
The P -Ideal Dichotomy, Martin’s Axiom and

Entangled Sets

Osvaldo Guzmán ∗ Stevo Todorcevic †

Abstract

We build a model of the P -ideal dichotomy (PID) and Martin’s axiom
for ω1 (MAω1) in which there is a 2-entangled set of reals. In particular, it
follows that the Open Graph Axiom or Baumgartner’s axiom for ω1-dense
sets are not consequences of PID + MAω1 . We review Neeman’s iteration
method using two type side conditions and provide an alternative proof
for the preservation of properness.

1 Introduction

The P -ideal dichotomy (PID)1 is one of the most important and strongest conse-
quences of the Proper Forcing Axiom (PFA). It was introduced in [53] by the sec-
ond author and many applications of this dichotomy have been found since then.
For example, PID implies the Suslin Hypothesis, that every gap in ℘(ω) Òfin
is ccc-indestructible ([3], [53]), the bounding number is at most ω2 ([47]), the
Singular Cardinal Hypothesis ([57]) and every complete weakly distributive alge-
bra B with the countable chain condition supports a strictly positive continuous
submeasure ([7]). Another interesting aspect of the P -ideal dichotomy is that
it is strong enough to imply the failure of several square principles. In [53]
the second author proved that PID implies that ◻κ fails for every uncountable
cardinal κ. This was later improved by Raghavan in [39], where he proved that
PID implies the failure of ◻κ,ω for all uncountable κ, as well as the failure of
◻κ,<b for all κ such that cof(κ) > ω1.

It has been observed that under PID, several mathematical statements (not
necessarily from set theory) become equivalent to an assertion regarding cardinal
invariants. This program was initiated by Raghavan and the second author in
[40] (see also [47]). In [40] the following general project was introduced:

∗keywords: Martin´s axiom, P-ideal dichotomy, Open graph axiom, Baumgartner´s axiom,
entangled sets, cardinal invariants, two type side conditions.

†The first author was supported by a PAPIIT grant IA102222. The third author is par-
tially supported by grants from NSERC (455916), CNRS (IMJ-PRG-UMR7586) and SFRS
(7750027-SMART).
AMS classification: 03E17, 03E40, 03E50, 03E65, 03E05.

1All the relevant undefined notions will be reviewed in the next sections.
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Problem 1 Let ϕ be a consequence of PFA. Find a cardinal invariant j such
that ϕ and j > ω1 are equivalent under PID.

It is a remarkable result of the second author that PID is consistent with
the Continuum Hypothesis (CH) (see [53]). The following quote is from [40]
“The problem asks if the influence of PFA on ϕ can be decomposed into a part
which is consistent with CH and into another CH violating part that is precisely
captured by the cardinal invariant j”. We list some examples of this type:

Theorem 2 (Raghavan, Todorcevic [40]) Under PID, the following state-
ments are equivalent:

1. b > ω1.

2. ω1 Ð→ (ω1, ω + 2) .

Theorem 3 (Raghavan, Todorcevic [40]) Under PID, the following state-
ments are equivalent:

1. min{b,cof(Fσ)} > ω1.

2. Every directed set of size at most ω1 is Tukey equivalent to one of the
following: 1, ω, ω1, ω × ω1 or [ω1]<ω .

Theorem 4 (Borodulin-Nadzieja, Chodounský [12]) Under PID, the fol-
lowing statements are equivalent:

1. b > ω1.

2. Every ω1-tower is Hausdorff.

Recall that a famous theorem of Cantor establishes that every two countable
dense linear orders with no end-points are isomorphic. We may wonder about
possible extensions of this result to uncountable cardinals. The straightforward
generalization is false, but it may be true when restricted to subsets of reals in
which all of its intervals have the same size. We say that D ⊆ R is κ-dense if
D ≠ ∅, has no end-points and for every a, b ∈D with a < b, the interval (a, b)∩D
has size κ. The Baumgartner Axiom for κ-dense sets is the following assertion:

BA(κ) Every two κ-dense sets of reals are isomorphic.

Note that the theorem of Cantor mentioned above is simply BA(ω) . It is
easy to see that BA(c) is false (where c is the cardinality of the continuum).
Hence, BA(ω1) is consistently false. Nevertheless, the following is an impressive
result of Baumgartner:
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Theorem 5 (Baumgartner, [8] [9]) PFA implies BA(ω1) .

The reader may also consult [44], [48] or [49] for a proof. It is worth men-
tioning that the second author proved that BA(b) is false (see [43] for a proof).
It is currently unknown if BA(p) is consistent. One of the major open problems
in set theory is if BA(ω2) is consistent. A lot of progress on this problem has
been done by Neeman, pointing to a positive solution. The reader may also
consult the work of Moore and the second author ([36]) to learn more about
BA(ω2) . Fore more on the structure of uncountable linear orders, the reader
may look at [46], [48], [33], [34], [27] and [26]. In [43] Steprāns and Watson
studied topological versions of the Baumgartner axiom in Rn.

Recall that a complete set in a graph is a set in which any two elements
are connected, while an independent set is a set in which no two elements are
connected. The chromatic number of a graph is the smallest size of a family of
independent sets that covers the set of vertices. It is natural to wonder when a
graph has countable chromatic number. Obviously this is impossible if there is
an uncountable complete set. Although this is a sufficient condition, in general
is far from necessary. Surprisingly, the existence of an uncountable complete
subgraph may be the only obstruction for some “topologically nice” graphs. In
his book Partition Problems in Topology, the author introduced the Open Graph
Axiom (OGA), which is the following dichotomy:

OGA Let X be a second countable space and G ⊆ [X]2
an open graph. One of the following conditions hold:

1) X contains an uncountable complete set.
2) The chromatic number of G is at most
countable.

The Open Graph Axiom is a remarkable dichotomy with many strong con-
sequences. Just to name a few: all automorphisms of the Calkin algebra of
a separable Hilbert space are inner (see [17]), the bounding number is exactly
ω2, if G is a (κ,λ)-gap in ℘(ω) Òfin with both κ and λ regular cardinals, then
κ = λ = ω1, every uncountable Boolean algebra contains an uncountable set of
pairwise disjoint elements, for every real valued function with an uncountable
domain, there is an uncountable set in which it is monotone (see [44] and [49]).
OGA has also very strong consequences on the quotients ℘(ω) Ò I where I is
an analytic ideal on ω.(see [16]).

Theorem 6 ([44]) PFA implies OGA.

To learn more about the Open Graph Axiom, the reader may consult [44],
[49], [47], [35], [32], [45], [54], [15] and [28] among many others.
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Given the importance of both OGA and BA(ω1) and in light of the program
described at the beginning, we may wonder if those principles are equivalent
(under PID) to a cardinal inequality as described earlier. We will show that this
is not the case for the usual cardinal invariants (like the ones described in [11]).
More formally, we will prove the following:

Theorem 7 (LC) MAω1 + PID do not imply OGA or BA(ω1) .

Above, by LC we denote a large cardinal hypothesis. The existence of a
supercompact cardinal is enough for us. In this way, if there is a cardinal
invariant related to BA(ω1) or OGA, it will not be possible to increase it with
ccc forcings, which is the case for most of the cardinal invariants one finds in
practice (of course, there might still be an interesting, non-artificial cardinal
invariant with this properties).

In order to prove the Theorem 7, we will show that MAω1 + PID is consistent
with the existence of a 2-entangled set of reals (the definition of entangled set
and its main properties will be reviewed in a later section). Since both OGA
and BA(ω1) forbid the existence of 2-entangled sets of reals, clearly Theorem 7
will follow.

The paper is organized as follows: Section 2 contains the preliminaries. In
Section 3, we present the basic notions and results regarding entangled sets of
reals. In Section 4, we prove that for every partial order destroying a given
2-entangled set, there is a proper forcing that adds an uncountable antichain to
the former. Abraham and Shelah proved that there is a ccc forcing with this
property under the Continuum Hypothesis. Our forcing is not ccc, but it is
proper and exists in any model, independently if CH holds or not. In Section
5, we prove that the usual side condition poset for forcing an instance of the P -
ideal dichotomy preserves entangled sets. In Section 6, for every proper forcing
P, we introduce its “side condition hull”, which is a proper forcing with side
conditions in which P embeds. In Section 7, we review the technique of forcing
with two type side conditions introduce by Neeman in [37]. Most of the section
is devoted to studying this technique. Nevertheless, there are some new results,
like a decomposition of the successor steps in the Neeman iteration, as well as
a new proof of the preservation of properness. Part of this section is based
on a graduate course the second author taught at the University of Toronto
in 2019. In Section 8, we prove the preservation theorem for 2-entangled sets
under Neeman iteration and finish the proof of Theorem 7. We list some open
questions in Section 9.

2 Preliminaries and Notation
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Most of our definitions and notation are standard, but for the convenience of
the reader, in this section we will review some notions that will be used through
the paper.

Definition 8 Let X be a set and A,B ⊆X. We say that B is an almost subset
of A (which we denote as B ⊆∗ A) if B ∖A is finite.

We now recall the notion of ideal and P -ideal, which are fundamental con-
cepts in infinite combinatorics.

Definition 9 Let X be a set and I ⊆ ℘(X) .

1. We say that I is an ideal if the following conditions hold:

(a) ∅ ∈ I and X ∉ I.
(b) If A,B ∈ I, then A ∪B ∈ I.
(c) If A ∈ I and B ⊆ A, then B ∈ I.
(d) [X]<ω ⊆ I.

2. Let I be an ideal. We say that I is a P -ideal if for every countable family
B ⊆ I, there is A ∈ I such that B ⊆∗ A for every B ∈ B (in this case, we
say that A is a pseudounion of B).

3. I⊥ = {S ⊆X ∣ ∀A ∈ I (∣A ∩ S∣ < ω)} .

4. I+ = ℘(X) ∖ I.

We will be mainly interested in the case where I is an ideal of countable sets
(i.e. I ⊆ [X]≤ω). The P -ideal dichotomy (PID) is the following dichotomy:

PID Let X be a set and and I ⊆ [X]≤ω a P -ideal.
One of the following conditions hold:

1) There is Y ∈ [X]ω1 such that [Y ]ω ⊆ I.
2) There is {Zn ∣ n ∈ ω} ⊆ I⊥ such that X = ⋃

n∈ω
Zn.

It was proved by the second author that PFA implies PID. To learn more
about PID, the reader may consult [3], [53], [47], [48], [35], [53], [46], [25], [13],
[30] and [39] among others.

Let κ be a cardinal. The Martin’s axiom (MA) for κ is the following state-
ment:
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MAκ Let P be a ccc partial order. If D is a family
of open dense subsets of P and ∣D∣ ≤ κ,
then there is a filter G ⊆ P such that
G ∩D ≠ ∅ for every D ∈ D.

Martin’s axiom (MA) is the statement that MAκ holds for all κ < c (by c we
denote the size of the continuum). It is easy to see that MAω is true and MAc

is false. To learn more about MA, the reader may consult [18], [24], [22], [10]
and [49].

Let X be a set. We say that T ⊆ X<ω is a tree if T is closed under taking
initial segments. If s, t ∈X<ω by s⌢t we denote the concatenation of s and t. If
T ⊆ X<ω is a tree and s ∈ T, define sucT (s) = {x ∈ X ∣ s⌢ ⟨x⟩ ∈ T}. By [T ] we
denote the set of branches of T, which is the set of all maximal paths through
T. If W ⊆ X<ω, the tree closure of W is obtained by closing W under initial
segments.

If P is a forcing and M is a countable elementary submodel of a large enough
structure with P ∈ M, we say that p ∈ P is an (M,P)-generic condition if for
every D ⊆ P open dense with D ∈ M, the set D ∩M is predense below p. The
following equivalence of generic conditions is often useful2 and may be consider
folklore:

Lemma 10 Let P be a forcing, p ∈ P, θ a large enough regular cardinal and M
an elementary submodel of H(θ) with P ∈M. The following are equivalent:

1. p is an (M,P)-generic condition.

2. For every E ⊆ P with E ∈ M and q ≤ p, if q ∈ E, then there is r ∈ E ∩M
that is compatible with q.

We will say that p is a strong (M,P)-generic condition if for every dense
D ⊆ P ∩M, we have that D is predense below p (in general, D ∉ M). We
say that P is (strongly) proper for M if every q ∈ P ∩ M can be extended
to a (strong) (M,P)-generic condition. A forcing is (strongly) proper if it is
(strongly) proper for every countable elementary submodel of a large enough
structure.

Let P be a partial order, M an elementary submodel of some H(λ) with
P ∈ M and G ⊆ P a generic filter. Define M [G] = {ȧ [G] ∣ ȧ ∈M} . Since the
forcing relation is definable, it follows that M [G] is an elementary submodel of
H(λ) [G] (for more details, see [41] and [2]). If G does not contain an (M,P)-
generic condition, M [G] will not be a forcing extension of M. Nevertheless, it

2In the book [48] the condition 2 in the Lemma is taken as the definition of an (M,P)-
generic condition.
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is still a model and may be useful in some situations. We will often use the
following result: (for a proof, see [41] Chapter I, Claim 5.17 and Chapter III
Theorem 2.11).

Proposition 11 Let λ be a regular cardinal and P a forcing such that P ∈ H(λ) .
If G ⊆ P is a generic filter, then the following holds:

1. HV (λ) [G] = HV [G] (λ) .

2. If M ⪯ H(λ) and P ∈M, then M [G] ⪯ HV [G] (λ) .

Let X be a set, we say that C ⊆ [X]ω is a club if it is cofinal and closed
under countable directed unions. Let µ be a cardinal, we say that S ⊆ [X]<µ
is stationary if for every f ∶ X<ω Ð→ X, there is an element of S that is closed
under f. It is worth noting that there is no real need to mention X at all. If S
is a family of sets of size less than µ, then S is stationary if for every function
f ∶ (⋃S)<ω Ð→ ⋃S, there is M ∈ S that is closed under S.

3 Basic properties of entangled sets of reals

The notion of entangled sets of reals was introduced by Abraham and Shelah
in [6] in order to prove that BA(ω1) does not follow by MAω1 . We will start
by recalling this notion and some of its main properties. Let a, b ∈ [ω1]<ω , by
a < b we mean that max (a) < min (b) . We say that B = {bα ∣ α ∈ ω1} ⊆ [ω1]<ω
is a block-sequence if α < β implies that bα < bβ . Given a ∈ [ω1]m , whenever we
take an enumeration a = {a (i) ∣ i <m} , we implicitly assume that a (i) < a (j)
if i < j. By a type we mean a function t ∶mÐ→ {>,<} (where m ∈ ω).

Definition 12 Let E = {eα ∣ α ∈ ω1} ⊆ R, m ∈ ω, t ∶ m Ð→ {>,<} a type and
a, b ∈ [ω1]m disjoint.

1. We say that (a, b) realizes t (over E) if for every i <m the following holds:

ea(i) t (i) eb(i)

2. By T (a, b) we denote the (unique) type realized (over E) by (a, b) .

We will omit the phrase “over E” whenever E is clear by context.3 We can
now define the entangled sets:

Definition 13 Let E = {eα ∣ α ∈ ω1} ⊆ R and m ∈ ω.
3By convention, if a and b are not disjoint, their type is not defined.
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1. E is m-entangled if for every block sequence B = {bα ∣ α ∈ ω1} ⊆ [ω1]m and
for every type t ∶mÐ→ {>,<} there are α ≠ β such that T (bα, bβ) = t.

2. E is entangled if it is n-entangled for every n ∈ ω.

Entangled sets are very interesting objects with very strong combinatorial
properties. In this article, we only defined entangled sets of size ω1 (since
those are the relevant for our work) but it is worth pointing out that this notion
extends to other cardinals and other linear orders, we refer the reader to [44] and
[51] to learn more. Some theorems regarding entangled sets are the following:

1. Every uncountable set of reals is 1-entangled.

2. (Abraham, Shelah [6]) Adding ω1-Cohen reals adds an entangled set.

3. (Abraham, Shelah [6]) MAω1 implies that there are no entangled sets.

4. (Abraham, Shelah [6]) For every m ∈ ω, the statement “MAω1 + There is
an m-entangled set” is consistent.

5. (Todorcevic [51]) If there is an entangled set, then there are two ccc partial
orders whose product is not ccc.

6. (Todorcevic [51]) If cof(c) = ω1, then there is an entangled set.

7. (Todorcevic [44] (page 55), see also [52]) Adding a single Cohen real or
random real adds an entangled set.

8. Using the proof of the theorem above, it can be shown that cov(M) > ω1+
q implies that there is an entangled set (recall that q is the following
statement: “There is a family S = {Sα ∣ α ∈ ω1} ⊆ [ω1]ω such that for
every A ∈ [ω1]ω1 there is α ∈ ω1 such that Sα ⊆ A”).

9. (Miyamoto, Yorioka [31]) For every m ∈ ω, the statement “PFAs-fin (ω1) +
There is an m-entangled set” is consistent.4

10. (Chodounský, Zapletal [13]) YPFA is consistent with the existence of an
entangle sets.5

The following proposition is very well-known, but we prove it here for the
sake of completeness and because of the relevance to our Theorem 7. The part
of BA(ω1) is due to Abraham and Shelah and the part of OGA is due to the
second author.

4PFAs-fin (ω1) is a weakening of the axiom PFAfin (ω1) introduced by Aspero and Mota in
[4]. The reader may consult [4] and [31] for the definitions of this axioms.

5YPFA is the forcing axiom for the class of Y -proper forcings. The reader may consult [13]
for the definition of Y -properness.
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Proposition 14 If there is a 2-entangled set of reals, then both BA(ω1) and
OGA fail.

Proof. Let E = {eα ∣ α ∈ ω1} ⊆ R be a 2-entangled set. Let A,B be two disjoint
uncountable subsets of ω1. Define EA = {eα ∣ α ∈ A} and EB = {eβ ∣ β ∈ B} .
We can find X ⊆ EA and Y ⊆ EB such that both are ω1-dense. We claim
that X and Y are not isomorphic (as linear orders). Let f ∶ X Ð→ Y be an
injective function. We find a block-sequence B = {bα ∣ α ∈ ω1} ⊆ f. Define the
type t ∶ 2 Ð→ {>,<} given by t (0) is > and t (1) is < . Since E is 2-entangled,
we can find α ≠ β such that T (ba, bβ) = t. This means that ebα(0) > ebβ(0) and
ebα(1) < ebβ(1) (where bα = {bα (0) , bα (1)} and bα = {bβ (0) , bβ (1)}), both listed

in increasing order. By definition, we know that ebα(1) = f (ebα(0)) and ebβ(1) =
f (ebβ(0)) . Hence, ebα(0) > ebβ(0) but f (ebα(0)) < f (ebβ(0)) which implies that
f is not an isomorphism (note that the argument in fact proves that there are
no embeddings between two disjoint uncountable subsets of E). In this way we
get the failure of BA(ω1) .

We now turn our attention to the Open Graph Axiom. Let f ∶ E Ð→ E
be an injective function without fixed points. For every α ∈ ω1, define bα =
{eα, f (eα)} . Let X = {(eα, f (eα)) ∣ α ∈ ω1} ⊆ R2. Define the graph G ⊆ [X]2
where (eα, f (eα)) and (eβ , f (eβ)) are connected if and only if f ↾ {ea, eβ} is
increasing. Let W ⊆ X be uncountable, we claim that W is not complete nor
independent. Take A ∈ [ω1]ω1 such that B = {bα ∣ α ∈ A} is a block-sequence such
that (ebα(0), ebα(1)) ∈W for every α ∈W. Since E is 2-entangled, we know every
type is realized in B, which implies that W is not complete nor independent.
This implies that OGA can not be true.

For the rest of the section, we will prove some simple facts about entangled
sets that will be helpful in future sections. We will often use implicitly the next
simple observation:

Lemma 15 Let A be an uncountable subset of [ω1]m .

1. If {min (a) ∣ a ∈ A} is uncountable, then A contains an uncountable block-
sequence.

2. In particular, if M is a countable elementary submodel, A ∈M and there is
a ∈M such that a∩M = ∅, then A contains an uncountable block-sequence.

The following notions will be very useful:

Definition 16 Let E = {eα ∣ α ∈ ω1} ⊆ R and m ∈ ω.

1. Let U = ⟨Ui⟩i<m and b = {b (i) ∣ i <m} ∈ [ω1]m . We say that U covers b if
the following conditions hold:

(a) U0, ..., Um−1 are disjoint rational intervals.
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(b) eb(i) ∈ Ui for every i <m.

2. Let B = {bα ∣ α ∈ ω1} ⊆ [ω1]m be a block-sequence. We say that B is ω1-
dense if for every U = ⟨Ui⟩i<m , if there is α ∈ ω1 such that U covers bα,
then there are uncountable many γ ∈ ω1 such that U covers bγ .

3. Let U = ⟨Ui⟩i<m , V = ⟨Vi⟩i<m and a, b ∈ [ω1]m disjoint. We say that (U ,V)
freezes (a, b) if the following conditions hold:

(a) Ui ∩ Vj = ∅ for every i, j <m.
(b) U covers a.

(c) V covers b.

(d) For every c, d ∈ [ω1]<ω if U covers c and V covers d, then T (a, b) =
T (c, d) (note that this condition follows from points a, b and c above,
but we wrote it because it is useful to keep it in mind).

4. Let U = ⟨Ui⟩i<m be a sequence of rational open intervals and b ∈ [ω1]m . If
T (a, b) = t holds for every a that is covered by U (where t ∶mÐ→ {>,<}),
then we will denote this fact by T (U , b) = t.

Note that every block-sequence contains one that is ω1-dense. When working
with entangled sets, it is often useful to use ω1-dense block-sequences. We have
the following:

Lemma 17 Let E = {eα ∣ α ∈ ω1} ⊆ R and m ∈ ω. The following are equivalent:

1. E is m-entangled.

2. For every block-sequence B = {bα ∣ α ∈ ω1} ⊆ [ω1]m and for every type
t ∶mÐ→ {>,<} there are α < β such that T (bα, bβ) = t.

Proof. The only difference between points 1 and 2 is that in item 2 we require
that α < β and in 1 only that α ≠ β. Clearly item 2 implies item 1. Assume E
is m-entangled, we will prove that it satisfies the extra requirement in point 2.
Let B = {bα ∣ α ∈ ω1} ⊆ [ω1]m be a block-sequence and t ∶ m Ð→ {>,<} a type.
We may assume that B is ω1-dense.

Since E is m-entangled, we can find α,β ∈ ω1 (with α ≠ β) such that
T (bα, bβ) = t. Now, let U and V be sequences of rational intervals freezing
(bα, bβ) . Since B is ω1-dense, we can find γ ∈ ω1 such γ > α and V covers bγ . It
follows that T (bα, bγ) = t and we are done.

The following proposition is due to the second author and was published in
[31] as Proposition 2.2.
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Proposition 18 Let m ∈ ω, E = {eα ∣ α ∈ ω1} ⊆ R an m-entangled set and M
a countable elementary submodel such that E ∈ M. Let W ⊆ [ω1]m with the
following properties:

1. W ∈M.

2. There is b ∈ W such that b ∩M = ∅.

For every type t ∶mÐ→ {>,<} there is a ∈M ∩W such that T (a, b) =m.

We will use the following notions in the next section:

Definition 19 Let E be a 2-entangled set and P a partial order.

1. We say that P destroys E if P ⊩“E is not 2-entangled”.

2. We say that P preserves E if P ⊩“E is 2-entangled”.

Obviously, a forcing collapsing ω1 will destroy all 2-entangled sets. Fur-
thermore, since OGA can be forced with a proper forcing, it follows that every
2-entangled set can be destroyed with a proper forcing. Moreover, if V is a
model of CH, then the relevant instances of OGA can be forced using a ccc
partial order (see [44]) so under the Continuum Hypothesis, every 2-entangled
set can be destroyed with a ccc partial order.

It is easy to see that the property of preserving E is preserved under finite
support iteration of ccc partial orders (see [6]). Regarding proper forcing, we
have the following equivalence:

Proposition 20 Let P be a proper forcing and E = {eα ∣ α ∈ ω1} a 2-entangled
set. The following are equivalent:

1. P preserves E.

2. Let λ be a large enough regular cardinal, Ḃ a P-name for a subset of
[ω1]2 , M a countable elementary submodel of H(λ) such that P,E, Ḃ ∈M.

If p ∈ P is (M,P)-generic, t ∶ 2 Ð→ {>,<} is a type, b ∈ [ω1]2 is such that

p ⊩“b ∈ Ḃ” and b∩M = ∅, then there are q ∈ P∩M and a ∈ [ω1]2 ∩M such
that q ⊩“a ∈ Ḃ”, p and q are compatible and T (a, b) = t.

Proof. We will first prove that 1 implies 2. Let G ⊆ P be a generic filter with
p ∈ G. We go to V [G] . Since p is an (M,P)-generic condition, we know that
M [G] is a forcing extension of M and it is a countable elementary submodel
of HV [G] (λ) (see Proposition 11). Since Ḃ [G] ∈ M [G] , E is 2-entangled in
V [G] (since P preserves E), b ∈ Ḃ [G] and b ∩M [G] = ∅ (since M and M [G]
have the same ordinals), by Proposition 18, there is a ∈M [G]∩ Ḃ [G] such that
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T (a, b) = t. Since M [G] is a forcing extension of M, there is q ∈M ∩G such that
q ⊩“a ∈ Ḃ”. Since both p and q are in the generic filter, they are compatible.

We will now prove that 2 implies 1. Let r ∈ P, Ḃ a P-name for an uncountable
block sequence of [ω1]2 and a type t ∶ 2 Ð→ {>,<}. We need to extend r to a
condition forcing that t is realized in Ḃ. Let λ be a large enough regular cardinal,
M a countable elementary submodel of H(λ) such that P,E, Ḃ, r ∈M. Since P
is a proper forcing, we can find p1 ≤ r such that p1 is (M,P)-generic. We now

find a further extension p ≤ p1 and b ∈ [ω1]2 such that p ⊩“b ∈ Ḃ” and b∩M = ∅.
By point 2, we know that there are q ∈ P ∩M and a ∈ [ω1]2 ∩M such that
q ⊩“a ∈ Ḃ”, p and q are compatible and T (a, b) = t. A common extension of
both p and q is the condition we are looking for.

4 Destroying “bad” partial orders with side con-
ditions

We mentioned before that Abraham and Shelah proved that the existence
of a 2-entangled set is consistent with MAω1 . The key result for their argument
is the following:

Theorem 21 (Abraham, Shelah [6]) Assume the Continuum Hypothesis and
let E be a 2-entangled set. If P is a ccc partial order that destroys E, then there
is a partial order Q with the following properties:

1. Q is ccc.

2. Q preserves E.

3. Q adds an uncountable antichain to P.

With the knowledge of this Theorem, it is now easy to build a model of
MAω1 where there is a 2-entangled set. We start with a model of GCH and
we choose E a 2-entangled set (in [6] it was forced by adding ω1-Cohen reals,
but we now know that CH already implies that there is a 2-entangled set, see
[51]). We perform a finite support iteration of length ω2 and we use a suitable
bookkeeping device that will be handing us ccc partial orders in order to force
MAω1 . However, at every step of the iteration, if the partial order given to us by
the bookkeeping device is a ccc partial order that destroys E, instead of forcing
with it, we will add an uncountable antichain to it using the proposition above
(see [6] for more details). The reader may consult [1] and [42] for a deeper
discussion on constructing models of Martin’s axiom.

The aim of this section is to prove a result similar to Theorem 21 but with
some key differences: our forcing Q will be proper instead of ccc, however, its

12



existence does not depend on the Continuum Hypothesis. Moreover, we use
the method of “models as side conditions”, which is a very powerful method
developed by the second author in order to build proper partial orders (see [44],
[48] and [35] to learn more about this method). The situation resembles the
one with the Open Graph Axiom. It is known that OGA can be forced with
a ccc partial order under CH (plus a diamond principle, see [44]) or with a
proper forcing using side conditions (see [48]). While working with OGA, it is
often useful to keep in mind this two different approaches, we expect that the
situation will be similar with entangled sets.

It is worth pointing out that our forcing shares some similarities with the
one introduced by Miyamoto and Yorioka in [31]. Our forcing is simpler, but
this is because in here we are dealing with ccc partial orders, while the authors
of [31] are working with s-finitely proper forcings.

For the rest of this section, we fix E = {eα ∣ α ∈ ω1} ⊆ R, Q a partial order,

Ḃ, (κ,<W ) , a type t ∶ 2 Ð→ {>,<} and h ∶ ([ω1]2)
3
Ð→ 2 with the following

properties:

1. E is 2-entangled.

2. Q is a ccc partial order that destroys E.

3. Moreover, Ḃ ={ḃα ∣ α ∈ ω1} is a Q-name for an ω1-dense block-sequence
such that if α,β ∈ ω1, then Q ⊩“T (ḃα, ḃβ) ≠ t”.

4. κ > (2∣Q∣)+ is a large enough regular cardinal and <w is a well-order of
H(κ) .

5. The function h ∶ ([ω1]2)
3
Ð→ 2 is defined as follows: given s, z ∈ ([ω1]2)

3

define h(s, z) = 0 if and only if the following conditions hold:

(a) s and z are block-sequences.

(b) There are a ∈ s and b ∈ z such that T (a, b) = t.

Note that we are only assuming that E is 2-entangled, we do not need it to
be entangled. For this section, given M ∈ H(κ) with Q, E, Ḃ ∈M, we write M ⪯
H(κ) to denote that (M, ∈,<W ) is an elementary submodel of (H(κ) , ∈,<W ).

Definition 22 Let M ⪯ H(κ) be countable, m ∈ ω and D = {di ∣ i <m} ⊆ [ω1]2
be a block-sequence. We say that (M,D) is separated by models if there is a
sequence ⟨Ni⟩i<m of countable elementary submodels of H(κ) such that:

1. M = N0.

2. Ni ∈ Ni+1 whenever i + 1 <m.

13



3. di ⊆ Ni+1 ∖Ni (where Nm = V by convention).

The Proposition 18 has the following extension:

Proposition 23 Let M ⪯ H(κ) be countable, m ∈ ω and D = {di ∣ i <m} ⊆ [ω1]2

be a block-sequence such that (M,D) is separated by models. Let S ⊆ ([ω1]2)
<m

be a tree with the following properties:

1. S ∈M.

2. ⟨d0, ..., dm−1⟩ ∈ [S] .

Let l0, ..., lm−1 ∶ 2 Ð→ {>,<} be types. There is ⟨a0, ..., am−1⟩ ∈ [S] ∩M such
that T (ai, di) = li for every i <m.

Proof. We will prove the proposition by induction over m. The case m = 1
follows by the Proposition 18. We now assume that the proposition is true for
m, we will prove that it is also true for m + 1.

In this way, we have D = {d0, ..., dm} separated by the models M = N0,
N1, ... ,Nm. Let D′ = {d0, ..., dm−1} which obviously is separated by the models
M = N0, N1, ..., Nm−1. Since S ∈ Nm and ⟨d0, ..., dm−1⟩ ∈ Nm, it follows that L =
sucS (⟨d0, ..., dm−1⟩) ∈ Nm. We also know that dm ∈ L and dm ∩Nm = ∅.

By the Proposition 18, there is e ∈ L ∩Nm such that T (e, dm) = lm. Let U
and V be sequence of rational disjoint intervals such that (U ,V) freezes (e, dm) .
Now, we define S̃ as the set of all x = ⟨x0, ..., xm−1⟩ ∈ S such that:

There is y ∈ sucS (x) such that U covers y.

Note that S̃ ∈ M and ⟨d0, ..., dm−1⟩ is a branch of S̃. By the inductive hy-
pothesis, there is a = ⟨a0, ..., am−1⟩ ∈ [S̃]∩M such that T (ai, di) = li for i ≤m−1.
Since a ∈ [S̃], we know that there is y ∈ sucS (a) such that U covers y. It follows
that a⌢y ∈ S and T (y, dm) = lm (since (U ,V) freezes (e, dm)).

We now introduce the following:

Definition 24

1. Let X ∈ H(κ) , by SK(X) we denote the Skolem closure of X (where the
set of Skolem functions is defined using the well-order <w).

2. If M ⪯ H(κ) is countable, by M+ we denote SK(M ∪ {M}) .

14



Note that if M ⪯ H(κ) , then M+ ⪯ H(κ) . The idea of using successors of
models in side conditions was first used by Kuzeljevic and the second author
(see [25]) in order to prove that PID is consistent with the existence of an almost
Suslin tree (an Aronszajn with no stationary antichains). This idea will be very
fruitful for us in this section.

We can now define our forcing:

Definition 25 By PE(Q) we denote the set of all p = (Mp, fp) that satisfy the
following conditions:

1. Mp = {M0, ...,Mn} has the following properties:

(a) Mi ∈Mi+1 for all i < n.
(b) Mi ⪯ H(κ) .
(c) If i < n, then Mi ∈M+

i ∈M++
i ∈Mi+1.

2. fp ∶ Mp Ð→ ([ω1]2)
3

is such that if fp (Mi) = (a, b, c) , then the following

holds:

(a) a ⊆ M+
i ∖Mi, b ⊆ M++

i ∖M+
i and c ⊆ Mi+1 ∖M++

i (where Mn+1 = V,
for convenience).

(b) There is qi ∈ Q such that qi ⊩“a, b, c ∈ Ḃ” (in this case, qi is called a
witness for fp (Mi)).

(c) im (fp) is 0-monochromatic with respect to h (where im (fp) denotes
the image of fp).

If p = (Mp, fp) and q = (Mq, fq) are conditions in PE(Q), define p ≤ q if
fq ⊆ fp (which implies that Mq ⊆Mp).

During this section, we will write P(Q) instead of PE(Q). Let p = (Mp, fp) ∈
P (Q) , whenever we write Mp = {M0, ...,Mn} we are implicitly assuming that
Mi ∈Mi+1 for all i < n.

Let p = (Mp, fp) be a condition of P(Q) and Mi, Mj ∈ Mp with i ≠ j. By
definition, h(fp (Mi) , fq (Mj)) = 0. This means that there are x ∈ fp (Mi) and
y ∈ fq (Mj) such that T (x, y) = t. It follows that if qi is a witness for fp (Mi)
and qj is a witness for fp (Mj) , then qi and qj are incompatible in Q. 6

6At this point, the reader may wonder why fp takes values in ([ω1]2)
3

and not just in

([ω1]2)
2
. The reason for this will be clear in the Proposition 33.
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Definition 26 Let θ be a large enough regular cardinal such that H(κ) ∈ H(θ) .
We say that N is a big model if the following conditions hold:

1. N ∈ H(θ) is a countable elementary submodel.

2. H(κ) , <w, E, Q, Ḃ, P(Q) ∈ N.

We will need the following notion:

Definition 27 Let p = (Mp, fp) and q = (Mq, fq) . Let Mp = {M0, ...,Mn} and
Mq = {N0, ...,Nm} . We say that q is an initial segment of p (denoted by q ⊑ p)
if the following conditions hold:

1. Ni =Mi for i ≤m.

2. fp ↾Mq = fq.

It follows by definition that if q ⊑ p, then p ≤ q.

Definition 28 Let p = (Mp, fp) ∈ P(Q) with Mp = {M0, ...,Mn} . Let U =
⟨(U0

i , V
0
i ) , (U1

i , V
1
i ) , (U2

i , V
2
i )⟩

i≤n . We say that U covers p if the following con-
ditions hold:

1. Each U ji and V ji are rational open intervals.

2. {U ji ∣ i ≤ n ∧ j < 3} ∪ {V ji ∣ i ≤ n ∧ j < 3} is pairwise disjoint.

3. If fp (Mi) = (a0
i , a

1
i , a

2
i ), then (U ji , V

j
i ) covers aji for every i ≤ n and j < 3.

The following lemma is trivial, we just write it to keep it in mind:

Lemma 29 Let p = (Mp, fp) and q = (Mq, fq) conditions in P(Q) such that
∣Mp∣ = ∣Mq ∣ = n. Let fp (Mi) = (a0

i , a
1
i , a

2
i ) and fq (Ni) = (c0i , c1i , c2i ) (where

Mp = {M1, ...,Mn} and Mp = {N1, ...,Nn}). Let U be covering both p and q. If

(i, j) ≠ (k, l) , then T (aji , clk) = T (aji , alk) = T (cji , clk).

The following is the expected proposition one usually finds when working
with models as side conditions:

Proposition 30 Let M be a big model, M = M∩ H(κ) and p̃ = (Mp̃, fp̃) ∈
P(Q). If M ∈ Mp̃, then p̃ is an (M,P(Q))-generic condition.
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Proof. Let D ∈M be an open dense subset of P(Q) and p = (Mp, fp) ≤ p̃. We
need to prove that p is compatible with an element of D ∩M. Without lost of
generality, we may assume that p ∈D.

We need to introduce some items that will aid us to prove the result. Define
pM = (Mp ∩M,fp ↾ M). It is easy to see that pM ∈ P(Q) ∩M and is an
initial segment of p (in particular, p ≤ pM ). Let Mp ∖M = {N0, ...,Nm} (where
N0 =M) and fp (Ni) = (ai, ci, di). Choose U that covers p.

Now, define L as the set of all (x0, y0, z0, ..., xm, ym, zm) ∈ ([ω1]2)
<ω

such

that there is q ∈ P(Q) with the following properties:

1. q ∈D.

2. pM ⊑ q.

3. Mq ∖MpM has size m + 1. Say Mq ∖MpM = {K0, ...,Km} .

4. fq (Ki) = (xi, yi, zi).

5. U covers q.

Note that L ∈ M by elementarity. Moreover, since L ⊆ ([ω1]2)
<ω

it follows

that L ∈ H(κ) , so L ∈M. Let S be the tree closure of L. Clearly S is in M as
well and (a0, c0, d0, ..., am, cm, dm) ∈ [S] . By the Proposition 23, we know that
there is s = (x0, ..., zm) ∈M ∩ [S] such that: 7

T (xi, ai) = T (yi, ci) = T (zi, di) = t

For every i ≤ m. By the definition of L and elementarity, we may find q ∈
M ∩ D witnessing that s ∈ L. By the Lemma 29, we get that p and q are
compatible.

Let l ∶ 2 Ð→ {>,<} be a type, define −l ∶ 2 Ð→ {>,<} such that l (i) ≠ −l (i)
for all i < 2.

Proposition 31 Let M be a big model, M =M∩ H(κ) and p ∈M∩P(Q). There
is r ≤ p such that M ∈ Mr.

Proof. Let N be the largest model in Mp and fp (N) = (a, c, d) . Choose U
covering p and (U0, V0) , (U1, V1) , (U2, V2) in U such that (U0, V0) covers a,
(U1, V1) covers c and (U2, V2) covers d.

Let L be the set of all (x, y, z) ∈ ([ω1]2)
3

such that there is q ∈ Q with the

following properties:

7In here, we are making the three values equal to t. We are doing it like that because we
can, but in order to get a condition, it would have been enough that only one value is equal
to t.
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1. q ⊩“x, y, z ⊆ Ḃ”.

2. (U0, V0) covers x, (U1, V1) covers y and (U2, V2) covers z.

Let S be the tree closure of L. Clearly S ∈ N and (a, c, d) ∈ [S] = L. By the
Proposition 23 we know there is (x, y, z) ∈ L ∩N such that: 8

T (x, a) = T (y, c) = T (z, d) = −t, so
T (a, x) = T (c, y) = T (d, z) = t

By elementarity, we can find q ∈ N such that q ⊩“x, y, z ⊆ Ḃ”. Now, let
(U0, V 0) , (U1, V 1) , (U2, V 2) rational open intervals such that:

1. U i ⊆ Ui and V i ⊆ Vi for i < 3.

2. x (0) ∈ U0, x (1) ∈ V 0 while a (0) ∉ U0, a (1) ∉ V 0.

3. y (0) ∈ U1, y (1) ∈ V 1 while c (0) ∉ U1, c (1) ∉ V 1.

4. z (0) ∈ U2, z (1) ∈ V 2 while d (0) ∉ U2, d (1) ∉ V 2.

Since Ḃ is forced to be ω1-dense, we know that q forces that there are un-
countable many elements in Ḃ that are separated by (U0, V 0) , (U1, V 1) and

(U2, V 2) . In this way, we can find q1 ≤ q and {x̃, ỹ, z̃} ⊆ [ω1]<ω block sequence
such that:

1. (U0, V 0) separates x̃.

2. (U1, V 1) separates ỹ.

3. (U2, V 2) separates z̃.

4. x̃ ⊆M+ ∖M, ỹ ⊆M++ ∖M+ and z̃ ∩M++ = ∅.

5. q ⊩“x̃, ỹ, z̃ ∈ Ḃ”.

Now, define r = (Mr, fr) where Mr = Mp ∪ {M}, fp ⊆ fr and fr (M) =
(x̃, ỹ, z̃). Clearly r ≤ p and M ∈ Mr.

Now we get the following:

Corollary 32 P(Q) is a proper forcing and P(Q) ⊩“Q is not ccc”.

8Once again, it was enough that only one of those is equal to t.
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Proof. By combining the Proposition 30 and the Proposition 31 we conclude
that P(Q) is proper. We will now show that it adds an uncountable antichain
to Q.

Let G ⊆ P(Q) be a generic filter. We go to V [G] . In here, define Dgen =
{fp (M) ∣ p ∈ G} . Clearly Dgen is a block-sequence and by the Proposition 31
it follows that Dgen is uncountable. For every a = (x, y, z) ∈ Dgen we choose

qa ∈ Q such that qa ⊩“a ⊆ Ḃ”. It follows that {qa ∣ a ∈ Dgen} is an uncountable
antichain.

It remains to prove that P(Q) does not destroy the 2-entangledness of E.

Proposition 33 P(Q) preserves E.

Proof. Let p ∈ P(Q) and Ȧ such that p forces that Ȧ is an ω1-dense block
sequence of pairs. Let l ∶ 2 Ð→ {>,<} be a type. We need to prove that we can
extend p to a condition that forces that l is realized in Ȧ. The argument is very
similar to the one used in Proposition 30.

Let M be a big model with p, Ȧ ∈M and M =M∩ H(κ) . By the Proposition
31, we can find p ∈ P(Q) such that:

1. p ≤ p.

2. M ∈ Mp.

3. There is w ∈ [ω1]2 such that:

(a) p ⊩“w ∈ Ȧ”.

(b) w ∩M = ∅.
(c) w is contained in the last model of Mp.

Let Mp ∖M = {N0, ...,Nm} (where N0 = M) and fp (Ni) = (ai, ci, di) . Let
pM = (Mp ∩M,fp ↾M) and U covering p. Define δi = Ni ∩ω1, δ

+
i = N+

i ∩ω1 and
δ++i = N++

i ∩ ω1. We also define Ii = [δi, δ+i ), I+i = [δ+i , δ++i ) and I++i = [δ++i , δi+1).

Note that P = {Ii, I+i , I++i ∣ i <m} is a partition of [δ0, δm) and w ⊆ [δ0, δm).
There are two cases to consider:

Case 34 w is contained in one of the intervals in P.

For concreteness, we assume that w ⊆ I+0 (every other case is practically the
same). Define L as the set of all:

(x0, u, z0, x1, y1, z1..., xm, ym, zm) ∈ ([ω1]2)
<ω

such that there is q ∈ P(Q) with the following properties:
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1. pM ⊑ q.

2. Mq ∖MpM has size m + 1. Say Mq ∖MpM = {K0, ...,Km} .

3. There is y0 such that fq (K0) = (x0, y0, z0).

4. fq (Ki) = (xi, yi, zi) for i ≠ 0.

5. U covers q.

6. u ⊆ [K+
0 ∩ ω1,K

++
0 ∩ ω1).

7. q ⊩“u ∈ Ȧ”.

Clearly L ∈M by elementarity. Moreover, since L ⊆ ([ω1]2)
<ω

it follows that

L ∈ H(κ) , so L ∈M. Let S be the tree closure of L, which is in M as well. Note
that (a0,w, d0, ..., am, cm, dm) ∈ [S] . By the Proposition 23, we know that there
is s = (x0, u, z0..., xm, ym, zm) ∈M ∩ [S] such that: 9

T (x0, a0) = T (z0, d0) = t
T (u,w) = l

T (xi, ai) = T (yi, ci) = T (zi, di) = t for i ≠ 0

By the definition of L and elementarity, we may find q ∈M ∩D witnessing
that s ∈ L. By the Lemma 29, we get that p and q are compatible. We are done
in this case.

Case 35 w is not contained in one of the intervals in P, but there is i <m such
that w ⊆ Ii ∪ I+i ∪ I++i .

Again for concreteness, we assume that i = 0, w (0) ∈ I0 and w (1) ∈ I++0

(every other case is essentially the same). Define w0 = {w (0) ,w (0) + 1} and
w1 = {w (1) ,w (1) + 1} . In this case, we define L as the set of all:

(u0, y0, u
1, x1, y1, z1..., xm, ym, zm) ∈ ([ω1]2)

<ω

such that there is q ∈ P(Q) with the following properties:

1. pM ⊑ q.

2. Mq ∖MpM has size m + 1. Say Mq ∖MpM = {K0, ...,Km} .

3. There are x0, z0 such that fq (K0) = (x0, y0, z0).

4. fq (Ki) = (xi, yi, zi) for i ≠ 0.

9In this way, it might be impossible to achieve T (y0, b0) = t, but in any other place it is
possible.
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5. U covers q.

6. u0 ⊆ [K0 ∩ ω1,K
+
0 ∩ ω1) and u1 ⊆ [K++

0 ∩ ω1,K1 ∩ ω1).

7. If u = {u0 (0) , u1 (1)} , then q ⊩“u ∈ Ȧ”.

Once again, L is in M by elementarity. Moreover, since L ⊆ ([ω1]2)
<ω
, it

follows that L ∈ H(κ) , so L ∈M. Let S be the tree closure of L, which is in M
as well. Note that (w0, c0,w

1, ..., am, cm, dm) ∈ [S] . By the Proposition 23, we

know that there is s = (u0, y0, u
1, x1, y1, z1..., xm, ym, zm) ∈ M ∩ [S] such that:

10

T (u0,w0) = l
T (u1,w1) = l
T (y0, c0) = t

T (xi, ai) = T (yi, ci) = T (zi, di) = t for i ≠ 0

By the definition of L and elementarity, we may find q ∈M ∩D witnessing
that s ∈ L. Using the Lemma 29, we get that p and q are compatible. We are
done in this case.

Case 36 w is not contained in one of the intervals in P and there is no i <m
such that w ⊆ Ii ∪ I+i ∪ I++i .

Very similar to the previous case.

For the convenience of the reader, we summarize the results of this section
in the following theorem:

Theorem 37 Let E be a 2-entangled set and Q a ccc forcing that destroys E.
There is a forcing PE (Q) such that:

1. PE (Q) is proper.

2. PE (Q) preserves E.

3. PE (Q) adds an uncountable antichain to Q.
10In here we might not be able to achieve T (x0, a0) = t or T (z0, d0) = t, but we can get

T (y0, c0), so we do what we must, because we can.
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5 The P-ideal dichotomy and entangled sets

In the last section we developed the tools needed to force MAω1 while pre-
serving a 2-entangled set using a proper forcing. In this section, we will obtain
the analogue results for the P -ideal dichotomy. There are two usual ways for
forcing PID, one that does not add reals (see [53] and [3]) and one with models
as side conditions (see [48] and [35]). We will use the latter approach (which
was historically the first one). We will now recall (without proofs) how this is
done (the reader may consult [48] for the missing proofs).

For this section fix S an uncountable set, I ⊆ [S]≤ω a P -ideal such that the
second alternative of the P -ideal dichotomy fails, or in other words:

S can not be decomposed into countably many sets of I⊥

We need a proper forcing that adds an uncountable set such that all its
countable sets are in I. Let κ be a large enough regular cardinal such that
[S]≤ω ∈ H(κ) and let <w be a well order of H(κ) . For this section, givenM ∈ H(κ)
with S, I ∈ M, we write M ⪯ H(κ) to denote that (M, ∈,<W ) is an elementary
submodel of (H(κ) , ∈,<W ). Moreover, for M ⪯ H(κ), let BM ∈ I be the <W -least
pseudounion of I ∩M.

Definition 38 Define P(I) as the set of all p = (Mp, fp) such that11:

1. Mp = {M0, ...,Mn} where Mi ⪯ H(κ) for all i ≤ n.

2. Mi ∈Mi+1.

3. fp ∶ Mp Ð→ S.

4. fp (Mi) ∈Mi+1 ∖Mi (where Mn+1 = V for convenience).

5. fp (Mi) ∉ ⋃(Mi ∩ I⊥).

Given p = (Mp, fp) and q = (Mq, fq) conditions in P(I), define p ≤ q if the
following conditions hold:

1. fq ⊆ fp (so Mq ⊆Mp).

2. If M ∈ Mq and N ∈ Mp ∖Mq with N ∈M, then:

fp (N) ∈ BM .
11The forcing in [48] is slightly different from the one presented here. In the book, the

forcing ommits the component fp (or rather, fp (M) is always the least element in S that is
not in ⋃(Mi ∩ I⊥)). At least for the purpose of this paper, the difference between the two
partial orders is inconsequential.
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We need the following notion for this section:

Definition 39 Let θ > (2κ)+ be a large enough regular cardinal such that H(κ) ∈
H(θ) . We say that N is a big model if the following conditions hold:

1. N ∈ H(θ) is a countable elementary submodel.

2. H(κ) , <w, S, I, P(I) ∈ N.

We have the following:

Theorem 40 ([48]) Let M be a big model and M =M∩ H(κ) .

1. If p ∈ P(I) and M ∈ Mp, then p is an (M,P(I))-generic condition.

2. For every q ∈M ∩ P(I) there is p ≤ q such that M ∈ Mp.

3. P(I) is a proper forcing.

4. P(I) adds an uncountable set such that all of its countable sets are in I.

Let X be a subset of S. Note that X ∈ (I⊥)+ if and only if X has infinite
intersection with a member of I. We now prove the following:

Proposition 41 Let E = {eα ∣ α ∈ ω1} ⊆ R be a 2-entangled set, M ⪯ H(κ) with

E ∈M and L ⊆ [ω1]2 × S with L ∈M. Let (d, x) such that:

1. (d, x) ∈ L.

2. d ∩M = ∅.

3. x ∉ ⋃(M ∩ I⊥).

For every type t ∶ 2Ð→ {>,<} there is V a sequence of rational intervals such
that:

1. T (V, d) = t.

2. The set {y ∈ S ∣ ∃c(((c, y) ∈ L) ∧ (V covers c))} is in (I⊥)+.

Proof. Let U = (U0, U1) be a sequence of rational open intervals that covers d.
By shrinking L if needed, we may assume that if (a, y) ∈ L, then U covers a. Let

Z = {a ∈ [ω1]2 ∣ ∃y ((a, y) ∈ L)} . Given a ∈ Z, we define:

Y (a) = {w ∈ S ∣ ∃b ((b,w) ∈ L ∧ T (b, a) = t)}

Note that if a ∈M, then Y (a) ∈M. We will now prove the following:
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Claim 42 Y (d) ∈ (I⊥)+.

Assume this is not the case. Let A = {b ∈ Z ∣ Y (b) ∈ I⊥}, note that A ∈ M,
d ∈ A and M ∩ d = ∅. By the Proposition 18, we can find a ∈ M ∩A such that
T (a, d) = −t (so T (d, a) = t). Since T (d, a) = t, it follows that x ∈ Y (a) . Now,
note that Y (a) ∈ M (since a ∈ M) and Y (a) ∈ I⊥ (since a ∈ A), but this is a
contradiction because x ∉ ⋃(M ∩ I⊥). This finishes the proof of the claim.

We now know that Y (d) ∈ (I⊥)+. Now, let B = {a ∈ [ω1]2 ∣ Y (a) ∈ (I⊥)+}.
Obviously, d ∈ B and B ∈M. Once more we apply the Proposition 18 and obtain
a ∈ B ∩M such that T (a, d) = t. We now define V =(V0, V1) such that:

1. V0 and V1 are two rational open disjoint intervals.

2. V covers a.

3. ed(0), ed(1) ∉ V0 ∪ V1.

4. If i < 2, the following holds: 12

(a) If t (i) = <, then (inf (Ui) , ea(i)) ⊆ Vi.
(b) If t (i) = >, then (ea(i), sup(Ui)) ⊆ Vi.

Note that T (V, d) = t. In order to finish the proof, we must argue that the
set:

H = {y ∈ S ∣ ∃c(((c, y) ∈ L) ∧ (V covers c))}

is in (I⊥)+. For this, it is enough to prove that Y (a) ⊆H (recall that a ∈ B).
Let y ∈ Y (a) , by definition, we know there is b such that:

1. (b, y) ∈ L.

2. T (b, a) = t.

In this way, it will be enough to prove that V covers b. Let i < 2, we proceed
by cases:

Case 43 t (i) = < .

Since T (b, a) = t it follows that eb(i) < ea(i), so eb(i) ∈ (inf (Ui) , ea(i)) ⊆ Vi.

12Recall that U covers both a and d.
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Case 44 t (i) = > .

Since T (b, a) = t it follows that eb(i) > ea(i), so eb(i) ∈ (ea(i), sup (Ui)) ⊆ Vi.

This finishes the proof.

We need the following notion:

Definition 45 Let M ⪯ H(κ) be countable, m ∈ ω and s = ⟨(di, xi)i<m⟩ ∈
([ω1]2 × S)

<ω
. We say that (M,s) is separated by models if there is a sequence

⟨Ni⟩i<m of countable elementary submodels of H(κ) such that:

1. M = N0.

2. Ni ∈ Ni+1 whenever i + 1 <m.

3. di ⊆ Ni+1 ∖Ni (where Nm = V by convention).

4. xi ∉ ⋃(Ni ∩ I⊥) for all i <m.

The next result is the “tree-version” of Proposition 41:

Proposition 46 Let E = {eα ∣ α ∈ ω1} ⊆ R be a 2-entangled set, M ⪯ H(κ) a
countable submodel with E ∈M. Let m ∈ ω and s = ⟨(di, xi)⟩i<m such that (M,s)
is separated by models. Let Z ⊆ ([ω1]2 × S)<m be a tree such that:

1. Z ∈M.

2. s ∈ [Z] .

For every ⟨ti⟩i<m sequence of types, there is ⟨Vi⟩i<m a sequence of rational
disjoint open intervals and R ⊆ Z a subtree with the following properties:

1. T (Vi, di) = ti.

2. R ∈M.

3. For every w ∈ R of height less than m, the set
{y ∈ S ∣ ∃c(((c, y) ∈ sucR (w)) ∧ (V covers c))} is in (I⊥)+.

Proof. We proceed by induction over m. The Proposition 41 takes care of the
case m = 0. Assume the proposition is true for m, we will prove that it is also
true for m + 1. Let s = ⟨(di, xi)⟩i<m+1 such that (M,s) is separated by models

and Z ⊆ ([ω1]2 ×S)<m+1 with the properties above. First, we find a sequence of
models ⟨N0, ...,Nm⟩ with the following properties:
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1. N0 =M.

2. Ni ∈ Ni+1 for i <m.

3. di ⊆ Ni+1 ∖Ni for i ≤m (where Ni+1 = V for convenience).

Define w = ⟨(di, xi)⟩i<m (so s = w ⌢ (dm, xm)) and L = sucZ (w) . Note that
L ∈ Nm and (dm, xm) ∈ L. By the Proposition 41, we can find Vm a sequence of
rational open intervals such that:

1. T (Vm, dm) = tm.

2. The set {y ∈ S ∣ ∃c(((c, y) ∈ L) ∧ (Vm covers c))} is in (I⊥)+.

Now, let J be the set of all u = ⟨(ci, yi)⟩i<m that satisfy the following prop-
erties:

1. u ∈ Z.

2. The set {y ∈ S ∣ ∃c(((c, y) ∈ sucZ(u)) ∧ (Vm covers c))} is in (I⊥)+.

Let Z̃ be the tree closure of J. Note that Z̃ ⊆ ([ω1]2 × S)<m, Z̃ ∈ M and
w is a branch of Z̃. By the inductive hypothesis, there are R̃ and V0, ...,Vm+1

sequences of disjoint open rational intervals such that:

1. R̃ ∈M and is a subtree of Z̃.

2. T (Vi, di) = ti for i ≤m − 1.

3. For every l ∈ R̃ of height less than m, the set
{y ∈ S ∣ ∃c(((c, y) ∈ sucR̃ (l)) ∧ (V covers c))} is in (I⊥)+.

We can now easily add a new level to R̃ and find the desired tree.

With these results, we can now prove the main result of this section:

Theorem 47 Let S be an uncountable set, I ⊆ [S]<ω1 a P -ideal for which the
second alternative of the P -ideal dichotomy does not hold and E = {eα ∣ α ∈ ω1} ⊆
R a 2-entangled set. The forcing P(I) preserves E.

Proof. Let p ∈ P(I) and Ȧ a P(I)-name such that p forces that Ȧ is an ω1-
dense block sequence of pairs. Let l ∶ 2 Ð→ {>,<} be a type. We need to prove
that we can extend p to a condition that forces that l is realized in Ȧ.

Let M be a big model with E,p, Ȧ ∈M and M =M∩ H(κ) . By the Theorem
40, we can find p ∈ P(I) such that:
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1. p ≤ p.

2. M ∈ Mp.

3. There is w ∈ [ω1]2 such that:

(a) p ⊩“w ∈ Ȧ”.

(b) w ∩M = ∅.
(c) w is contained in the last model of Mp.

Let Mp ∖M = {N0, ...,Nm} (where N0 = M) and fp (Ni) = xi. Let pM =
(Mp ∩M,fp ↾M) and U covering p. Define δi = Ni ∩ω1 and Ii = [δi, δi+1). Note
that P = {Ii ∣ i <m} is a partition of [δ0, δm) and w ⊆ [δ0, δm). The proof is now
very similar to the one of Theorem 33 but using Proposition 46 and the proof
of 40.

6 The side condition hull

The method of using models as side conditions is extremely powerful. For this
reason, one may wonder if everything that can be achieved by a proper forcing
can also be achieved using a forcing with models as side conditions. We will see
in this section that this is indeed the case, since any proper forcing can be embed
in a forcing with models as side conditions. The results of this section will be
used to prove the properness of the Neeman iteration and the preservation of
2-entangled sets.

The ∈-collapse forcing is define as the set of all finite chains of countable
submodels of H(θ) ordered by inclusion. This is a very interesting forcing on
its own, it is strongly proper and it collapses the size of H(θ) to ω1. The reader
can learn more about this interesting forcing in the chapter 7 of [48]. In [25],
Kuzeljevic and the second author studied a variant using matrices of models (see
also [50], [4] and [5] for more on forcing with matrices of models). Moreover,
the ∈-collapse may be parametrized using a stationary subset of [H(θ)]ω (see
[48] for further discussion and results). We will now also parametrize with a
sufficiently proper forcing.

Definition 48 Let P be a forcing, θ a large enough regular cardinal and S ⊆
[H(θ)]ω a stationary set. We define the side condition hull of P with respect
to S (which we denote S∈(P,S)) as the set of all pairs (p, a) with the following
properties:

1. p = {M0, ...,Mn} ⊆ S is an ∈-chain of countable elementary submodels with
P ∈M0.

2. a ∈ P and is an (Mi,P)-generic condition for every i ≤ n.
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Let (p, a) , (q, b) ∈ S∈(P,S). Define (p, a) ≤ (q, b) if the following conditions
hold:

1. q ⊆ p.

2. a ≤ b (as conditions in P).

We will use the following notion, which was introduced by Shelah.

Definition 49 Let P be a partial order and S a family of countable sets. We
say that P is S-proper if for every large enough λ and M a countable elementary
submodel of H(λ) with P ∈M, if M∩ (⋃S) ∈ S, then every condition in P ∩M
can be extended to an (M,P)-generic condition.

Of course, this notion is most interesting when S is at least a stationary set.
We can now prove the following:

Proposition 50 Let P be a forcing, θ a large enough regular cardinal, S ⊆
[H(θ)]ω a stationary set such that P is S-proper and (p, a) ∈ S∈(P,S). Let M be
a countable elementary submodel of a large enough structure such that S∈(P,S) ∈
M and M =M∩ H(θ) ∈ S.

1. If M ∈ p, then (p, a) is an (M,S∈(P,S))-generic condition.

2. If (p, a) ∈M, then there is (q, b) ≤ (p, a) such that M ∈ q.

3. The side condition hull S∈(P,S) is S-proper.

4. If S is a club in [H(θ)]ω, then S∈(P,S) is proper.

Proof. It is clear that points 3 and 4 follow from points 1 and 2. We will
start proving the first point, assume M ∈ p, we must prove that (p, a) is an
(M,S∈(P,S))-generic condition. Let (p, a) ≤ (p, a) and D ∈ M an open dense
subset of S∈(P,S). We need to prove that (p, a) is compatible with an element
of M ∩D. We may assume that (p, a) ∈D.

Let pM = p ∩M, it is clear that pM ∈M. Define E ⊆ P as the set of all x ∈ P
such that there is q for which the following conditions hold:

1. (q, x) ∈D.

2. pM is an initial segment of q.

It is clear that E ∈M and E ∈ H(θ) , so E ∈M ∩ H(θ) =M. Note that a ∈ E.
Since a is an (M,P)-generic condition and it is in E, it follows by Lemma 10
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that there is b ∈ E∩M such that a and b are compatible. Let c ∈ P be a common
extension. Since b ∈ E ∩M, we can find q ∈M such that (q, b) ∈M ∩D and pM
is an initial segment of q. Define r = q ∪ p, it is easy to see that (r, c) ∈ S∈(P,S)
and extends both (p, a) and (q, b) .

We will now prove point 2, so assume that (p, a) ∈M. Let q = p ∪ {M} and
since a ∈ M and P is proper for M , we know there is b ∈ P an (M,P)-generic
condition extending a. It is clear that (q, b) ≤ (p, a).

The next task is to prove that forcing with S∈(P,S) adds (V,P)-generic
filters. Recall the following notion:

Definition 51 Let P and Q be partial orders. We say that π ∶ QÐ→ P is a
projection if the following conditions hold:

1. If q1 ≤ q2, then π (q1) ≤ π (q2) .

2. For every q ∈ Q and p ∈ P, if p ≤ π (q) , then there is q1 ≤ q such that
π (q1) ≤ p.

It is not hard to prove that if there is a projection from Q to P, then forcing
with Q adds generic filters for P (see [2]). We will now prove the following:

Lemma 52 Let P be a forcing, θ a large enough regular cardinal, S ⊆ [H(θ)]ω
a stationary set such that P is S-proper. There is a projection from S∈(P,S) to
P.

Proof. Define π ∶ S∈(P,S) Ð→ P given by π (p, a) = a. It is clear that π is a
projection.

Now, we will prove a preservation theorem for 2-entangled sets:

Proposition 53 Let E = {eα ∣ α ∈ ω1} ⊆ R be a 2-entangled set, P be a forcing,
θ a large enough regular cardinal, S ⊆ [H(θ)]ω a stationary set such that P is
S-proper. If P preserves E, then S∈(P,S) preserves E.

Proof. Let (p1, a1) ∈ S∈(P,S) and Ḃ an S∈(P,S)-name for an uncountable block
sequence of pairs of ω1. Let t ∶ 2 Ð→ {>,<} be a type. We need to prove that
(p1, a1) can be extended to a condition that forces that t is realized in Ḃ.

Let λ be a large enough regular cardinal. Since S is stationary, we can find
a countable M ⪯ H(λ) such that the following holds:

1. M =M∩ H(θ) is in S.

2. (p1, a1) ,E, Ḃ ∈M.
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Now, by the Proposition 50, we can find a condition (p2, a2) ≤ (p1, a1) such

that M ∈ p2. We can now find a further extension (p, a) ≤ (p2, a2) and b ∈ [ω1]2
such that (p, a) ⊩“b ∈ Ḃ” and b∩M = ∅. Let U be a sequence of disjoint rational
intervals that cover b and pM = p ∩M.

Define Ẇ as the set of all (u,x) such that there is a q with the following
properties:

1. u ∈ [ω1]2 and x ∈ P.

2. pM ⊆ q.

3. (q, x) ⊩“u ∈ Ḃ”.

4. U covers u.

It is clear that Ẇ ∈ M and it is a P-name for a subset of pairs of ω1. It is
also easy to see that (p, a) ∈ Ẇ , which means that a ⊩P“b ∈ Ẇ”. Now, let G ⊆ P
be a generic filter with a ∈ G. We go to the extension V [G] .

Since a is an (M,P)-generic condition and a ∈ G, we know that M [G] is a
forcing extension of M. In this way, we get that M [G] ∩ b = ∅. Since V [G] is a
forcing extension by P, we know that E is still a 2-entangled set and b ∈ Ẇ [G] .
By Proposition 18, there is u ∈ Ẇ [G] ∩M [G] such that T (u, b) = t. Let x ∈ G
such that (u,x) ∈ Ẇ . Since a, x ∈ G, there is y ∈ G such that y ≤ a, x.

We now go back to V. Since (u,x) ∈ Ẇ , there must be a q such that pM ⊆ q
and (q, x) ⊩“u ∈ Ḃ”. Furthermore, we may assume that q ∈M. Let r = q ∪ p, it
is easy to see that (r, y) is in S∈(P,S), it extends (p, a) and (r, y) ⊩“u, b ∈ Ḃ”.

Properties that satisfy the conclusion of the Proposition above and are pre-
served by two step iterations have a good opportunity of being preserved under
Neeman’s iteration, which we will review in the next section.

7 Two type side conditions

Let E ⊆ R be a 2-entangled set. By our work in the previous sections, we know
that we can force any instance of the P -ideal dichotomy with a proper forcing
while preserving E. We also know that if a ccc forcing P destroys E, then we
can add an uncountable antichain to P with a proper forcing that preserves E.
What we are missing now is an iteration theorem. Just like in [25], we find
it more convenient to use the iteration method introduced by Neeman in [37]
rather than the usual countable support iteration. For the convenience of the
reader, we will review the work of Neeman.
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For this section, fix θ an inaccessible cardinal and <w a well-order of H(θ) .
For now, if M ∈ H(θ) , we will write M ⪯ H(θ) if (M, ∈,<w) is an elementary
submodel of (H(θ) , ∈,<w). We now fix the following items:

S ⊆ {M ∈ [H(θ)]ω ∣M ⪯ H(θ)}

T = { H(λ) ∣ H(λ) ⪯ H(θ)∧ cof(λ) > ω}

Moreover, we demand the following:

1. S is stationary in [H(θ)]ω and T is stationary in [H(θ)]<θ.

2. S ∪ T is closed under intersections (note that T is closed under intersec-
tions since given any two elements of T , one is contained in the other).

Recall the following definition:

Definition 54 A cardinal κ is countably inaccessible if it is regular and λω < κ
for every λ < κ.

In order to meet the requirements above, it is enough that θ is countably
inaccessible (see Proposition 2.5 and Proposition 2.12 of [20]).

Every element of S is countable while all the elements of T are uncountable.
Following the terminology of [37], we call the elements of S ∪ T nodes, the
elements of S are called small models or small nodes and the elements of T are
called transitive models or transitive nodes. In this paper, we will be using the
following convention:

M,N,L will always be small models
W,X,Y,Z will always be transitive models
A,B,C,D will be elements of S ∪ T whose type is

unknown or irrelevant

We have the following simple remarks:

1. S is closed under intersections (this is because S ∪ T is closed under in-
tersections).

2. If M ∈ S and X ∈ T , then M ∩X ∈ S (this is because M ∩X is countable).

3. The elements of T are closed under taking countable subsets. In particular,
if M ∈ S and X ∈ T , then M ∩X ∈X.
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We need the following notions:

Definition 55 Let p ⊆ S ∪ T .

1. We say that p is a chain if for every A,B ∈ p either A = B, or A ∈ B or
B ∈ A.

2. We say that p is a path if it is of the form p = {A0, ...,An} where Ai ∈ Ai+1

for all i < n.

Obviously every chain is a path. Moreover, any path consisting only of small
models or only of transitive models is a chain. However, by using both small
and transitive models, we can build a path that is not a chain. Whenever we
write a path p = {A0, ...,An} , we are implicitly assuming that we enumerate it
in such a way that Ai ∈ Ai+1 for all i < n.

Definition 56 Let p ⊆ S ∪ T be a path and A,B ∈ p.

1. Define A <p B if A ≠ B and there are {C0, ...,Cn} ⊆ p such that A = C0,
B = Cn and Ci ∈ Ci+1 for all i < n (note that n ≠ 0 since A is different
from B).

2. Define A ≤p B if A = B or A <p B.

3. Define the interval (A,B)p = {C ∈ p ∣ A <p C <p B} . The expressions [A,B]p ,
(A,B]p and [A,B)p have the expected meaning.

4. Define A<p = {C ∈ p ∣ C <p A} .

Let p = {A0, ...,An} be a path. Following the convention mentioned before
the definition, it follows that if i, j ≤ n, then Ai <p Aj if and only if i < j. We
also have that (Ai,Aj)p = {Ak ∣ i < k < j} . Similarly for [Ai,Aj]p , (Ai,Aj]p and

[Ai,Aj)p.

Note that if X ∈ p is a transitive model, then X<p = X ∩ p. However, if
M ∈ p is small model, then M ∩ p and M<p may be different (but note that
M ∩ p ⊆ M<p). By the remarks above, it follows that if an interval has only
small nodes, then it will be a chain.

Definition 57 Let p ⊆ S ∪ T (not necessarily a path). Define:

1. S (p) = S ∩ p.

2. T (p) = T ∩ p.
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As mentioned in the previous chapter, the ∈-collapse forcing plays a fun-
damental role while working with the usual (or “one type”) models as side
conditions. The analogue of the ∈-collapse for two type side conditions is the
following forcing introduced by Neeman:

Definition 58 Define PS,T∈ as the set of all p ⊆ S ∪ T such that:

1. p is a path.

2. p is closed under intersections.

Given p, q ∈ PS,T∈ , define p ≤ q if q ⊆ p.

For convenience, we will simply write P∈ instead of PS,T∈ where there is
no risk of confusion. It follows by the axiom of foundation that if A,B ∈ p
(for p a condition in P∈), then A ∩ B ≤p A,B. Checking if a path is closed
under intersections might be a little tedious, but fortunately, the following result
simplifies some of the work:

Lemma 59 ([37]) Let p ⊆ S ∪ T be a path. The following are equivalent:

1. p ∈ P∈ (i.e. p is closed under intersections).

2. For every M ∈ S (p) and X ∈ T (p) , if X ∈M, then M ∩X ∈ p.

We need one more definition:

Definition 60 Let p ∈ P∈, M ∈ S (p) and X ∈ T (p) with X ∈ M. The residue
gap of p induced by M and X is defined as [M ∩X,X)p.

Understanding the structure of the residue gaps is fundamental in order to
work with P∈. We quote the following result:

Lemma 61 ([37]) Let p ∈ P∈, M ∈ S (p) and X,Y ∈ T (p) with X,Y ∈M and
X ≠ Y.

1. The residue gaps [M ∩X,X)p and [M ∩ Y,Y )p are disjoint.

2. [M ∩X,X)p and M are disjoint.

3. p<M = (p ∩M) ∪ ⋃
Z∈T (p)∩M

[M ∩Z,Z)p (and this is a disjoint union).

Proving strong properness for transitive models is easy.
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Proposition 62 ([37]) Let p ∈ P∈ and X ∈ T (p). If q ∈ P∈ has the following
properties:

1. q ∈X.

2. q ≤ p ∩X.

Then p ∪ q ∈ P∈ (and obviously it is a common extension of p and q).

It is also straight-forward to prove the following:

Lemma 63 ([37]) Let q ∈ P∈ and X ∈ T . If q ∈X, then q ∪ {X} ∈ P∈.

From this results we get the following:

Proposition 64 (Strong properness for transitive models [37]) Let λ >
θ be a large enough regular cardinal such that H(θ) , P∈ ∈ H(λ) and K ⪯ H(λ)
such that H(θ) , P∈ ∈K and X = H(θ) ∩K ∈ T . The following holds:

1. If p ∈ P∈ is such that X ∈ p, then p is a strong (K,P∈)-generic condition.

2. P∈ is strongly proper for K.

Proving properness for countable models is much harder. The difficulty is
that (unlike in the transitive case) if p, q ∈ P∈ and M ∈ S (p) such that q ≤ p∩M
and q ∈M, then q ∪ p may not be a condition. The good news, is that it can be
extended to one:

Proposition 65 Let p, q ∈ P∈ and M ∈ S (p) such that q ≤ p ∩M and q ∈ M.
There is a condition q ∧ p ∈ P∈ such that:

1. q ∪ p is a path.

2. q ∧ p is obtained by closing q ∪ p under intersections.

3. q ∧ p is the largest common extension of both p and q.

4. T (q ∧ p) = T (p) ∪ T (q) .

5. (q ∧ p) ∩M = q.

6. Every node in (q ∧ p)∖M is in p or it is of the form N∩X where X ∈ T (q)
and N ∈ S (p) ∩M.
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Above we mention that q∧p is obtained by closing q∪p under intersections.
However, it is worth pointing out that there is a nice and concrete construction
of q ∧ p from q ∪ p (see [37]). In fact, this explicit construction is what allows
to prove the proposition just mentioned. From this results, it is possible to
conclude the following:

Theorem 66 (Properness for countable models [37]) P∈ is S-proper. In
particular, if S is a club, then P∈ is proper.

Furthermore, we have the following:

Proposition 67 ([37]) If X ∈ T , then for every p ∈ P∈ there is q ≤ p such that
X ∈ q.

The chain condition of P∈ was not mentioned in [37]. The following was
proved by Holy, Lücke and Njegomir. It was also independently proved by the
second author while teaching his forcing course at the University of Toronto:

Proposition 68 ([20]) P∈ has the θ-chain condition.

Proof. Let A ⊆ P∈ be a set of size θ, we need to find two compatible elements
in A. Since θ is an inaccessible cardinal, we know that H(θ) has size θ (see [23]).
In this way, we may enumerate A = {pX ∣ X ∈ T }. By Proposition 67, for every
transitive node X, we may find a condition qX ≤ pX such that X ∈ qX .

Define F ∶ T Ð→ H(θ) where F (X) =X ∩qX . Clearly F is a choice function.
Since T is stationary, we can find a stationary subset T1 ⊆ T such that F
is constant on T1 (see [22]). We can now find W ⊆ T1 of size θ such that if
X,Y ∈W and X ∈ Y, then qX ∈ Y. It follows that if X,Y ∈W and X ∈ Y, then
qX ≤ qY ∩ Y and qX ∈ Y, so by Proposition 62, we know that qX and qY are
compatible.

The following summarizes the effect of P∈ on the cardinals of V :

Proposition 69

1. P∈ preserves ω1.

2. If ω1 < κ < θ, then P∈ collapses κ to ω1.

3. P∈ has the θ-chain condition, so it preserves all cardinals that are larger
or equal to θ.

4. P∈ ⊩“ω2 = θ”.
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With the above results we can get a very clear picture of the generic object
added by P∈. Let G ⊆ P∈ be a generic filter. In V [G] we define the generic

path Pgen = ⋃G. This is a path of length ω2 that covers H(θ)V . The transitive
models now have size ω1 and between any two of them there is an ∈-chain of
countable models of length ω1.

Given any set A, by ℘(A) we denote the power set of A.

Lemma 70 Let p ∈ P∈, Y ∈ T (p) and M ∈ S (p) with Y <p M, Q ∈ M ∩ Y
a partial order and Ṗ ∈ M ∩ Y a Q-name for a partial order. Let G ⊆ Q be a
generic filter and a ∈ Ṗ [G] . In V [G] , the following statements are equivalent:

1. a is an ((M ∩ Y ) [G] , Ṗ [G])-generic condition.

2. a is an (M [G] , Ṗ [G])-generic condition.

Proof. First, note that since Y is an elemental submodel of H(θ) (and θ is
inaccessible), it follows that ℘(A) ∈ Y whenever A ∈ Y . Now, we will prove the
following:

Claim 71 In V [G] the following holds:

℘(P) ∩M [G] = ℘ (P) ∩ (M ∩ Y ) [G]

We may assume that P is of the form (α,≤P) where α is an ordinal. By the
remark above, every nice name (see Chapter VII of [23]) of a subset of α is in
Y, the claim follows.

The conclusion of the lemma follows by the above claim since the definition
of generic condition depends only of the subsets of Ṗ [G] that are in the model.

We can now explain the iteration technique introduce by Neeman. From now
on, fix a function J ∶ θ Ð→ H(θ) , which we will use as a bookkeeping device.
We will require that the elements of S ∪ T are also elemental with respect to J,
by this we mean that if A ∈ S ∪ T , then (A, ∈,≤w, J ↾ (A ∩ θ)) is an elementary
submodel of (H(θ) , ∈,≤w, J). Note that this implies that each A ∈ S ∪ T is closed
under J . Occasionally, we will write J(H(λ)) instead J (λ)13. Clearly T and
T ∪ {H(θ) } are well-ordered by the membership relation. In this way, we can
make recursive constructions and inductive proofs over them. Expressions like
“Y is limit” or “Y is the successor of X” will refer to this order. By Y = X+

we denote that Y is the successor of X in T . The following definition is done
by recursion over T ∪ {H(θ) } ∶

13In this way, if A ∈ T , by J (A) we denote J(λ) where A = H(λ) .
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Definition 72 Define P = P(J) as the set of all (p, fp) with the following prop-
erties:

1. p ∈ PS,T∈ .

2. Given X ∈ T , GX ⊆ P∩X a generic filter and Y =X+, define (in V [GX])
the sets:

SX [GX] = {M [GX] ∣ (M ∈ S) ∧ (X ∈M) ∧ ({M ∩X} ,∅) ∈ GX}

S(X,Y )[GX] = {M [GX] ∣ (M ∈ S) ∧ (X ∈M ∈ Y ) ∧ ({M ∩X} ,∅) ∈ GX}

3. fp is a function with domain contained in:

{X ∈ T (p) ∣ 1P∩X ⊩ “J (X) is a S(X,Y ) [GX] -proper forcing”}

4. If X ∈ dom (fp) , then (p ∩X,fp ↾X) ⊩ “fp (X) ∈ J (X)”) .

5. If X ∈ dom (fp) , M ∈ S (p) and X ∈M, then:

(p ∩X,fp ↾X) ⊩“fp (X) is a (M[ĠX], J (X) [ĠX])-generic condition”

(where ĠX is the name for the generic filter of P ∩X).

Let (p, fp) , (q, fq) ∈ P. Define (p, fp) ≤ (q, fq) if the following holds:

1. q ⊆ p.

2. dom (fq) ⊆ dom (fp).

3. If X ∈ dom (fq) , then (p ∩X,fp ↾X) ⊩“fp (X) ≤ fq (X)”.

It is clear that (in the extension) S(X,Y ) [GX] is a subset of SX [GX] . Note
that S(X,Y ) [GX] ⊆ [Y [GX]]ω. By Lemma 70 in point 4 above, it is enough to
check the condition for those M ∈ S (p) such that X ∈M and (X,M)p ∩ T = ∅.
Although this is a very simple remark, it is indeed very useful.

It is always possible to add transitive nodes:

Lemma 73 ([37]) Let (p, f) ∈ P and X ∈ T . There is q ∈ P∈ such that:

1. X ∈ q.
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2. q ≤ p.

3. If A ∈ q ∖ p then one of the following conditions hold:

(a) A is transitive.

(b) There is N ∈ S (p) and W ∈ T (q) such that A = N ∩W.

4. (q, f) ∈ P, so (q, f) ≤ (p, f) .

With this, we can prove the following:

Proposition 74 P has the θ-chain condition.

Proof. This is almost the same argument as the one for the Proposition 68.
Let A ⊆ P be a set of size θ, we need to find two compatible elements in A. Take
an enumeration A = {(pX , fX) ∣ X ∈ T }. By Lemma 73, for every X ∈ T , we
may find (qX , gX) ≤ (pX , fX) such that X ∈ qX .

Define F ∶ T Ð→ H(θ) where F (X) =X ∩qX . Clearly F is a choice function.
Since T is stationary, we can find a stationary subset T1 ⊆ T such that F is
constant on T1. We can now find W ⊆ T1 of size θ such that if X,Y ∈ W and
X ∈ Y, then qX ∈ Y. It follows that if X,Y ∈ W and X ∈ Y, then qX ≤ qy ∩ Y
and qX ∈ Y, so by Proposition 62, we know that qX and qY are compatible in
P∈. Furthermore, by Lemma 70, we conclude that (qX , gX) and (qY , gY ) are
compatible.

In some sense the models in T play a similar role than the ordinals in the
usual finite support iteration. An instance of this analogy is the following:

Lemma 75 ([37]) If X ∈ T , then P ∩X is a regular suborder of P.

For convenience, we will say a node X ∈ T is not trivial if 1P∩X ⊩“J (X)
is a S(X,X+)[GX]-proper forcing”. We can always add non-trivial nodes to the
domain:

Lemma 76 ([37]) Let (p, f) ∈ P and X ∈ T (p) that is not trivial. There is a
function g with the following property:

1. dom (g) = dom (f) ∪ {X} .

2. (p, g) ∈ P and (p, g) ≤ (p, f) .

By combining the two lemmas, we get the following:

Lemma 77 ([37]) Let (p, f) ∈ P and X ∈ T not trivial. There is (q, g) ∈ P such
that:
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1. X ∈ q.

2. (q, g) ≤ (p, f)

3. dom (g) = dom (f) ∪ {X} .

4. If A ∈ q ∖ p then one of the following conditions hold:

(a) A is transitive.

(b) There is N ∈ S (p) and W ∈ T (q) such that A = N ∩W.

The following is an important step in order to prove that P is proper:

Proposition 78 ([37]) Let M ∈ S and (p, f) ∈M ∩ P. There is (q, g) ∈ P with
the following properties:

1. (q, g) ≤ (p, f) .

2. M ∈ q.

3. dom (g) = dom (p) .

Now we want to prove the S-properness of P. Our proof is different from
the one in [37]. The main difference, is that we will use the results of the side
condition hull obtained earlier.

We will need the following:

Lemma 79 Let X ∈ T , GX ⊆ P∩X a generic filter and M ∈ S such that X ∈M.
The following two statements are equivalent:

1. M [GX] ∈ SX [GX] .

2. ({M} ,∅) is compatible (in P) with every element of GX .

Proof. We will first prove that 2 implies 1. Since GX is a generic filter, in
order for ({M ∩X} ,∅) to be in GX , it is enough to prove that every element
of GX is compatible with ({M ∩X} ,∅) , which clearly is a consequence of 2.

We will now prove that 1 implies 2. Let (p, f) ∈ GX . Since ({M ∩X} ,∅) ∈
GX , we know that there is (q, g) ∈ GX such that (q, g) ≤ (p, f) and M ∩X ∈ q.
Define r = q ∪ {X,M} , we claim that (r, g) ∈ P.

It is clear that r is a path. We will now prove that r is closed under
intersections. It is enough to prove that if A ∈ q, then M ∩ A ∈ r. Since
M ∩ X ∈ q, we have that (M ∩X) ∩ A is in q. Since A ∈ X, we get that
(M ∩X) ∩A =M ∩ (X ∩A) =M ∩A, so we are done. Finally, let L ∈ dom (g)
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such that L ∈M, we need to prove that g (L) is generic for M, but this is true
since it is generic for M ∩X.

We will now get the following:

Lemma 80 Let X,Y ∈ T such that Y =X+. Let GX ⊆ P∩X be a generic filter
and M ∈ S with X ∈M. The following are equivalent:

1. M [GX] ∈ SX [GX] .

2. ({M} ,∅) is compatible with every element of GX .

3. (M ∩ Y ) [GX] ∈ S(X,Y ) [GX] .

Proof. We already know from Lemma 79 that M [G] ∈ SX [GX] if and only if
({M} ,∅) is compatible with every element of GX . Now, we have the following:

M [GX] ∈ SX [GX] if and only if ({M ∩X} ,∅) ∈ GX
if and only if ({M ∩ (X ∩ Y )} ,∅) ∈ GX
if and only if ({(M ∩ Y ) ∩X} ,∅) ∈ GX
if and only if (M ∩ Y ) [GX] ∈ S(X,Y ) [GX]

Now we will prove the following:

Proposition 81 Let X ∈ T .

1. P ∩X ⊩“SX [G] is stationary in [H(θ)]ω”.

2. If Y =X+, then P ∩X ⊩“S(X,Y ) [G] is stationary in [Y [G]]ω”.

Proof. We start with point 1. Since θ is inaccessible, we have that P ∩
X ⊩“HV [G] (θ) = HV (θ) [G]” (see Proposition 11). Let (p, f) ∈ P ∩ X and
K̇ a P∩X-name such that (p, f) ⊩“K̇ ∶ [H(θ)]<ω Ð→ H(θ)”. Since S is station-
ary, we can find M a countable elementary submodel of a large enough structure
such that:

1. P,X, (p, f) , K̇ ∈M.

2. M =M∩ H(θ) is in S.

Note that X, (p, f) ∈ M. By Proposition 78 and Lemma 73, we can find
(q, g) ∈ P such that (q, g) ≤ (p, f) , M,X ∈ q and dom (g) = dom (p) . Let p = q∩X
and f = g ↾ X. Since M,X ∈ q, it follows that M ∩X ∈ p, so (p, f) ⊩“M [G] ∈
SX [G]”.

We claim that (p, f) forces that M [G] is closed under K̇. Let Ė1, ..., Ėn ∈M.
We want to prove that (p, f) ⊩“K̇(Ė1, ..., Ėn) ∈ M [G]”. To see this, note
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that if Ṙ is a nice name for K̇(Ė1, ..., Ėn), then Ṙ ∈ M. This is because
K̇, Ė1, ..., Ėn ∈M. Furthermore, since Ṙ is a name for an element of H(θ) [G] ,
then Ṙ ∈ H(θ) (see Proposition 11. Note that although K̇ might not be in H(θ) ,
it is nevertheless true that Ṙ is). It follows that Ṙ ∈M∩ H(θ) =M. This implies
that Ṙ [G] will be in M [G] .

The proof of the second point in the proposition is essentially the same.

We now recall the following well-known definition:

Definition 82 Let R and Q be two partial orders. We say that i ∶ RÐ→ Q is a
dense embedding if the following conditions hold for every p1, p2 ∈ R ∶

1. If p1 ≤ p2, then i (p1) ≤ i (p2) .

2. If p1 and p2 are incompatible, then i (p1) and i (p2) are incompatible (or
equivalently, if i (p1) and i (p2) are compatible, then p1 and p2 are com-
patible).

3. i[R] is a dense subset of Q.

If there is a dense embedding i ∶ RÐ→ Q, then R and Q yield the same
generic extensions. To learn more about dense embeddings, the reader may
consult [24]. We can now obtain a “factorization” theorem for the successors
steps:

Proposition 83 Let X,Y ∈ T with Y =X+.

1. If X is not trivial, then P ∩ Y and (P ∩X) ∗ S∈(J(X),S(X,Y )[GX]) are

forcing equivalent (where ĠX is the canonical name for the P∩X generic
filter).

2. If X is trivial, then P ∩ Y and (P ∩ X) ∗ S∈(1,S(X,Y )[GX]) are forcing

equivalent (where ĠX is the canonical name for the P ∩X generic filter
and 1 is the trivial forcing).

Proof. We will assume that X is not trivial, since the other case is similar,
yet simpler. First, define D as the set of all ((r, h), ({N0[ĠX], ...,Nn[ĠX]}), ȧ)
with the following properties:

1. (r, h) ∈ P ∩X.

2. N0, ...,Nn ∈ S.

3. X ∈ N0 ∈ ⋯ ∈ Nn ∈ Y.

4. Ni ∩X ∈ r for all i ≤ n.

5. (r, h) ⊩“ȧ is (Ni[ĠX], J(X))-generic” for all i ≤ n.
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Clearly D ⊆ P ∩X ∗ S∈(J(X),S(X,Y ) [GX] ). We now have the following:

Claim 84 D is a dense subset of P ∩X ∗ S∈(J(X),S(X,Y ) [GX] ).

We will prove the claim. Let ((p, f), (Ḟ , ȧ)) be an element of (P ∩X) ∗
S∈(J(X),S(X,Y ) [GX] ). By definition, we know that (p, f) forces that Ḟ is
a finite chain of S(X,Y ) [GX] . In this way, we can find (p1, f1) ≤ (p, f) and

{N0, ...,Nn} such that (p1, f1) ⊩“Ḟ = {N0[ĠX], ...,Nn[ĠX]}”. Furthermore,
since (p1, f1) ⊩“Ni[ĠX] ∈ S(X,Y ) [GX]” (for every i ≤ n), we can find (r, h) ≤
(p1, f1) such that Ni ∩X ∈ r for all i ≤ n. This finishes the proof of the claim.

Now, define E = {(p, f) ∈ P ∩ Y ∣ X ∈ dom (f)}. By Lemma 77, we now that
E is a dense subset of P ∩ Y. Since E is forcing equivalent to P ∩ Y and D is
forcing equivalent to (P ∩X) ∗ S∈(J(X),S(X,Y ) [GX] ), it is enough to prove
that E and D are forcing equivalent. In order to do so, we define a function i ∶
E Ð→D given by:

i (p, f) = ((p ∩X,f ↾X), ({M[Ġ] ∣X ∈M ∈ p}), f (X))

We claim that i is a dense embedding. It is clear that if (p, f) ≤ (q, g) , then
i (p, f) ≤ i (q, g) . Now, assume that i(p, f) and i (q, g) are compatible, we must
prove that (p, f) and (q, g) are compatible. Let ((r, h), ({N0[ĠX], ...,Nn[ĠX]}), ȧ)
be a common extension of i(p, f) and i (q, g) . It follows that (r, h) ≤ (p ∩X,f ↾X)
and (r, h) ≤ (q ∩X,g ↾X) . Let r = r ∪ {X,N0, ...,Nn} and h = h ∪ {(X, ȧ)}. It
follows that (r, h) extends (p, f) and (q, g) . It is easy to see that i is onto,
so in particular, the image is dense. This finishes the proof that P ∩ Y and
(P ∩X) ∗ S∈(J(X),S(X,Y ) [GX] ) are forcing equivalent.

The following lemma might seem artificial at first, but will come in handy
when dealing with limit steps:

Lemma 85 Let Z,Y ∈ T and M ∈ S such that Z ∈ Y and Z,Y ∈ M. Let
(p, f) , (q, g) ∈ P ∩ Y and (r, h) ∈ P ∩Z with the following properties:

1. Z,M ∩ Y ∈ p.

2. dom (f) ∩M ⊆ Z.

3. (q, g) ∈M.

4. p ∩M ⊆ q.

5. (r, h) ≤ (p ∩Z, f ↾ Z) , (q ∩Z, g ↾ Z) .

Then (p, f) and (q, g) are compatible (in P ∩ Y ). Furthermore, there is
(r, h) ∈ P ∩ Y such that (r, h) ≤ (p, f) , (q, g) , r ∩Z = r and h ↾ Z = h.
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Proof. Note that we have the following:

1. q ∈M ∩ Y.

2. M ∩ Y ∈ p.

3. q ≤ p ∩ (M ∩ Y ) = p ∩M.

In this way, by Proposition 65, we can form q ∧ p. Since q ∧ p is the largest
common extension of p and q, it follows that r ≤ (q ∧ p)∩Z. Now, since r ∈ Z and
Z ∈ q∧p (recall that Z ∈ p), by Proposition 62, we know that r = r∪((q ∧ p) ∖Z)
is a condition of P∈.

Let S = dom (h) ∪ dom (g) ∪ dom (f) . We know the following:

1. dom (g) ∩Z, dom (f) ∩Z ⊆ dom (h) and dom (h) ⊆ Z.

2. dom (g) ⊆M.

3. dom (f) ∩ dom (g) ⊆ Z (recall that dom (f) ∩M ⊆ Z and g ∈M).

4. Z ∉ dom (f).

In this way, S = dom (h)∪(dom (g) ∖Z)∪(dom (f) ∖Z) and this is a disjoint
union. We now define h ∶ S Ð→ H(θ) as follows:

1. h ⊆ h.

2. If W ∈ dom (f) ∖Z, then h (W ) = f (W ) .

3. Let W ∈ dom (g) ∖ Z. Define W ∗ the first transitive node of r above
W if there is one, if not, let W ∗ = Y. Note that g (W ) ∈ M ∩W ∗. Let
[M∩W ∗,W ∗)r = {N0, ...,Nn} (where N0 =M∩W ∗). Since J (W ) is forced
to be an S(W,W+) [GW ]-proper forcing, we define h (W ) as an extension

of g (W ) that is forced to be Ni[Ġ] generic for all i ≤ n.

We claim that (r, h) is in P ∩ Y. Let W ∈ dom(h) and N ∈ S(r) such that
N ∈W and (W,N)r∩T = ∅. We need to prove that h (W ) is forced to be generic
for N[Ġ]. If W <r Z, then we are fine since (r, h) ∈ P, so now we assume that
Z ≤r W.

Case 86 W ∈ dom (f) ∖Z.

In here we have that h (W ) = f (W ) . If N ∈ p, then we are fine since (p, f) ∈
P. Note that N ∉M (in particular, N ∉ q) because if this was not the case, then
W ∈ N ∈ M, so W ∈ M. But this is impossible since dom (f) ∩M ⊆ Z. We are
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now in the case that N ∈ (q ∧ p) ∖M and N ∉ p. By Proposition 65, we know
that there are L ∈ S (p) ∩M and X ∈ T (q) such that N = L ∩X. Since L ∈ p,
we know that f (W ) = h (W ) is forced to be generic for L, so it is also generic
for N = L ∩X by Lemma 70.

Case 87 W ∈ dom (g) ∖Z.

Let W ∗ be as defined above. First, note that [W,M ∩W ∗)r ⊆ q. This is
because every element in this interval is above Z and is also in M. Since h (W )
is (forced to be) an extension of g (W ) , it means that we are fine with every
node in this interval. Furthermore, it follows by the definition of h (W ) that
it is (forced to be) a generic condition for every interval in [M ∩W ∗,W ∗)r. In
this way, h (W ) is a generic condition for every node in (W,W ∗)r and this is
enough by Lemma 70.

It follows that (r, h) is a condition and clearly (r, h) ≤ (p, f) , (q, g) .

We now have all the tools to prove the following:

Theorem 88 Let Y ∈ T .

1. If M is countable elementary submodel of a large enough structure such
that P, Y ∈ M and M = M∩ H(θ) ∈ S, then for every (p, f) ∈ P ∩ Y if
M ∩ Y ∈ p, then (p, f) is (M,P ∩ Y )-generic.

2. P ∩ Y is S-proper.

Proof. Before starting the proof, note that by Proposition 78 we get that point
1 implies point 2. We proceed by induction over Y. If Y is the smallest element
of T , then P∩Y is the ∈-collapse parametrized by S, which is S-proper (even in
its stronger form stated in point 1) by the argument of Theorem 47 in the book
[48].

For the successor step, let Y = X+ and assume the theorem holds for X.
Let M be a countable elementary submodel of a large enough structure such
that P, Y ∈ M and M = M∩ H(θ) ∈ S. We will assume that X is not trivial,
since the other case is similar but easier. Let (p1, f1) ∈ P ∩ Y be a condition
such that M ∩ Y ∈ p1. We want to prove that (p1, f1) is (M,P ∩ Y )-generic.
Or equivalently, that every extension of (p1, f1) has a further extension that is
(M,P ∩ Y )-generic.

Let (p2, f2) ≤ (p1, f1) and by Lemma 77, we can find an extension (p, f) ≤
(p2, f2) such that X ∈ dom (f) (and in particular, X ∈ p). Note that X,M ∩
Y ∈ p, so it follows that M ∩ X = (M ∩ Y ) ∩ X is in p. Recall that from
Proposition 83, we have a dense embedding i from (a dense set of) P ∩ Y to
P ∩X ∗ S∈(J(X),S(X,Y ) [G] ). In here, we have that:
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i (p, f) = ((p ∩X,f ↾X), ({N[Ġ] ∣X ∈ N ∈ p}), f (X))

Note that (M ∩ Y ) [Ġ] is in the second coordinate of i (p, f) . By the induc-
tive hypothesis, we know that (p ∩X,f ↾ X) is generic for P ∩X. Also, by the
previous remark and Proposition 50, it follows that the tail of i (p, f) is forced
to be generic for S∈(J(X),S(X,Y ) [G] ). This implies that i (p, f) is generic for

P ∩X ∗ S∈(J(X),S(X,Y ) [G] ), which entails that (p, f) is (M,P ∩ Y )-generic.

We are now left in the case that Y is a limit node. Let M be a countable
elementary submodel of a large enough structure such that P, Y ∈M and M =
M∩ H(θ) ∈ S. Let (p1, f1) ∈ P ∩ Y be a condition such that M ∩ Y ∈ p1. We
want to prove that (p1, f1) is (M,P ∩ Y )-generic. Let D ∈M be an open dense
subset of P ∩ Y. We need to prove that D ∩M is predense below (p1, f1) . Let
(p, f) ≤ (p1, f1) and we may as well assume that (p, f) ∈D. Since Y ∈M and it
is limit, by elementarity, we can find a transitive node Z such that Z ∈M ∩ Y
and p ∩M ⊆ Z.

By Lemma 73, we can find p ∈ P∈ such that p ∪ {Z} ⊆ p and (p, f) is a
condition. Since we are not changing f, we have that dom (f) ∩M ⊆ Z. We
know that Z,M ∩ Y ∈ p, so it follows that M ∩Z = (M ∩ Y ) ∩Z is in p. By the
inductive hypothesis, this implies that (p ∩Z, f ↾ Z) is an (M,P ∩ Z)-generic
condition. We now define:

DZ = {(q ∩Z, g ↾ Z) ∣ p ∩M ⊆ q ∧ (q, g) ∈D}

It is clear that DZ ∈ M and (p ∩Z, f ↾ Z) ∈ DZ . Since (p ∩Z, f ↾ Z) is a
generic condition, we conclude that there is (q, g) ∈ P ∩ Y with the following
properties:

1. (q, g) ∈D ∩M.

2. p ∩M ⊆ q.

3. (q ∩Z, g ↾ Z) and (p ∩Z, f ↾ Z) are compatible (in P ∩Z).

By Lemma 85, we conclude that (q, g) and (p, f) are compatible.

We can finally prove the following:

Theorem 89 (Neeman [37]) P is S-proper. In particular, if S is a club, then
P is proper.

Proof. We already know that all of the forcings P∩Y are S-proper (for Y ∈ T ).
It remains to prove that P itself is S-proper. Let M be a countable elementary
submodel of a large enough structure such that P ∈M and M =M∩ H(θ) ∈ S.
Let (p1, f1) ∈ P ∩M. By Proposition 78, we can find (p, f) ≤ (p1, f1) such that
M ∈ p. We claim that (p, f) is an (M,P)-generic condition.
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Let A ∈ M be a maximal antichain of P and (p2, f2) ≤ (p, f) , we need to
prove that A∩M is predense below (p2, f2) . By Proposition 74 and elementarity,
we can find a transitive node Y ∈ T ∩M such that A ⊆ P∩Y. Let (q, g) ≤ (p2, f2)
such that Y ∈ q. Note that we also have that M ∩ Y is in q. In this way, by
Theorem 88 we know that (q, g) is an (M,P ∩ Y )-generic condition, so it is
compatible with an element of A ∩M.

In the same way as P∈, the forcing P has the following properties:

Proposition 90

1. P preserves ω1.

2. If ω1 < κ < θ, then P collapses κ to ω1.

3. P has the θ-chain condition, so it preserves all cardinals that are larger or
equal to θ.

4. P ⊩“ω2 = θ”.

We now introduce the following notion:

Definition 91 Let G ⊆ P be a generic filter. In V [G] , define S [G] = {M [G] ∣
M ∈ S ∧ (M,∅) ∈ G}.

With a very similar proof to the one of Proposition 81 it is possible to show
the following:

Proposition 92 P ⊩“S [G] is stationary in [H(ω2)]ω”.

The reader wishing to know more about two type side conditions, may con-
sult [37], [38], [25], [13], [20], [14], [55], [19] and [56].

8 Entangled sets and two type side conditions

We developed all the tools needed in order to prove Theorem 7, it remains to
combine them all together. We start with the following simple proposition:

Proposition 93 Let E = {eα ∣∈ ω1} ⊆ R be a 2-entangled set and P a strongly
proper forcing.

1. Let Ḃ be a P-name for an uncountable block-sequence of [ω1]2 and M
a countable elementary submodel of a large enough structure such that
P,E, Ḃ ∈ M. If p ∈ P is a strong (M,P)-generic condition, b ∈ [ω1]2 is
such that b ∩M = ∅, p ⊩“b ∈ Ḃ” and t ∶ 2 Ð→ {>,<} is a type, then
p ⊩“∃a ∈ Ḃ (T (a, b) = t)”.
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2. P preserves E.

Proof. It is clear that the first point implies the second. Let Ḃ,M, p, b and t
as above. Define D as the set of all r ∈ P ∩M such that one of the following
conditions hold:

1. r ⊥ p.

2. There is a ∈ [ω1]2 such that T (a, b) = t and r ⊩P“∃a ∈ Ḃ (T (a, b) = t)”.

We claim that D is dense in P ∩M. Let r ∈ P ∩M, if r is incompatible
with p we are done, so assume this is not the case. Define A = {d ∈ [ω1]2 ∣ ∃q ≤
r (q ⊩P “d ∈ Ḃ”)}, which is clearly an element of M. Since r and q are compatible,
it follows that b ∈ A. By Proposition 18, there is d ∈ A∩M such that T (d, b) = t.
By elementarity, we can find q ∈M extending r such that q ⊩“d ∈ Ḃ”. It is clear
that q is an extension of r that is in D, so this set is dense.

Since p is a strong (M,P)-generic condition, it follows that there is q ∈ D
such that q and p are compatible. This finishes the proof of the first point.

We can now prove the preservation theorem for 2-entangled sets under Nee-
man iteration:

Theorem 94 Let θ be an inaccessible cardinal, J, S, T , P∈ and P as in the
previous section, with S a club. Let E = {eα ∣ α ∈ ω1} be a 2-entangled set. If
for every X ∈ T , either X is trivial or P ∩ X ⊩“J (X) preserves E”, then P
preserves E.

Proof. By the last section, we know that P has the θ-chain condition and it
does not collapse ω1, so it will be enough to prove that if Y ∈ T , then P ∩ Y
preserves E. We proceed by induction on Y.

If Y is the smallest element of T , then P ∩ Y is strongly proper (since it is
an ∈-collapse). This case is taken care of by Proposition 93. The successor case
follows by Proposition 83 and by Proposition 53. It remains the case where Y
is a limit model. The argument follows closely the one from 88.

Let (p1, f1) ∈ P ∩ Y, Ḃ a P ∩ Y -name for an uncountable block-sequence of
pairs of countable ordinals and t ∶ 2 Ð→ {>,<} a type. We need to prove that
we can extend (p1, f1) to a condition that forces that t is realized in Ḃ. Let
M be countable elementary submodel of a large enough structure such that
P, Y,E, Ḃ, (p1, f1) ∈ M and M = M∩ H(θ) ∈ S. By Proposition 78, we can find
(p2, f) ≤ (p1, f1) such that M ∩ Y ∈ p2. We may further assume that there is

b ∈ [ω1]2 such that b ∩M = ∅ and (p2, f) ⊩“b ∈ Ḃ”. Since Y is a limit model
and Y ∈M, we can find Z ∈M ∩ Y such that p2 ∩M ⊆ Z. Now, by Lemma 73,
we can find p ∈ P∈ such that p2 ∪ {Z} ⊆ p and (p, f) is a condition. Since we
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are not changing f, we have that dom (f) ∩M ⊆ Z. We know that Z,M ∩Y ∈ p,
so it follows that M ∩ Z = (M ∩ Y ) ∩ Z is in p. It follows by Theorem 88, that
(p ∩Z, f ↾ Z) is an (M,P ∩Z)-generic condition. We now define:

Ȧ = {(a, (q ∩Z, g ↾ Z)) ∣ a ∈ [ω1]2 ∧ p ∩M ⊆ q ∧ (q, g) ⊩ “a ∈ Ḃ”}

It is clear that Ȧ ∈M and is a P∩Z-name for a subset of [ω1]2 . We know that
(p ∩Z, f ↾ Z) is an (M,P∩Z)-generic condition and (p ∩Z, f ↾ Z) ⊩“b ∈ Ȧ”. By
the inductive hypothesis and Proposition 20, we know that there are (q, g) ∈ P∩Y
and a ∈ [ω1]2 with the following properties:

1. (q, g) , a ∈M.

2. p ∩M ⊆ q.

3. (q ∩Z, g ↾ Z) and (p ∩Z, f ↾ Z) are compatible (in P ∩Z).

4. T (a, b) = t.

5. (q, g) ⊩“a ∈ Ḃ”.

By Lemma 85, we conclude that (q, g) and (p, f) are compatible, this finishes
the proof.

Recall the following notion introduced by Solovay:

Definition 95 Let θ be a cardinal. We say that θ is supercompact if for every
cardinal λ, there are M and j with the following properties:

1. M is a transitive inner model.

2. j ∶ V Ð→M is an elementary embedding.

3. crit (j) = θ.

4. j (θ) > λ.

5. [M]λ ⊆M.

The following is a remarkable theorem of Laver:

Theorem 96 (Laver, [29]) Let θ be a supercompact cardinal. There is a func-
tion J ∶ θ Ð→ H(θ) such that for every set X, there is an elementary embedding
j ∶ V Ð→M such that j (J) (θ) =X.

A function as above is called a Laver sequence or Laver diamond. We can
finally prove the promised result:
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Theorem 97 (LC) There is a model of ZFC+ MA +PID+ c = ω2 in which there
is a 2-entangled set.

Proof. We start with a model of GCH in which there is a supercompact cardinal
θ. Let K ∶ θ Ð→ H(θ) be a Laver sequence. Fix <w a well-order of H(θ) . Let S
be the set of all countable elementary submodels of (H(θ) , ∈,<w,K) and T the
set of all H(λ) that are elementary submodels of (H(θ) , ∈,<w,K) and that λ has
uncountable cofinality. Fix E = {eα ∣ α ∈ ω1} ⊆ R a 2-entangled set (which exists
by the Continuum Hypothesis). Recursively, we define a function J ∶ θ Ð→ H(θ)
and P as follows:

1. P = P(J) is the Neeman iteration using J and S,T as parameters.

2. If α < θ and α is not a cardinal of uncountable cofinality or H(α) ∉ T , then
J (α) = ∅.

3. If X = H(α) is in T , then we do as follows:

(a) If K (X) = J̇X is a P ∩X-name for a P -ideal where the second pos-
sibility of the P -ideal dichotomy does not hold, then J (X) is the
P ∩X-name for P(J̇X).

(b) If K (X) = Q̇X is a P ∩X-name of a ccc partial order that preserves
E, then J (X) = Q̇X .

(c) If K (X) = Q̇X is a P ∩X-name of a ccc partial order that does not
preserve E, then J (X) is a P ∩ X-name of a proper forcing that
preserves E and adds an uncountable antichain to Q̇X .

(d) In any other case, let J (X) be the P∩X-name of the trivial forcing.

The previous construction is well defined since P∩X only depends on J ↾X.
Recall that P forces c = ω2. Since every iterand of P preserves E, by Theorem 94,
E will still be a 2-entangled set after forcing with P. Finally, P forces the P -ideal
dichotomy and Martin’s axiom by the same argument as the one of Lemma 6.14
of [37] (see also Lemma 3.20 of [25]).

9 Open questions

We finish the paper with some open questions. The result on this article suggest
the following:

Problem 98 Is there a “natural” cardinal invariant j such that under PID,
the statement “There are no 2-entangled sets” (OGA, BA(ω1)) is equivalent to
“ω1 < j”?

It is a well-known theorem of the second author that PFA implies c = ω2 (see
[10]). We can ask the following:
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Problem 99 Does PID + MAω1 imply that c = ω2 ?

In fact, the following is not known:

Problem 100 Does PID imply that c ≤ ω2?

It is very possible that under the P -ideal dichotomy the statements “c =
ω2” and “c > ω1” are equivalent. Regarding PID and cardinal invariants, the
following is a crucial problem:

Problem 101 Find a cardinal invariant j such that under PID the statements
“There is an S-space” and “j > ω1” are equivalent.

Two good candidates for the problem above are p and b. The second author
proved that b = ω1 implies that there is an S-space (see chapters 0 and 2 of
[44]), but there might be a more optimal hypothesis. It is currently unknown
if p = ω1 implies that there is an S-space. It is also unknown if forcing with a
Suslin tree always adds an S-space (see [58] for a partial result).

We do not know about the veracity of PFA+ in the models constructed using
Neeman’s iteration.

Problem 102 If P(J) is a Neeman iteration forcing PFA, does it necessarily
forces PFA+?

Problem 103 Is it possible to force PFA+ using Neeman’s iteration?

The reader wishing to learn more about PFA+ and some applications, may
consult [9], [21] and [27] among others.

Acknowledgement 104 We would like to thank the referee for her/his com-
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[11] Andreas Blass. Combinatorial cardinal characteristics of the continuum. In
Handbook of set theory. Vols. 1, 2, 3, pages 395–489. Springer, Dordrecht,
2010.

[12] Piotr Borodulin-Nadzieja and David Chodounský. Hausdorff gaps and tow-
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