restricting attention to σ -ideals on the Baire space as opposed to an arbitrary Polish
space is both necessary and innocuous: necessary since it makes the definition of
the trace ideal possible, and innocuous because every proper forcing with continuous
reading of names has a presentation on the Baire space with the continuous reading
of names—Claim 2.2.

Earlier results in this area include a note of Steprāns [18] on what in retrospect are
trace ideals for a small class of forcings, a result of Balcar, Hernández, and Hrušák
[1] regarding the properness of the factor Power(Q)/nowhere dense sets, and results
of Steprāns and Farah concerning the properness of factors Power(ω)/J for various
analytic P-ideals J . It should be noted that the trace ideals are analytic P-ideals only
in the case the original forcing PI had an exhaustive submeasure on it by a result of
Solecki [17].

The second main theorem deals with the action of forcings on ideals on ω.

Definition 1.4 A forcing destroys an ideal K on ω if it introduces an infinite set x ⊂ ω

such that every ground model element of the ideal K has a finite intersection with x .

In fact, what is destroyed is the tallness of the ideal K , where K is tall if every infinite
set of natural numbers has an infinite subset in K ; we suggested the terminology of the
definition for its brevity. This definition is useful in the study of maximal almost disjoint
families and their preservation under forcings. It turns out that for many forcings the
class of ideals on ω which are destroyed can be simply understood in terms of the
Katětov order ≤K [8], which is an interesting notion in itself:

Definition 1.5 If J, L are ideals on ω, we say that L ≤K J if there is a function
f : ω → ω such that f -preimages of K -small sets are L-small. Similarly for ideals
on other sets.

It is not difficult to see that if a forcing destroys an ideal L on ω then it destroys
all ≤K -smaller ideals. The paper [3] showed that for many particular forcings there is
a critical ideal J such that the forcing destroys an ideal L if and only if L ≤K J . It
turns out that there is a simple general pattern:
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Forcing with quotients 721

Theorem 1.6 If I is a σ -ideal on the Baire space and PI is a proper forcing with the
continuous reading of names and L is an ideal on ω then the following are equivalent:

1. there is a condition B ∈ PI such that B �“the ideal L is destroyed”
2. there is a tr(I )-positive set a such that L ≤K tr(I ) � a.

In fact, for many forcings used in practice the trace ideals are homogeneous in the
sense that tr(I ) � a ≤K tr(I ) in which case the second item of the theorem can be
improved accordingly: L ≤K tr(I ).

The notation used in the paper follows the set theoretic standard of [9]. If I is a
σ -ideal on a Polish space X , the symbol PI denotes the poset of I -positive Borel subsets
of X ordered by inclusion. If J is an ideal on a countable set X , the symbol Q J denotes
the poset of J -positive subsets of X ordered by inclusion. For a tree T ⊂ (2 × ω)<ω

the symbol [T ] denotes the set of all its infinite branches and the symbol p[T ] its
projection, that is the set of those r ∈ 2ω such that there is b ∈ ωω such that the pair
r, b constitutes a branch through the tree T . The characteristic function of a set a ⊂ ω

is denoted by χ(a). For a sequence t ∈ 2<ω the symbol [t] denotes the basic open
subset of the space 2ω determined by t . LC denotes the use of suitable large cardinal
assumptions.

2 The continuous reading of names

We will begin with several simple observations on the continuous reading of names.

Claim 2.1 Let I be a σ -ideal on a Polish space X . The following are equivalent:

1. the forcing PI has the continuous reading of names
2. for every I -positive Borel set B and a countable collection {Dn : n ∈ ω} of Borel

sets there is an I -positive Borel set C ⊂ B such that all sets Dn ∩ C are relatively
open in C

3. for every I -positive Borel set B and every Borel function f : B → Y to a Polish
space Y there is an I -positive Borel set C ⊂ B such that f � C is continuous.

Proof (1)→(2). Fix sets B, Dn : n ∈ ω and define a Borel function f : B → 2ω by
f (r)(n) = 1 if r ∈ Dn . By the continuous reading of names there is an I -positive
Borel set C ⊂ B such that f � C is continuous. It is immediate that the sets Dn ∩ C
must be relatively open in C .

(2)→(3). Suppose that B is a Borel I -positive set and f : B → Y is a Borel
function. For every basic open set O from some fixed countable basis for the space Y ,
let DO = f −1 O . It is clear that DO is a Borel set and if C ⊂ B is any set such that
all sets DO ∩ C are relatively open in C , the function f � C must be continuous.

(3)→(1). Trivial.

Claim 2.2 Every proper forcing of the form PI with the continuous reading of names
has a presentation on the Baire space ωω with the continuous reading of names.

Proof Suppose that X is a Polish space and I is a σ -ideal on it such that the forcing
PI is proper and has the continuous reading of names. There is a continuous bijection
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π : Y → X between a closed subset Y of the Baire space and the space X [11, 7.9.] Let
J be the σ -ideal on the Baire space generated by ωω\Y and the π -preimages of sets in
the ideal I . Clearly, PI is forcing isomorphic to PJ . We claim that PJ has the continuous
reading of names. If B ⊂ ωω is a Borel J -positive set and f : B → 2ω is a Borel
function, consider the Borel I -positive set B ′ ⊂ X given by x ∈ B ′ ↔ π−1(x) ∈ B
and the function f ′ : B ′ → 2ω defined by f ′(x) = f (π−1(x)). Note that as f, π−1

are both Borel, so is the function f ′. Use the CRN on PI to find an I -positive Borel
set C ′ ⊂ B ′ such that the function f ′ � C ′ is continuous. A simple diagram-chasing
argument shows that the function f is continuous on the J -positive set C = π−1C ′.

Most definable proper partial orderings have the continuous reading of names under
a suitable representation.

Example 2.3 Cohen forcing has the continuous reading of names. Recall that the
Cohen forcing is naturally represented as PI where I is the ideal of meager sets. Now,
in fact, for every Borel function f : 2ω → 2ω there is a meager set C ∈ I such that the
function f � 2ω\C is continuous [11, 8.38.]. The Cohen forcing is the only forcing
which satisfies this strengthening of the continuous reading of names. To show this,
suppose that J is a σ -ideal on a Polish space X such that for every Borel function
f : X → 2ω there is a set C ∈ J such that the function f � X\C is continuous. Then
below some condition, the forcing PJ has a countable dense subset, and so is in the
forcing sense equivalent to Cohen forcing. If not [2, Proposition 1.4], shows that one
can refine the countable basis O of the space X into a collection of pairwise disjoint
J -positive sets BO : O ∈ O such that BO ⊂ O . Define f : X → 2ω by f (x)(n) = 1
if x ∈ BOn where On is the nth element of the basis O in some fixed enumeration.
Suppose that C ∈ J is a small set such that f � X\C is continuous. This means that
the set BO0\C is relatively open in X\C , containing some basic open neighborhood
On\C . However, this is impossible since the set BOn ⊂ On is a J -positive subset
disjoint from BO0 .

Example 2.4 [20, 2.2.3]. Every proper ωω-bounding poset PI has the continuous rea-
ding of names.

Proof For simplicity assume that the underlying space of the ideal I is 2ω. Suppose B
is a Borel I -positive set and f : B → 2ω is a Borel function. Let T ⊂ (2 × 2 × ω)<ω

be a tree which projects to the graph of the function f . By a standard absoluteness
argument, B �“for some ṡ ∈ 2ω, ḃ ∈ ωω the triple 〈ṙgen, ṡ, ḃ〉 constitutes a branch
through the tree Ť .” Since the forcing PI is bounding, there is a condition D ⊂ B
which forces ḃ to be pointwise dominated by some function c ∈ ωω. Let S be the
subset of the tree T consisting of those sequences whose third coordinate is pointwise
dominated by the function c. Then S is a finitely branching tree and

• p[S] is a compact subset of the graph of the function f , so it is a graph of a
continuous subfunction of f

• C = pp[S] is a compact subset of the set B, D forces the generic real into Ċ and
therefore C is I -positive.

All in all, C ⊂ B is an I -positive compact set on which the function f is continuous.
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Forcing with quotients 723

Example 2.5 If the ideal I is σ -generated by closed sets then the forcing PI is proper
and it has the continuous reading of names.

Proof The properness of the poset PI is the contents of [20, Lemma 2.3.11]. For the
continuous reading of names, let us first deal with the case of the σ -ideal generated
by nowhere dense sets. It is a classical result [11, 8.38] that for every Polish space X
and every Borel function f : X → ωω there is a comeager Gδ set C ⊂ X such that f
is continuous on it.

In the general case, suppose that B is a Borel I -positive set and f : B → ωω is a
Borel function. By a result of Solecki [17], thinning out the set B we may assume that
it is Gδ . Furthermore, removing all the I -small sets O ∩ B where O is a basic open
set, we may assume that every basic open set O , O ∩ B /∈ I ↔ O ∩ B 
= 0. Note that
the latter operation preserves the fact that the set B is Gδ . It now immediately follows
that then every closed set in the ideal I is nowhere dense in the set B. Since the set
B is Gδ , it is Polish in the relative topology, and so every set C ⊂ B comeager in B
must be positive in the ideal I . By the first paragraph of the proof, there must be a
comeager Gδ set C ⊂ B such that the function f is continuous on it.

These two classes of examples include many forcings used in practice, such as the
Cohen, Solovay, or Miller reals. In other situations, the continuous reading of names
has to be checked carefully.

Example 2.6 The Laver forcing in the natural presentation has the continuous reading
of names. This is a folklore knowledge, and it follows from Example 3.7 in this paper.

Example 2.7 The Steprāns forcing [19] in the natural presentation does not have the
continuous reading of names. Here the Steprāns forcing PI is obtained from a Borel
function f : 2ω → 2ω which cannot be decomposed into countably many continuous
functions by considering the ideal I σ -generated by the sets on which the function
f is continuous. The poset PI is proper and up to the forcing equivalence does not
depend on the initial choice of the function f —see [20, 2.3.49].

It is interesting to note that in a slightly different presentation the ideal associa-
ted with Steprāns forcing is generated by closed sets and therefore does have the
continuous reading of names. Let us describe this different presentation.

We will need a definite example of a Borel function which cannot be decomposed
into countably many continuous functions, due to Pawlikowski [4]. Consider the space
ω+1 equipped with the order topology, the space (X, σ ) = (ω+1)ω with the product
topology, and the Pawlikowski function P : X → ωω defined by P(r)(n) = r(n) + 1
if r(n) ∈ ω and P(r)(n) = 0 if r(n) = ω. This function cannot be decomposed into
countably many continuous functions and it is in a sense a minimal such example [16].

Let I be the σ -ideal on the space X generated by the sets B on which the function P
is continuous. Clearly the poset PI does not have the continuous reading of names as
witnessed by the function P . However, the function P turns out to be the only obstacle.
Namely, if the space X is equipped with the smallest Polish topology τ ⊃ σ which
makes the function P continuous and generates the same Borel structure, the σ -ideal
I is generated by τ -closed sets and so the forcing PI has the continuous reading of
names in this new presentation. An outline of the easy argument: the topology τ is
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the product topology on X with ω + 1 viewed as a discrete space. If B ⊂ X is a set
such that P � B is continuous with respect to the topology σ and C is the τ -closure of
the set B, then P � C is continuous with respect to σ as well. If U, V are basic open
subsets of (X, σ ) and ωω respectively such that P ′′(B ∩U ) ⊂ V then P ′′(C ∩U ) ⊂ V
as well.

Definition 2.8 Let J be an ideal on ω. The Prikry forcing P(J ) for the ideal J is
defined as the set of all pairs 〈t, a〉 where t ⊂ ω is a finite set, a ⊂ ω is a set in the
ideal J , and 〈u, b〉 ≤ 〈t, a〉 if t ⊂ u, a ⊂ b and a ∩ u\t = 0. We will refer to the
union of the first coordinates of conditions in the generic filter as the generic subset
of ω, and denote it by ȧgen .

Example 2.9 Let J be an ideal on ω. The forcing P(J ) has the continuous reading of
names if and only if J is a P-ideal.

Proof Let I be the σ -ideal on 2ω associated with the forcing P(J ), namely I is the
collection of those sets B ⊂ 2ω for which it is outright forced that χ(ȧgen) /∈ B. Thus
the poset PI is in the forcing sense equivalent to the poset P(J ), with a canonical
correspondence between the respective generic objects.

First suppose that J is not a P-ideal, as witnessed by a countable collection {an :
n ∈ ω} of sets in the ideal such that no set in the ideal contains each of them modulo
a finite set. Consider the Borel function f : 2ω → 2ω defined by f (r)(n) =the parity
of the size of the set {m ∈ an : r(m) = 1}. The function f is defined on an I -large
set, and we claim that it cannot be reduced to a continuous function on an I -positive
Borel set.

Suppose that B is an I -positive Borel set, and 〈t, b〉 �“χ(ȧgen) ∈ Ḃ”. Thinning out
the set B we may assume that it consists only of functions r such that ∀m ∈ ω (t (m) =
1 → r(m) = 1 and m ∈ b → r(m) = 0). Let n be such that the set an\b is infinite. It
is not difficult to see that both sets {r ∈ B : f (r)(n) = 0} and {r ∈ B : f (r)(n) = 1}
are dense in the set B, and therefore the function f cannot be continuous on B.

Now suppose that J is a P-ideal, B /∈ I is a Borel set, and f : B → ωω is a Borel
function. Let M be a countable elementary submodel of a large enough structure
containing the ideal J , let a ⊂ ω be a set in the ideal J which modulo finite contains
all sets in J ∩ M , and for every number n consider the sets Cn = {r ∈ B : r is
M-generic for PI and for all k > n, r(k) = 1 → k /∈ a}. Since the poset PI is c.c.c.,
the set B\ ⋃

n Cn is in the ideal I and there must be a number n ∈ ω such that the
Borel set Cn is I -positive. Set C = Cn ⊂ B; we will be done if we show that the
function f � C is continuous.

Suppose r ∈ C and O ⊂ ωω is a basic open set such that f (r) ∈ O . We must
produce a basic open set P ⊂ 2ω such that r ∈ P and for every real s ∈ P ∩ C ,
f (r) ∈ O . Look at the M-generic filter G ⊂ M ∩ P(J ) associated with the real r :
G = {〈t, b〉 ∈ P(J )∩M : ∀m ∈ ω m ∈ t → r(m) = 1∧m ∈ b → r(m) = 0}. By the
forcing theorem, there must be a condition 〈t, b〉 ∈ G which forces ḟ (χ(ȧgen)) ∈ O .
Let m ∈ ω be a natural number larger than n, larger than all elements of the finite set
t , and larger than all elements of the finite set b\a. It is enough to show that whenever
s ∈ C is a real such that s � m = r � m then f (s) ∈ O . A brief inspection reveals
that the condition 〈t, b〉 belongs to the M-generic filter associated with the real s, and
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Forcing with quotients 725

by the forcing theorem applied in the model M , it must be the case that f (s) ∈ O as
desired.

A similar proof can be used to show that the Hechler forcing in the natural presen-
tation has the continuous reading of names, while the eventually different real forcing
does not have the continuous reading of names.

Example 2.10 The eventually different real forcing does not have the continuous rea-
ding of names in any presentation. Here, if I is a σ -ideal on a Polish space X such that
the forcing PI is proper, a different presentation is just a Borel bijection π : X → Y
of X and another Polish space and the ideal J on Y defined by A ∈ J ↔ π−1 A ∈ I .
Since Borel injective images of Borel sets are Borel, it follows that PJ and PI are
isomorphic partial orders. The eventually different real forcing P is the set of all
pairs p = 〈tp, f p〉 where tp is a finite sequence of natural numbers and f p is a finite
set of functions in ωω. The ordering is defined by q ≤ p if tp ⊂ tq , f p ⊂ fq and
(tq\tp)∩⋃

f p = 0. The forcing P adds an element ẋgen of the Baire space as the union
of the first coordinates of the conditions in the generic filter. The function ẋgen has
finite intersection with every function in the ground model. The forcing P is clearly
σ -centered since any two conditions with the same first coordinate are compatible.
Let I be the σ -ideal of all Borel sets B ⊂ ωω such that P �“ẋgen /∈ Ḃ” so P is in the
forcing sense equivalent to the poset PI .

First we claim that it is enough to show that for no Polish topology τ on the Baire
space extending the standard Baire space topology the forcing PI has the τ -continuous
reading of names. To see this, note that if π : ωω → Y and J is a presentation of the
eventually different forcing, then there is a Polish topology τ on the Baire space which
gives the same Borel structure as the original one and makes all the π -preimages of
open subsets of Y open [11, 13.A]. It is easy to see that if the forcing PJ had the
continuous reading of names, then so would PI in the topology τ .

Let Bn : n ∈ ω enumerate a basis for the topology τ . These are all Borel subsets of
the Baire space ωω and so there are countable antichains An : n ∈ ω in the forcing P
such that every condition in An forces ẋgen ∈ Ḃn and the antichains are maximal with
respect to this property.

A piece of notation and an easy construction: for a finite set f ⊂ ωω of functions
and a number l ∈ ω write f (l) = {x(l) : x ∈ f }. For every number m ∈ ω choose a set
fm of m + 1 many functions in the Baire space which return mutually distinct values
at every input and moreover such that for all numbers k, n ∈ ω and every condition
q ∈ An there is a number l > k such that fm(l) ∩ fq(l) = 0. Let h : ωω → ωω be the
partial Borel function defined by h(x)(m) =the least number k such that x(l) /∈ fm(l)
for all numbers l > k. Note that the function h is defined on all but I -many points
in the Baire space. We claim that there is no Borel I -positive set C ⊂ ωω such that
h � C is a τ -continuous function.

Suppose there in fact is such a set C ⊂ ωω. Find a condition p ∈ P such that
p � ẋgen ∈ Ċ and let m = | f p|. The sets Ck = {x ∈ C : h(x)(m) = k} : k ∈ ω

exhaust all of C and so for one of them, p must have an extension forcing ẋgen into it.
This set Ck is relatively τ -open in the set C , and there must be a set a ⊂ ω such that
Ck = C ∩ ⋃

n∈a Bn . Since the set Ck is I -positive, there must be a number n ∈ a and
a condition q ∈ An such that p, q are compatible conditions. Now use the property of
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the finite set fm ⊂ ωω to find a number l > k, |sp|, |sq | such that fm(l) ∩ fq(l) = 0.
Since there are m + 1 many functions in the finite set fm ⊂ ωω and only m many
functions in the set f p, there is a function y ∈ fm such that y(l) /∈ f p(l). It is now
easy to find a finite sequence s extending both sp and sq such that the condition
r = 〈s, f p ∪ fq〉 is a lower bound of p, q and s(l) = y(l). Since the condition r
forces both ẋgen ∈ Ċ and ẋgen ∈ Ḃn , any sufficiently generic point x ∈ ωω below the
condition r will belong to the intersection Bn ∩ C . However, for every such a point it
is the case that h(x)(m) > l > k, contradicting the assumption that Bn ∩ C ⊂ Ck!

The continuous reading of names is a rather slippery property of ideals. It is not
preserved under Borel isomorphism of ideals. This is to say that there are σ -ideals I
and J on Polish spaces X and Y and a Borel bijection f : X → Y such that a set
A ⊂ Y is in the ideal J iff its f -preimage is in the ideal I , but the poset PI does
have the continuous reading of names while PJ does not. An instructive example is
that of the Steprāns forcing, 2.7. Note that since Borel injective images of Borel sets
are Borel, in this case the function f can be naturally extended to an isomorphism
of the posets PI and PJ . This means that the continuous reading of names is, in fact,
a property of a presentation of forcing as opposed to a property of the forcing itself.
Even so, the continuous reading of names is perceived as a natural and useful property.
We state two of its important features.

Claim 2.11 [20, 2.2.2(2)] Suppose that I is a σ -ideal on a Polish space X . If PI is a
proper forcing notion with the continuous reading of names then every Borel I -positive
set has a Gδ I -positive subset.

Proof Suppose that B ⊂ X is a Borel I -positive set, a projection of a closed set
E ⊂ X × ωω. Since the poset PI is proper, there must be an I -positive Borel set
D ⊂ B and a Borel function f defined on the set D whose graph is a subset of the
set E . Use the continuous reading of names and thin out the set D if necessary so
as to make the function f � D continuous. Every partial continuous function can be
extended to a continuous function with a Gδ domain. Let D ⊂ C, f ⊂ g be such
a Gδ set and a continuous extension, with D still dense in C . It is immediate that
g : C → ωω is a function whose graph is a subset of the set E . Then C ⊂ B is an
I -positive Gδ-subset of the set B.

The opposite implication does not hold: compact sets are dense in the natural
presentation of Steprāns forcing [20, 2.3.46], while the continuous reading of names
fails.

Fact 2.12 (LC) The continuous reading of names is preserved under the countable
support iteration of universally Baire proper forcings of the form PI .

This is proved in the forthcoming [21]. In conjunction with the previous claim, this
means for example that Gδ sets are dense in the countable support iteration of Laver
forcing.

3 Proof of Theorem 1.3

The proof is the same for both the Cantor and Baire space, and we will treat the Baire
space case.
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Forcing with quotients 727

Definition 3.1 The function π : P(ω<ω) → P(ωω) is defined by π(a) = {r ∈ ωω :
∃∞n r � n ∈ a}.

Clearly, the range of the function π is exactly the collection of all Gδ-subsets of
ωω, and the function π preserves inclusion. Moreover, if I is a σ -ideal on ωω then
a ∈ tr(I ) if and only if π(a) ∈ I , and the map π � Qtr(I ) : Qtr(I ) → PI preserves
compatibility. For the remainder of the section fix a σ -ideal I on ωω such that the
poset PI is proper and has the continuous reading of names, and write J = tr(I ).

Claim 3.2 1. For every set a /∈ J and for every I -positive Gδ subset B ⊂ π(a) there
is a set b ⊂ a such that π(b) = B.

2. Q J forces π ′′Ġ to be a PI -generic filter, where Ġ is the name for the Q J generic
filter.

Proof The second item immediately follows from the first and Claim 2.11. For the
first one, suppose B ⊂ π(a) is an I -positive Gδ set, B = ⋂

n On for some open sets
On . By induction on n ∈ ω build sets an ⊂ a in the following way:

1. Each an ⊂ ω<ω is an antichain and it refines an−1. For notational convenience let
a−1 be the singleton containing the empty sequence.

2. B ⊂ ⋃
t∈an

[t] ⊂ On .

After the construction is complete, writing b = ⋃
n an we will have π(b) = B

as required. Suppose the antichain an has been obtained. For each t ∈ an let c(t) be
the collection of all proper extensions u ∈ ω<ω of t such that [u] ⊂ On+1, and no
proper initial segment of u longer than t has this property. Note that c(t) ⊂ ω<ω is
an antichain. For each u ∈ c(t) let d(u) be the collection of all proper extensions v

of u which are in the set a, such that no proper initial segment of v longer than u has
this property. Note that each d(u) is an antichain. It is not difficult to verify that the
set an+1 = ⋃{d(u) : u ∈ c(t), t ∈ an} has the desired properties.

Claim 3.3 The poset Q J is proper.

Proof Let M be a countable elementary submodel of a large structure with I ∈ Mand
let a ∈ Q J ∩ M be a condition. Let 〈Dn : n ∈ ω〉 be an enumeration of all open
dense subsets of the poset Q J in the model M . We will find sets an ⊂ a and functions
gn : an → Dn ∩ M with the following properties.

1. Each set an ⊂ ω<ω is an antichain and it refines an−1.
2. The set b = ⋃

n an ⊂ a is J -positive.
3. For each sequence t ∈ an the set {u ∈ b : t ⊂ u} is a subset of gn(t).

It follows that the set b ⊂ a is the required M-master condition in the poset Q J .
To see this, choose a J -positive set c ⊂ b and an open dense set D = Dn ∈ M for
some number n. For each sequence t ∈ an write bt = {u ∈ b : t ⊂ u}. Since the set
an ⊂ ω<ω is an antichain, it is the case that π(c) = ⋃

t∈an
π(c ∩bt ) and therefore one

of the sets c ∩ bt : t ∈ an must be J -positive. Such a set c ∩ bt ⊂ c has the condition
gn(t) ∈ Dn ∩ M above it as required.
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To perform the construction, find an M-master condition B ⊂ π(a) for the poset
PI . Thinning out the condition B we may assume that for every dense set E ∈ M of the
poset PI , B ⊂ ⋃

(E ∩ M). Thinning out the condition B even further, by Claim 2.1,
we may assume that for every set C ∈ PI ∩ M the intersection C ∩ B is relatively
open in B. Thinning out the condition B further still we may assume that it is a Gδ set
such that for every basic open set O , B ∩ O /∈ I ↔ B ∩ O 
= 0. Fix a representation
B = ⋂

n On , for some open sets On .
The induction hypotheses on the construction of the sets an are the following.

1. Each an ⊂ ω<ω is an antichain and it refines an−1.
2. B ⊂ ⋃

t∈an
[t] ⊂ On .

3. For every n, gn(t) ⊂ {u ∈ a : t ⊂ u} is a condition in the open dense set Dn . For
every n ∈ m, t ∈ an and u ∈ am such that t ⊂ u, u ∈ gn(t) and gm(u) ⊂ gn(t).
For notational convenience put g−1(0) = a.

4. For each t ∈ an , B ∩ [t] is a nonempty subset of π(gn(t)).

Now suppose that an, gn have been constructed. Fix a node t ∈ an . We will show
how the part of the antichain an+1 below t will be constructed. Let E be the part of the
open dense set Dn+1 ⊂ Q J below the condition gn(t) ∈ Q J . Claim 3.2 shows that
the set π ′′(E) is dense below the condition π(gn(t)). Then B ∩[t] ⊂ ⋃

(π ′′E ∩ M) =⋃
π ′′(E∩M) by the choice of the M-master condition B. Note that for every condition

p ∈ E ∩ M the set π(p)∩ B ⊂ B ∩[t] is relatively open by the choice of the condition
B ∈ PI again. It is now easy to build an antichain d ⊂ ω<ω below the node t so that
for every u ∈ d it is the case that [u] ⊂ On+1 and there is a condition p(u) ∈ E ∩ M
such that B ∩ [u] is a nonempty subset of π(p(u)), and B ∩ [t] ⊂ ⋃

u∈d [u]. Let c
be then the collection of all nodes v ∈ ω<ω such that there is some u ∈ d such that
u ⊂ v, v ∈ p(u), B ∩ [v] 
= 0 and no proper initial segment of v is an extension of u
in p(u). The set c is an antichain below the node t , and it is the part of the antichain
an+1 below t . For every node v ∈ c let gn+1(v) = p(u) ∩ {w ∈ ω<ω : v ⊂ w}. The
induction hypotheses are easily seen to be satisfied.

Claim 3.4 The remainder poset R = Q J /PI preserves stationary subsets of ω1 and
it is ℵ0-distributive.

Note that the proof below leaves open the possibility that the remainder collapses
the stationarity of the set [ω2]ℵ0 \V and therefore fails to be proper.

Proof Here the remainder poset R is computed via the Q J -name for the PI -generic
filter obtained in Claim 3.2. Note that writing ṙgen for the canonical PI -generic real
we have t ⊂ ṙgen ↔ the set {u ∈ ω<ω : t ⊂ u} is in the Q J -generic filter, this for
every sequence t ∈ ω<ω.

The fact that PI �“Ṙ is stationary preserving” follows abstractly from the proof
of the previous claim: if M is a countable elementary submodel containing the ideal
I and B ∈ PI is any M-master condition for the poset PI then there is an M-master
condition b ∈ Q J such that π(b) ⊂ B. Namely, suppose that Ṡ is a PI -name for a
stationary subset of ω1 and Ċ is a Q J -name for a club in ω1. We must find a condition
b ∈ Q J and an ordinal α ∈ ω1 such that b � α̌ ∈ Ṡ ∩ Ċ . Note that as Ṡ is forced to be
stationary, there must be a model M and a M-master condition B forcing M̌ ∩ω1 ∈ Ṡ.
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Writing α = M ∩ ω1 and finding an M-master condition b ∈ Q J such that π(b) ⊂ B
we see that b, α work as required.

For the distributivity, suppose that ḟ is a Q J -name for an ω-sequence of ordinals.
We must prove that ḟ ∈ V [ṙgen]. To this end, revisit the proof of the previous claim
again. Assume that ḟ ∈ M and for each number k ∈ ω find a number nk ∈ ω such
that the conditions in the open dense set Dnk ⊂ Q J decide the value of ḟ (ǩ). Look
again at the master condition b = ⋃

n an . It is not difficult to see that b forces that for
each n ∈ ω there is exactly one initial segment of the real ṙgen in the set an ; call it tn .
Consequently, the sequence ḟ can be recovered in the model V [ṙgen] by the following
formula: ḟ (ǩ) is that ordinal which is forced by the condition gnk (tnk ) to be the value
of ḟ (ǩ).

This completes the proof of Theorem 1.3, the rest of this section is devoted to
speculations about the surrounding issues.

It is interesting to see what the ℵ0-distributive tail Q J /PI can be. From the defi-
nitions it is equal to the collection of all ground model sets a ⊂ ω<ω such that the
PI -generic real has infinitely many initial segments in a, ordered by inclusion. In many
cases it is, in the forcing sense, equivalent to P(ω)/fin of the PI extension. To prove
this it is enough to show that PI forces every infinite subset of the generic real ṙgen
(understood now as a path through ω<ω) to have an infinite subset of the form a ∩ ṙgen
for some set a in the ground model. We can verify this property in a great number of
cases and disprove in others, but we do not have a suitable general criterion.

Proposition 3.5 Let I be a σ -ideal on 2ω σ -generated by a σ -compact family of
closed sets. The forcing PI is proper and bounding, and writing J = tr(I ), Q J =
PI ∗ P(ω)/fin.

Here, the hyperspace of closed subsets of 2ω is equipped with the usual Hausdorff
topology, and a family of closed sets is σ -compact if it is a countable union of compact
sets.

Proof The ideals I considered in this proposition form a class considered in [7]. There
it is proved that the poset PI is proper and bounding; it has the continuous reading of
names simply because the ideal is generated by closed sets—Example 2.5. In fact a
standard determinacy argument [7] Corollary 3.21 shows the following: fix a σ -ideal
I σ -generated by a collection F = ⋃

n Fn in which the sets Fn ⊂ K (2ω) are closed.
Call a tree T ⊂ 2<ω I -fat if for every node t ∈ T and every number n there is a
number m such that no set in Fn meets all the open sets determined by the extensions
of the node t in the tree T of length m. Then a Borel set B ⊂ 2ω is I -positive if and
only if it contains all branches of some I -fat tree. Therefore the poset of I -fat trees is
naturally isomorphic with a dense subset of the poset PI and below we will identify
it with PI .

We will show that PI �“every infinite subset of ṙgen has an infinite subset of the
form a ∩ ṙgen for some set a in the ground model”. Suppose T ∈ PI is an I -fat tree,
T �“ẋ ⊂ ṙgen is an infinite set”. A standard fusion argument will give an I -fat tree S ⊂
T such that for every number n there is m > n such that every sequence s ∈ S of length
m has an initial segment of length ≥ n in the set a = {t ∈ S : S � t � ť ∈ ẋ} ⊂ S.
Clearly S �“ǎ ∩ ṙgen is an infinite subset of ẋ” as desired.
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The following definition is not standard. It is an attempt to restate a commonly used
combinatorial forcing property in topological terms.

Definition 3.6 Let I be a σ -ideal on some Polish space X with a fixed metric d. We
say that the poset PI has the pure decision property (with respect to the metric d) if
for every I -positive Borel set B ⊂ X and every Borel map f : (B, d) → (Y, e) into
a compact metric space there is a Borel I -positive set C ⊂ B on which the map f is
a contraction.

Example 3.7 The Laver forcing has the pure decision property in the standard repre-
sentation, with respect to the metric of least difference on ωω: d(x, y) = 2−n where
n is the smallest number where the functions x, y ∈ ωω differ.

Proof Let B be Borel I -positive set and f : (B, d) → (Y, e) be a Borel map into
a compact metric space. Thinning out the set B if necessary we may assume that
B = [T ] for some Laver tree T ⊂ ω<ω. To simplify the notation assume that T has
an empty trunk.

Before we proceed recall the well known fact that for every Laver tree S and Borel
partition [S] = ⋃

i∈n Ai into finitely many pieces there is a Laver tree U ⊂ S with
the same trunk such that the set [U ] is included in one of the pieces of the partition.

Now for every n find a finite 2−n−1-network yn ⊂ Y , that is, a set such that every
point of the space Y is 2−n−1-close to one of its elements. By induction on n ∈ ω build
a fusion sequence of Laver trees Tn so that T0 = T, Tn+1 agrees with Tn on sequences
of length n + 1 and for every such a sequence t ∈ Tn there is an element xt ∈ yn such
that for every path r through Tn+1 extending the sequence t , the element f (r) ∈ Y is
2−n−1-close to xt . This is possible by the observation in the previous paragraph. Note
that by the triangle inequality this means that for two such paths r0, r1 the elements
f (r0), f (r1) ∈ Y will have e-distance ≤ 2−n . Let S be the fusion of the sequence of
trees Tn . It is not difficult to see that the set C = [S] has the required properties.

Proposition 3.8 If I is a σ -ideal on ωω such that the poset PI is proper and has
the pure decision property with respect to the metric of least difference on ωω, then
Qtr(I ) = PI ∗ P(ω)/fin.

Proof Note that the pure decision property implies the continuous reading of names.
Suppose that B ∈ PI forces ẋ ⊂ ṙgen to be an infinite set. Since the poset PI is

proper, thinning out the set B if necessary we can find a Borel map f : B → 2ω such
that B �“ẋ = {ṙgen � n : n ∈ ḟ (ṙgen)}”. Consider the metric e of least difference
on 2ω and use the pure decision property to find an I -positive set C ⊂ B such that
f : C → 2ω is a contraction. This means that for every sequence t ∈ ω<ω, all reals
r ∈ C extending the sequence t return the same value b(t) ∈ 2 for f (r)(|t |). Let
a = {t ∈ ω<ω : b(t) = 1}. It follows from the definitions that C � ẋ = a ∩ ṙgen, and
the proposition follows.

Example 3.9 The Cohen poset forces that there is an infinite set x ⊂ ṙgen without an
infinite subset of the form a ∩ ṙgen, a ∈ V . Just let an initial segment t of ṙgen into ẋ
if and only if ṙgen(|t |) = 0.
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As a final remark in this section, once we produced so many ideals J for which the
factor forcing Q J is proper, we should also produce some for which it is not proper.
The following proposition of independent interest shows how to do exactly that in
several ways. First, an instrumental definition.

Definition 3.10 Let β be a limit ordinal. We say that an inclusion-decreasing sequence
〈Iα : α ∈ β〉 of σ -ideals on a Polish space does not stabilize if for every ordinal α ∈ β

and every Iα-positive Borel set B there is an ordinal α ∈ γ ∈ β and a Borel set C ⊂ B
which is Iα-small but Iγ -positive. This is equivalent to saying that, writing I = ⋂

α Iα ,
the sets Iα ∩ PI are all dense in PI . Restated again, this is equivalent to saying that
for every I -positive Borel set B, I � B 
= Iα � B—hence the terminology.

Similarly, we say that an inclusion-decreasing sequence 〈Jα : α ∈ β〉 of ideals on
some countable set X does not stabilize if for every ordinal α ∈ β and Jα-positive
set a ⊂ X there is an ordinal α ∈ γ ∈ β and a set b ⊂ a which is Jα-small but
Jγ -positive. This is the same as to say, writing J = ⋂

α Jα , that the sets Jα ∩ Q J are
dense in the factor forcing Q J .

Proposition 3.11 Assume the Continuum Hypothesis. If I is a σ -ideal on a Polish
space, then

1. PI collapses ℵ1 if and only if I = ⋂
n∈ω In for an inclusion-decreasing sequence

of σ -ideals which does not stabilize.
2. Suppose PI preserves ℵ1. PI is nowhere c.c.c. if and only if I = ⋂

α∈ω1
Iα for an

inclusion-decreasing sequence of σ -ideals which does not stabilize.

If J is an ideal on a countable set, then

3. Q J adds an unbounded real if and only if J = ⋂
n∈ω Jn for an inclusion-

decreasing sequence of ideals which does not stabilize.
4. If J = ⋂

n∈ω Jn for an inclusion-decreasing sequence of P-ideals which does not
stabilize, then Q J collapses ℵ1.

Proof For the first equivalence, assume that PI collapses ℵ1. Let ḟ : ω̌ → ω̌1 be a
name for a function with cofinal range. For every number n ∈ ω let In be the ideal
generated by sets B ∈ PI which force the first n values of the function ḟ to be
bounded by some fixed countable ordinal, together with all sets in the ideal I . It is
clear that 〈In : n ∈ ω〉 is an inclusion-decreasing sequence of σ -ideals which does
not stabilize, and I = ⋂

n In . On the other hand, suppose that I = ⋂
n In for some

inclusion-decreasing sequence of σ -ideals which does not stabilize. Since the ideals In

are dense in the poset PI , we can pick a maximal antichain An ⊂ In from each, and by
CH it will be enough to show that every condition in PI is compatible with uncountably
many elements of one of these antichains. Indeed, if B ∈ PI is a condition, then B /∈ In

for some number n, and B must be compatible with uncountably many elements of
the antichain An , because if X ⊂ An is a countable set, then C = ⋃

X ∈ In and the
condition B\C /∈ In is a condition incompatible with all elements of the set X .

For the second equivalence, assume that the poset PI preserves ℵ1 and is nowhere
c.c.c. Then there is a name ḟ for a function from ω1 to itself which is not bounded by
any ground model such function. To see this, let 〈Mα : α ∈ ω1〉 be a tower of countable
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elementary submodels of some large structure, and define ḟ (α) = min{β ∈ ω1 : for
every maximal antichain A ∈ Mα the unique element in it which belongs to the generic
filter is in the model Mβ}. Since the forcing PI preserves ℵ1, and by CH PI ⊂ ⋃

α Mα ,
this is well-defined. If p ∈ PI is a condition and g : ω1 → ω1 is a function, find
an ordinal α ∈ ω1 such that p ∈ Mα , a maximal antichain A ∈ Mα which has
uncountably many elements below the condition p, and an element q ∈ A\Mg(α)

below the condition p. Then q �“g(α) ∈ ḟ (α)”, and it follows that the function ḟ is
unbounded.

Now, given an ordinal α let Iα be the ideal generated by the sets B ∈ PI for which
there is a countable ordinal β such that B forces all values { ḟ (γ ) : γ ∈ α} to be
smaller than β, together with all sets in the ideal I . It is clear that 〈Iα : α ∈ ω1〉 is an
inclusion decreasing sequence of σ -ideals. Since the function ḟ is not dominated by
any ground model function, it is the case that I = ⋂

α Iα , and since the forcing PI

preserves ℵ1, the sequence of ideals does not stabilize.
For the other direction, let I = ⋂

α Iα . Suppose B ∈ PI is a Borel set; we must
find an uncountable antichain below it. It must be the case that B /∈ Iα for some
countable ordinal α. Now since the sequence of ideals does not stabilize, the ideal Iα
is dense in the poset PI , and therefore there must be a maximal antichain A below B
which consists solely of Iα-small sets. This antichain must be uncountable, because
otherwise

⋃
A ∈ Iα and B\⋃

A /∈ Iα is a condition in PI which avoids all elements
of the maximal antichain, a contradiction.

For the third equivalence, first suppose that Q J �“ ḟ ∈ ωω is an unbounded func-
tion.” Let Jn = {a ⊂ ω : there is a number m such that a forces the first n values
of the function ḟ to be smaller than m}. It is immediate that 〈Jn : n ∈ ω〉 is an
inclusion-decreasing sequence of ideals which does not stabilize. Since ḟ is forced
unbounded, J = ⋂

Jn . On the other hand, suppose that J = ⋂
n Jn is the intersection

of an inclusion decreasing sequence of ideals which does not stabilize. Each ideal Jn

is dense in Q J , so we can find a maximal antichain An ⊂ Jn . Now, suppose a ∈ Q J .
There are two cases. In the first case, there is no condition b ⊂ a which is compatible
with at most countably many elements of

⋃
n An . Then a �“ℵ1 is collapsed and by

the CH an unbounded real is added.” In the second case, there is such a condition b,
compatible only with elements {ak

n : k ∈ ω} of the antichain An . Let ḟ ∈ ωω be defi-
ned by f (n) = the unique k such that ak

n is in the generic filter. The condition b forces
this function to be well-defined, and we will be done if we prove that it forces it not to
be bounded by any ground model function. Indeed, if c ⊂ b is a condition and g ∈ ωω

is a function, it must be the case that c /∈ Jn for some number n, d = ⋃
k∈g(n) ak

n ∈ Jn ,

c\d /∈ Jn and clearly c\d ⊂ c is a condition forcing g(n) ≤ ḟ (n).
Finally, for the fourth item, suppose that J = ⋂

n Jn is an intersection of an inclusion
decreasing sequence of P-ideals which does not stabilize. Every ideal Jn is dense in
the factor Q J , therefore we can find a maximal antichain An ⊂ Jn . We will be done if
we show that every condition a ∈ Q J is compatible with uncountably many elements
of one of these antichains. Indeed, if a ∈ Q J , then a /∈ Jn for some number n, and a
must be compatible with uncountably many elements of the antichain An . This is true
because if X ⊂ An is a countable set then there is a set b ∈ Jn containing all elements
of X modulo finite, and then a\b /∈ Jn is a condition which is incompatible with all
elements of the set X !
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The following example answers a question of Ilijas Farah—Question 4.3 of [6].

Example 3.12 An analytic P-ideal J such that the factor Q J collapses ℵ1. Let 〈αn :
n ∈ ω〉 be a decreasing sequence of positive real numbers smaller than 1. Let Jn be
the summable P-ideal associated with the weight function k �→ k−αn . We claim that
〈Jn : n ∈ ω〉 is an inclusion-decreasing sequence of ideals which does not stabilize.
The inclusions are clear. To see that stabilization is impossible, choose a number n
and a set a /∈ Jn . We will produce a set b ⊂ a, b ∈ Jn\Jn+1. By induction on
m ∈ ω find mutually disjoint finite sets bm ⊂ a such that 
k∈bm k−αn ≤ 2−m while

k∈bm k−αn+1 ≥ 1. Then b = ⋃

m bm will be as desired. To find the set bm , first find a
number km ∈ ω such that for every k > km it is the case that k−αn ≤ 2−m−1k−αn+1 ≤
2−m−1 and then find a finite set bm consisting of numbers larger than km such that the
sum 
k∈bm k−αn is between 2−m−1 and 2−m .

Let J = ⋂
n Jn . This is an Fσδ ideal, and a simple diagonalization argument shows

that it is a tall P-ideal. The proposition shows that the factor Q J collapses ℵ1 in the
presence of CH. If CH fails, the argument only shows that Q J is not proper, and we
do not know if it has to collapse c to ℵ0.

Note that this ideal is of minimal possible complexity for the factor Q J to be
improper. All quotients of Fσ ideals are σ -closed by a theorem of Just and Krawczyk
[10].

Example 3.13 Let 〈Kn : n ∈ ω〉 be a decreasing sequence of ideals on ω which does
not stabilize. Consider the forcings Ln of all trees T ⊂ ω<ω such that every node s ∈ T
longer than some fixed t ∈ T splits into Kn-positively many immediate successors. It
is not difficult to show that the posets Ln are proper and have the continuous reading
of names–the arguments closely follow those for Laver forcing. Let In : n ∈ ω be
the σ -ideals on ωω associated with these forcings; a Borel set B ⊂ ωω is In-positive
if and only if [T ] ⊂ B for some tree T ∈ Ln . It is not difficult to see that the ideals
form an inclusion-decreasing sequence which does not stabilize. Let Jn = tr(In), let
I = ⋂

n In , and let J = ⋂
n Jn = tr(I ). Now PI is not proper by the proposition.

Since each of the forcings PIn has the continuous reading of names, a review of the
proof of Claim 3.2 shows that PI naturally regularly embeds into Q J . Ergo, the forcing
Q J cannot be proper either.

4 The proof of Theorem 1.6

As in the previous section, fix a σ -ideal I on 2ω (the ωω case is identical) such that
the poset PI is proper and has the continuous reading of names, and let J = tr(I ).

Suppose that some condition B ∈ PI forces some ideal K on ω to be destroyed,
by an infinite set ẋ ⊂ ω with finite intersection with every ground model element of
the ideal K . Let ḟ (n) be defined to be the nth element of the set ẋ . By the continuous
reading of names, there is a set a ⊂ 2<ω such that a = ⋃

n an , an ⊂ 2<ω is an
antichain, an+1 refines an , π(a) ⊂ B is an I -positive Gδ set, and for every number
n and every sequence t ∈ an the condition {r ∈ π(a) : t ⊂ r} decides the value of
ḟ (n) to be some definite number g(t) ∈ ω. We claim that the function g : a → ω is a
Katětov reduction of the ideal K to J � a. And indeed, if c ∈ K were a set such that
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the preimage b = g−1c is J -positive, then clearly π(b) ⊂ π(a) ⊂ B is a condition
forcing the set c to have an infinite intersection with the set ẋ , contrary to the choice
of B and ẋ .

On the other hand, if an ideal K has Katětov reduction g : a → ω to the ideal
J � a for some J -positive set a ⊂ 2<ω, then the condition π(a) ∈ PI forces that the
generic path ṙgen destroys the ideal J � a and the set g′′(ṙgen ∩ a) ⊂ ω destroys the
ideal K . The first statement is immediate from the definition of the function π , and for
the second statement note that if some set c ∈ K had infinite intersection with the set
g′′(ṙgen ∩ a), then its preimage b = g−1c ⊂ a would have to have infinite intersection
with ṙgen, contradicting the fact that b ∈ J . Theorem 1.6 follows.

Given a particular forcing PI , Theorem 1.6 gives a satisfactory characterization
of the collection of the ideals which it destroys. The opposite question also makes
sense: given an ideal on ω, is it easy to recognize those forcings which destroy it? The
following observation plays an important role in answering this question. Recall that
for a tall ideal J on ω, the cardinal cov∗(J ) is defined as min{|A| : A ⊂ J ∧ ∀a ∈
[ω]ω ∃b ∈ A |a ∩ b| = ℵ0} [8].

Proposition 4.1 Suppose that I is a σ -ideal on ωω generated by analytic sets such
that PI is a proper forcing with the continuous reading of names. Let J = tr(I ). Then

cov(I ) ≤ cov∗(J ) ≤ max{cov(I ), d}.

Proof The first inequality is easy. If A ⊂ J is a family such that π ′′ A does not cover
the whole space, any path through ω<ω converging to a point in ωω\⋃

π ′′ A is an
infinite subset of ω<ω which has finite intersection with all elements of the family A.

The second inequality requires more care. First fix several auxiliary objects. Let
κ = max{cov(I ), d}. Let F be the collection of all functions f : ω<ω → P(ω<ω)

such that for every sequence t ∈ ω<ω, the value f (t) is a finite set of extensions of
the sequence t including t itself. Since κ ≥ d, there is a collection { fα : α ∈ κ} ⊂ F
such that for every function f ∈ F there is an ordinal α ∈ κ such that f (t) ⊂ fα(t)
holds for every sequence t ∈ ω<ω. Fix also a collection {Cα : α ∈ κ} of analytic sets
in the ideal I covering the whole space. Since every analytic set is a union of ≤ d
many compact sets, we may assume that all sets Cα are in fact compact, Cα = [Tα]
for some finitely branching tree Tα ⊂ ω<ω.

To construct the family witnessing cov∗(J ) ≤ κ , for ordinals α, β ∈ κ define a
set aα,β ⊂ ω<ω in the following way: by induction on n ∈ ω find numbers mn such
that m0 = 0 and mn+1 is longer than all sequences in the set aα,β(n) = ⋃{ fα(t) :
t ∈ Tβ ∩ ωmn }. In the end, let aα,β = ⋃

n aα,β(n). Also, for each sequence t ∈ ω<ω

and every ordinal α ∈ κ , let bα,t = ⋃
n∈ω fα(t�n). We claim that the collection

A = {aα,β : α, β ∈ κ} ∪ {bα,t : α ∈ κ, t ∈ ω<ω} is a subset of the trace ideal J and
every infinite subset of ω<ω has an infinite intersection with one of its elements.

It is not difficult to see that aα,β ∈ J , since every path meeting infinitely many
elements of the set aα,β must meet infinitely many elements of the tree Tβ , and therefore
π(aα,β) = [Tβ ] ∈ I . Also, trivially, π(bα,t ) = 0 ∈ I , and so A ⊂ J . Now suppose
x ⊂ ω<ω is an infinite set. Let S ⊂ ω<ω be the tree of all sequences s ∈ ω<ω with
infinitely many extensions in the set x . There are two cases. Either the tree S has
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some terminal node t . This means that there are infinitely many elements of the set
x below the node t but only finitely many below all of its immediate extensions. It is
immediately clear that then some set bα,t ∈ A covers the infinite set of all extensions
of the sequence t which are in x . If the tree S has no terminal nodes then it has to have
a cofinal branch, which then is an element of some set [Tβ ]. Define a function f ∈ F
by setting f (t) = {t and some extension of the sequence t which is in the set x if there
is one}. If α ∈ κ is then an ordinal such that ∀t ∈ ω<ω f (t) ⊂ fα(t), it is clear that
the set aα,β ∈ A has an infinite intersection with the set x as desired.

Example 4.2 A forcing destroys the trace of the Kσ -ideal I on ωω if and only if it
adds an unbounded real. For every ideal K on ω, if there is some forcing which adds
an unbounded real and does not kill K then Miller forcing is such.

Proof Note that cov(I ) = d. The argument in the proposition then exactly proves
the first equivalence. For the other sentence, note that if some forcing P adds an
unbounded real and preserves the ideal K , then K 
≤K tr(I ) because P destroys
tr(I ). But Theorem 1.6 then says that PI , the Miller forcing, preserves K as well.

Example 4.3 The dominating number d cannot be omitted in the statement of the
proposition. There is a forcing which does not add random reals even in iteration but
destroys tr(null). However, there is no such forcing which is bounding.

Proof Every ideal K on ω can be destroyed by a σ -centered forcing, namely the
forcing P(K ). This is in particular true when K = tr(null). Centered forcings do
not add random reals even when they are iterated with finite support.

Example 4.4 In some particular cases the upper bound in the proposition is not opti-
mal. If I is the Laver ideal then cov(I ) = cov(tr(I )) = b and a forcing adds a
dominating real if and only if it destroys tr(I ).

5 The complexity of the trace ideals

The complexity of the trace ideals is closely tied to the complexity of the σ -ideals
generating them. Recall that a σ -ideal I on a Polish space X is �1

1 on 
1
1 [11, 29.E,

35.9] if for every analytic set A ⊂ 2ω × X the collection {y ∈ 2ω :the vertical section
Ay is in I } is co-analytic.

Proposition 5.1 Suppose that I is a σ -ideal on ωω such that the factor forcing PI is
proper and has the continuous reading of names, and every analytic I -positive set has
a Borel I -positive subset. The following are equivalent:

• I is �1
1 on 
1

1• the trace ideal tr(I ) is co-analytic.

Proof The top to bottom direction follows immediately from the definitions. If I is
�1

1 on 
1
1 then consider the set A ⊂ P(ω<ω) × ωω given by 〈a, x〉 ∈ A if x ∈ π(a).

This is clearly a Borel set, and a ∈ tr(I ) ↔ Aa ∈ I by the definitions. The latter is a
coanalytic condition.
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For the bottom to top direction suppose that tr(I ) is co-analytic. Let A ⊂ 2ω × ωω

be an analytic set, with a tree T ⊂ (2 × ω × ω)<ω such that A = p[T ]. The proof
will be complete if we show that for every y ∈ 2ω, Ay /∈ I if and only if there is a
set b ⊂ ω<ω decomposed into antichains b = ⋃

n an and a function g : b → T for
n ∈ ω such that

• the antichain an+1 refines an

• g preserves extension and whenever u ∈ an then g(u) is a sequence of length n
whose first coordinates form an initial segment of u and y

• b /∈ tr(I ).

Note that this is an analytic condition. To prove this equivalence, if there are such
objects b and g, it is clear that the I -positive set π(b) is a subset of Ay and therefore
Ay /∈ I . On the other hand, if Ay /∈ I then Ay has a Borel I -positive subset C by
the assumptions, and by the properness and the continuous reading of names of the
poset PI there is even a Borel I -positive Gδ-set D ⊂ C and a continuous function
f : D → [T ] such that for every real r ∈ D, the second coordinate of the value f (r)

is just r itself. It is then easy to construct b and g as above in such a way that π(b) = D
and for every real r ∈ D, f (r) = ⋃

u⊂r g(u).

This lemma gives us a rather good criterion for checking whether a given trace
ideal is co-analytic or not. If the poset PI adds a dominating real then the ideal I is not
�1

1 on 
1
1 , [20, C.0.16]. A quick review of forcings used in practice shows that many

of them which do not add dominating reals (such as the Cohen or Solovay real) are
associated with �1

1 on 
1
1 ideals. However, Arnold Miller [14] constructed a definable

c.c.c. ideal I such that the poset PI does not add a dominating real while the ideal I is
still not �1

1 on 
1
1 . Therefore a careful check for this property is frequently necessary.

In many cases ocurring in practice, the trace ideal is in fact co-analytic and not
Borel. Typically, if I is the ideal of countable sets then the trace ideal is a complete
co-analytic set since the collection of uncountable closed sets is. In other cases, the
trace ideal is Borel, such as when I is the meager ideal or the Lebesgue null ideal. We
have no good criterion as to when that happens. We have just a conjecture:

Conjecture 5.2 Suppose that I is a σ -ideal on 2ω or ωω such that the factor poset PI

is proper with continuous reading of names. If the trace ideal is analytic then it is in
fact Borel.

This conjecture can be viewed as a variation on the Kechris–Louveau–Woodin
theorem [12], which says that analytic σ -ideals of closed sets are Gδ . We can verify
it in a good number of cases:

Lemma 5.3 Suppose that I is a σ -ideal on ωω such that PI is proper and bounding.
If the trace ideal is analytic then it is Borel.

Proof Since the poset PI is bounding, compact sets are dense in it and it has the
continuous reading of names, Example 2.4. If a set a ⊂ ω<ω is not in the trace ideal,
apply these two properties below the condition π(a) to the name ḟ (n) =the nth initial
segment of the generic real in the set ǎ. It follows that a set a ⊂ ω<ω is not in the trace
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ideal if and only if there is a tree T and disjoint finite subsets {bn : n ∈ ω} of T such
that [T ] /∈ I and each bn is a maximal antichain in T consisting only of elements of
the set a. What is the complexity of the latter statement? The trace ideal restricted to
trees is analytic, therefore Borel by the Kechris–Louveau–Woodin theorem [12], and
so this is an analytic statement. Thus the trace ideal is both analytic and co-analytic,
therefore Borel.

The trace ideals can be Borel in a number of other situations. If I is a c.c.c. ergodic
�1

1 on 
1
1 σ -ideal on the Baire space then the trace ideal tr(I ) is Borel. Recall that the

ideal I is ergodic [20, 5.4.1], if there is a countable Borel equivalence relation E on
ωω such that every Borel E-invariant set is in I or its complement is in I . Then a set
a ⊂ ω<ω is in the trace ideal iff π(a) ∈ I iff the complement of the E-saturation of
the set π(a) is not in I . These are a coanalytic and an analytic statement, respectively,
showing that tr(I ) is a Borel ideal.

Specific examples of c.c.c. ergodic �1
1 on 
1

1 σ -ideals with the continuous reading
of names include the Cohen and random forcing as well as their finite iterations. Other
examples are hard to come by, and the following example identifies a large class.

Example 5.4 Suppose that J is an analytic P-ideal, and I is the σ -ideal associated
with the Prikry poset P(J ). Then the following are equivalent:

1. J is Fσ

2. I is �1
1 on 
1

1
3. P(J ) does not add a dominating real
4. the trace ideal is Borel.

Proof For the implication (1)→(2) write J<ω = {a ⊂ [ω]<ℵ0\{0} : ∃b ∈ J∀x ∈
a x ∩b 
= 0}. It is clear that this is an ideal on the set [ω]<ℵ0\{0}. A useful observation:

Claim 5.5 If J is an Fσ ideal then J<ω is Fσ again.

Proof By a theorem of Mazur [13] there is a lower semicontinuous submeasure µ

on P(ω) such that J = {a ⊂ ω : µ(a) < ∞}. (A submeasure on P(ω) is lower
semicontinuous if its value on a given set is just the supremum of its values on the
finite subsets of the set.) Let µ<ω be a function on P([ω]<ℵ0) defined by µ<ω(b) =
inf{µ(a) : ∀x ∈ b x ∩ a 
= 0}. It is not difficult to verify that this is a lower
semicontinuous submeasure such that J<ω = {b ⊂ [ω]<ℵ0 : µ<ω(b) < ∞}. The
claim follows.

By [20, C.0.14], to prove the (1)→(2) implication of the Example it is just necessary
to show that the collection of countable subsets of P(J ) which are maximal antichains
is a Borel set. In order to do this, let A ⊂ P(J ) be a countable set. Then A is a maximal
antichain if and only if it is an antichain and for every finite set t ⊂ ω, every condition of
the form 〈t, a〉 is compatible with some element of A. The latter condition is equivalent
to: either there is some condition 〈u, b〉 ∈ A such that u ⊂ t and b ∩ t\u = 0, or the
set at = {x ⊂ ω : ∃b 〈t ∪ x, b〉 ∈ A} is not in the ideal J<ω. By the Claim, this is a
Borel statement.

(2) implies (3) by [20, C.0.16]. (3) implies (1) by a result of Solecki: if an analytic
P-ideal J is not Fσ then the ideal 0×Fin is Rudin–Blass reducible to J [15, 3.3].
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Let f : ω → ω × ω be such a finite-to-one reduction. Since the P(J ) generic set
ȧgen ⊂ ω has a finite intersection with a ground model set b ⊂ ω if and only if b ∈ J ,
it immediately follows that f ′′ȧgen has a finite intersection with a ground model set
b ⊂ ω × ω if and only if b ∈ 0×Fin. Let g ∈ ωω be defined by g(n) = min{m ∈
ω : 〈n, m〉 ∈ f ′′ȧgen}. A brief inspection reveals that this is a well-defined function
modulo finite dominating all ground model functions.

This leaves us with the equivalence of (2) and (4). Note that the forcing PI has the
continuous reading of names by Example 2.9 and so (4) implies (2) by Proposition 5.1.
For the opposite direction note that (2) implies the trace ideal is co-analytic by that
same Proposition, so it is enough to show from (2) that the trace ideal is analytic. To
this end, use the ergodicity of the ideal I again. For a set a ⊂ 2ω, a ∈ tr(I ) if and only
if the complement of the closure of the set π(a) under finite changes is I -positive,
which is an analytic condition by (2).

6 Open questions

Question 6.1 Let I be the meager ideal on 2ω, let J = tr(I ). What is the remainder
forcing Q J /PI ? Similarly for the Lebesgue measure zero ideal.

Question 6.2 Is there a simple preservation criterion on the forcing PI which is equi-
valent to the remainder forcing being equal to P(ω)/fin?

Question 6.3 Is every proper forcing of the form PI regularly embeddable into a
proper forcing of the form Q J ?

Question 6.4 Assume CH. Is it true that for every ideal J on a countable set, the
factor forcing Q J collapses ℵ1 if and only if it is ℵ0-generated?

Question 6.5 The various definable improper forcings produced in the paper should
collapse c to ℵ0 in ZFC. Is this really true?
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