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Abstract. An almost disjoint family A of subsets of N is said to be R-embeddable if
there is a function f : N→ R such that the sets f [A] are ranges of real sequences converging
to distinct reals for distinct A ∈ A. It is well known that almost disjoint families which
have few separations, such as Luzin families, are not R-embeddable. We study extraction
principles related to R-embeddability and separation properties of almost disjoint families
of N as well as their limitations. An extraction principle whose consistency is our main
result is:

• every almost disjoint family of size c contains an R-embeddable subfamily of size c.

It is true in the Sacks model. The Cohen model serves to show that the above principle
does not follow from the fact that every almost disjoint family of size continuum has two
separated subfamilies of size continuum. We also construct in ZFC an almost disjoint family
where no two uncountable subfamilies can be separated but every countable subfamily can
be separated from any disjoint subfamily.

Using a refinement of the R-embeddability property called the controlled R-embedding
property we obtain the following results concerning Akemann–Doner C∗-algebras which
are induced by uncountable almost disjoint families:

• In ZFC there are Akemann–Doner C∗-algebras of density c with no commutative sub-
algebras of density c.

• It is independent from ZFC whether there is an Akemann–Doner algebra of density c
with no non-separable commutative subalgebra.

This completes an earlier result that there is in ZFC an Akemann–Doner algebra of den-
sity ω1 with no non-separable commutative subalgebra.

1. Introduction. A family A of infinite subsets of N is almost disjoint
if any two distinct elements of A have finite intersection. The concept of al-
most disjointness was formally introduced by Sierpiński [33] and Tarski [35]
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in 1928. However, already two years earlier Alexandroff and Urysohn [2] im-
plicitly considered almost disjoint families defined as the ranges of sequences
of rationals converging to distinct reals.

Hence, we say that an almost disjoint family A is R-embeddable if there
is a function (called an embedding) f : N → R such that the sets f [A] for
A ∈ A are the ranges of sequences converging to distinct reals (see e.g.
[16, 13]). Two families B, C of subsets of N are separated if there is X ⊆ N
such that:

(1) If B ∈ B then B \X is finite.
(2) If C ∈ C then C ∩X is finite.

Considering disjoint neighborhoods of two condensation points of the set
consisting of the limits of converging sequences we see that uncountable
R-embeddable almost disjoint families contain many pairs of uncountable
subfamilies which are separated. On the other hand, it is an old and beautiful
result of Luzin [22] that there is an almost disjoint family A of size ω1 such
that no two uncountable subfamilies of A can be separated. We will call
such uncountable families inseparable. To highlight the relationship between
inseparable and R-embeddable families, recall a dichotomy of [16] where it is
shown that assuming the proper forcing axiom (PFA) every almost disjoint
family of size ω1 either is R-embeddable or contains an inseparable subfamily,
while Dow [8] showed that under the same assumption every maximal almost
disjoint family (necessarily of size c) contains an inseparable subfamily.

An uncountable almost disjoint family A is called a Q-family (1) if for
every B ⊆ A the families B and A \ B are separated (sometimes called a
separated family). One of the earliest applications of Martin’s axiom (MA)
was to prove the consistency of the existence of Q-families, which is false
under the continuum hypothesis CH by a counting argument (see [27] for a
historical account). All Q-families are R-embeddable and moreover they have
a stronger uniformization type property: for every φ : A → R there is f :
N→ R such that f [A] is the range of a sequence converging to φ(A) (in other
words limn∈A(f(n)− φ(A)) = 0) for each A ∈ A [13, Propositions 2.1, 2.3].

It is natural and useful (see e.g., [3, Theorem 2.39]) to consider versions
of the above notions which are more cardinal specific. Let κ be a cardinal.
Then:

• An almost disjoint family A has the κ-controlled R-embedding property if
for every φ : A → R there is B ⊆ A of cardinality κ and f : N → R such
that f [B] is the range of a sequence converging to φ(B) for every B ∈ B.

(1) Every Q-family, as a subset of P(ω) with the Cantor set topology, is a Q-set, i.e.
every subset is a relative Gδ [31].
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• An almost disjoint family A of size κ is κ-inseparable if no two subfamilies
of A of size κ can be separated.
• An almost disjoint family A is κ-anti Lusin if it has cardinality κ and

for every subfamily B ⊆ A of cardinality κ there are two subfamilies
B0,B1 ⊆ B of cardinality κ which can be separated [30].

This paper is a contribution to the study of extraction principles for
almost disjoint families in the context of the above properties. Our main
positive results concern the cardinality of the continuum c:

• It is consistent that every almost disjoint family of size c contains an
R-embeddable subfamily of size c (Theorem 31).
• It is consistent that every almost disjoint family of size c has the ω1-

controlled R-embedding property (Theorem 42).
• The above extraction principles are not consequences of every almost dis-

joint family of size c containing a c-anti-Luzin subfamily (Theorems 14
and 17).

The first two extraction principles above are obtained in the iterated
Sacks model. As a side product we also prove that in that model every partial
function f : X → 2N for X ⊆ 2N of cardinality c is uniformly continuous on
an uncountable Y ⊆ X (Theorem 40). We do not know if the consistency
of this property of functions can be deduced from known results as in [32]
or [7] or from the fact that under PFA every function is monotone on an
uncountable set (see [4]).

The third result above is obtained in the Cohen model from a result of
Dow and Hart (Theorem 14) stating that in that model every almost disjoint
family is c-anti-Luzin [9, Proposition 2.6] using Steprāns’s characterization
of P(N)/Fin in that model [34] and from the first of our negative results
below:

• In the Cohen model there is an almost disjoint family of cardinality c with
no uncountable R-embeddable subfamily (Theorem 17).
• In the Cohen model no uncountable almost disjoint family has the ω1-con-

trolled R-embedding property (Theorem 18).

We should recall here that by a result of Avilés, Cabello Sánchez, Castillo,
González and Moreno [3, Lemma 2.36] it is consistent (follows from MA) that
c-inseparable families exist (c-inseparable families are called c-Luzin families
in [9, 3]).

On the other hand, we also discover some ZFC limitations to other ex-
traction principles:

• No almost disjoint family of size c has the c-controlled R-embedding prop-
erty (Theorem 6).
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• There is in ZFC an inseparable family of cardinality ω1 which has all
possible separations (i.e., separating its countable parts from the rest of
the family) (Corollary 11).

The second result is not only natural in the above context by showing
that one cannot even consistently hope for extracting from every inseparable
family an uncountable subfamily with even fewer separations (for example
like Mrówka’s family where one can only separate finite subfamilies from the
rest of the family). It has also found a natural application in a construction of
a thin-tall scattered operator algebra in [11]. Note that under the assumption
of b > ω1 all inseparable families have the properties of our family from
Corollary 11 (see [38, Theorem 3.3]).

Some of the above results concerning the R-embeddability of almost dis-
joint families find immediate applications in the theory of C∗-algebras. It was
in the paper [1] of Akemann and Doner that certain C∗-algebras were asso-
ciated to an almost disjoint family A and a function φ : A → [0, 2π). We call
these algebras Akemann–Doner algebras and denote them by AD(A, φ). For
the construction see Section 6 or [1, 6]. These algebras, initially for A and φ
constructed only under CH in [1], were the first examples providing a nega-
tive answer to a question of Dixmier whether every non-separable C∗-algebra
must contain a non-separable commutative C∗-subalgebra. Later Popa [29]
found a different (and ZFC) example, the reduced group C∗-algebra of an
uncountable free group. However, the latter C∗-algebra is very complicated
(e.g. it has no non-trivial idempotents [28] etc.) while Akemann–Doner al-
gebras are approximately finite dimensional in the sense of [10], that is,
there is a directed family of finite-dimensional C∗-subalgebras whose union
is dense in the entire C∗-algebra. In [6] it was noted that employing an in-
separable family A one can obtain in ZFC a non-separable Akemann–Doner
algebra with no non-separable commutative subalgebra. Such ZFC examples
must be obtained from almost disjoint families A of cardinality ω1. This
is because we have, for example, the above mentioned result of Dow and
Hart that it is consistent that every almost disjoint family of cardinality c is
c-anti-Luzin. The cardinality of the almost disjoint family A is the density of
the C∗-algebra AD(A, φ), that is, the minimal cardinality of a norm-dense
set. Some natural questions arose, for example, whether one can have in ZFC
an Akemann–Doner algebra of density c with no non-separable commutative
subalgebra or whether it is consistent that every Akemann–Doner algebra
of density c has a commutative C∗-subalgebra of density c. Here we answer
these questions:

• In ZFC there are Akemann–Doner C∗-algebras of density c with no com-
mutative subalgebras of density c (Theorem 45).
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• It is independent from ZFC whether there is an Akemann–Doner algebra
of density c with no non-separable commutative subalgebra (Theorem 46
and the result of [1]).
In fact, we also prove in Theorems 47 and 48 that the existence of

non-separable commutative C∗-subalgebras in every Akemann–Doner alge-
bra does not follow from the negation of CH.

The structure of the paper is as follows: in Section 2 we prove some
preliminary ZFC results concerning R-embeddability, Section 3 is devoted to
the construction of an inseparable almost disjoint family where all countable
parts can be separated from the remaining part of the family, Section 4
is devoted to the results mentioned above that hold in the Cohen model
and Section 5 to the results that hold in the Sacks model. Finally, Section 6
concerns the consequences of the previous results for Akemann–Doner C∗-al-
gebras.

The set-theoretic terminology and notation are standard and can be
found in [17]. The knowledge of C∗-algebras required to follow Section 6
does not exceed a linear algebra course concerning 2 × 2 matrices. Any ad-
ditional background can be found in [25].

All almost disjoint families are assumed to be infinite and consist of
infinite sets. A ⊆∗ B means that B \A is finite. We use N, R, Q for the non-
negative integers, reals and rationals respectively. When we view elements of
N as von Neumann ordinals, i.e. subsets and/or elements of each other, then
we use ω for N. The cardinality of R is denoted by c. If κ is a cardinal and X
is a set, then [X]κ denotes the family of all subsets of X of cardinality κ. In
particular [A]2 is the set of all pairs {a, b} of elements of A. Elements of An
for n ∈ ω are n-tuples in A, i.e., t = (t(0), t(2), . . . , t(n − 1)). We consider
2<ω =

⋃
n∈ω 2n with inclusion as a tree; we also consider its subtrees T and

then [T ] denotes the set of all branches of T . The terminology concerning
Cohen forcing C and Sacks forcing S is recalled at the beginning of Sections 4
and 5 respectively.

2. Preliminaries

2.1. R-embeddability of almost disjoint families. Recall the def-
inition of an R-embeddable almost disjoint family from the introduction.
A useful tool for describing properties of almost disjoint families are the
associated Ψ -spaces [15]. The Ψ -space corresponding to an almost disjoint
family A ⊆ ℘(N), whose points are identified with N∪A, is denoted by Ψ(A).

Lemma 1. Suppose that A is an almost disjoint family. There is a 1-1
correspondence between continuous functions φ : Ψ(A) → R and functions
f : N→ R for which xA = limn∈A f(n) exists for each A ∈ A. It is given by
f = φ�N. Then xA = φ(A) for each A ∈ A.
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Lemma 2. Let A ⊆ ℘(N) be an almost disjoint family. Consider N<ω∪Nω
with the topology where N<ω is discrete and the basic neighborhoods of x ∈ Nω
are of the form

{y ∈ N<ω ∪ Nω | y(n) = x(n) for all n ∈ F}
for any finite F ⊆ ω. The following conditions are equivalent (to the property
of being R-embeddable):

(1) There is a continuous φ : Ψ(A)→ R such that φ�A is injective.
(2) There is a continuous φ : Ψ(A)→ R such that φ�A is injective and φ[A]

has dense complement in R.
(3) There is a continuous φ : Ψ(A) → R such that φ�A is injective and

φ[A] ⊆ R \Q.
(4) There is a continuous φ : Ψ(A)→ R such that φ is injective, φ[A] ⊆ R\Q

and φ[N] ⊆ Q.
(5) There is a continuous φ : Ψ(A) → N<ω ∪ Nω such that φ is injective,

φ[A] ⊆ Nω and φ[N] ⊆ N<ω.
(6) There is a continuous φ : Ψ(A)→ 2ω such that φ�A is injective.

Proof. (1)⇒(2) We may assume that A is infinite. Let U ⊆ R be the
interior of φ[A]. If it is empty, we are done. Otherwise let E = {en | n ∈ N}
⊆ U be countable and dense in U . A continuous φ′ : Ψ(A)→ R\E such that
φ′[Ψ(A)] ⊆ φ[Ψ(A)] will satisfy (2). Let {xnk | n, k ∈ N} ⊆ φ[A] be distinct
where xn0 = en for each n ∈ N and such that |xnk − xnk+1| < 1/(n + k). We
may choose such xkns since ens are in the interior of φ[A]. Let Ank ∈ A be
such that φ(Ank) = xnk for each n, k ∈ N. Find finite Gnk ⊆ Ank such that
the sets Ank \Gnk are all pairwise disjoint and |φ(i)− xnk | < 1/(n+ k) for all
i ∈ Ank \Gnk with n, k ∈ N.

Modify φ to obtain φ′ in the following way: Put φ′�(Ank \ Gnk) to be
constantly xnk+1 for each n, k ∈ N and φ′(Ank) = xnk+1 for each n, k ∈ N, and
let φ′ be equal to φ at the remaining points of Ψ(A).

Injectivity of φ′�A and the inclusion φ′[Ψ(A)] ⊆ φ[Ψ(A)] \ E are clear.
So we are left with the continuity. φ′ is clearly continuous at each Ank for
n, k ∈ N. Let A ∈ A be distinct from all Ank . Then each intersection A ∩Ank
is finite. As |φ′(i)−φ(i)| < 2/(n+k) for i ∈ Ank with any n, k ∈ N, it follows
that limi∈A |φ′(i)− φ(i)| = 0, that is,

lim
i∈A

φ′(i) = lim
i∈A

φ(i) = φ(A) = φ′(A).

(2)⇒(3) Choose a dense countable E ⊆ R \ φ[A]. Let η : R → R be a
homeomorphism such that η[E] = Q and consider φ′ = η ◦ φ.

(3)⇒(4) Take φ satisfying (3) and modify it on N to obtain φ′ such that
φ′(n)s are distinct rationals for all n ∈ N and |φ(n) − φ′(n)| < 1/n for
all n ∈ N.
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(4)⇔(5) First we construct a certain bijection ρ : N<ω ∪ Nω → R such
that ρ[N<ω] = Q and ρ[Nω] = R \Q. Define a family (Is | s ∈ N<ω) of open
intervals with rational end-points with the following properties:

• I∅ = R.
•
⋃
{Is_n | n ∈ N} = Is.

• Each end-point of an interval Is is an endpoint of another interval Is′ with
|s| = |s′|.
• The diameter of Is is smaller than 1/|s| for s 6= ∅.
• For every s ∈ N<ω we have Is_n ∩ Is_n′ = ∅ for distinct n, n′ ∈ N.
• Every rational is used as an end-point of two (and necessarily only two

adjacent, by the previous properties) of the intervals Is for s ∈ N<ω; and
0 is an end-point of two of Iss for some |s| = 1.

First define ρ on N<ω by defining ρ(s) by induction on |s|. Let ρ(∅) = 0. If
|s| = 1, then ρ(s) is the right end-point of Is if Is consists of positive reals,
and ρ(s) is the left end-point of Is if Is consists of negative reals. If |s| > 1,
then ρ(s) is the left end-point of Is. For x ∈ Nω let ρ(x) be the only point
of
⋂
n∈ω Ix�n.
Note that ρ is continuous and that ρ−1(xn)→ ρ−1(x) if xn is a sequence

of rationals converging to an irrational x. This proves (4)⇔(5).
(5)⇒(6) First note that there is an η : N<ω ∪Nω → Nω which is contin-

uous and the identity on Nω: send s ∈ N<ω to s_0ω. Now note that there is
ζ : Nω → 2ω which is continuous and injective. Use the composition of these
functions to deduce (6) from (5).

(6)⇒(1) is clear.

Remark 3. Using Lemma 1 we obtain versions of the conditions from
Lemma 2 for functions from N into R. In particular the definition of an R-
embeddable almost disjoint family from the introduction which is a version
of item (1) of Lemma 2 is equivalent to some versions in the literature, e.g.
in [13] which contains versions of item (4) of Lemma 2.

The following is a simple condition that allows us to get R-embeddability.

Lemma 4. Let T ⊆ 2<ω be a tree, Z ⊆ [T ] and A = {Ar | r ∈ Z} an
almost disjoint family of subsets of N. Suppose there is a family {Bs | s ∈
T} ⊆ [N]ω with the following properties:

(1) Bt =
⋃
{Bt_i | t_i ∈ T, i ∈ {0, 1}} for all t ∈ T .

(2) Bs ∩Bt is finite whenever s, t ∈ T are incompatible.
(3) Ar ⊆

⋂
n∈ω Br�n for every r ∈ Z.

Then A is R-embeddable.

Proof. Define φ : Ψ(A) → 2ω by putting φ(Ar) = r for all r ∈ Z and
φ(n) = s_0ω if n ∈ Bs, |s| ≥ n and s is the first sequence in the lexicographic
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order which satisfies the previous requirements. If there is no such s ∈ 2<ω,
then put φ(n) = 0ω. Clearly φ�A is injective, so to check (1) of Lemma 2 we
are left with the continuity. Fix r ∈ Z. We shall show that φ is continuous
at Ar.

By (3), if k ∈ Ar, then k ∈ Br�n for every n ∈ ω. Fix n ∈ ω. So if we take
k ∈ ω belonging to the set

(∗) Ar \
⋃
{Bt | |t| = n, t 6= r|n},

then the condition “k ∈ Bs and |s| ≥ n” implies r�n ⊆ s by (1). By (2) the
set in (∗) almost covers Ar, and so for almost all elements of k ∈ Ar we
have r�n ⊆ φ(k). As n ∈ ω was arbitrary, it follows that limk∈Ar φ(k) = r =
φ(Ar), as required for the continuity.

Remark 5. Recursively one can construct a family of convergent se-
quences (qαn)n∈N of rational numbers for α < c in such a way that no tree
T ⊆ 2<ω and no collection {Bt | t ∈ T} satisfies the hypothesis of Lemma
4 for any family of ℘(N) obtained through a bijection between N and Q
from {{qαn}n∈N | α < c}. It follows that the condition in Lemma 4 is not
equivalent to R-embeddability. This way one can also conclude that there
are R-embeddable almost disjoint families of subsets of N which are not
equivalent to a family of branches of 2<ω.

2.2. κ-controlled R-embedding property. Recall the definition of
the κ-controlled R-embedding property from the introduction.

Theorem 6. No almost disjoint family A of size c has the c-controlled
R-embedding property.

Proof. Let A be an almost disjoint family of size c consisting of infinite
sets. Let (Mα)α<c be a well-ordered, continuous, increasing chain of sets
satisfying:

(1) |Mα| ≤ max(|α|, ω) for each α < c.
(2) RN, ℘(N) ⊆

⋃
α<cMα.

(3) If A ∈ Mα ∩ ℘(N) and f ∈ Mα ∩ RN and limn∈A f(n) exists, then it
belongs to Mα+1.

It should be clear that one can construct such a sequence (Mα)α<c. Define
φ : A → [0, 1] so that φ(A) ∈ R \Mα(A)+1 for A ∈ A, where

α(A) = min{α < c | A ∈Mα}.

This can be arranged by (2) and by (1). Now suppose A′ ⊆ A has cardi-
nality c and let f : N→ R. By (2) there is α0 < c such that f ∈ Mα0 . Take
A ∈ A′ such that α(A) ≥ α0, which exists by (1) as A′ has cardinality c.
Then A ∈ Mα(A) ∩ ℘(N) and f ∈ Mα(A) ∩ [0, 1]N, so by (3), if limn∈A f(n)
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exists, then it belongs to Mα(A)+1. But φ(A) 6∈ Mα(A)+1 by the definition
of φ, so limn∈A f(n) 6= φ(A).

However, it is quite possible to have almost disjoint families of cardinal-
ity κ with the κ-controlled embedding property:

Proposition 7 ([13, cf. 2.3]). Let κ be a cardinal. Assume MAκ. Then
every subfamily A of cardinality κ of the Cantor family C = {Ax | x ∈ 2ω}
⊆ ℘(2<ω), where Ax = {x�n | n ∈ ω} for x ∈ 2ω, has the following strong
version of the κ-controlled embedding property: For every function φ : A →
[0, 1] there is a function f : 2<ω → [0, 1] such that for all A ∈ A,

lim
s∈A

f(s) = φ(F ).

Proof. It is well known that under the above hypothesis all subsets of 2ω

of cardinality κ are Q-sets and that it implies that all subfamilies of the
Cantor family of cardinality κ can be separated from the rest of the family,
i.e. they are Q-families in our terminology from the introduction. It follows
that Ψ(A) is a normal topological space. As the non-isolated points of Ψ(A)
correspond to A and form a discrete closed subset of Ψ(A), any function φ
on them is continuous and extends by the Tietze extension theorem to a
continuous φ̃ : Ψ(A)→ [0, 1]. So put f = φ̃�2<ω and use Lemma 1 identifying
2<ω and N.

3. A Luzin family with all possible separations in ZFC. The main
striking property of the family constructed by Luzin [22] is that it is in-
separable. On the other hand, there is also an almost disjoint family A of
size ℵ1 such that every countable B ⊆ A can be separated from A \ B im-
plicitly constructed in [18] (see also [21, 26]). Here we construct an almost
disjoint family which satisfies both properties simultaneously. As both of
these properties are hereditary with respect to uncountable subfamilies, this
shows certain limitations to any further extraction principles.

To construct the almost disjoint family with the aboved-mentioned prop-
erties we need colorings of pairs of countable ordinals with properties first
obtained by Todorčević [36] (cf. [37]). In fact, the concrete construction we
choose, due to Velleman [39], is based on a family of finite subsets of ω1. It
was Morgan [24] who connected these two ideas. For functions c : [ω1]2 → N
we will abuse notation and denote c({α, β}) by c(α, β).

Theorem 8. There is a sequence (gα | α < ω1) ⊆ {0, 1, 2}N and a
coloring c : [ω1]2 → N satisfying the following:

(1) For all β < α < ω1 for all k > c(β, α) we have {gβ(k), gα(k)} 6= {1, 2}.
(2) For all β < α < ω1 we have gβ(c(β, α)) = 1 and gα(c(β, α))} = 2.
(3) For all γ < β < α < ω1 if c(γ, β) > c(α, β), then c(γ, β) = c(γ, α).
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(4) For all α < ω1 and all m ∈ N the set {β < α | c(β, α) < m} is finite.
(5) For all α < ω1 the sets and g−1

α [{1}] and g−1
α [{2}] are infinite.

Proof. We choose the approach from [19, Section 5]. Thus our c : [ω1]2

→ N ism of [19, Definition 5.1], i.e., c(α, β) is the minimal rank of an element
X ∈ µ such that α, β ∈ X where µ is an (ω, ω1)-cardinal, in particular µ is
a well founded collection of finite subsets of ω1 such that for every X ∈ µ of
non-zero rank, X = X1 ∗X2, which means in particular that X = X1 ∪X2

and X1 ∩ X2 < X1 \ X2 < X2 \ X1, where for two sets A,B of ordinals
A < B means that α < β for any α ∈ A and β ∈ B. For more details on the
structure of µ see [19, Definition 1.1].

The functions gα for α < ω1 are defined as follows: for n = 0 we put
gα(0) = 0 for any α < ω1 and for any n ∈ N we set

gα(n+ 1) =


0 if ∃X1 ∗X2 ∈ µ rank(X1) = rank(X2) = n, α ∈ X1 ∩X2,

1 if ∃X1 ∗X2 ∈ µ rank(X1) = rank(X2) = n, α ∈ X1 \X2,

2 if ∃X1 ∗X2 ∈ µ rank(X1) = rank(X2) = n, α ∈ X2 \X1.

Here X1 ∗X2 is as in [19, Definition 1.1(5)]. First let us argue that the
gαs are well defined. By [19, Definition 1.1(6, 7)] each α ∈ ω1 is in an element
of rank zero of the (ω, ω1)-cardinal µ. Now by Velleman’s Density Lemma
[19, 2.3] it follows that α is in an element of rank n of µ for any n ∈ N.
By [19, Definition 1.1(5)] each element X of µ of rank greater than zero
is of the form X1 ∗ X2, which means in particular that X = X1 ∪ X2 and
X1 ∩ X2 < X1 \ X2 < X2 \ X1. Now suppose that α ∈ X = X1 ∗ X2

and α ∈ Y = Y1 ∗ Y2 and the ranks of X1, X2, Y1, Y2 are elements of µ of
fixed rank n ∈ N. By [19, Definition 1.1(3)] there is an order preserving
fY,X : X → Y , which by [19, Definition 1.1(3, 5)] must satisfy f [X1] = Y1

and f [X2] = Y2 and moreover f�(X ∩ (α+ 1)) is the identity on X ∩ (α+ 1)
be the coherence lemma 2.1 of [19], so fY,X(α) = α and f [X1∩X2] = Y1∩Y2,
f [X1\X2] = Y1\Y2 and f [X2\X1] = Y2\Y1 and so the value of gα(n+1) does
not depend on whether we applied the definition of gα(n + 1) to X1 ∗ X2

or Y1 ∗ Y2, which completes the proof of the claim that the gαs are well
defined.

Now we will prove (1) and (2) for α < β < ω1 such that c(α, β) > 0. For
(1) let n + 1 = k > rank(X) such that α, β ∈ X ∈ µ. Let Y (which exists
by the above-mentioned Density Lemma) be such that X ⊆ Y ∈ µ and
rank(Y ) = k. Then Y = Y1 ∗ Y2. By [19, Definition 1.1(5)] we have X ⊆ Y1

orX ⊆ Y2, so {gβ(k), gα(k)} 6= {1, 2}. (2) follows from the definition of c, i.e.,
from the minimality of the rank of X 3 α, β, which is of the form X1 ∪X2

with X1 \ X2 < X2 \ X1 by [19, Definition 1.1(5)] and by the hypothesis
that c(α, β) > 0. Property (3) is [19, Corollary 5.4(2)]. Property (4) is [19,
Proposition 5.3(a)].
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To obtain (5), recall [19, Theorem 4.5] that (g−1
α [{1}], g−1

α [{2}])α<ω1 is
a Hausdorff gap, so the sets must be infinite from some point on, so it
is enough to remove possibly countably many α < ω1 and renumber the
remaining ones.

So it remains to remove the hypothesis c(α, β) > 0 from (1) and (2).
Note that what we have proved so far is valid for α, β, γ from any subset
of ω1, in other words we can pass to an uncountable subset X of ω1 and
consider only gαs for α ∈ X and then renumber X as ω1 in an increasing
manner. So we need to argue that there is an uncountable X ⊆ ω1 such that
c(α, β) > 0 for all α < β and α, β ∈ X. To obtain X apply the Dushnik–
Miller theorem [17, Theorem 9.7] to a coloring d : [ω1]2 → {0, 1} given by
d(α, β) = min{1, c(α, β)} knowing that all elements of rank zero must have
fixed finite cardinality.

Theorem 9. There are families (Xα, Yα, Aα, Bα | α < ω1) of subsets
of N such that:

(1) Xα = Aα ∪Bα is infinite, Aα ∩Bα = ∅ for all α < ω1.
(2) Xβ ∩Xα =∗ ∅ for all β < α < ω1.
(3) Yβ ⊆∗ Yα for all β < α < ω1.
(4) Xβ ⊆∗ Yα for all β < α < ω1.
(5) Xα ∩ Yα = ∅ for all α < ω1.
(6) For every α < ω1 and every k ∈ N, for all but finitely many β < α there

is l > k such that l ∈ Aβ ∩Bα.
Proof. Define all the sets as subsets of [{0, 1, 2}<ω]2 instead of N. For

α < ω1 put Xα = Aα ∪Bα, where
Aα =

{
{gα�(n+ 1), s} | s ∈ {0, 1, 2}n+1, gα(n) = 1, s(n) = 2}, n ∈ N

}
,

Bα = {{gα�(n+ 1), s} | s ∈ {0, 1, 2}n+1, gα(n) = 2, s(n) = 1}, n ∈ N}.
Then (1) is clear by Theorem 8(5).

If β < α < ω1 and {r, s} ∈ Xα ∩Xβ for n ∈ N such that |r| = |s| = n+ 1
and gα�(n + 1) 6= gβ�(n + 1), then {r, s} = {gα�(n + 1), gβ�(n + 1)} and
{r(n), s(n)} = {1, 2}, which means that n ≤ c(α, β) by Theorem 8(1, 2). So
we obtain (2).

Note that if β < α < ω1, then {gα�(c(α, β) + 1), gβ�(c(α, β) + 1)} ∈
Aβ ∩Bα by Theorem 8(2), so by Theorem 8(4) we obtain (6).

For α < ω1 define

Yα =
⋃
β<α

(
Xβ \

⋃
i≤c(β,α)

[{0, 1, 2}i+1]2
)
.

It follows that Xβ ⊆∗ Yα if β < α < ω1, so we have (4). Also Yα ∩Xα = ∅
because Xβ ∩ Xα ⊆

⋃
i≤c(β,α)[{0, 1, 2}i+1]2 by Theorem 8(1, 2), so also (5)

holds.
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If γ < β < α we have c(γ, β) = c(γ, α) with the possible exception for
γ < β in the set D(β, α) = {δ < β | c(δ, β) ≤ c(β, α)} by Theorem 8(3).
Moreover D(β, α) is finite Theorem 8(4). So almost all summands in the
definition of Yβ appear literally in the definition of Yα. The remaining sum-
mands of Yβ are Xγ \

⋃
i≤c(γ,β)[{0, 1, 2}i]2 for γ ∈ D(β, α). Each of them

is almost equal to a summand of Yα of the form Xγ \
⋃
i≤c(γ,α)[{0, 1, 2}i]2

for γ ∈ D(β, α), which proves that Yβ ⊆∗ Yα, which is (3), completing the
proof.

An example of the use of the partition of Xα above into Aα and Bα is
given in the following proposition which has found an application in [11].

Proposition 10. There are families (X ′α, Y
′
α : α < ω1) of subsets of N

and bijections fα : N× N→ X ′α such that:

(1) X ′β ∩X ′α =∗ ∅ for all β < α < ω1.
(2) Y ′β ⊆∗ Y ′α for all β < α < ω1.
(3) X ′β ⊆∗ Y ′α for all β < α < ω1.
(4) X ′α ∩ Y ′α = ∅ for all α < ω1.
(5) For every α < ω1 and every k ∈ N, for all but finitely many β < α there

are m1 < · · · < mk and n1 < · · · < nk such that

fα(i, nj) = fβ(j,mi) for all 1 ≤ i, j ≤ k.
Proof. Consider a pairwise disjoint family {Il | l ∈ N} of finite subsets N

where Il = {li,j | 1 ≤ i, j ≤ l} ∪ {rl}. Define X ′α =
⋃
{Il | l ∈ Xα} and

Y ′α =
⋃
{Il | l ∈ Yα} where Xα, Yα satisfy Theorem 9. It is clear that (1)–(4)

are satisfied. Put X ′′α =
⋃
{Il \ {rl} | l ∈ Xα}. Now for α < ω1 let Aα and

Bα be as in Theorem 9 and define recursively in l ∈ Xα for elements of
Il \ {rl} an injection hα : X ′′α → N × N in such a way that if l ∈ Aα, then
there are m1 < · · · < ml such that hα(li,j) = (j,mi) for all 1 ≤ i, j ≤ l, and
if l ∈ Bα, then there are n1 < · · · < nl such that hα(li,j) = (i, nj) for all
1 ≤ i, j ≤ l. Now use the elements {rl | l ∈ Xα} to extend hα to a bijection
h′α : X ′α → N × N and define fα = (h′α)−1. Note that Theorem 9(6) gives
l > k such that l ∈ Aβ ∩Bα, and so (5) follows.

We may note several interesting properties of the almost disjoint family
(Xα | α < ω1) from Theorem 9.

Corollary 11. There is an almost disjoint family A which is inseparable
(Luzin), but for every countable B ⊆ A, the families B and A \ B can be
separated.

Proof. As two parts of a countable almost disjoint family can be sepa-
rated, it is enough to separate the initial fragment {Xβ | β < α} from the
remaining part {Xβ | β ≥ α}. Our family from Theorem 9 of course has
such a separation Yα, so it is enough to show that it is inseparable. For this,
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note that Theorem 9(5) implies that given α < ω1 and k ∈ N, for all but
finitely many β < α we have max(Xβ ∩Xα) > k. This condition implies the
inseparability of the family in the standard way as in the case of the Luzin
family (cf. [15]).

Corollary 12. There is a Luzin family (Xα | α < ω1) such that when-
ever X ⊆ ω1 is uncountable and councountable, there is a Hausdorff gap
(AXα , B

X
α )α<ω1 for which ((Xα | α ∈ X ), (Xα | α ∈ ω1 \ X )) is its almost

disjoint refinement.

Proof. Take the families (Xα | α < ω1) and (Yα | α < ω1) from The-
orem 9. Using the non-existence of countable gaps in ℘(N)/Fin, for each
α < ω1 we can recursively construct a separation CXα of (Xβ | β ∈ X ∩ α)
and (Xβ | β ∈ α \ X ), i.e., CXα ⊆ N such that:

• Xβ ⊆∗ CXα if β ∈ α ∩ X .
• Xβ ∩ CXα =∗ ∅ if β ∈ α \ X .
• CXβ ∩ Yβ ⊆∗ CXα if β < α.
• (Yβ \ CXβ ) ∩ CXα =∗ ∅ if β < α.

Putting AXα = CXα ∩ Yα, BX
α = Yα \ CXα we obtain a Hausdorff gap.

4. R-embeddability in the Cohen model. Cohen forcing C consists
of elements of N<ω and is ordered by reverse inclusion. By the Cohen model
we mean the model obtained by adding ω2-Cohen reals with finite supports
to a model of the Generalized Continuum Hypothesis (GCH). Given X ⊆ ω2

we define CX as the forcing adding Cohen reals (with finite supports) indexed
by X. The following lemma is well known:

Lemma 13 (Continuous reading of names for Cohen forcing). If Ȧ is a
C-name for a subset of N, then there is a pair (〈Bn〉n∈N, F ) such that:

(1) Each Bn ⊆ N<ω is a maximal antichain.
(2) If s ∈ Bn+1 then there is t ∈ Bn such that t ⊆ s.
(3) F :

⋃
n∈N Bn → 2.

(4) If c ∈ Nω is Cohen over V, then

Ȧ[c] = {n | ∃m ((c�m) ∈ Bn & F (c�m) = 1)}.
Here by Ȧ[c] we denote the evaluation of the name Ȧ using the generic

real c. If the conditions (1)–(4) hold, we will say that (〈Bn〉n∈N, F ) codes Ȧ.
As a warm-up we present a direct proof of a result of Dow and Hart from

[9] which was obtained there using an ingenious axiomatization of ℘(N)/Fin
in the Cohen model.

Theorem 14 ([9]). In the Cohen model, every almost disjoint family of
size ω2 is ω2-anti-Luzin.



28 O. Guzmán et al.

Proof. It is enough to show that in the Cohen model, every almost dis-
joint family of size ω2 contains two subfamilies of size ω2 that are sepa-
rated. Let A = {Ȧα | α ∈ ω2} be a Cω2-name for an almost disjoint family.
Since Cω2 has the countable chain condition, for every α ∈ ω2 we can find
Sα ∈ [ω2]ω such that each Ȧα is in fact a CSα-name. By CH and the ∆-
system lemma, (see [20, Lemma III.6.15]) we can find X ∈ [ω2]ω2 such that
{Sα | α ∈ X} forms a ∆-system with root R ∈ [ω2]ω.

We may further assume that the root R is the empty set (if not, we
simply turn to the intermediate model obtained by forcing with CR). Since
CSα is a forcing notion equivalent to C, we may assume that for each α ∈ X,
Ȧα is a C{α}-name. Since V is a model of CH, we can find X1 ∈ [X]ω2 and a
pair (〈Bn〉n∈ω, F ) that codes Ȧα for every α in X1. In other words, if α ∈ X1,
then Ȧα is forced to be equal to

{n | ∃m ((ċα�m) ∈ Bn & F (ċα�m) = 1)}

(where ċα is the name of the αth Cohen real). We claim that there are
s, t ∈ N<ω such that:

(1) s and t are incomparable nodes of the same length.
(2) There are no m, s′, t′ with the following properties:

(a) m > |s|, |t|.
(b) s′, t′ ∈ Bm.
(c) s ⊆ s′, t ⊆ t′.
(d) F (s′) = F (t′) = 1.

If there were no such s and t, by a simple genericity argument we would
obtain two elements of A with infinite intersection, which is not possible (in
fact, every pair of incomparable nodes can be extended to a pair of nodes
satisfying these properties). In V [G], define

C0 = {Ȧα[cα] | α ∈ X1 ∧ s ⊆ cα},
C1 = {Ȧα[cα] | α ∈ X1 ∧ t ⊆ cα}.

It is easy to see that both families are of size ω2 and are separated by⋃
{A \m | A ∈ C0}.

A stronger statement “Every almost disjoint family of size continuum
contains an R-embeddable subfamily of size continuum”, is consistent but it
is false in the Cohen model. We will prove the latter fact in the rest of this
section and the former in the next section.

We denote by T the set of all finite trees T ⊆ N<ω such that all maximal
nodes of T have the same height, denoted by ht(T ). Given a tree T ⊆ N<ω
we define [T ]2,= = {{s, t} ∈ [T ]2 | |s| = |t|}.
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Definition 15. Define P as the collection of all triples p = (Tp, Rp, φp)
that satisfy the following properties:

(1) Tp ∈ T.
(2) Rp ⊆ [Tp]

2,=.
(3) If {s, t} ∈ Rp and {s′, t′}∈ [Tp]

2,= with s ⊆ s′ and t⊆ t′ then {s′, t′}∈Rp.
(4) φp : Tp → 2.
(5) There is no {s, t} ∈ Rp such that φp(s) = φp(t) = 1.

Given p, q ∈ P we say p ≤P q if Tq ⊆ Tp, Rq = Rp ∩ [Tq]
2,=, φq ⊆ φp.

Since P is a countable partial order, it is a forcing notion equivalent to
Cohen forcing. We define φ̇gen to be

⋃
{φp | p ∈ Ġ} (where Ġ is the name

for a generic filter of P). It is easy to see that φ̇gen is forced to be a function
from N<ω to 2.

Definition 16. We define U as the set of all sequences (p, 〈sα〉α∈F ) with
the following properties:

• p ∈ P.
• F ∈ [ω2]<ω.
• sα ∈ Tp for every α ∈ F (where p = (Tp, Rp, φp)).

We define (p, 〈sα〉α∈F ) ≤ (q, 〈tα〉α∈G) if

• p ≤P q.
• G ⊆ F.
• tα ⊆ sα for every α ∈ G.

It is easy to see that U is forcing equivalent to Cω2 . Moreover, U is
forcing equivalent to first forcing with P and then adding ω2-Cohen reals.
Given α < ω2 we define Ȧα to be the set {n | φ̇gen(ċα�n) = 1} (where ċα is
the name for the αth Cohen real). It is easy to see that Ȧ = { Ȧα | α < ω2}
is forced to be an almost disjoint family of size ω2.

Theorem 17. In the Cohen model, there is an almost disjoint family of
size ω2 that does not contain uncountable R-embeddable subfamilies.

Proof. Since U is forcing equivalent to Cω2 , we can think of the Cohen
model as the model obtained after forcing with U over a model of the Contin-
uum Hypothesis. Let A be the almost disjoint family that was defined above.
To reach a contradiction, assume that there is Ḃ ={Ȧα̇ξ | ξ ∈ ω1} and ḟ such
that ḟ is forced to be an embedding of Ψ(Ḃ) into 2ω as in Lemma 2(5). For
every ξ ∈ ω1, we may find rξ = (pξ, 〈srξη 〉η∈Fξ)∈ U and βξ with the following
properties:

• rξ 
 α̇ξ = βξ.
• βξ ∈ Fξ.
• srξβξ

_0, s
rξ
βξ

_1 ∈ Tpξ (where pξ = (Tpξ , Rpξ , φpξ)).
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By the ∆-system lemma (see [20, Lemma III.2.6]) we may find p ∈ P,
R ∈ [ω2]<ω, W ∈ [ω2]ω1 and s ∈ N<ω with the following properties:

• pξ = p for every ξ ∈W.
• {Fξ | ξ ∈W} forms a ∆-system with root R.
• srξη = s

rξ′
η for every ξ, ξ′ ∈W and η ∈ R.

• s = s
rξ
βξ

for every ξ ∈W.

It is easy to see that {rξ | ξ ∈ W} ⊆ U is a centered (2) family. Let {Hα |
α ∈ ω1} ⊆ [W ]2 be a pairwise disjoint family. For every α ∈ ω1 we find
r′α = (p′α, 〈u

r′α
η 〉η∈F ′α) ∈ U, tα and zα with the following properties:

• r′α ≤ rξ1 , rξ2 where Hα = {ξ1, ξ2} and ξ1 < ξ2.

• s_0 ⊆ ur
′
α
βξ1
.

• s_1 ⊆ ur
′
α
βξ2
.

• tα, zα ∈ N<ω are incompatible.
• r′α 
 tα ⊆ ḟ(Ȧβξ1 ) ∧ zα ⊆ ḟ(Ȧβξ2 ).

The last condition can be obtained since ḟ is forced to be injective when
restricted to Ḃ as in Lemma 2(6). Once again, we can find W0 ∈ [ω2]ω1 ,
p′ ∈ P, s0, s1 ∈ N<ω, R′′ ∈ [ω2]<ω, t, z such that for every α ∈ W0 the
following hold:

• p′α = p′.
• tα = t and zα = z.
• {F ′α | α ∈W0} forms a ∆-system with root R′.
• ur

′
α
η = u

r′δ
η for every α, δ ∈W0 and η ∈ R′.

• s0 = u
r′α
βξ1

and s1 = u
r′α
βξ2

for every α ∈W0 where Hα = {ξ1, ξ2}.

Once again, the set {r′α | α ∈W0} ⊆ U is centered. LetM be a countable
elementary submodel of some H(κ) (where κ is a sufficiently large cardinal)
containing all objects that have been defined so far. Let γ ∈ M ∩W0 and
δ ∈ W \ M. Find m ∈ N such that s_m /∈ Tp′ , and let ŝ be a sequence
extending s_m such that |ŝ| = |s0| = |s1|. Then find r̂ = (p̂, 〈yr̂η〉η∈F ) with
the following properties:

• r̂ ≤ r′γ , rδ.
• Tp′ ∪ {ŝ} ⊆ Tp̂ (where p̂ = (Tp̂, Rp̂, Fp̂)).
• F = F ′γ ∪ Fδ.
• yr̂βδ = ŝ.
• {s0, ŝ}, {s1, ŝ} /∈ Rp′ .

(2) Recall that a family of infinite subsets of ω is centered if the intersection of any
finitely many of its elements is infinite.
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We claim that r̂ forces that ḟ [Ȧβδ ] has infinitely many elements extending
t and infinitely many elements extending z (recall that ḟ [Ȧβδ ] is forced to
be a collection of finite sequences); this will contradict the continuity of ḟ .
Let r̂1 ≤ r̂ and k ∈ N. It will be enough to prove that we can extend r̂1 to a
condition that forces that there is l > k which is in Ȧβδ and its image under
ḟ is an extension of t whose height is greater than k (the case of z is similar).
Let α ∈ M ∩W0 be such that supp(r̂1) ∩M and F ′α \ R′ are disjoint. Let
r̂2 be the greatest lower bound of r̂1 ∩M and r′α; note that r̂2 ∈ M. Let
e ∈ ω be such that s0

_e has not been used and let v extending s0
_e be

such that |v| = |sr̂1βδ | and r̂3 such that sr̂3βξ1 = v (where Hα = {ξ1, ξ2}) and
{v, sr̂1βδ} /∈ Rr̂3 . Since r̂3, ḟ ∈ M we can find r̂4 ∈ M such that r̂4 ≤ r̂3 and
l > k such that r̂4 
 l ∈ Ȧβξ1 ∧ t ⊆ ḟ(l). Since the support of r̂4 is contained
inM, it is compatible with r̂1. Since {v, sr̂1βδ} /∈ Rr̂3 , we can find a common
extension that forces that l is in Ȧβδ .

The above family clearly does not have the ω1-controlled R-embedding
property, but a much stronger fact concerning the ω1-controlled R-embedding
property can be proved in the Cohen model.

Theorem 18. In the Cohen model, no uncountable almost disjoint family
A has the ω1-controlled R-embedding property.

Proof. Let {cα | α < ω2} be the sequence of Cohen reals generating the
Cohen model. Let A be an uncountable almost disjoint family. For every
A ∈ A there is a countable XA ⊆ ω2 such that A ∈ V [{cα | α ∈ XA}].
Define φ : A → 2ω by φ(A) = cαA where αA 6∈ XA and all αA’s are distinct.

Suppose that f : N → 2ω. There is a countable Y ⊆ ω2 such that
f ∈ V [{cα | α ∈ Y }]. As A is uncountable, there is A ∈ A such that αA 6∈ Y ,
so αA 6∈ XA∪Y . Hence limn∈A f(n) 6= cαA = φ(A), proving that A does not
have the ω1-controlled property.

Remark 19. The above proof remains valid for any finite support prod-
uct of no less than 2ω c.c.c. forcings in place of the Cohen forcing.

5. R-embeddability in the Sacks model. By the Sacks model we
mean the model obtained by adding ω2-Sacks reals iteratively with countable
support to a model of the GCH. Recall that a tree p ⊆ 2<ω is a Sacks tree
if every node of p can be extended to a splitting node. We denote by S the
collection of all Sacks trees, ordered by inclusion. Given α ≤ ω2 we denote
by Sα the countable support iteration of S of length α.We will now prove that
in the Sacks model, every almost disjoint family of size continuum contains an
R-embeddable family of the same size. We will need to recall some important
notions and results on Sacks forcing. For more on this forcing notion the
reader may consult [5], [14] and [23].
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Definition 20. Let α ≤ ω2 and n,m ∈ N.

(1) Given p, q ∈ S we say that (p,m) ≤ (q, n) if the following hold:

(a) p ≤ q.
(b) n ≤ m.
(c) q ∩ 2n = p ∩ 2n.
(d) If n < m then for every s ∈ qn there are distinct t0, t1 ∈ pm such

that s ⊆ t0, t1.
(2) Given p, q ∈ Sα and F ∈ [α]<ω we say that (p,m) ≤F (q, n) if the

following hold:

(a) p ≤ q.
(b) n ≤ m.
(c) if β ∈ F then p�β 
 (p(β),m) ≤ (q(β), n).

We will often use the following result:

Lemma 21 (Fusion lemma [5]). Let α ≤ ω2 and {(pi, Fi, ni) | i ∈ N} be
a family such that for every i ∈ N the following hold:

(1) pi ∈ Sα.
(2) Fi ∈ [α]<ω.
(3) Fi ⊆ Fi+1.
(4) ni < ni+1.
(5) (pi+1, ni+1) ≤Fi (pi, ni).
(6)

⋃
j∈N Fj =

⋃
j∈N supp(pj).

Define p such that supp(p) =
⋃
j∈N supp(pj) and if β ∈ supp(p) then p(β) is

an Sβ-name for the intersection of {pi(β) | β ∈ supp(pi)}. Then p ∈ Sα and
p ≤ pi for every i ∈ N.

If p ∈ S and s ∈ 2<ω we define ps = {t ∈ p | t ⊆ s ∨ s ⊆ t}. Note that ps
is a Sacks tree if and only if s ∈ p.

Definition 22. Let p ∈ Sα, F ∈ [supp(p)]<ω and σ : F → 2n. We define
pσ as follows:

(1) supp(pσ) = supp(p).
(2) For β < α the following hold:

(a) pσ(β) = p(β) if β /∈ F.
(b) pσ(β) = p(β)σ(β) if β ∈ F.
Similar to the previous situation, pσ is not necessarily a condition of Sα.

We will say that σ : F → 2n is consistent with p if pσ ∈ Sα. A condition p
is (F, n)-determined if for every σ : F → 2n, either σ is consistent with p or
there is β ∈ F such that σ�(F ∩ β) is consistent with p and (p�β)σ�(F∩β) 

σ(β) /∈ p(β).
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We say that p ∈ Sα is continuous if for every F ∈ [supp(p)]<ω and for
every n ∈ N there are G and m such that

• G ∈ [supp(p)]<ω.
• F ⊆ G.
• n < m.
• p is (G,m)-determined.

We will need the following lemmas:

Lemma 23 ([5]). Let p ∈ Sα, n ∈ N and F ∈ [supp(p)]<ω. There is
(q,m) ≤F (p, n) such that q is (F, n)-determined.

Lemma 24 ([14]). For every p ∈ Sα there is a continuous q ≤ p such that
q is continuous.

Let p be a continuous condition. We say that {(Fi, ni, Σi) | i ∈ ω} is a
representation of p if the following hold:

• Fi ∈ [supp(p)]<ω, ni ∈ ω.
• Fi ⊆ Fi+1 and ni < ni+1.
• supp(p) =

⋃
i∈N Fi.

• p is (Fi, ni)-determined for every i ∈ ω.
• Σi is the set of all σ : Fi → 2ni such that σ is consistent with p.

Note that if {(Fi, ni, Σi) | i ∈ ω} is a representation of p and f : ω → ω
is an increasing function, then {(Ff(i), nf(i), Σf(i)) | i ∈ N} is also a rep-
resentation of p. It is also easy to see that if p is continuous with rep-
resentation {(Fi, ni, Σi) | i ∈ N} and σ ∈ Σi, then pσ is also a con-
tinuous condition. Given a continuous condition p ∈ Sα and a represen-
tation R = {(Fi, ni, Σi) | i ∈ N} of p, we define [p]R as the set of all
〈yβ〉β∈supp(p) ∈ (2ω)supp(p) such that for every i ∈ ω the function σ : Fi → 2ni

given by σ(β) = yβ�ni belongs to Σi.

Lemma 25. Let p ∈ Sα be continuous. If R = {(Fi, ni, Σi) | i ∈ N} and
R′ = {(F ′i , n′i, Σ′i) | i ∈ N} are two representations of p, then [p]R = [p]R′.

Proof. To reach a contradiction, assume there is y = 〈yβ〉β<a∈ [p]R\[p]R′ .
Since y /∈ [p]R′ there must be i ∈ ω such that the function σ : F ′i → 2n

′
i

given by σ(β) = yβ�mi is not in Σ′i, i.e. σ is not consistent with p. Since p is
(F ′i , n

′
i)-determined, there is β ∈ F ′i such that σ�(F ′i ∩ β) is consistent with

p but pσ�(F ′i∩β) 
 σ(β) /∈ p(β). Let j ∈ ω be such that F ′i ⊆ Fj and n′i < nj .
Since y ∈ [p]R we know that the function τ : Fj → 2nj given by τ(ξ) = yξ�nj
is consistent with p. It is clear that pτ�(Fj∩β) ≤ pσ�(F ′i∩β) and σ(β) ⊆ τ(β) so
pτ�(Fj∩β) forces that τ(β) is not in p(β), which contradicts the fact that τ is
consistent with p.
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In light of the previous result, we will omit the subscript and only write
[p] to refer to [p]R where R is any representation of p. It is easy to see
that if p ∈ Sα is a continuous condition then [p] is a compact set and p 

sgen� supp(p) ∈ [p] (where sgen is the sequence of generic reals). Let S ∈ [ω2]ω

and σ : F → 2<ω where F ∈ [S]<ω. We define 〈σ〉S as the set {〈yβ〉β∈S ∈
(2ω)S | ∀β ∈ F (σ(β) ⊆ yβ)}. Note that the family

{〈σ〉S : F ∈ [S]<ω and σ : F → 2<ω}
forms a basis for the topology of (2ω)S .

The following result is well known:

Lemma 26 (Continuous reading of names for Sacks forcing). Let α < ω2,
p ∈ Sα and ẋ be an Sα-name such that p 
 ẋ ∈ [ω]ω. There is a continuous
condition q ≤ p and a continuous function F : [q] → [N]ω such that q 

F (ṡgen� supp(q)) = ẋ (where ṡgen is the name for the generic real).

We will need the following notion:

Definition 27. Let C,D be two subfamilies of ℘(N). We say that the
pair (C,D) is decisive if one of the following two conditions holds: either

(1) c ∩ d is infinite for every c ∈ C and d ∈ D, or
(2) c ∩ d is finite for every c ∈ C and d ∈ D.

Note that if the second alternative holds and C and D are both compact,
then there is an m such that c ∩ d ⊆ m for every c ∈ C and d ∈ D.

Lemma 28. Let p, q be two continuous conditions in Sα such that supp(p)
= supp(q) and F : (2ω)supp(p) → [N]ω a continuous function. There are
p′, q′ ∈ Sα such that the following hold:

(1) p′ ≤ p and q′ ≤ q.
(2) supp(p) = supp(q) = supp(p′) = supp(q′).
(3) The pair (F [[p′]], F [[q′]]) is decisive.

Proof. We consider several cases. The first case is that there are p′ ≤ p
and q′ ≤ q with supp(p) = supp(q) = supp(p′) = supp(q′) and m ∈ N such
F (y) ∩ F (z) ⊆ m for every y ∈ [p′] and z ∈ [q′].

In this case it is clear that the pair (F [[p′]], F [[q′]]) is decisive. The second
case is that for every p′ ≤ p, q′ ≤ q with supp(p) = supp(q) = supp(p′) =
supp(q′) and m ∈ N there are y ∈ [p′], z ∈ [q′] and k > m such that
k ∈ F (y) ∩ F (z).

Let supp(p) = {αn | n ∈ N}. We will now recursively build the two
sequences {(pn,mn, Fn) | n ∈ N} and {(qn, kn, Gn) | n ∈ N} such that for
every n ∈ N the following hold:

• p0 = p and q0 = q, F0 = G0 = ∅.
• Fn ∈ [supp(p)]<ω, Fn ⊆ Fn+1 and αn ∈ Fn+1.
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• Gn ∈ [supp(q)]<ω, Gn ⊆ Gn+1 and αn ∈ Gn+1.
• m0 = k0 = 0.
• mn < mn+1 and kn < kn+1.
• pn and qn are continuous conditions.
• supp(pn) = supp(qn) = supp(p).
• (pn+1,mn+1) ≤Fn+1 (pn,mn) and (qn+1, kn+1) ≤Gn+1 (qn, kn).
• pn+1 is (Fn+1,mn+1)-determined and qn+1 is (Gn+1, kn+1)-determined.
• For every σ : Fn → 2mn and τ : Gn → 2kn if σ is consistent with pn and
τ is consistent with qn then there is l > n such that l ∈ F (y) ∩ F (z) for
every y ∈ [pnσ] and z ∈ [qnτ ].

Assume we are at step n+ 1. Since both pn and qn are continuous condi-
tions, we can find Fn+1, Gn+1,mn+1 and kn+1 with the following properties:

• Fn ∪ {αn} ⊆ Fn+1 and Gn ∪ {αn} ⊆ Gn+1.
• mn < mn+1, kn < kn+1.
• pn is (Fn+1,mn+1)-determined and qn is (Gn+1, kn+1)-determined.

Let W = {(σi, τi)}i<u enumerate all pairs (σ, τ) with σ : Fn+1 → 2mn+1

and τ : Gn+1 → 2kn+1 . We recursively find a sequence {(pi1, qi1) | i < u + 1}
such that for every i < u the following hold:

• pn = p0
1 and qn = q0

1.
• (pi+1

1 ,mn+1) ≤Fn+1 (pi1,mn+1) and (qi+1
1 , kn+1) ≤Gn+1 (qi1, kn+1).

• pi1 and qi1 are continuous.
• supp(pi1) = supp(qi1) = supp(p).
• If σi is consistent with pi+1

1 and τi is consistent with qi+1
1 then there is

l > n such that l ∈ F (y)∩ F (z) for every y ∈ [(pi+1
1 )σi ] and z ∈ [(qi+1

1 )τi ].

Assume we are at step i. In case either σi is not consistent with pi1 or τi
is not consistent with qi1 we simply define pi+1

1 = pi1 and qi+1
1 = qi1. Assume

σi is consistent with pi1 and τi is consistent with qi1. By the hypothesis, there
are l > n, y ∈ [(pi1)σi ] and z ∈ [(qi1)τi ] such that k ∈ F (y)∩F (z). Since F is a
continuous function, we can find pi+1

1 and qi+1
1 with the following properties:

• σi is consistent with pi+1
1 .

• τi is consistent with qi+1
1 .

• For every y1 ∈ [(pi+1
1 )σi ] and z1 ∈ [(qi+1

1 )τi ] we have k ∈ F (y) ∩ F (z).
• pi+1

1 and qi+1
1 are continuous.

• (pi+1
1 ,mn+1) ≤Fn+1 (pi1,mn+1) and (qi+1

1 , kn+1) ≤Fn (qi1, kn+1).
• supp(pi1) = supp(qi1) = supp(p).

We then define pn+1 = pu+1
1 and qn+1 = qu+1

1 .

Let p′ and q′ be the respective fusion sequences. It is easy to see that
F [c] ∩ F [e] is infinite for every c ∈ [p′] and e ∈ [q′].
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Note that if p is continuous and β = min(supp(p)) then we may assume
that p(β) is a real Sacks tree (not only a name).

Proposition 29. Let p ∈ Sα be a continuous condition, F : [p] → [N]ω

a continuous function and β = min supp(α). Then there are q ∈ Sα with
representation {(Fi,mi, Σi) | i ∈ N} such that the following hold:

(1) q ≤ p.
(2) supp(q) = supp(p).
(3) F0 = {β}.
(4) For every i ∈ N and every σ, τ ∈ Σi such that σ(β) 6= τ(β), the pair

(F [[qσ]], F [[qτ ]]) is decisive.

Proof. Let supp(p) = {αn | n ∈ N} with α0 = β. We recursively build a
sequence {(pn,mn, Fn) | n ∈ N} with the following properties:

• p0 = p.
• F0 = {β} and m0 = 0.
• Each pn is continuous and supp(pn) = supp(p).
• Fn ∈ [supp(p)]<ω and αn ∈ Fn.
• (pn+1,mn+1) ≤Fn (pn,mn).
• mn < mn+1.
• For every σ, τ : Fn → 2mn such that σ(β) 6= τ(β) and both are consistent

with pn, the pair (F [[pnσ]], F [[pnτ ]]) is decisive.

Assume we are at step n. We first find Fn+1 and mn+1 > mn such that
Fn ∪ {αn} ⊆ Fn+1 and pn is (Fn+1,mn+1)-determined. Let W be the set of
all pairs (σ, τ) such that σ, τ : Fn+1 → 2mn+1 , σ(β) 6= τ(β) and both are
consistent with pn. Enumerate W = {(σi, τi) | i ≤ l}. We recursively build
{qi | i ≤ l} with the following properties:

• Each qi is (Fn+1,mn+1)-determined and continuous.
• supp(qi) = supp(p).
• (q0,mn) ≤Fn+1 (pn,mn+1).
• (qi+1,mn+1) ≤Fn (qi,mn+1) for i < l.
• For each i ≤ l, either

(a) σi or τi is not consistent with qi, or
(b) the pair (F [[(qi)σi ]], F [[(qi)τi ]]) is decisive.

Assume we are at step i < l. In case σi+1 or τi+1 is not consistent
with qi we simply define qi+1 = qi. We now assume both σi+1 and τi+1 are
consistent with qi. By applying the previous lemma to (qi)σi and (qi)τi we
obtain continuous conditions r0, r1 with the following properties:

• r0 ≤ (qi)σi .
• r1 ≤ (qi)τi .
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• supp(r0) = supp(r1) = supp(p).
• the pair (F [[r0]], F [[r1]]) is decisive.

We now define r to be a Sacks tree with the following properties:

• rσi+1(0) = r0(β).
• rτi+1(0) = r1(β).
• rs = qi(β)s for s ∈ qi(β)mn and s /∈ {σi+1(β), τi+1(β)}.
Let u̇ be an S-name with the following properties:

• r0�(β + 1) 
 u̇ = 〈r0(ξ)〉ξ>β.
• r1�(β + 1) 
 u̇ = 〈r1(ξ)〉ξ>β.
• r′ 
 “u̇ = 〈qi(ξ)〉ξ>β” for every r′ ≤ r�(β + 1) that is incompatible with

both r0�(β + 1) and r1�(β + 1).

Let qi+1 = r_u̇. It is easy to see that qi+1 has the desired properties.
Finally, we define pn+1 = ql. The fusion has the desired properties.

Note that in the proof of the proposition, it was crucial that we are work-
ing with the iteration of Sacks forcing and not with the countable support
product.

Let a be a countable subset of ω2. We can define Sa as a countable
support iteration of Sacks forcing with domain a. Clearly, Sa is isomorphic
to Sδ where δ is the order type of a. Note that if p ∈ Sω2 is a continuous
condition, then it can be seen as a condition of Ssupp(p). With this remark,
it is easy to prove the following:

Proposition 30. Let p ∈ Sα be a continuous condition that has a repre-
sentation {(Fi, ni, Σi) | i ∈ N} and F : [p]→ [N]ω a continuous function. Let
α∗ be the order type of supp(p) and π : supp(p)→ α∗ be the (unique) order
isomorphism. There are q ∈ Sα∗ and a continuous function H : [q] → [N]ω

with the following properties:

(1) supp(q) = α∗.
(2) The set {(π[Fi], ni, πΣi) | i ∈ N} is a representation of q (where πΣi =
{πσ | σ ∈ Σi}).

(3) If π : (2ω)supp(p) → (2ω)α
∗ denotes the natural homeomorphism induced

by π, then π�[p] is a homeomorphism and F = Hπ.

We will say that (p, F ) and (q,H) are isomorphic if the above conditions
hold.

Theorem 31. In the Sacks model, every almost disjoint family of size ω2

contains an R-embeddable subfamily of size ω2.

Proof. Let Ȧ ={Ȧα | α ∈ ω2} be an Sω2-name for an almost disjoint
family. For every α < ω2 we choose a pair (pα, Fα) with the following prop-
erties:
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(1) pα is a continuous condition.
(2) Fα : [pα]→ [N]ω is a continuous function.
(3) pα 
 Fα(rgen� supp(pα)) = Ȧα.

By the ∆-system lemma, we can assume that {supp(pα) | α ∈ ω2} forms a
∆-system with root R ∈ [ω2]ω. Let δ ∈ ω2 be such that R ⊆ δ. By a pruning
argument, we may assume that R = supp(pα)∩δ for every α < ω2. Since Sω2

has the ω2-chain condition, there is p ∈ Sω2 that forces the set {α | pα ∈ Ġ}
to have size ω2 (where Ġ is the name of the generic filter). Note that we may
assume that p ∈ Sδ (by increasing δ if needed).

Let G0 ⊆ Sδ be a generic filter such that p ∈ G0. We will now work
in V [G0]. Let W = {α | (pα�δ) ∈ G0}, which has size ω2 by the nature of
p. For every α ∈W, let p′α be the Sδ-name such that pα = (pα�δ)_p′α. Note
that we may view each p′α[G0] as a condition of Sω2 where supp(p′α[G0]) =
supp(pα) \ δ. Let r = 〈rβ〉β<δ be the generic sequence of reals added by G0.
We now define Hα : [p′α[G0]]→ [N]ω by Hα(〈yβ〉) = Fα((r� supp(pα))_〈yβ〉),
which is a continuous function. By a previous lemma, for each α ∈W there
is a continuous qα and {(Fαi ,mα

i , Σ
α
i ) | i ∈ ω} a representation of qα with

the following properties:

• qα ≤ p′α[G0].
• supp(qα) = supp(p′α[G0]).
• Fα0 = {βα} where βα = min(supp(p′α[G0])).
• For every i ∈ ω and every σ, τ ∈ Σα

i such that σ(βα) 6= τ(β), the pair
(Hα[[(qα)σ]], Hα[[(qα)τ ]]) is decisive.

Let α∗ be the order type of supp(qα). For each α ∈ W we find q∗α ∈ Sα∗
and H∗α : [q∗α] → [N]ω such that (qα, Hα) and (q∗α, H

∗
α) are isomorphic. We

can then find γ, q∗ ∈ Sγ with representation {(Fi,mi, Σi) | i ∈ N} and a
continuous function H : [γ]→ [N]ω such that the set W ′ ⊆ W consisting of
all α such that α∗ = γ, q∗α = q∗ and H∗α = H has size ω2.

We first note that for every i ∈ N and every σ, τ ∈ Σi such that σ(0)
6= τ(0), the pair (H[[q∗σ]], H[[q∗τ ]]) is decisive, and furthermore, H(y) ∩H(z)
is finite for every y ∈ q∗σ and z ∈ q∗τ . Indeed, the pair is decisive since (qα, Hα)
and (q∗, H) are isomorphic; and the second part of the claim follows since
any pair of conditions indexed by elements ofW ′ have disjoint supports (and
A is forced to be an almost disjoint family).

Given s ∈ q∗ ∩ 2mi let Bs =
⋃
{
⋃
H[[qσ]] | σ ∈ Σi ∧ σ(0) = s}. Note that

if s and t are two different elements of q∗ ∩ 2ni then Bs and Bt are almost
disjoint. Let T be the downwards closure of the set {s | s ∈ q∗∩2mi ∧ i ∈ N}.
Note that if α ∈W ′, then qα 
 Ȧα ⊆

⋂
s⊆ṙβα

Bs where ṙβα denotes the name
of the βα-generic real. Applying Lemma 4 to T , we conclude that A contains
an R-embeddable subfamily of size ω2.
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We do not know the answer to the following:

Problem 32. Let V be a model of the Continuum Hypothesis and let
Sω2 be the countable support product of ω2 copies of Sacks forcing. Does Sω2

force that “every almost disjoint family of size ω2 contains an R-embeddable
subfamily of size ω2”?

The rest of this section is devoted to the study of the controlled version of
R-embeddability in the Sacks model. In Theorem 42 we obtain the maximal
possible ω1-controlled embedding property since no family of size c can have
the c-controlled R-embedding property by Theorem 6. From now on, ṡα will
mean the canonical Sα+1-name for the αth generic real, i.e., the αth Sacks
real; and sα denotes the value of ṡα in the generic extension.

Definition 33. e : 2ω → 2ω is the function satisfying e(x)(n) = x(2n)
for every n ∈ ω.

Lemma 34. Let u ⊆ 2<ω be in S and H : [u]→ 2N be a homeomorphism.
Let α < ω2. Whenever p ∈ Sω2 is such that p�α 
 p(α) = ǔ and p�α 

ẋ ∈ 2ω for an Sα-name ẋ, there is an Sα-name q̇ such that (p�α)_q̇ ∈ Sα+1,
(p�α)_q̇ ≤ p�(α+ 1) and

(p�α)_q̇ 
 ě ◦ Ȟ(ṡα) = ẋ.

In particular (p�α)_q̇ 
 e(ṡα) = ẋ if p(α) = 1S.

Proof. Define q̇ to be an Sα-name for the set

{y�n | y ∈ [u], ∀k ∈ ω H(y)(2k) = x(k), n ∈ ω}.
This is an Sα-name for a perfect subtree of u and so (p�α)_q̇ ∈ Sα+1 and
(p�α)_q̇ ≤ p�(α + 1). We also have (p�α)_q̇ 
 ṡα ∈ q̇ and e(H(z)) = x for
every z ∈ [q], so the lemma follows.

Lemma 35. Let β < δ < ω2 and suppose that p ∈ Sδ+1 ⊆ Sω2 and Ḟ is
an Sδ-name for a continuous function from 2ω onto 2ω such that F−1[{x}]∩
[p(δ)] is perfect for every x ∈ 2ω in any forcing extension. There is an Sδ-
name ṙ such that p�δ_ṙ ≤ p and

p�δ_ṙ 
 Ḟ (ṡδ) = ṡβ.

Proof. Let q̇ be an Sδ-name for the set⋂
u∈Gδ

F−1[[u(β)]] ∩ [p(δ)] = F−1
[ ⋂
u∈Gδ

[u(β)]
]
∩ [p(δ)] = F−1[{sβ}] ∩ p(δ).

It is a name for a perfect set, as pre-images of singletons under F are perfect
in p(δ) in any forcing extension. Let ṙ be a name such that [r] = q. So
p�δ_ṙ ∈ Sδ+1. Also q ⊆ [p(δ)], so p�δ_ṙ ≤ p. If z ∈ q, then F (z) = ṡβ . But
p�δ_ṙ 
 ṡδ ∈ [ṙ] = q̇, so the lemma follows.
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Definition 36. c1 : S→ 2ω is the following coding of perfect subtrees of
2<ω by the reals. Let τ : N→ 2<ω be any fixed bijection. Then given p ∈ S
we define c1(p)(n) = 1 if and only if τ(n) ∈ p. Moreover, c2 will denote the
decoding function, i.e., for x ∈ 2ω,

c2(x) = {τ(n) | x(n) = 1, n ∈ ω}.

Definition 37. Let {Un | n ∈ N} be a fixed bijective enumeration of all
clopen subsets of 2ω. Suppose that p ∈ S. Define Fp : 2ω → 2ω as follows:
First by recursion define a strictly increasing sequence (ni)i∈N such that n0

is minimal satisfying Un0 ∩ [p] 6= ∅ 6= [p] \Un0 and both Un0 and 2ω \Un0 are
intervals in the lexicographical order on 2ω. Given n0, . . . , nk for k ∈ N let
nk+1 be minimal such that nk+1 > nk and the following conditions hold for
every σ ∈ 2k+2:

(1)
⋂

0≤i≤k+1 U
σ(i)
ni is an interval in the lexicographical order on 2ω.

(2)
⋂

0≤i≤k+1 U
σ(i)
ni ∩ [p] 6= ∅.

(3) diam(
⋂

0≤i≤k+1 U
σ(i)
ni ∩ [p]) ≤ (2/3)k+1.

Here U1
n = Un and U0

n = 2ω \Un for n ∈ N. Finally, for x ∈ 2ω and i ∈ ω we
define

Fp(x)(i) = χUn2i (x).

Lemma 38. Let p ∈ S. Then F−1
p [{x}] ∩ [p] is perfect for any x ∈ 2ω in

any forcing extension.

Proof. The conditions (1)–(3) of Definition 37 guarantee the property in
the statement of the lemma, and are preserved by any forcing.

Lemma 39. The function f : 2ω × 2ω → 2ω defined as

f(x, y) = Fc2(x)(y)

is continuous.

Proof. Let ε > 0. Let {Un | n ∈ N} and {Uni | i ∈ N} for p ∈ S be as
in Definition 37. Let i0 ∈ 2N be such that

∑∞
i=i0

1/2i < ε/2. Given p ∈ S
there is m ∈ ω such that if p, p′ ∈ S are such that c1(p)�m = c1(p′)�m, then
the constructions of {Uni | i < i0} for p and for p′ agree. It follows that if
xn ∈ 2ω is sufficiently close to x ∈ 2ω, then |Fc2(xn)(z)−Fc2(x)(z)| < ε/2 for
all z ∈ 2ω (i.e., Fc2(xn) converges uniformly to Fc2(x)). So

|Fc2(x)(y)− Fc2(xn)(yn)| = |Fc2(x)(y)− Fc2(x)(yn) + Fc2(x)(yn)− Fc2(xn)(yn)|
≤ |Fc2(x)(y)− Fc2(x)(yn)|+ |Fc2(x)(yn)− Fc2(xn)(yn)| < ε

if x, xny, yn ∈ 2ω, n ∈ N and |y − yn| and |x − xn| are sufficiently small by
the continuity of Fc2(x) and the above-mentioned uniform convergence.
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Theorem 40. The following statement is true in the Sacks model: Sup-
pose that {xξ | ξ < ω2} ⊆ 2ω is a set of distinct reals and {yξ | ξ < ω2} ⊆ 2ω.
Then there is a continuous g : 2ω → 2ω and X ⊆ ω2 of cardinality ω1 such
that g(xξ) = yξ for all ξ ∈ X. In fact, there is a ground model continuous
φ : 2ω × 2ω → 2ω such that φ(xξ, sδ) = yξ for all ξ ∈ X and some δ < ω2.

Proof. As CH holds in all the intermediate models, we may assume (re-
numbering the pairs (xθ, yθ)) that there are conditions pθ ∈ Sω2 and Sω2-
names ẋθ, ẏθ for xθ and yθ respectively where θ < ω2 is such that pθ 
 ẋθ
6∈ V Sθ+1 . Using [12, Theorem 6], by passing to a stronger condition than pθ
we may assume that for each θ < ω2 there is a continuous hθ : 2ω → 2ω such
that pθ 
 ȟθ(ẋθ) = ṡθ, for all θ < ω2 (as no ground model function h can
satisfy h(sθ) = xθ since xθ 6∈ V Sθ+1). Using the CH in the ground model we
can apply the stationary ∆-system lemma (3) for countable sets and obtain
a stationary A ⊆ {α ∈ ω2 : cf(α) = ω1} such that {supp(pθ) | θ ∈ A} forms
a ∆-system with root ∆ ⊆ ω2 and all the conditions agree on ∆.

Next the pressing down lemma yields a stationary A′ ⊆ A such that there
is α < ω2 with supp(pθ) ∩ θ ⊆ α for all θ ∈ A′. We will work for the rest of
the proof in V Sα , which will be treated as the ground model. By passing to
a subset of A′ of cardinality ω2 we may assume that

(1) pθ 
 ȟ(ẋθ) = ṡθ

for a fixed continuous h : 2ω → 2ω and all θ ∈ A′ and pθ(θ) is a fixed perfect
tree u ⊆ 2<ω and the supports of pθs for θ ∈ A′ are pairwise disjoint and
min(supp(pθ)) = θ for all θ ∈ A′. Also fix a homeomorphism H : [u] → 2ω.
Recursively construct a strictly increasing (θξ | ξ < ω1) ⊆ A′ such that

supp(pθξ)) ⊆ [θξ, θξ+1)

and ẏξ is an Sθξ+1
-name for all ξ < ω1. Let δ < ω2 be sup{θξ | ξ < ω1}.

We will work with the iteration Sδ+1. In the model V Sδ+1 the function g
is defined by

g(x) = e ◦ f(e ◦H(h(x)), sδ),

where f is as in Lemma 39. We will prove that there are uncountably many
ξ < ω1 such that g(xθξ) = yθξ . By (1) it is enough to prove that given

(3) By the stationary ∆-system lemma we mean the following: given a family {Xθ |
θ < ω2} of countable subsets of ω2 there is a stationary set A ⊆ {α ∈ ω2 | cf(α) = ω1}
such that {Xθ | θ ∈ A} forms a ∆-system. One can prove it as follows: Take regressive
f : {θ < ω2 | cf(θ) = ω1} → ω2 given by f(θ) = sup(Xθ ∩ θ). The pressing down lemma
yields a stationary A′ ⊆ {θ < ω2 | cf(θ) = ω1} where f is constantly equal to θ0. By CH and
the ω1-additivity of the nonstationary ideal on ω2 there is a stationary A′′ ⊆ A′ such that
Xθ∩θ0 is constant for θ ∈ A′′. Consider g : ω2 → ω2 given by g(θ) = sup{sup(Xη) | η ≤ θ}.
Let A ⊆ A′′ be the intersection of A′′ with the club consisting of the ordinals greater than
θ0 and closed under g. Then A is the required set.
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p ∈ Sδ+1 and η < ω1 there are p′ ≤ p with p′ ∈ Sδ+1 and η < ξ < ω1 such
that

(2) p′ 
 ḟ(e ◦H(ṡθξ), ṡδ) = ṡθξ+1
, e(ṡθξ+1

) = ˙yθξ .

Given η < ω1 let η < ξ < ω1 be such that the support of p�δ is included
in θξ, so we can assume that p�δ ∈ Sθξ and so p(δ) is an Sθξ -name. As
supp(pθξ) ⊆ [θξ, θξ+1), the conditions p and pθξ are compatible. Let p′′ ∈ Sδ+1

be obtained from p by replacing 1S by pθξ(α) on any α ∈ [θξ, θξ+1) so that
p′′ ≤ p, pθξ and p′′(θξ) = u. Now to obtain the desired p′ ≤ p′′ satisfying (2)
we will modify p′′ on θξ, θξ+1 and δ using Lemmas 34 and 35.

By Lemma 34 there is an Sθξ -name q̇ such that (p′′�θξ)_q̇ ∈ Sθξ+1,
(p′′�θξ)_q̇ ≤ p′′�(θξ + 1) and

(3) (p′′�θξ)
_q̇ 
 ě ◦ Ȟ(ṡθξ) = č1(p(δ)).

Since p′′(θξ+1) = 1S and ẏθξ is an Sθξ+1
-name by the last part of Lemma

34 there is an Sθξ+1
-name ȯ such that (p′′�θξ+1)_ȯ ∈ Sθξ+1

, (p′′�θξ+1)_ȯ ≤
p′′�(θξ+1) and

(4) (p′′�θξ+1)_ȯ 
 ě(ṡθξ+1
) = ẏθξ .

In V Sθξ consider the continuous function Fp(δ) as in Definition 37. Apply
Lemma 35 (its hypothesis is satisfied by Lemma 38) and find an Sδ-name ṙ
such that (p′′�δ)_ṙ ≤ p′′ and
(5) (p′′�δ)_ṙ 
 Ḟp(δ)(ṡδ) = ṡθξ+1

.

Define p′ ≤ p in Sδ+1 by replacing in p′′

• u by q̇ on the θξth coordinate,
• 1 by ȯ on the θξ+1th coordinate,
• p(δ) by ṙ on the δth coordinate.

It follows that p′ ∈ Sδ, p′ ≤ p′′ ≤ p and p′�(θξ + 1) ≤ (p′′�θξ)_q̇, p′�(θξ+1 +
1) ≤ (p′′�θξ+1)_ȯ and p′�(δ + 1) ≤ (p′′�δ)_ṙ.

Note that (5) and (3) give

p′ 
 Ḟc2(ě◦Ȟ(sθξ ))(ṡδ) = Ḟp(δ)(ṡδ) = ṡθξ+1
.

which together with (4) gives the required (2).

Remark 41. It is proved in [12] that under the hypothesis of Propo-
sition 40 there is a continuous g : 2N → 2N and either there is X ⊆ ω2 of
cardinality ω2 such that g(xξ) = yξ, or g(yξ) = xξ for every ξ ∈ X. Note that
if xξ = sξ and yξ = sξ+1, where sξ denotes the ξth Sacks real for ξ < ω2,
then there is no continuous g : 2N → 2N such that g(xξ) = yξ for ω2-many
ξ < ω2. This follows from the fact that any continuous function is coded in
some intermediate model.
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Theorem 42. In the Sacks model every almost disjoint family of cardi-
nality ω2 has the ω1-controlled embedding property.

Proof. Work in the Sacks model. Let A be any almost disjoint family
of cardinality 2ω = ω2 and φ : A → 2ω any function. By Theorem 31 and
Lemma 2 and Remark 3 there is a subfamily A′ ⊆ A of cardinality ω2 and
a function f : A′ → 2ω such that the limits xA = limn∈A f(n) exist for
each A ∈ A′ and are different for distinct A ∈ A′. By Theorem 40 there
is a subfamily B ⊆ A′ of cardinality ω1 and a continuous g : 2ω → 2ω

such that g(xA) = φ(A) for all A ∈ B. By the continuity of g we have
φ(A) = g(xA) = limn∈A g(f(n)) for all A ∈ B. So f ′ : N→ 2ω given by g ◦ f
witnesses the ω1-controlled embedding property for A and φ.

6. An application: Abelian subalgebras of Akemann–Doner C∗-
algebras. The application of our combinatorial results from the previous
sections presented here is related to non-commutative C∗-algebras defined
by Akemann and Doner [1] with the help of almost disjoint families. Let us
recall these constructions. In this section C will stand for the field of complex
numbers. We consider the C∗-algebra M2 of all complex 2× 2 matrices with
the usual linear algebra operations and with the operator norm, that is,

‖M‖ = sup{‖Mv‖2 : ‖v‖2 = 1, v ∈ C2},
where ‖(v1, v2)‖2 =

√
|v1|2 + |v2|2 for (v1, v2) ∈ C2. We denote by `∞(M2)

the C∗-algebra of all norm bounded sequences from M2 with the supremum
norm and the coordinatewise operations. Let c0(M2) denote the C∗-sub-
algebra of `∞(M2) consisting of sequences of matrices whose norms converge
to zero.

For θ ∈ [0, 2π) define a 2× 2 complex matrix of a rank one projection by

pθ =

[
sin2 θ sin θ cos θ

sin θ cos θ cos2 θ

]
.

Given A ⊆ N and θ ∈ [0, 2π) define PA,θ ∈ `∞(M2) by

PA,θ(n) =

{
0, n 6∈ A,
pθ, n ∈ A.

Given an almost disjoint family A ⊆ ℘(N) and a function φ : A → [0, 2π) the
Akemann–Donner algebra AD(A, φ) is the subalgebra of `∞(M2) generated
by c0(M2) and {PA,φ(A) | A ∈ A}. As the distance between PA,θ and PA′,θ′
is at least 1 for any distinct infinite A,A′ ⊆ N and any (possibly equal)
θ, θ′ ∈ [0, 2π), such algebras are non-separable if A is uncountable. Clearly
if A is uncountable and φ : A → [0, 2π) is constantly equal to θ, then
AD(A, φ) contains the non-separable commutative C∗-algebra isomorphic
to the algebrs C0(Ψ(A)) of all complex valued continuous functions on Ψ(A)
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vanishing at infinity because p2
θ = pθ = p∗θ since it is a projection. However,

as Akemann and Doner proved under CH, one can choose A so that for
every injective φ : A → (0, π/6) the algebra AD(A, φ) has no non-separable
commutative subalgebra. In [6] the hypothesis of CH was removed by showing
that a ZFC Luzin family A is sufficient for this result of Akemann and Doner.
We have the following two lemmas, implicit in [1, 6]:

Lemma 43. Suppose that A is an almost disjoint family and φ : A →
[0, 2π). If there is B ⊆ A of cardinality κ and f : N → [0, 2π) such that
limn∈B f(n) = φ(B) for every B ∈ B, then AD(A, φ) contains a commuta-
tive C∗-subalgebra of density κ.

Proof. First define Pf ∈ `∞(M2) by Pf (n) = pf(n). For B ∈ B define
RB ∈ `∞(M2) by RB(n) = PfχB(n) for n ∈ N, where χB is the characteristic
function ofB. The hypothesis about f implies thatRB−PB,φ(B) ∈ c0(M2) for
all B ∈ B and so RB is in AD(A, φ). The algebra generated by {RB | B ∈ B}
is commutative isomorphic to C0(Ψ(B)) and of density κ as required.

Lemma 44. Let c ∈ R be such that ‖p0 − pθ‖ < 1/4 for θ ∈ [0, c].
Suppose that A is an almost disjoint family and that φ : A → [0, c] is such
that for no B ⊆ A of cardinality κ is there an f : N → [0, c] such that
limn∈B f(n) = φ(B) for every B ∈ B. Then AD(A, φ) does not contain any
commutative C∗-subalgebra of density κ.

Proof. This is a slight modification of an argument from [1] and modified
in [6]. Let ρ : {pθ | θ ∈ [0, 1/4]} → [0, 1/4] be defined by ρ(pθ) = θ. Then ρ is
a continuous map from a closed subset of the unit ball B1 ofM2 into [0, 1/4].
Use the Tietze extension theorem to find a continuous η : B1 → [0, 1/4]
which extends ρ.

Suppose that C is a commutative subalgebra of AD(A, φ) whose density
is κ. As in [1] and [6], in a slightly different language, it follows from si-
multaneous diagonalization of commuting matrices that there are rank one
projections q(n) ∈ M2 such that a(n)q(n) = q(n)a(n) for each n ∈ N and
each a ∈ C and we may assume that ‖q(n) − p0‖2 ≤ 1/2 by [6, (2.1)]. It is
easy to note that for each a ∈ AD(A, φ) the limit limn∈A a(n) exists and is
a multiple of pφ(A). The density of C being κ means that there is B ⊆ A of
cardinality κ such that for each B ∈ B there is aB ∈ C such that the limit
limn∈B aB(n) exists and is equal to zBpφ(B) for a non-zero complex number
zB. By the compactness of the unit ball in M2, for each infinite B′ ⊆ B
there is an infinite B′′ ⊆ B′ such that limn∈B′′ q(n) = q′ exists, and so it
has to be a rank one projection which commutes with limn∈A aB(n) which
is zBpφ(B), so pφ(B) and q′ commute; but ‖q′−pφ(B)‖ ≤ 1/

√
2 + 1/4 < 1 and

so q′ = pφ(B) (see e.g. [6, Lemma 3]). This means that actually limn∈B q(n)
exists and is equal to pφ(B) for each B ∈ B. By the continuity of η we
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have limn∈B η(q(n)) = η(pφ(B)) = φ(B). Define f : N → [0, 1/4] by f(n) =
η(q(n)). So limn∈B f(n) = φ(B) for every B ∈ B, contradicting the hypoth-
esis on A.

As corollaries we obtain:

Theorem 45. In ZFC, for every almost disjoint family A of cardinality c
there is φ : A → [0, 2π) such that the Akemann–Doner C∗-algebra AD(A, φ)
of density c has no commutative subalgebras of density c.

Proof. Fix an almost disjoint family A of cardinality c. By Theorem 6
there is φ : A → R such that for no B ⊆ A of cardinality c there is f : N→ R
such that limn∈B f(n) = φ(B) for all B ∈ B. By applying a continuous
injective mapping we may assume that R is replaced by [0, c], where c ∈ R is
as in Lemma 44. Now Lemma 44 implies that AD(A, φ) has no commutative
subalgebras of density c.

Theorem 46. It is consistent that every Akemann–Doner algebra of den-
sity c contains a nonseparable commutative subalgebra.

Proof. We claim that the above statement holds in the Sacks model.
By Theorem 42, given any almost disjoint family A of cardinality c and a
function φ : A → R there is an uncountable B ⊆ A such that limn∈B f(n) =
φ(B) for all B ∈ B. It follows from Lemma 43 that AD(A, φ) contains a
non-separable commutative subalgebra.

Theorem 47. Let c ∈ R be such that ‖p0 − pθ‖ < 1/4 for θ ∈ [0, c]. It
is consistent with the negation of CH that for every almost disjoint family A
of cardinality c there is φ : A → [0, c] such that the Akemann–Doner algebra
AD(A, φ) of density c has no non-separable commutative subalgebra.

Proof. Work in the Cohen model. Fix an almost disjoint family A of
cardinality c. By Theorem 18 is there an φ : A → R such that for no
uncountable B ⊆ A is there an f : N → R such that limn∈B f(n) = φ(B)
for all B ∈ B. By applying a continuous mapping we may assume that R is
replaced by [0, c], where c ∈ R is as in Lemma 44. Now Lemma 44 implies
that AD(A, φ) has no commutative non-separable subalgebras.

Theorem 48. Let c ∈ R be such that ‖p0 − pθ‖ < 1/4 for θ ∈ [0, c]. It
is consistent with the negation of CH that there is an almost disjoint family
A of cardinality c such that for every φ : A → [0, c] the Akemann–Doner
algebra AD(A, φ) of density c has no non-separable commutative subalgebra.

Proof. Work in the Cohen model. Let A be an almost disjoint family
of cardinality c from Theorem 17. By Theorem 17 for no φ : A → R is
there an uncountable B ⊆ A and f : N → R such that limn∈B f(n) = φ(B)
for all B ∈ B. Now Lemma 44 implies that AD(A, φ) has no commutative
non-separable subalgebras.
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These results complete an earlier result of [6] that there is in ZFC an
almost disjoint family A (any inseparable family) such that for every φ :
A → [0, c) the Akemann–Doner algebra of density ω1 has no non-separable
commutative subalgebra.
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