# FORCING PROPERTIES OF BOOLEAN ALGEBRAS OF TYPE $\mathcal{P}(\omega) / \mathcal{I}$ 

G. CAMPERO-ARENA, O. GUZMÁN, M. HRUŠÁK, AND D. MEZA-ALCÁNTARA


#### Abstract

We study forcing properties of the Boolean algebras $\mathcal{P}(\omega) / \mathcal{I}$, where $\mathcal{I}$ is a Borel ideal on $\omega$. We show (Theorem 2.9) that (under a large cardinal hypothesis) $\mathcal{P}(\omega) / \mathcal{I}$ does not add reals if and only if it has a dense $\sigma$-closed subset. For analytic P-ideals $\mathcal{I}$ we show (Theorem 3.3) that either $\mathcal{P}(\omega) / \mathcal{I}$ is $\omega^{\omega}$-bounding or it is not proper. We also investigate the existence of completely separable $\mathcal{I}$-MAD families.


## 1. Introduction

In recent years, a large body of work has been done on the structure of definable (Borel, analytic, co-analytic, ...) ideals on a countable set and their corresponding quotients (Brendle-Mejia [9], Farah [16], Fremlin [22], Hrušák-Zapletal [30], Hrušák [25, 26], Louveau-Veličković [35], Solecki [45] [46], Solecki-Todorčević [47], He-Hrušák-Rojas-Solecki [23], Chodounský-Guzmán-Hrušák [12]).

We contribute to this line of research by studying the quotient Boolean algebras $\mathcal{P}(\omega) / \mathcal{I}$ for definable ideals $\mathcal{I}$ as forcing notions. We build on work done by Farah in [17, 18, 16]; by Just and Krawczyk in [31]; by Balcar, Hernández and Hrušák in [5]; by Hrušák and Zapletal in [30]; by Kurilić and Todorčević in [37], [38], [39], [40]; by Steprāns in [48].

First let us briefly consider quotients $\mathcal{P}(\omega) / \mathcal{I}$ without any definability restrictions. It was pointed out to us by Alan Dow, that every

Date: February 12, 2023.
First and fourth authors thank support from UNAM-PAPIIT IN119320 grant. Second author was supported by a PAPIIT grant IA102222. Third author was supported by a CONACYT grant A1-S-16164 and grant IN101323. Fourth author was supported by a UNAM-DGAPA-PASPA grant.

2020 Mathematics Subject Classification: 03G05, 03E40, 03E17, 03E15.
Key words and phrases: Boolean algebras, Borel ideals, Forcing, Quotiens over definable ideals.
forcing of size at most $\mathfrak{c}$ is forcing equivalent to a quotient $\mathcal{P}(\omega) / \mathcal{I}$ for some ideal $\mathcal{I}$ on $\omega$.

Theorem 1.1 (Dow). For every partial order $\mathbb{P}$ of size at most $\mathfrak{c}$ there is an ideal $\mathcal{I}$ on $\omega$ such that the algebra $\mathcal{P}(\omega) / \mathcal{I}$ can be densely embedded into the completion $R O(\mathbb{P})$ of $\mathbb{P}$.

We present its simple proof for the sake of completeness. First we recall some well-known facts. Recall that a family $\mathcal{J}$ of elements of a Boolean algebra $\mathbb{B}$ is independent if $\bigwedge_{a \in E} a \wedge \bigwedge_{a \in E^{\prime}}-a \neq \mathbf{0}$ for any pair of disjoint finite subsets $E, E^{\prime}$ of $\mathcal{J}$. An old theorem of Fichtenholz and Kantorovich [21] states that there is an independent family of size $\mathfrak{c}$ in $\mathcal{P}(\omega) /$ fin. It is a well known fact that the subalgebra $\mathbb{C}$ of any Boolean algebra $\mathbb{B}$ generated by an independent family $\mathcal{J} \subseteq \mathbb{B}$ is free, that is any function $f$ from $\mathcal{J}$ to any Boolean algebra $\mathbb{A}$ has a (unique) extension to a homomorphism $F: \mathbb{C} \rightarrow \mathbb{A}$.

Another known fact is Sikorski's extension theorem (see [44]): given a subalgebra $\mathbb{C}$ of a Boolean algebra $\mathbb{B}$ and a complete Boolean algebra $\mathbb{A}$, any homomorphism $F: \mathbb{C} \rightarrow \mathbb{A}$ has an extension to a homomorphism $\bar{F}: \mathbb{B} \rightarrow \mathbb{A}$.

Proof. Given a partial order $\mathbb{P}$ of size at most $\mathfrak{c}$, let $\mathcal{J}$ be an independent family of size $\mathfrak{c}$ in $\mathcal{P}(\omega) /$ fin and let $f: \mathcal{J} \rightarrow \mathbb{P}$ be any surjection. Now, according to the observations made above there is a homomorphism $F$ : $\mathcal{P}(\omega) /$ fin $\rightarrow R O(\mathbb{P})$ extending $f$. Let $\mathcal{I}=F^{-1}(\mathbf{0})$. Then $\mathbb{B}=r n g(F)$ is a dense subalgebra of $R O(\mathbb{P})$ containing $\mathbb{P}$, and $\mathbb{B}$ is isomorphic to $\mathcal{P}(\omega) / \mathcal{I}$.

In fact, this proof has the following immediate corollary.
Corollary 1.2. For every complete Boolean algebra $\mathbb{B}$ of size at most $\mathfrak{c}$ there is an ideal $\mathcal{I}$ on $\omega$ such that the algebra $\mathcal{P}(\omega) / \mathcal{I}$ is isomorphic to $\mathbb{B}$.

Proof. Apply the previous proof to $\mathbb{P}=\mathbb{B}$.
Assuming the Continuum Hypothesis, Louveau [34] completely characterized which Boolean algebras are isomorphic to algebras of the type $\mathcal{P}(\omega) / \mathcal{I}$. Recall that a Boolean algebra $\mathbb{B}$ is weakly $\sigma$-complete if it contains no $(\omega, \omega)$-gaps, i.e if given two countable subsets $A, B$ of $\mathbb{B}$ such that $a \wedge b=\mathbf{0}$ for every $a \in A$ and $b \in B$, there is a $c \in \mathbb{B}$ such that $C$ separates $A$ and $B$, that is, $a \leq c$ for all $a \in A$ and $c \wedge b=\mathbf{0}$ for all $b \in B$. It is easy to see that every $\mathcal{P}(\omega) / \mathcal{I}$ is weakly $\sigma$-distributive. On the other hand, Louveau also proved the following result.

Theorem 1.3 ([34] Assuming CH). For every weakly $\sigma$-complete Boolean algebra $\mathbb{B}$ of size at most $\mathfrak{c}$ there is an ideal $\mathcal{I}$ on $\omega$ such that the algebra $\mathcal{P}(\omega) / \mathcal{I}$ is isomorphic to $\mathbb{B}$.

This theorem is neither true in ZFC [13] nor characterizes CH [15].
The situation is quite different if we restrict our attention to definable ideals and their quotients. The first notable difference is that no c.c.c. forcing can be represented as $\mathcal{P}(\omega) / \mathcal{I}$ for a definable ideal $\mathcal{I}$. We prove this and that no such quotient can be complete from the following theorem, which characterizes ideals with the Baire property.

Theorem 1.4 (Jalali-Naini-Talagrand, see [1]). An ideal I satisfes the Baire Property if and only if there is a partition $\left\{I_{k}: k \in \omega\right\}$ of $\omega$ in finite pieces, such that for every infinite $A \subseteq \omega, \bigcup_{k \in A} I_{k}$ is $\mathcal{I}$-positive.

Hence, by taking $\left\{A_{\alpha}: \alpha<\mathfrak{c}\right\}$ an almost disjoint family of subsets of $\omega, \mathcal{A}=\left\{\left[\bigcup_{k \in A_{\alpha}} I_{k}\right]: \alpha<\mathfrak{c}\right\}$ is an antichain in $\mathcal{P}(\omega) / \mathcal{I}$ of size $\mathfrak{c}$. Moreover, by considering the family $F=\{\sup C: C \subseteq \mathcal{A}\}$ we get a subset of the completion of $\mathcal{P}(\omega) / \mathcal{I}$ of size $2^{\text {c }}$. Hence $\mathcal{P}(\omega) / \mathcal{I}$ cannot contain $F$ since its size is $\mathfrak{c}$.

Farah asked in [16] if there are infinitely many analytic P-ideals (arbitrary analytic, definable ideals) whose quotients are provably in ZFC pairwise non-isomorphic. Oliver [42] proved that there are c-many pairwise non-isomorphic quotients on Borel ideals, however, his method does not seems to produce quotients which are distinct as forcing notions. On the other hand, Steprāns [48], and Hrušák and Zapletal [30] have shown that there are many distinct, and even forcing nonequivalent, definable quotients $\mathcal{P}(\omega) / \mathcal{I}$. However, most of these are co-analytic or more complex. This prompted the following question:

Question 1.5 ([25]). Are there uncountably many forcing non-equivalent quotients $\mathcal{P}(\omega) / \mathcal{I}$ for Borel ideals $\mathcal{I}$ ?

In fact, only a handful of quotients over Borel ideals have been studied as forcing notions:

- $\mathcal{P}(\omega) /$ fin is the prototypical example, as seen in [4, 3].
- If $\mathcal{I}$ is $F_{\sigma}$, then $\mathcal{P}(\omega) / \mathcal{I}$ is $\sigma$-closed by a theorem of JustKrawczyk [31]. In fact, under $\mathrm{CH}, \mathcal{P}(\omega) / \mathcal{I}$ is isomorphic to $\mathcal{P}(\omega) /$ fin for every $F_{\sigma}$ ideal $\mathcal{I}$. On the other hand, this consistently fails, see [9].
- The forcing $\mathcal{P}(\omega \times \omega) /$ fin $\times$ fin was considered in [49], [8], [29] and [24], and it was shown in [24], that even though it is also $\sigma$-closed, it is consistently not forcing equivalent with $\mathcal{P}(\omega) /$ fin.
- The quotient $\mathcal{P}(\mathbb{Q}) /$ nwd was considered in $[5],[30],[19]$ and [10], and it is known to be forcing equivalent to $\mathbb{C} * \mathbb{P}$, where $\mathbb{C}$ is the Cohen forcing and $\dot{\mathbb{P}}$ is a $\mathbb{C}$-name for a $\sigma$-closed forcing.
- Kurilić and Todorčević in [37] studied the quotient $\mathcal{P}(\mathbb{Q}) / L$ scatt, where $L$-scatt is the co-analytic ideal of scattered linearly ordered subsets of the rationals $\mathbb{Q}$, and showed that it is forcing equivalent to $\mathbb{S} * \dot{\mathbb{P}}$, where $\mathbb{S}$ is the Sacks forcing and $\dot{\mathbb{P}}$ is an $\mathbb{S}$-name for a $\sigma$-closed forcing.
- This ideal is not to be confused with $T$-scatt, the co-analytic ideal of topologically scattered subsets of the rationals, i.e. the subsets of $\mathbb{Q}$ all of whose subsets have an isolated point. The quotient $\mathcal{P}(\mathbb{Q}) / T$-scatt is, in fact, forcing equivalent with $\mathbb{M}$, Miller's rational perfect set forcing [41]. By Lemma 2.4 in [11], there is a dense embedding from $\mathbb{M}=\{A \subseteq \mathbb{Q}$ : $A$ is crowded and closed $\}$ in $\mathcal{P}(\mathbb{Q}) / T$-scatt.
- Three quotients over analytic P-ideals have been identified:
a) [17] $\mathcal{P}(\omega) / \mathcal{Z} \simeq \mathcal{P}(\omega) /$ fin $* \mathbb{B}(\mathfrak{c})$, where $\mathcal{Z}$ is the ideal of asymptotic density zero subsets of $\omega$,

$$
\mathcal{Z}=\left\{A \subseteq \omega: \lim _{n \rightarrow \infty} \frac{|A \cap n|}{n}=0\right\}
$$

and $\mathbb{B}(\kappa)$ denotes the measure algebra for adding $\kappa$-many random reals,
b) $[30] \mathcal{P}(\omega) / \operatorname{tr}(\mathcal{N}) \simeq \mathbb{B}(\omega) * \dot{\mathbb{P}}$ for some forcing $\mathbb{P}$ not adding reals, and
c) [30] the non-proper $\mathcal{P}(\omega) / \mathcal{J}$, with $\mathcal{J}$ an analytic P-ideal, described in Example 3.12 of [30].
We will say more about non-proper quotient forcings in Section 4.

- Finally, the Mathias-Prikry forcing for destroying an $F_{\sigma}$ P-ideal gives rise to a Borel quotient (see [30]).
Here, we continue the study of forcings of the type $\mathcal{P}(\omega) / \mathcal{I}$. In particular, we provide answers to questions from [29] and [30].


## 2. $\omega$-Distributive Quotients

In this section we answer a question of Hrušák and Verner from [29], by showing that every definable quotient not adding sequences of ordinals has a $\sigma$-closed dense subset. This puts another restriction on the class of forcings which can be represented as definable quotients as, for instance, Baumgartner's forcing shooting club through a stationary set [2] cannot be represented in this way.

We say that a partially ordered set $\mathbb{P}$ is $\omega$-distributive if for every sequence $\left\{U_{n}: n<\omega\right\}$ of dense open sets in $\mathbb{P}, \bigcap_{n} U_{n}$ is dense. We say that $\mathbb{P}$ is $\sigma$-closed if for every decreasing sequence $p_{n} \in \mathbb{P}$, there exists $p \in \mathbb{P}$ such that $p \leq p_{n}$ for all $n$. We say that $\mathbb{P}$ is separative if for every $p, q \in \mathbb{P}$, such that $p \not \leq q$, there is $r \leq p$ incompatible with $q$.

The following lemmas hold for $\mathbb{P}=\mathcal{P}(\omega) / \mathcal{I}$, with $\mathcal{I}$ a Borel ideal.
Lemma 2.1. Let $\mathbb{P}$ be a separative ordered set with size at most $\mathfrak{c}$. Then the following conditions are equivalent.
(1) $\mathbb{P}$ is $\omega$-distributive
(2) $\mathbb{P}$ does not add sequences of ordinals
(3) $\mathbb{P}$ does not add reals
(4) $\mathbb{P}$ does not add sequences of reals

Proof. To see that (1) implies (2), let $\tau$ be a $\mathbb{P}$-name for a sequence of ordinals, and for each $n$, let $U_{n}$ be an open dense set of conditions deciding $\tau(n)$. By our assumption, $\bigcap_{n} U_{n}$ is dense, then for every condition $p$ there are $q \leq p$, and a sequence of ordinals $f$ in $V$ such that $q \Vdash \tau=f$.

Clearly, (2) implies (3).
By a suitable (definable) bijection, sequences of reals are codified by reals, which proves that (3) implies (4).

We now prove that if $\mathbb{P}$ is not $\omega$-distributive, then $\mathbb{P}$ adds a new real. Let $\left\{U_{n}: n<\omega\right\}$ be a sequence of dense open sets in $\mathbb{P}$, such that $\bigcap_{n} U_{n}$ is not dense. Take $r \in \mathbb{P}$ such that $\{s \in \mathbb{P}: s \leq r\} \cap \bigcap_{n} U_{n}=\emptyset$. For each $n$, take a maximal antichain $A_{n}$ of conditions in $U_{n}$ below $r$. Let $G$ be a $\mathbb{P}$-generic filter with $r \in G$. In $V[G]$, define $F=\{(n, p): p \in$ $\left.G \cap A_{n}\right\}$. Clearly $r \Vdash F \in(\mathbb{P})^{\omega}$. Note that $F$ can be seen as a sequence of reals. Also, for all $f \in(\mathbb{P})^{\omega} \cap V, r \Vdash F \neq f$, because otherwise, if some $s \leq r$ forces that $F=f$, then for all $n$, by separativity, there is $p_{n} \in A_{n}$ (namely $p_{n}=f(n)$ ) such that $s \leq p_{n}$, and consequently $s \in U_{n}$ for all $n$, which is a contradiction.

In order to investigate the relation between being $\omega$-distributive and containing a dense $\sigma$-closed set, the next lemma shows one implication is easy.

Lemma 2.2. If there exists a $\sigma$-closed dense set $D \subseteq \mathbb{P}$, then $\mathbb{P}$ is $\omega$-distributive.
Proof. It follows from a classical Baire-category argument. Let $\left\{U_{n}\right.$ : $n<\omega\}$ be a family of open dense subsets of $\mathbb{P}$, and $A \in \mathbb{P}$. Then, taking $A \geq A_{0} \geq D_{0} \geq A_{1} \geq D_{1} \ldots$, with $A_{n} \in U_{n}$ and $D_{n} \in D$, by $\sigma$-closedness, there is $C \in D$ such that $C \leq D_{n}$ for all $n$. Hence, $C \leq A$ and $C \in \bigcap U_{n}$.

To obtain the implication in the other direction, we need to work a bit more.

Definition 2.3 ([3]). Let $\mathbb{P}$ be a partially ordered set. We say that $\mathbb{P}$ has the Base Tree property (in short BT-property) if there is a dense subset $D$ of $P$ such that

- $D$ is atomless, i.e. for every $d \in D$ there are incompatible $d_{1}, d_{2} \in D$ below $d$,
- $D$ is $\sigma$-closed, and
- $|D| \leq \mathfrak{c}$.

The following lemma relaxes conditions for a partially ordered set to have the BT-property.

Lemma 2.4. If $\mathbb{P}$ is an atomless partially ordered set such that
(1) $\mathbb{P}$ contains a dense subset $D$ with $|D| \leq \mathfrak{c}$, and
(2) $\mathbb{P}$ contains a dense $\sigma$-closed subset $E$
then $\mathbb{P}$ has the BT-property.
Proof. Let $\kappa$ be a big enough cardinal, and $M$ an elementary submodel of $H(\kappa)$ such that
(1) $\mathbb{P}, D, E$ are in $M$,
(2) $M^{\omega} \subseteq M$,
(3) $|M|=\mathfrak{c}$, and
(4) $D \subseteq M$.

Let us define $R=M \cap E$. We will prove that $R$ is the dense set that we are looking for. By (3), $|R| \leq \mathfrak{c}$. For a given $p \in \mathbb{P}$, take $d \in D$ with $q \leq p$. By (4), $q \in M$, and since $M$ is an elementary submodel of $H(\kappa)$, there is $r \in R$ such that $r \leq q$, proving that $R$ is dense. Since $E$ is $\sigma$-closed, by (2) $R$ is $\sigma$-closed. Finally, $R$ is atomless because $\mathbb{P}$ is.

Corollary 2.2 in [3] claims that a partially ordered set $\mathbb{P}$ has the BT-property if and only if its Boolean completion $R O(\mathbb{P})$ has it. We now change our focus to completions of quotients of type $\mathcal{P}(\omega) / \mathcal{I}$. It is well known that the ordered sets $\mathcal{P}(\omega) / \mathcal{I}, R O(\mathcal{P}(\omega) / \mathcal{I})$ (the Boolean completion of $\mathcal{P}(\omega) / \mathcal{I})$, and $\mathcal{I}^{+}=\mathcal{P}(\omega) \backslash \mathcal{I}$ ordered by the $\mathcal{I}$-almost inclusion defined as

$$
A \subseteq_{\mathcal{I}} B \text { if and only if } A \backslash B \in \mathcal{I}
$$

are forcing-equivalent. As usual, $\subseteq^{*}$ denotes the relation $\subseteq_{\text {fin }}$. We will show that under large cardinal assumptions, $\mathcal{P}(\omega) / \mathcal{I}$ has the BTproperty, if $\mathcal{P}(\omega) / \mathcal{I}$ is $\omega$-distributive. For this, we consider the BanachMazur game played on a partially ordered set $\mathcal{G}(\mathbb{P})$ (see [50]) defined as
follows. At step $n$, players Empty and Non-empty choose (respectively) $p_{n}$ and $q_{n}$ in $\mathbb{P}$ such that $p_{0} \geq q_{0} \geq p_{1} \geq q_{1} \geq \ldots$. Non-empty wins if there is $r \in \mathbb{P}$ such that $r \leq q_{n}$ for all $n$. Recall the following result from [50].

Theorem 2.5 (Veličković). Let $\mathbb{B}$ be a complete Boolean algebra containing a dense subset $D$ with $|D| \leq \mathfrak{c}$. If Non-empty has a winning strategy in $\mathcal{G}(\mathbb{B})$, then $\mathbb{B}$ has a dense $\sigma$-closed subset.

Lemma 2.6. If $\mathcal{P}(\omega) / \mathcal{I}$ is $\omega$-distributive, then Empty does not have a winning strategy in $\mathcal{G}(R O(\mathcal{P}(\omega) / \mathcal{I}))$.

Proof. Let us assume that Empty has a winning strategy $\sigma$ contained in $(\mathbb{P}(\mathcal{P}(\omega) / \mathcal{I}))^{<\omega}$. We may assume that for all $t \in \sigma$ if $|t|$ is even, $t \frown p \in \sigma$, and $t \frown q \in \sigma$, then $p=q$; and if $|t|$ is odd, then $t \frown p \in \sigma$, for all $p \leq t(|t|-1)$. Let us denote $p_{0}=\sigma(\emptyset)$. Note that for all $n$, the family

$$
U_{n}=\left\{p \in \mathcal{P}(\omega) / \mathcal{I}:\left(\exists t \in \sigma \cap(\mathcal{P}(\omega) / \mathcal{I})^{2 n+1}\right)(t \frown p \in \sigma)\right\}
$$

is open and dense below $p_{0}$ (or below a $p_{0}^{\prime} \leq p_{0}$ in $\mathcal{P}(\omega) / \mathcal{I}$, if the reader prefers). If $p \in \bigcap_{n} U_{n}$, then we can identify a branch $x$ in $\sigma$ such that $p \leq x(x \upharpoonright 2 n+1)$, contradicting that $\sigma$ is a winning strategy for Empty. Hence $\bigcap_{n} U_{n}=\emptyset$, and so, $\mathcal{P}(\omega) / \mathcal{I}$ is not $\omega$-distributive.

Note that we can obtain a winning strategy for some player in $\mathcal{G}(R O(\mathcal{P}(\omega) / \mathcal{I}))$ from a given winning strategy for the same player in $\mathcal{G}\left(\mathcal{I}^{+}\right)$, and viceversa. Moreover, $\mathcal{G}\left(\mathcal{I}^{+}\right)$is equivalent to the game $\mathcal{C}\left(\mathcal{I}^{+}\right)$ defined as follows: At step $n$, players Empty and Non-empty choose (respectively) $A_{n}$ and $B_{n}$ in $\mathcal{I}^{+}$such that $A_{0} \supseteq B_{0} \supseteq A_{1} \supseteq B_{1} \supseteq \ldots$ Non-empty wins if there is $C \in \mathcal{I}^{+}$such that $C \subseteq_{\mathcal{I}} B_{n}$ for all $n$. We will use this game and the following theorem to prove that $\mathcal{G}(R O(\mathcal{P}(\omega) / \mathcal{I}))$ is determined when $\mathcal{I}$ is a Borel ideal.

Let $W$ be a subset of $U^{\omega}$. The game in $U$ with payoff set $W$, denoted by $\mathcal{C S}(W)$, is defined as follows: Players I and II alternately choose elements $a_{0}, b_{0}, a_{1}, b_{1}, \ldots$ of $U$, and Player I is declared the winner if and only if the sequence $\left(a_{0}, b_{0}, a_{1}, b_{1}, \ldots\right)$ belongs to $W$. Our game $\mathcal{C}\left(\mathcal{I}^{+}\right)$is an example of this type of game, and the following theorem establishes some conditions that render it determined.

Theorem 2.7 (Martin). (LC) Let $U$ be a set, $A \subseteq U^{\omega}$ be a Borel set, $X$ a Polish space, $f: A \rightarrow X$ a continuous function, and $B \subseteq X$ a universally Baire set. Then the game whose payoff set is $f^{-1}(B)$ is determined.

As usual, LC denotes a large cardinal hypothesis. This and other details can be consulted in Zapletal's book [51]. In our case, the payoff set will be co-analytic, and hence, it is a universally Baire set.

Lemma $2.8(\mathrm{LC})$. If $\mathcal{I}$ is a Borel ideal, then $\mathcal{G}(R O(\mathcal{P}(\omega) / \mathcal{I}))$ is determined.

Proof. We now verify that $\mathcal{C}\left(\mathcal{I}^{+}\right)$satisfies the hypothesis of Martin's theorem. Consider $U=\mathcal{I}^{+}$and define $A=\left\{C \in U^{\omega}:(\forall n) C_{n+1} \subseteq\right.$ $\left.C_{n}\right\}$. Hence, $A$ is a Borel set. Consider $X=(\mathcal{P}(\omega))^{\omega}$, which is a Polish space. The identity function from $A$ to $X$ is clearly continuous. Define $B=\left\{C \in X:\left(\exists D \in \mathcal{I}^{+}\right)(\forall n) D \subseteq_{\mathcal{I}} C(n)\right\} . B$ is an analytic subset of $X$ and $\mathcal{C}\left(\mathcal{I}^{+}\right)$is the game whose payoff set is $f^{-1}(X \backslash B)$. Note that $X \backslash B$ is co-analytic, and so is universally Baire. By Martin's theorem, $\mathcal{C}\left(\mathcal{I}^{+}\right)$is determined, and hence, $\mathcal{G}(R O(\mathcal{P}(\omega) / \mathcal{I}))$ is determined.

Theorem $2.9(\mathrm{LC})$. If $\mathcal{I}$ is a Borel ideal and $\mathcal{P}(\omega) / \mathcal{I}$ is $\omega$-distributive, then $\mathcal{P}(\omega) / \mathcal{I}$ contains a dense $\sigma$-closed set.

Proof. By Lemma 2.8 and Lemma 2.6, Non-empty has a winning strategy for $\mathcal{G}(R O(\mathcal{P}(\omega) / \mathcal{I}))$. By Theorem 2.5, $R O(\mathcal{P}(\omega) / \mathcal{I})$ contains a dense $\sigma$-closed subset. Note that $R O(\mathcal{P}(\omega) / \mathcal{I})$ is atomless and contains a dense subset of cardinality $\mathfrak{c}$, namely $\mathcal{P}(\omega) / \mathcal{I}$. By Lemma 2.4 and Corollary 2.2 in [3], $\mathcal{P}(\omega) / \mathcal{I}$ has the BT-property, in particular, $\mathcal{P}(\omega) / \mathcal{I}$ contains a dense $\sigma$-closed set.

The conditions listed for $\mathcal{I}$ in Theorem 2.1 are not equivalent to $\mathcal{I}$ being $\sigma$-closed. From a $\sigma$-closed $\mathcal{I}$ on $\omega$, we can construct an ideal $\mathcal{I}^{\omega}$ such that $\mathcal{P}(\omega \times \omega) / \mathcal{I}^{\omega}$ has a $\sigma$-closed dense subset, but is not $\sigma$-closed. We define $\mathcal{I}^{\omega}$ as follows. For all $A \subseteq \omega \times \omega$,
$A \in \mathcal{I}^{\omega}$ if and only if for every $n,\{m:\{(n, m) \in A\}\}$ belongs to $\mathcal{I}$.
For every $n, X_{n}=[n, \infty) \times \omega$ is $\mathcal{I}^{\omega}$-positive, and if for every $n$, $X \backslash X_{n} \in \mathcal{I}$, then $X \in \mathcal{I}^{\omega}$, which proves that the decreasing sequence $\left\{X_{n}: n \in \omega\right\}$ does not have an $\mathcal{I}^{\omega}$-positive lower bound. On the other hand, the family $\mathcal{D}=\bigcup_{n}\left\{X \in\left(\mathcal{I}^{\omega}\right)^{+}: X \subseteq\{n\} \times \omega\right\}$ is a dense $\sigma$-closed subset of $\left(\mathcal{I}^{\omega}\right)^{+}$.

## 3. Dichotomy for quotients over analytic P-ideals

We now deal with the important family of analytic P- ideals. Recall that $\mathcal{I}$ is a $P$-ideal if for every countable subset $\mathcal{C}$ of $\mathcal{I}$, there is $B \in \mathcal{I}$ such that $C \subseteq^{*} B$, for all $C \in \mathcal{C}$. Solecki [46] characterized the analytic P-ideals as the ideals of the form

$$
\mathcal{I}=\operatorname{Exh}(\varphi)=\left\{A \subseteq \omega: \lim _{n} \varphi(A \backslash n)=0\right\}
$$

where $\varphi$ is a lower semicontinuous submeasure (lscsm), i.e. a function from $\mathcal{P}(\omega)$ to $[0, \infty)$ satisfying that for all $A, B \subseteq \omega$,

- $\varphi(\emptyset)=0$,
- $\max \{\varphi(A), \varphi(B)\} \leq \varphi(A \cup B) \leq \varphi(A)+\varphi(B)$, and
- $\varphi(A)=\lim _{n} \varphi(A \cap n)$.

We say that a family $\mathcal{A} \subseteq \mathcal{I}^{+}$is a strong partition when $A \cap B=\emptyset$ for all $A \neq B \in \mathcal{A}$, and $I \in \mathcal{I}$ if and only if $I \cap A \in \mathcal{I}$, for all $A \in \mathcal{A}$. Strong partitions represent countable maximal antichains in $\mathcal{P}(\omega) / \mathcal{I}$.

An example of a strong partition for $\mathcal{Z}$ is the following: For $n \in \omega$, define $A_{n}=\left\{k: k \equiv 2^{n}-1\left(\bmod 2^{n+1}\right)\right\}$. Note that the density of $A_{n}$ is $2^{-n}$, and if $A$ is a set such that for all $n, A \cap A_{n} \in \mathcal{Z}$, the density of $A$ can be bounded by $\varepsilon$, for all $\varepsilon>0$, as follows. Let $n$ be such that $2^{-n+1}<\varepsilon$. Then, the density of $\bigcup_{k=n+1}^{\infty} A_{k}$ is $2^{-n}$, and for some big enough $N_{k}$, we know that the density of $\left(A \cap A_{k}\right) \backslash N_{k}$ is less than $2^{-n-k}$. Then, for $N$ sufficiently large, the density of $\left(A \cap \bigcup_{k=1}^{n} A_{k}\right) \backslash N$ is less than $2^{-n}$. Hence, the density of $A \backslash N$ is less than $\varepsilon$.

This example illustrates the general characterization of strong partitions on analytic P-ideals.

Theorem 3.1. If $\mathcal{I}=\operatorname{Exh}(\varphi)$ for some lscsm $\varphi$ and $P=\left\{A_{n}: n \in \omega\right\}$ is a partition of $\omega$ in $\mathcal{I}$-positive pieces, then $P$ is a strong partition if and only if for all $\varepsilon>0$ there are $N, M$ such that $\varphi\left(\bigcup_{n \geq N} A_{n} \backslash M\right)<\varepsilon$.
Proof. Let us prove that if for some fixed $\varepsilon, \varphi\left(\bigcup_{n \geq N} A_{n} \backslash M\right) \geq \varepsilon$, for all $N, M$, then $P$ is not a strong partition. We recursively define two increasing sequences $n_{k}$ and $m_{k}(k \in \omega)$ such that
(1) $m_{0}=0=n_{0}$,
(2) $\varphi\left(\left[m_{k}, m_{k+1}\right) \cap \bigcup_{j=n_{k}}^{\infty} A_{j}\right)>\frac{\varepsilon}{2}$, and
(3) $\varphi\left(\bigcup_{j=n_{k}}^{n_{k+1}-1} A_{j} \backslash m_{k}\right)>\frac{\varepsilon}{2}$.

For (2), suppose $n_{k}$ and $m_{k}$ are defined. Since $\varphi\left(\bigcup_{j=n_{k}}^{\infty} A_{j} \backslash m_{k}\right) \geq$ $\varepsilon$, by the lower semicontinuity of $\varphi$, there is $m_{k+1}>m_{k}$ such that $\varphi\left(\bigcup_{j=n_{k}}^{\infty} A_{j} \cap\left[m_{k}, m_{k+1}\right)\right)>\frac{\varepsilon}{2}$. For (3), let $n_{k+1}$ be the maximal $j>n_{k}$ such that $A_{j-1} \cap\left[m_{k}, m_{k+1}\right) \neq \emptyset$. Now we define $X_{k}=\bigcup_{j=n_{k}}^{n_{k+1}-1} A_{j} \cap$ [ $m_{k}, m_{k+1}$ ), and $X=\bigcup_{k} X_{k}$. Clearly, for all $k, \varphi\left(X_{k}\right) \geq \frac{\varepsilon}{2}$, and so $\varphi(X \backslash M)>\frac{\varepsilon}{2}$, for all $M$, proving that $X \in \mathcal{I}^{+}$. However, for all $m \in \omega$, $X \cap A_{m} \subseteq\left[m_{k}, m_{k+1}\right)$, for the unique $k$ such that $m_{k} \leq m<m_{k+1}$.

The argument for the other implication is a replica of the argument given in the previous example. Let $X \subseteq \omega$ be such that $X \cap A_{j} \in \mathcal{I}$ for all $j$, and let $\varepsilon>0$ be fixed. Take $N, M$ such that $\varphi\left(\bigcup_{n \geq N} A_{n} \backslash M\right)<\frac{\varepsilon}{2}$. Let $K \geq M$ be such that $\varphi\left(\bigcup_{j=0}^{N-1} A_{j} \backslash K\right)<\frac{\varepsilon}{2}$. Then, $\varphi(X \backslash K) \leq$ $\varphi\left(\bigcup_{j=0}^{N-1} A_{j} \backslash K\right)+\varphi\left(\bigcup_{n \geq N} A_{n} \backslash K\right)<\varepsilon$. Hence, $X \in \mathcal{I}$.

For a partial ordered set $\mathbb{P}, p \in \mathbb{P}$ and $A \subseteq \mathbb{P}$, we denote

$$
p \| A=\{q \in A: p \| q\}
$$

where $p \| q$ means that $p$ and $q$ are compatible, i. e. there is $r \in \mathbb{P}$ such that $r \leq p$ and $r \leq q$.

Definition 3.2. We say that $\mathbb{P}$ is $\left(\omega, \cdot, \omega_{1}\right)$-distributive if for every countable family $\mathcal{A}$ of maximal antichains in $\mathbb{P}$, there is a dense subset $B$ of $\mathbb{P}$ such that for all $p \in B$ and all $A \in \mathcal{A}$, the set $p \| A$ is countable.

It is clear that every proper forcing is $\left(\omega, \cdot, \omega_{1}\right)$-distributive.
Theorem 3.3. Let $\mathcal{I}$ be an analytic P-ideal. Then either $\mathcal{P}(\omega) / \mathcal{I}$ is $\omega^{\omega}$-bounding or it is not $\left(\omega, \cdot, \omega_{1}\right)$-distributive (and hence, it is not proper).

Proof. Let $\varphi$ be a $\operatorname{lscsm}$ such that $\mathcal{I}=\operatorname{Exh}(\varphi)$, and let us suppose that $\mathcal{P}(\omega) / \mathcal{I}$ is $\left(\omega, \cdot, \omega_{1}\right)$-distributive. Let $\dot{f}$ be a name for a real number in $\omega^{\omega}$. For $n$, let $\mathcal{A}_{n}$ be a maximal antichain deciding $\dot{f}(n)$. Let us deal with $\mathcal{I}^{+}$instead of $\mathcal{P}(\omega) / \mathcal{I}$, which is also $\left(\omega, \cdot, \omega_{1}\right)$-distributive. Taking $X \in \mathcal{I}^{+}$as the $B$ in the definition of $\left(\omega, \cdot, \omega_{1}\right)$-distributivity, we see that the restrictions of $\mathcal{A}_{n}$ in $X$ are strong partitions of $X$. Let us denote by $\|\varphi \upharpoonright Z\|=\lim _{k \rightarrow \infty} \varphi(Z \backslash k)$. Let $r=\|\varphi \upharpoonright X\|$, and for each $n$, let us recursively define $\mathcal{B}_{n} \in\left[\mathcal{A}_{n} \upharpoonright X\right]^{<\omega}, a_{n} \in[\omega]^{<\omega}$, and an auxiliary $C_{n}$, as follows:
(1) $\mathcal{B}_{0} \in\left[\mathcal{A}_{0} \upharpoonright X\right]^{<\omega}$ such that for $C_{0}=\bigcup \mathcal{B}_{0},\left\|\varphi \upharpoonright C_{0}\right\|>\frac{r}{2}$,
(2) $a_{0} \in\left[C_{0}\right]^{<\omega}$, with $\varphi\left(a_{0}\right) \geq \frac{r}{2}$,
(3) $\mathcal{B}_{n+1} \in\left[\mathcal{A}_{n+1} \upharpoonright X\right]^{<\omega}$ such that $C_{n+1}=C_{n} \cap \bigcup \mathcal{B}_{n+1}$ satisfies $\left\|\varphi \upharpoonright C_{n+1}\right\|>\frac{r}{2}$ and $\bigcup_{k=0}^{n} a_{k} \subseteq C_{n+1}$, and finally
(4) $a_{n+1} \in\left[C_{n+1}\right]^{<\omega}$ with $\varphi\left(a_{n+1}\right)>\frac{r}{2}$, and $\min \left(a_{n+1}\right)>\max \left(a_{n}\right)$.

Let us assume that this construction is possible, and define $Y=$ $\bigcup_{k} a_{k}$. By (4), $Y \in \mathcal{I}^{+}$. Note that $\mathcal{B}_{n}$ is a finite maximal antichain below $Y$ of conditions deciding $\dot{f}(n)$, for all $n$. Hence, $Y$ forces that $\dot{f}$ is dominated by a ground-model function.

We now verify our construction. Since $\mathcal{A}_{0} \upharpoonright X$ is a strong partition of $X$, by 3.1, for $\varepsilon=\frac{r}{4}$, there are a finite subset $\mathcal{B}_{0}$ of $\mathcal{A}_{0}$, and an $N \in \omega$ such that $\varphi\left(\bigcup\left\{A \in \mathcal{A}_{0}: A \notin \mathcal{B}_{0}\right\} \cap X \backslash N\right)<\varepsilon$. Then, $\left\|\varphi \upharpoonright C_{0}\right\|>\frac{r}{2}$. By lower semicontinuity, $C_{0}$ contains some finite subset $a_{0}$ with $\varphi\left(a_{0}\right)>\frac{r}{2}$. An analogous argument shows that we can choose a finite subset $\mathcal{B}_{n+1}$ of $\mathcal{A}_{n+1} \upharpoonright X$ such that $\left\|\varphi \upharpoonright C_{n+1}\right\|>\frac{r}{2}$. We may add finitely-many pieces from $\mathcal{A}_{n+1} \upharpoonright X$, if necessary, in order to achieve $\bigcup_{k=1}^{n} a_{k} \subseteq C_{n+1}$.

One would conjecture that if $\mathcal{P}(\omega) / \mathcal{I}$ is not proper, then it is equivalent to the collapse forcing $R O\left({ }^{\omega} \mathfrak{c}\right)$, at least in a positive restriction. For analytic P-ideals, we confirm this fact under CH.

Recall that an antichain $\mathcal{A}$ is a refinement of an antichain $\mathcal{B}$ if every $A \in \mathcal{A}$ is contained in some $B \in \mathcal{B}$.

Definition 3.4. We say that an antichain $\mathcal{A}$ of $\mathcal{P}(\omega) / \mathcal{I}$ has true cardinality $\mathfrak{c}$ if for every $\mathcal{I}$-positive set $X$, the family $\left\{[A]: A \cap X \in \mathcal{I}^{+}\right\}$ is countable or has cardinality $\mathfrak{c}$. An ideal $\mathcal{I}$ has the property $R P(\mathcal{I})$ if every maximal antichain $\mathcal{B}$ in $\mathcal{P}(\omega) / \mathcal{I}$ has a refinement $\mathcal{A}$ which is a maximal antichain and has true cardinality $\mathfrak{c}$.

Recall the following theorem that compares a partially ordered set with the collapse forcing $\mathfrak{c}^{<\omega}$, which we will use in the next proof. See Theorem 14.17 in [33].
Theorem 3.5 (McAloon). Let $\mathbb{P}$ be a partially ordered set with $|\mathbb{P}| \leq \mathfrak{c}$. If there is a countable family $\mathcal{A}$ of maximal antichains of $\mathbb{P}$ such that for every $p \in \mathbb{P}$ there is $A \in \mathcal{A}$ such that $|p||A|=\mathfrak{c}$, then $\mathbb{P}$ is forcing equivalent to $\mathfrak{c}^{<\omega}$.

## Proposition 3.6. If $\mathcal{I}$ satisfies $R P(\mathcal{I})$, and $\mathcal{P}(\omega) / \mathcal{I}$ is not $\left(\omega, \cdot, \omega_{1}\right)$ -

 distributive, then there is $X \in \mathcal{I}^{+}$such that $\mathcal{P}(X) / \mathcal{I} \upharpoonright X$ is forcingequivalent to $\mathfrak{c}^{<\omega}$.Proof. Using the non $\left(\omega, \cdot, \omega_{1}\right)$-distributivity, we may choose a sequence $\left\{A_{n}: n<\omega\right\}$ of maximal antichains in $\mathcal{P}(\omega) / \mathcal{I}$, and an $\mathcal{I}$-positive set $X$ such that for every $\mathcal{I}$-positive $Y \subseteq_{\mathcal{I}} X$, there is $n$ such that $[Y] \| A_{n}$ is uncountable. By $R P(\mathcal{I})$, for each $n$ we can choose a maximal antichain $B_{n}$ having true cardinality $\mathfrak{c}$ and refining $A_{n}$. Hence, for all $Z \in \mathcal{P}(X) / \mathcal{I} \upharpoonright X$ there is $n$ such that $Z \| A_{n}$ is uncountable, and then $Z \| B_{n}$ is uncountable. Since $B_{n}$ has true cardinality $\mathfrak{c}$, we conclude that $|Z|\left|A_{n}\right|=\mathfrak{c}$. By McAloon's Theorem 3.5, $\mathcal{P}(X) / \mathcal{I} \upharpoonright X$ is forcingequivalent to $\mathfrak{c}^{<\omega}$.
Corollary $3.7(\mathrm{CH})$. Let $\mathcal{I}$ be an analytic $P$-ideal. Then either $\mathcal{P}(\omega) / \mathcal{I}$ is $\omega^{\omega}$-bounding or there is $X \in \mathcal{I}^{+}$such that $\mathcal{P}(X) / \mathcal{I} \upharpoonright X$ is forcingequivalent to the collapse forcing $\mathfrak{c}^{<\omega}$.
Proof. If follows directly from Theorem 3.3 and Proposition 3.6, and the trivial fact that under CH , every $\mathcal{I}$-MAD family is of true cardinality c.

## 4. Completely separable $\mathcal{I}$-MAD families

Clearly, now the main question is if $R P(\mathcal{I})$ is true for all analytic P-ideals $\mathcal{I}$, or even for all hereditarily meager. In this direction, we
adapt the notion of a completely separable MAD family ([14], [6], [28]), and a construction of such families due to Shelah [43] (also see [27]). Proposition 3.6 motivates us to study $R P(\mathcal{I})$ and complete separablilty in the general context of Borel ideals. This is interesting in itself, beyond the context of forcing.

By $\mathcal{I}(\mathcal{A})$ we denote the ideal generated by $\mathcal{I} \cup \mathcal{A}$, where $\mathcal{I}$ is an ideal and $\mathcal{A}$ is a family of (typically $\mathcal{I}$-positive) sets. We say that a family $\mathcal{A}$ of $\mathcal{I}$ positive sets is $\mathcal{I}$-almost disjoint (in short, $\mathcal{I}$-AD) if $A \cap B \in \mathcal{I}$ for all $A \neq B \in \mathcal{A}$. Note that if $\mathcal{A}$ is $\mathcal{I}$ - AD , then the family of equivalence classes of elements of $\mathcal{A}$ is an antichain in $\mathcal{P}(\omega) / \mathcal{I}$. We say that an $\mathcal{I}$ AD family $\mathcal{A}$ is an $\mathcal{I}$-MAD family if it is a maximal one. Let us recall that an interval partition of $\omega$ is a set $\left\{P_{n}: n<\omega\right\}$ of consecutive intervals of natural numbers.
Definition 4.1. Let $\mathcal{I}$ be an ideal. We say that an $\mathcal{I}$-MAD family is completely separable if for every $\mathcal{I}(\mathcal{A})$-positive set $X$, there is $A \in \mathcal{A}$ such that $A \subseteq X$.
Proposition 4.2. Let $\mathcal{I}$ be a hereditarily meager ideal and $\mathcal{A}$ an $\mathcal{I}-A D$ family. Then $\mathcal{I}(\mathcal{A})$ is hereditarily meager.

Proof. We first prove the case when $\mathcal{A}$ is an $\mathcal{I}$-MAD family. Let $X$ be an $\mathcal{I}(\mathcal{A})$-positive set. We will show that $\mathcal{I}(\mathcal{A}) \upharpoonright X$ satisfies Talagrand's characterization of meager ideals. Since $X$ is $\mathcal{I}(\mathcal{A})$-positive, there is a countable subfamily $\left\{A_{n}: n<\omega\right\}$ of $\mathcal{A}$ such that $X \cap A_{n} \in \mathcal{I}^{+}$, for all $n$. By Theorem 1.4, there are interval partitions $P^{n}=\left\{P_{m}^{n}: m<\omega\right\}$ of $A_{n}$ such that for every $R \subseteq X \cap A_{n}$, if $P_{m}^{n} \subseteq R$ for infinitely many $m \in \omega$, then $R$ is $\mathcal{I} \upharpoonright\left(X \cap A_{n}\right)$-positive. Here, we are considering that the interval partition $P^{n}$ of $X \cap A_{n}$, has the form $P_{m}^{n}=X \cap A_{n} \cap\left[k_{m}^{n}, k_{m+1}^{n}\right)$ for some increasing sequence $k_{m}^{n} \in \omega(m<\omega)$. Recursively, we define $k_{n}$ for $n<\omega$ as follows: Let $k_{0}=0$, and let $k_{n+1}>k_{n}$ be big enough so that for each $j \leq n$, there is $m_{j}$ such that $P_{m_{j}}^{j} \subseteq A_{j} \cap\left[k_{n}, k_{n+1}\right)$. Then, $P=\left\{X \cap\left[k_{n}, k_{n+1}\right): n<\omega\right\}$ is an interval partition of $X$, such that if $R \subseteq X$ contains infinitely many pieces of P , then for every $n, R$ contains infinitely many pieces of $P^{n}$, showing that $R \cap A_{n}$ is $\mathcal{I} \upharpoonright\left(X \cap A_{n}\right)$-positive, for every $n$. Hence, such $R$ is $\mathcal{I}(\mathcal{A})$-positive.

For the general case, we can extend $\mathcal{A} \upharpoonright X$ to an $\mathcal{I} \upharpoonright X$-MAD family $\mathcal{A}^{\prime}$ on $X$, and we may conclude by noting that $\mathcal{I}(\mathcal{A}) \upharpoonright X \subseteq \mathcal{I} \upharpoonright X\left(\mathcal{A}^{\prime}\right)$, and $\mathcal{I} \upharpoonright X\left(\mathcal{A}^{\prime}\right)$ is meager.
Definition 4.3. Let $\mathcal{S}$ be a set of infinite subsets of $\omega$. We say that $\mathcal{S}$ is a block-splitting family if for every interval partition $\left\{P_{n}: n<\omega\right\}$, there exists $S \in \mathcal{S}$ such that the sets $\left\{n: P_{n} \subseteq S\right\}$ and $\left\{n: P_{n} \cap S=\emptyset\right\}$ are infinite.

We say that an ideal $\mathcal{I}$ is a $P^{+}$-ideal if for every subseteq*-decreasing sequence $\left\{X_{n}: n<\omega\right\}$ of $\mathcal{I}$-positive sets, there is an $\mathcal{I}$-positive $X$ such that $X \subseteq^{*} X_{n}$ for all $n$.

Lemma 4.4. Let $\mathcal{I}$ be a hereditarily meager ideal, $\mathcal{S}$ a block-splitting family, $\mathcal{A}$ an $\mathcal{I}$ - $A D$ family and $X$ an $\mathcal{I}(\mathcal{A})$-positive set. There exists $S \in \mathcal{S}$ such that $X \cap S$ and $X \backslash S$ are $\mathcal{I}(\mathcal{A})$-positive.

Proof. Let us note that, if there is an $\mathcal{I}$-positive set $Y \subseteq X$ such that $\mathcal{A} \upharpoonright Y$ is not an $\mathcal{I} \upharpoonright Y$-MAD family, then there is a $W \subseteq Y$ such that $\mathcal{I}(\mathcal{A}) \upharpoonright W=\mathcal{I} \upharpoonright W$, and hence $\mathcal{I}(\mathcal{A}) \upharpoonright W$ is a meager ideal. On the other hand, by 4.2 , if $\mathcal{A} \upharpoonright X$ is an $\mathcal{I}$-MAD family, then $\mathcal{I}(\mathcal{A}) \upharpoonright X$ is a meager ideal. Hence, without loss of generality, we will assume that $\mathcal{I}(\mathcal{A}) \upharpoonright X$ is a meager ideal. By 1.4, there is an interval partition $\left\{P_{n}: n<\omega\right\}$ of $X$ such that for every $W \subseteq X$, if $P_{n} \subseteq W$ for infinitely many $n \in \omega$, then $W$ is $\mathcal{I}(\mathcal{A}) \upharpoonright X$-positive. Since $\mathcal{S}$ is a block-splitting family, there is $S \in \mathcal{S}$ such that the sets $\left\{n: P_{n} \subseteq S\right\}$ and $\left\{n: P_{n} \cap S=\emptyset\right\}$ are infinite, which proves that $S$ and $X \backslash S$ are $\mathcal{I}(\mathcal{A}) \upharpoonright X$-positive sets.

Lemma 4.5. Let $\mathcal{I}$ be a hereditarily meager $P^{+}$-ideal, and $\mathcal{A}$ an $\mathcal{I}-A D$ family. Then $\mathcal{I}(\mathcal{A})$ is a $P^{+}$-ideal.

Proof. Let $\left\{X_{n}: n<\omega\right\}$ be a decreasing sequence of $\mathcal{I}(\mathcal{A})$-positive sets. If there is an $\mathcal{I}$-positive pseudointersection $B$ of $\left\{X_{n}: n<\omega\right\}$ such that $B \cap A \in \mathcal{I}$ for all $A \in \mathcal{A}$, then $B$ is an $\mathcal{I}(\mathcal{A})$-positive pseudointersection of $\left\{X_{n}: n<\omega\right\}$.

Let us assume that for every $\mathcal{I}$-positive pseudointersection $B$ of $\left\{X_{n}\right.$ : $n<\omega\}$, there is $A \in \mathcal{A}$ such that $B \cap A \in \mathcal{I}^{+}$. We will choose sequences of sets $A_{n}, B_{n}$ and $C_{n}$ as follows. $B_{0}$ is an $\mathcal{I}$-positive pseudointersection of $\left\{X_{n}: n \in \omega\right\}, A_{n} \in \mathcal{A}$ is such that $A_{n} \neq A_{k}$ for all $k<n$ and $C_{n}:=A_{n} \cap B_{n}$ is $\mathcal{I}$-positive, and $B_{n+1}$ an $\mathcal{I}$-positive pseudointersection of $\left\{X_{k} \backslash \bigcup_{j \leq n} A_{j}: k>n\right\}$ contained in $X_{n}$. This construction works since $X_{n} \backslash \bigcup_{j<n} A_{j}$ is $\mathcal{I}$-positive, and so, for each $n$, there is $A_{n} \in \mathcal{A}$ such that $A_{n} \neq A_{k}$ for all $k<n$, and $A_{n} \cap X_{n} \in \mathcal{I}^{+}$. Hence, $B=\bigcup B_{n}$ is an $\mathcal{I}(\mathcal{A})$-positive pseudointersection of $\left\{X_{n}: n<\omega\right\}$.

Lemma 4.6. Let $\mathcal{I}$ be a hereditarily meager ideal. If $\mathcal{A}$ is a completely separable $\mathcal{I}$-MAD family, then for every $\mathcal{I}(\mathcal{A})$-positive set $X$, the set $\{A \in \mathcal{A}: A \subseteq X\}$ has cardinality $\mathfrak{c}$.

Proof. Since $\mathcal{I}(\mathcal{A})$ is hereditarily meager, there is an interval partition $\left\{P_{n}: n<\omega\right\}$ of $X$ such that for every $x \in[\omega]^{\omega}, \bigcup_{n \in x} P_{n}$ is an $\mathcal{I}(\mathcal{A})$ positive set. Let $t$ be a bijection from $2^{<\omega}$ onto $\omega$, and define $X_{y}=$
$\bigcup_{n} P_{t(y \mid n)}$, for all $y \in 2^{\omega}$. Then, the family $\left\{X_{y}: y \in 2^{\omega}\right\}$ is an ADfamily of $\mathcal{I}(\mathcal{A})$-positive sets, each of them containing a set $A_{y}$ from $\mathcal{A}$, by the complete separability of $\mathcal{A}$. It is clear that $A_{y} \neq A_{w}$, for all $y \neq w \in 2^{\omega}$. Hence, $X$ contains at least (and also at most) $\mathfrak{c}$ sets from $\mathcal{A}$.

Recall that the block splitting number $\mathfrak{b s}$ is the minimal size of a block spiltting family. By Kamburelis and Wȩglorz [32], it is known that $\mathfrak{b s}=\max \{\mathfrak{b}, \mathfrak{s}\}$.

Definition 4.7. Let $\mathcal{I}$ be an ideal. We denote the minimal size of an $\mathcal{I}$-MAD family by $\mathfrak{a}(\mathcal{I})$.

Proposition 4.8. Let $\mathcal{I}$ be a hereditarily meager $P^{+}$-ideal. If $\mathfrak{b s} \leq$ $\mathfrak{a}(\mathcal{I})$, then there is a completely separable $\mathcal{I}$-MAD family.

Remark 4.9. By a result of Farkas and Soukup [20], if $\mathcal{I}$ is an analytic $P$-ideal, then $\mathfrak{b} \leq \mathfrak{a}(\mathcal{I})$. Hence, in this case, the hypothesis is reduced to $\mathfrak{s} \leq \mathfrak{a}(\mathcal{I})$, and it is fulfilled whenever $\mathfrak{s} \leq \mathfrak{b}$.

Proof. Fix an enumerated block-splitting family $\mathcal{S}=\left\{S_{\alpha}: \alpha<\mathfrak{b} \mathfrak{s}\right\}$ of minimal size. For a given $\mathcal{I}$-AD family $\mathcal{A}$ and an $\mathcal{I}(\mathcal{A})$-positive set $X$, by 4.4, there is a minimal $\alpha<\mathfrak{b s}$ such that $X \cap S_{\alpha}$ and $X \backslash S_{\alpha}$ are $\mathcal{I}(\mathcal{A})$-positive. Hence, for such $\mathcal{A}, X$ and $\alpha$ we can define a sequence $\tau_{X}^{\mathcal{A}}$ in $2^{\alpha}$ such that $\tau_{X}^{\mathcal{A}}(\beta)=j$ if and only if $X \cap S_{\beta}^{1-j} \in \mathcal{I}(\mathcal{A})$. Note that if $Y$ is an $\mathcal{I}(\mathcal{A})$-positive subset of $X$, then $\tau_{Y}^{\mathcal{A}}$ extends $\tau_{X}^{\mathcal{A}}$. Fix an enumeration $\left\{X_{\alpha}: \alpha<\mathfrak{c}\right\}$ of $[\omega]^{\omega}$. Recursively, we construct two sequences $\mathcal{A}=\left\{A_{\alpha}: \alpha \in \mathfrak{c}\right\} \subseteq[\omega]^{\omega}$ and $\left\{\sigma_{\alpha}: \alpha \in \mathfrak{c}\right\} \subseteq 2^{<\mathfrak{b s}}$ such that for all $\alpha$,
(1) $\mathcal{A}_{\alpha}=\left\{A_{\beta}: \beta<\alpha\right\}$ is an $\mathcal{I}$-AD family,
(2) $\sigma_{\alpha} \nsubseteq \sigma_{\beta}$, for all $\beta<\alpha$,
(3) if $X_{\alpha}$ is $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$-positive then $A_{\alpha} \subseteq X_{\alpha}$, and
(4) $A_{\xi} \subseteq_{\mathcal{I}} S_{\xi}^{\sigma_{\alpha}(\xi)}$, for all $\xi<\operatorname{dom}\left(\sigma_{\alpha}\right)$.

It is clear that if the construction works, then $\mathcal{A}$ is a completely separable $\mathcal{I}$-MAD family. Let us assume that $\mathcal{A}_{\alpha}$ and $\sigma_{\beta}(\beta<\alpha)$ were already constructed, and also assume that $X_{\alpha}$ is $\mathcal{I}(\mathcal{A})$-positive (if not, take $\omega$ in its place). We recursively construct a family $\left\{X_{s}: s \in 2^{<\omega}\right\}$ of $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$-positive sets, a family $\left\{\eta_{s}: s \in 2^{<\omega}\right\}$ of sequences in $2^{<b s}$, with $\operatorname{dom}\left(\eta_{s}\right)=\alpha_{s}$ satisfying
(1) $X_{\emptyset}=X_{\alpha}$,
(2) $\eta_{s}=\tau_{X_{s}}^{\mathcal{A}_{\alpha}}$, and
(3) $X_{s \frown 0}=X_{s} \cap S_{\alpha_{s}}$ and $X_{s \frown 1}=X_{s} \backslash S_{\alpha_{s}}$.

Let us note that since $\alpha_{s}=\operatorname{dom}\left(\tau_{X_{s}}^{\mathcal{A}_{\alpha}}\right)$, we have that $S_{\alpha_{s}} \cap X_{s}$ and $X_{s} \backslash S_{\alpha_{s}}$ are $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$-positive. Moreover, if $t \subseteq s$ then $\eta_{t} \subseteq \eta_{s}$ and $X_{s} \subseteq$ $X_{t}$; and if $s$ and $t$ are incompatible then $\eta_{s}$ and $\eta_{t}$ are incompatible. For every $f \in 2^{\omega}$, let us define $\eta_{f}=\bigcup_{n} \eta_{f \backslash n}$. Since $\mathfrak{b s}$ has uncountable cofinality, $\eta_{f}$ is in $2^{<\mathfrak{b s}}$, and moreover, if $f \neq g$, then $\eta_{f}$ and $\eta_{g}$ are incompatible. Since $\alpha<\mathfrak{c}$, there is $f \in 2^{\omega}$ such that there is no $\beta<\alpha$ such that $\eta_{f} \subseteq \sigma_{\beta}$. The sequence $\left\{X_{f \upharpoonright n}: n<\omega\right\}$ is a decreasing sequence of $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$-positive sets. By 4.5 , there is an $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$-positive set $Y$ such that $Y \subseteq^{*} X_{f \upharpoonright n}$ for all $n$. That is, for all $n, Y \backslash X_{f \mid n} \in$ fin, consequently, for all $\xi \in \operatorname{dom}\left(\eta_{f}\right), Y \cap S_{\xi}^{1-\eta_{f}(\xi)} \in \mathcal{I}\left(\mathcal{A}_{\alpha}\right)$. This means that for all $\xi \in \operatorname{dom}\left(\eta_{f}\right)$, there are a finite subset $F_{\xi}$ of $\mathcal{A}_{\alpha}$ and $I_{\xi} \in \mathcal{I}$, such that $Y \cap S_{\xi}^{1-\eta_{f}(\xi)} \subseteq I_{\xi} \cup \bigcup F_{\xi}$. Let us define $\mathcal{D}=\left\{A_{\beta}: \sigma_{\beta} \subseteq\right.$ $\left.\eta_{f}\right\} \cup \bigcup_{\xi \in \operatorname{dom}\left(\eta_{f}\right)} F_{\xi}$. Note that $\mathcal{D}$ is a subset of $\mathcal{A}_{\alpha}$ with less than $\mathfrak{b s s}^{\text {s }}$ elements, and since $\mathfrak{b s} \leq \mathfrak{a}(\mathcal{I}) \leq \mathfrak{a}(\mathcal{I} \upharpoonright Y), \mathcal{D}$ is not maximal. Let $A_{\alpha}$ be an infinite subset of $Y$, which is $\mathcal{I}$-AD with all sets in $\mathcal{D}$, and define $\sigma_{\alpha}=\eta_{f}$. It only remains to verify that $A_{\alpha}$ is $\mathcal{I}$ - AD with $A_{\beta}$ for all $\beta<\alpha$, but that is clearly the case when $A_{\beta} \in \mathcal{D}$. Suppose $A_{\beta} \notin \mathcal{D}$. In this case, $\sigma_{\beta} \nsubseteq \eta_{f}$. If $\xi=\Delta\left(\sigma_{\alpha}, \sigma_{\beta}\right)$, we have that $A_{\alpha} \subseteq_{\mathcal{I}} S_{\xi}^{\sigma_{\alpha}(\xi)}$ and $A_{\beta} \subseteq_{\mathcal{I}} S_{\xi}^{\sigma_{\beta}(\xi)}$. Since $\sigma_{\alpha}(\xi)=1-\sigma_{\beta}(\xi), A_{\alpha}$ and $A_{\beta}$ are $\mathcal{I}$-AD.

We will now prove that a completely separable $\mathcal{I}$-MAD family exists if some cardinal characteristic condition plus a certain pcf/guessing principle are satisfied.

Lemma 4.10. Let $\mathcal{I}$ be a hereditarily meager $P^{+}$-ideal. Let $C$ be an infinite subset of $\omega$ and $\left\{C_{n}: n<\omega\right\}$ a partition of $C$ in infinite pieces. There is a family $\mathcal{B}$ of $\mathfrak{b}$ infinite subsets of $C$ such that if $\mathcal{A}$ is an $\mathcal{I}$ - $A D$ family and $X$ is a subset of $C$ for which there are a family $\left\{A_{i}: i<\omega\right\} \subseteq \mathcal{A}$ and a sequence $\left\{n_{i}: i<\omega\right\}$ such that
(1) $X \cap A_{i} \in \mathcal{I}^{+}$,
(2) $A_{i} \subseteq C_{n_{i}}$, and
(3) $n_{i} \neq n_{j}$ if $i \neq j$,
then there is $B \in \mathcal{B}$ such that $B \cap X$ and $X \backslash B$ are $\mathcal{I}(\mathcal{A})$-positive.
Proof. Let $\mathcal{D}=\left\{f_{\alpha}: \alpha<\mathfrak{b}\right\}$ be an unbounded family of increasing functions defined on $C$. Also, let $\mathcal{P}=\left\{P_{\alpha}: \alpha<\mathfrak{b}\right\}$ be an unbounded family of interval partitions of $C$, i.e. for every interval partition $P$ of $C$, there is $\alpha<\mathfrak{b}$ such that for infinitely many $I$ in $P_{\alpha}$, there is $J$ in $P$ such that $J \subseteq I$. For every $\alpha$ and $\beta$ in $\mathfrak{b}$, let $g_{\alpha \beta}$ be given by $g_{\alpha \beta}(j)=f_{\alpha}(k)$, for the maximal $k \geq 0$ such that $[j, k] \subseteq I$, for some $I \in P_{\beta}$. For each pair $\alpha, \beta \in \mathfrak{b}$, define $B_{\alpha \beta}=\left\{m \in C: \forall j\left(m \in C_{j} \rightarrow m \leq g_{\alpha \beta}(j)\right)\right\}$. We
now define the family $\mathcal{B}=\left\{B_{\alpha \beta}: \alpha, \beta \in \mathfrak{b}\right\}$. Let $X,\left\{A_{i}: i<\omega\right\}$ and $\left\{n_{i}: i<\omega\right\}$ be as in the hypothesis. We may assume that $X=\bigcup_{i} A_{i}$.

We first deal with the case in which $\mathcal{A} \upharpoonright X$ is not an $\mathcal{I}$-MAD family. Let $Y$ be an $\mathcal{I}$-positive set such that $Y \cap A \in \mathcal{I}$, for all $A \in \mathcal{A}$. Note that $\mathcal{I}(\mathcal{A}) \upharpoonright Y=\mathcal{I} \upharpoonright Y$. Since $\mathcal{I}$ is a $P^{+}$-ideal, we can find a subset $D$ of $Y$ such that $D \cap A_{n}$ is finite, for all $n$. Let $Q=\left\{I_{n}: n<\omega\right\}$ be an interval partition of $D$ such that every set containing infinitely many pieces from $Q$ is $\mathcal{I}$-positive. Let $R=\left\{J_{n}: n<\omega\right\}$ be an interval partition of $\omega$ such that for every $n$, there is $m(n)$ with $I_{m(n)} \subseteq \bigcup_{j \in J_{n}} C_{j}$. Let $\beta<\mathfrak{b}$ be such that $P_{\beta}=\left\{K_{i}: i<\omega\right\}$ is not dominated by $R$, i.e. the set $H=\left\{i: \exists n(i)\left(J_{n(i)} \subseteq K_{i}\right)\right\}$ is infinite. For every $i \in H$, define $h(i)=\max \left(I_{m(n(i))}\right)$, and let $\alpha<\mathfrak{b}$ be such that $f_{\alpha} \upharpoonright H$ is not dominated by $h$, i.e. the set $K=\left\{i \in H: h(i)<f_{\alpha}(i)\right\}$ is infinite. Hence, for each $i \in K, I_{m(n(i))} \subseteq \bigcup_{j \in J_{n(i)}}\left\{r \in C_{j}: r \leq g_{\alpha \beta}(i)\right\}$, and then $B_{\alpha \beta} \cap D$ contains infinitely many intervals from $Q$. This proves that $B_{\alpha \beta} \cap D$ is a positive subset of $X$. On the other hand, $X \backslash B_{\alpha \beta}$ contains $X \backslash D$, which is an $\mathcal{I}(\mathcal{A})$-positive set.

Now we deal with the case in which $\mathcal{A} \upharpoonright X$ is an $\mathcal{I}$-MAD family. By the maximality of $\mathcal{A} \upharpoonright X$, we can find a sequence $\left\{A_{j}^{\prime}: j<\omega\right\} \subseteq \mathcal{A}$ satisfying
(1) $A_{j}^{\prime} \neq A_{i}$ for all $i$,
(2) $A_{j}^{\prime} \neq A_{k}^{\prime}$ if $j \neq k$, and
(3) $A_{j}^{\prime} \cap X \in \mathcal{I}^{+}$.

Since $\mathcal{I}(\mathcal{A})$ is a $P^{+}$-ideal, for the sequence $X_{n}:=\bigcup_{i \geq n} A_{i}$, there is an $\mathcal{I}(\mathcal{A})$-positive pseudointersection $Y$. Let us denote with $D_{n}$ the set $A_{n}^{\prime} \cap X$. Since $\mathcal{I}$ is a hereditarily meager ideal, for every $n$, there is an interval partition $Q_{n}$ of $Y \cap D_{n}$, such that every set containing infinitely many pieces of $Q_{n}$ is $\mathcal{I}$-positive. For all $n$, take an interval partition $\left\{R_{n}: n<\omega\right\}$ of $Y$ in such a way that each interval $J$ in $R_{n}$ is large enough for $\bigcup_{j \in J} C_{j}$ to contain an interval $I$ in $Q_{i}$, for all $i \leq n$. Let us fix enumerations for $Q_{n}=\{I(n, j): j<\omega\}$ and $R_{n}=\{J(n, m)$ : $m<\omega\}$, and a function $j(n, m, k)$, such that for all $n, m \in \omega$ and $k \leq n, I(k, j(n, m, k)) \subseteq \bigcup_{r \in J(n, m)} C_{r}$. Let $R=\left\{K_{s}: s<\omega\right\}$ be an interval partition in such a way that for every $s$ and every $t \leq s$, there is $m(s, t)<\omega$ such that $J(t, m(s, t)) \subseteq K_{s}$. Let $\beta<\mathfrak{b}$ be such that $P_{\beta}=\left\{L_{n}: n<\omega\right\}$ is not dominated by $R$, i.e. the set $H=\{n \in$ $\left.\omega: \exists m(n)\left(K_{m(n)} \subseteq L_{n}\right)\right\}$ is infinite. For all $n \in H$, let $h(n)$ be the maximum of $\bigcup\{I(k, j(t, m(s(n), t), k): t \leq s(n), k \leq m(s(n), t)\}$. Let $\alpha<\mathfrak{b}$ be such that $f_{\alpha} \upharpoonright H \not \mathbb{Z}^{*} h$. Hence, the set

$$
M=\bigcup\left\{I\left(k, j(t, m(s(n), t), k): h(n) \leq f_{\alpha}(n), t \leq s(n), k \leq m(s(n), t)\right\}\right.
$$

is an $\mathcal{I}(\mathcal{A})$-positive set contained in $X \cap B_{\alpha \beta}$. Clearly, $X \backslash B_{\alpha \beta}$ is $\mathcal{I}(\mathcal{A})$-positive.

By a simple modification of the proof above, we may conclude that under the lemma's hypothesis $R P(\mathcal{I})$ is satisfied.

The pcf/guessing principle mentioned before is defined as follows.
Definition 4.11. Let $\kappa \geq \mathfrak{b}$ be a cardinal number. By $P(\mathfrak{b}, \kappa)$ we denote the property that there is a family $\left\{U_{\alpha}: \omega \leq \alpha<\kappa\right\}$ such that
(1) $U_{\alpha} \subseteq \alpha$, and the order type of $U_{\alpha}$ is $\omega$, for all $\alpha<\kappa$, and
(2) for every $X \subseteq \kappa$ with order type $\mathfrak{b}$, there is $\alpha<\sup X$ such that $\left|U_{\alpha} \cap X\right|=\omega$.

Shelah proved (in ZFC) that if $\mathfrak{b} \leq \kappa<\aleph_{\omega}$ then $P(\mathfrak{b}, \kappa)$ holds.
Theorem 4.12. Let $\mathcal{I}$ be a hereditarily meager $P^{+}$ideal. If
(1) $\mathfrak{b s} \leq \mathfrak{a}(\mathcal{I})$, or
(2) $P(\mathfrak{b}, \mathfrak{s})$ and $\mathfrak{b}<\mathfrak{a}(\mathcal{I})$
then there is a completely separable $\mathcal{I}$-MAD family. In fact, $R P(\mathcal{I})$ holds.

Proof. Case 1 is a consequence of Proposition 4.8. For Case 2, let us additionally assume that Case 1 is not true. Hence, $\mathfrak{b} \leq \mathfrak{a}(\mathcal{I})<\mathfrak{s}$, and so $\mathfrak{b s}=\mathfrak{s}$, i.e. there is a block-splitting family of size $\mathfrak{s}$. Let $\left\{U_{\alpha}(n): n<\omega\right\}$ be an enumeration of $U_{\alpha}$, and $\left\{P_{\alpha}: \alpha<\mathfrak{s}\right\}$ a partition of $\mathfrak{s}$ such that

- $\left|P_{0}\right|=\mathfrak{s}$ and $\omega \subseteq P_{0}$,
- for all $\alpha>0,\left|P_{\alpha}\right|=\mathfrak{b}$ and $\alpha<\min \left(P_{\alpha}\right)<\sup \left(P_{\alpha}\right) \leq \alpha+\mathfrak{b}$.

Let $\left\{S_{\alpha}: \alpha \in P_{0}\right\}$ be a block-splitting family and $\left\{X_{\alpha}: \alpha<\mathfrak{c}\right\}$ an enumeration of $[\omega]^{\omega}$. Recursively, we construct three sequences $\left\{A_{\alpha}\right.$ : $\alpha \in \mathfrak{c}\},\left\{\sigma_{\alpha}: \alpha \in \mathfrak{c}\right\}$, and $\left\{C_{\alpha}: \alpha \in \mathfrak{c}\right\}$, such that for all $\alpha<\mathfrak{c}$,
(i) $\mathcal{A}_{\alpha}=\left\{A_{\xi}: \xi<\alpha\right\}$ is an $\mathcal{I}$ - AD family,
(ii) $\sigma_{\alpha} \in 2^{<\mathfrak{s}}$,
(iii) $C_{\alpha}: 2^{<\mathfrak{s}} \rightarrow \mathcal{P}(\omega)$,
(iv) $A_{\alpha} \subseteq C_{\alpha}\left(\sigma_{\alpha} \upharpoonright \xi\right)^{\sigma_{\alpha}(\xi)}$, for all $\xi \in \operatorname{dom}\left(\sigma_{\alpha}\right)$,
(v) $A_{\alpha} \subseteq X_{\alpha}$ if $X_{\alpha} \in \mathcal{I}\left(\mathcal{A}_{\alpha}\right)^{+}$, and
(vi) $\sigma_{\alpha} \nsubseteq \sigma_{\beta}$, for all $\beta<\alpha$.

First we define $C_{\alpha}$, assuming that $C_{\eta}, A_{\eta}$ and $\sigma_{\eta}$ are defined for all $\eta<\alpha$. Let $\tau$ be in $2^{<\mathfrak{s}}$, let us say $\tau \in 2^{\xi}$. If $\xi \in P_{0}$, then define $C_{\alpha}(\tau)=S_{\xi}$. If $\xi \in P_{\delta}$ for some $\delta>0$, recall that $\delta \leq \xi<\delta+\mathfrak{b}$. Let us focus on the sequence $\left\{\tau \upharpoonright U_{\delta}(n): n<\omega\right\}$. Let $R_{\alpha, \tau}=\{\gamma<\alpha:(\exists n<$ $\left.\omega)\left(\tau \upharpoonright U_{\delta}(n)=\sigma_{\gamma}\right)\right\}$. Note that if $\gamma \in R_{\alpha, \tau}$, then there is a unique $n$
such that $\tau \upharpoonright U_{\delta}(n)=\sigma_{\gamma}$. For all $n$, define $A_{n}^{\alpha, \tau}=A_{\gamma}$, if $\gamma \in R_{\alpha, \tau}$ and $\sigma_{\gamma}=\tau \upharpoonright U_{\delta}(n-1)$, and define $A_{n}^{\alpha, \tau}=\emptyset$, if not. For each $n$, fix

$$
B_{n}^{\alpha, \tau}=\bigcap_{i \leq n}\left(C_{\alpha}\left(\tau \upharpoonright U_{\delta}(i)\right) \backslash A_{n}^{\alpha, \tau}\right) .
$$

We will pick an enumerated family $\mathcal{D}_{\alpha}^{\tau}=\left\{D_{\alpha}^{\tau}(\nu): \nu \in P_{\delta}\right\}$ in such a way that

- if $\xi>\min P_{\delta}$, then $\mathcal{D}_{\alpha}^{\tau}=\mathcal{D}_{\alpha}^{\tau\left\lceil\min P_{\delta}\right.}$,
- if $R_{\alpha, \tau}=R_{\beta, \tau}$ for some $\beta<\alpha$, then $\mathcal{D}_{\alpha}^{\tau}=\mathcal{D}_{\beta}^{\tau}$, and
- in the remaining case, take $C_{\alpha}\left(\tau \upharpoonright U_{\delta}(0)\right)$ and $B_{n}^{\alpha, \tau} \backslash B_{n+1}^{\alpha, \tau}$ as the $C$ and $C_{n}$ (respectively) in the hypothesis of Lemma 4.10, and then pick the family $\mathcal{D}_{\alpha}^{\tau}$ as the family $\mathcal{B}$ given by this Lemma, and fix an enumeration for it, indexed by $P_{\delta}$.
Now we define $C_{\alpha}(\tau)=D_{\alpha}^{\tau}(\xi)$.
We claim that for all $\beta<\alpha$ and $\eta \in \operatorname{dom}\left(\sigma_{\beta}\right)$,

$$
C_{\beta}\left(\sigma_{\beta} \upharpoonright \eta\right)=C_{\alpha}\left(\sigma_{\beta} \upharpoonright \eta\right) .
$$

Let us prove it by induction on $\eta$. By induction hypothesis, we have that $C_{\alpha}\left(\sigma_{\beta} \upharpoonright U_{\delta}(i)\right)=C_{\beta}\left(\sigma_{\beta} \upharpoonright U_{\delta}(i)\right)$ for all $i$. On the other hand, note that clearly $R_{\beta, \sigma_{\beta}\lceil\eta} \subseteq R_{\alpha, \sigma_{\beta}\lceil\eta}$, but actually, the reverse inclusion is also true, because for every $\tau$, if $\gamma \in R_{\alpha, \tau} \backslash R_{\beta, \tau}$ then $\gamma>\operatorname{dom}\left(\sigma_{\beta}\right)$, and so $\tau \nsubseteq \sigma_{\beta}$. Hence $\mathcal{D}_{\alpha}^{\tau}=\mathcal{D}_{\beta}^{\tau}$ and the claim follows immediately from the definitions.

From the claim and an inductive argument based on condition (iv), we may deduce that

$$
A_{\beta} \subseteq^{*} C_{\alpha}\left(\sigma_{\beta} \upharpoonright \xi\right)^{\sigma_{\beta}(\xi)}
$$

for all $\beta<\alpha$, and $\xi \in \operatorname{dom}\left(\sigma_{\beta}\right)$.
Now we define $\sigma_{\alpha}$. By recursion on $\omega$, let $T_{n}$ be the subset of $2^{<\boldsymbol{s}}$ defined by $T_{0}=\emptyset$ and $\tau \in T_{n+1}$ if and only if there is $s \in T_{n}$ such that

- $s=\tau \upharpoonright|s|$,
- either $X \cap C_{\alpha}(\tau \upharpoonright \xi)$ or $X \backslash C_{\alpha}(\tau \upharpoonright \xi)$ belong to $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$, for all $|s|<\xi<|\tau|$, and
- $X \cap C_{\alpha}(\tau)$ and $X \backslash C_{\alpha}(\tau)$ are $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$-positive.

Since $T=\bigcup_{n} T_{n}$ has $\mathfrak{c}$ many branches, there is a branch $B$ of $T$ such that $\bigcup B \nsubseteq \sigma_{\beta}$ for all $\beta<\alpha$. Define $\sigma_{\alpha}=\bigcup B$. Let $Y$ be an $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$ positive pseudointersection of $\left\{C_{\alpha}\left(\sigma_{\alpha} \cap T_{n}\right): n<\omega\right\}$, i.e. $Y \in \mathcal{I}\left(\mathcal{A}_{\alpha}\right)^{+}$ and $Y \backslash C_{\alpha}\left(\sigma_{\alpha} \cap T_{n}\right) \in \mathcal{I}\left(\mathcal{A}_{\alpha}\right)$ for all $n$. Moreover, note that for all $\xi<\operatorname{dom}\left(\sigma_{\alpha}\right)$, if $\sigma_{\alpha} \upharpoonright \xi$ is not in $T$, then $Y \cap C_{\alpha}\left(\sigma_{\alpha} \upharpoonright \xi\right)^{1-\sigma_{\alpha}(\xi)}$ is in $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$.

We claim that $\mathcal{A}_{\alpha} \upharpoonright Y$ is not an $\mathcal{I}$-MAD family. To see it, let us consider the set

$$
W=\left\{\xi<\operatorname{dom}\left(\sigma_{\alpha}\right):(\exists \beta<\alpha)\left(\xi=\operatorname{dom}\left(\sigma_{\beta}\right) \vee \xi=\operatorname{dom}\left(\sigma_{\alpha} \cap \sigma_{\beta}\right)\right)\right\}
$$

We claim that $W$ has less than $\mathfrak{b}$ many elements. Suppose not. Let $W_{0}$ be the set of the first $\mathfrak{b}$ elements of $W$. By $P(\mathfrak{b}, \mathfrak{s})$, there is $\delta<\sup W_{0}$ such that $U_{\delta} \cap W_{0}$ is infinite. Let $\varepsilon$ be the minimum of $P_{\delta}$. By its definition, the family $\mathcal{D}_{\alpha}^{\sigma_{\alpha} \mid \varepsilon}$ splits $Y$, i.e. there is $\nu \in P_{\delta}$ such that $Y \cap D_{\alpha}^{\sigma_{\alpha}\lceil\varepsilon}(\nu)$ and $Y \backslash D_{\alpha}^{\sigma_{\alpha}\lceil\varepsilon}(\nu)$ are $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$-positive. Hence, $Y \cap C_{\alpha}\left(\sigma_{\alpha} \upharpoonright \nu\right)$ and $Y \backslash C_{\alpha}\left(\sigma_{\alpha} \upharpoonright \nu\right)$ are $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$-positive, in particular, $Y \cap C_{\alpha}\left(\sigma_{\alpha} \upharpoonright \nu\right)^{1-\sigma_{\alpha}(\nu)}$ is $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$-positive, which is a contradiction, since $\varepsilon<\nu<\operatorname{dom}\left(\sigma_{\alpha}\right)$.

For each $\xi \in W$, let $Z(\xi)$ be defined as follows:

- If there is $\beta<\alpha$ such that $\xi=\operatorname{dom}\left(\sigma_{\beta}\right)$, then $Z(\xi)=\left\{A_{\beta}\right\}$.
- If not, then define $Z(\xi)$ as a finite subset of $\mathcal{A}_{\alpha}$ such that $Y \cap$ $C_{\alpha}\left(\sigma_{\alpha} \upharpoonright \xi\right)^{1-\sigma_{\alpha}(\xi)} \subseteq \bigcup Z(\xi)$. This finite set exists since $Y \cap$ $C_{\alpha}\left(\sigma_{\alpha} \upharpoonright \xi\right)^{1-\sigma_{\alpha}(\xi)}$ is in $\mathcal{I}\left(\mathcal{A}_{\alpha}\right)$.
Clearly, $\bigcup_{\xi \in W} Z(\xi)$ has less than $\mathfrak{b}$ many elements. We claim that for all $\beta<\alpha, Y \cap A_{\beta}$ is $\mathcal{I}$-almost contained in $Z(\xi)$ for some $\xi \in W$. This is clear when $\xi=\operatorname{dom}\left(\sigma_{\beta}\right)$. In the other case, the claim follows from the fact that $A_{\beta} \subseteq C_{\alpha}\left(\sigma_{\alpha} \upharpoonright \xi\right)^{1-\sigma_{\alpha}(\xi)}$. Since $\mathfrak{b} \leq \mathfrak{a}(\mathcal{I}), \mathcal{A}_{\alpha} \upharpoonright Y$ cannot be an $\mathcal{I}$-MAD family.


## 5. Open questions

The existence of a completely separable MAD family is a famous problem of Erdös and Shelah [14]. We conjecture the same for quotients over analytic P-ideals. We list some interesting open questions.

Question 5.1. Are there $\mathfrak{c}$-many non forcing equivalent quotients $\mathcal{P}(\omega) / \mathcal{I}$ with $\mathcal{I}$ Borel?

Question 5.2. Does $\left(\omega, \cdot, \omega_{1}\right)$-distributivity imply properness for $\mathcal{P}(\omega) / \mathcal{I}$ with $\mathcal{I}$ a Borel ideal?

Question 5.3. Is it true that if $\mathcal{I}$ is Borel and $\mathcal{P}(\omega) / \mathcal{I}$ is $\omega^{\omega}$-bounding, then one of the following conditions holds?
(a) $\mathcal{P}(\omega) / \mathcal{I}$ does not add reals.
(b) There exists an $\mathcal{I}$-positive set $X$ such that $\mathcal{I} \upharpoonright X$ is a $P$-ideal.

Question 5.4. Is it true (in ZFC) that if $\mathcal{I}$ is Borel and not proper, then there exists an $\mathcal{I}$-positive set $X$ such that $\mathcal{P}(X) /(\mathcal{I} \upharpoonright X)$ is forcing equivalent to $\mathfrak{c}^{<\omega}$ ?

Question 5.5. Let $\mathcal{I}$ be a Borel ideal. Does there exist (in ZFC) a completely separable $\mathcal{I}$-MAD family?

Question 5.6. Let $\mathcal{I}$ be a Borel ideal. Is $R P(\mathcal{I})$ true (in $Z F C$ )?
Question 5.7. Is it possible to avoid the large cardinals assumption in Theorem 2.9?

## References

[1] T. Bartoszynski, H. Judah. Set Theory: On the Structure of the Real Line, AK Peters / CRC Press. 1995.
[2] J.E. Baumgartner, L.A. Harrington, E.M. Kleinberg. Adding a closed unbounded set, The Journal of Symbolic Logic 41(2):481-482, 1976.
[3] Balcar, Bohuslav; Doucha, Michal; Hrušák, Michael Base tree property, Order 32 (2015), no. 1, 69-81.
[4] Balcar, Bohuslav; Pelant, Jan; Simon, Petr The space of ultrafilters on $\mathbb{N}$ covered by nowhere dense sets, Fund. Math. 110 (1980), no. 1, 11-24.
[5] B. Balcar, F. Hernández-Hernández, M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. 183, no. 1, 59-80, 2004.
[6] Balcar, Bohuslav; Simon, Petr Disjoint refinement. Handbook of Boolean algebras, Vol. 2, 333-388, North-Holland, Amsterdam, 1989.
[7] B. Balcar, P. Štepánek. Teorie množin. Academia, 2001.
[8] Blass, Andreas; Dobrinen, Natasha; Raghavan, Dilip, The next best thing to a P-point, J. Symb. Log. 80 (2015), no. 3, 866-900.
[9] J. Brendle, D.A. Mejia, Rothberger gaps in fragmented ideals, Fundamenta Mathematicae 227(1), 35-68, 2014.
[10] Brendle, Jörg; Montoya, Diana Carolina A base-matrix lemma for sets of rationals modulo nowhere dense sets Arch. Math. Logic 51 (2012), no. 3-4, 305-317.
[11] Cancino-Manríquez, Jonathan; Hrušák, Michael; Meza-Alcántara, David Countable irresolvable spaces and cardinal invariants. Topology Proc. 44 (2014), 189-196.
[12] Chodounský, David; Guzmán González, Osvaldo; Hrušák, Michael MathiasPrikry and Laver type forcing; summable ideals, coideals, and +-selective filters, Arch. Math. Logic 55 (2016), no. 3-4, 493-504.
[13] van Douwen, Eric K.; van Mill, Jan Subspaces of basically disconnected spaces or quotients of countably complete Boolean algebras, Trans. Amer. Math. Soc. 259 (1980), no. 1, 121-127.
[14] Erdös, Paul; Shelah, Saharon Separability properties of almost-disjoint families of sets. Israel J. Math. 12 (1972), 207-214.
[15] Dow, A.; Frankiewicz, R.; Zbierski, P. On closed subspaces of $\omega^{*}$, Proc. Amer. Math. Soc. 119 (1993), no. 3, 993-997.
[16] I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148, no. 702, 2000.
[17] I. Farah, Analytic Hausdorff gaps in DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 58, Amer. Math. Soc., 65-72, 2002.
[18] I. Farah, Luzin gaps, Trans. Amer. Math. Soc. 356(6), 2197-2239, 2004.
[19] Farah, Ilijas; Solecki, Slawomir Two $F_{\sigma \delta}$ ideals, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1971-1975.
[20] B. Farkas, L. Soukup. More on cardinal invariants of analytic P-ideals. Comment. Math. Univ. Carolin. 50 (2009), no. 2, 281-295.
[21] G.M. Fichtenholz, L.V. Kantorovich. Sur les opérations linéires dans l'espace des fonctions bornées, Studia Math. 5:69-98, 1935.
[22] D.H. Fremlin, The partially ordered sets of measure theory and Tukey's ordering, Note di Matematica, 11 (1991), 177-214.
[23] He, Jialiang; Hrušák, Michael; Rojas-Rebolledo, Diego; Solecki, Slawomir Tukey order among $F_{\sigma}$ ideals, J. Symb. Log. 86 (2021), no. 2, 855-870
[24] Hernández-Hernández, Fernando Distributivity of quotients of countable products of Boolean algebras, Rend. Istit. Mat. Univ. Trieste 41 (2009), 27-33 (2010)
[25] M. Hrušák, Combinatorics of filters and ideals in Set theory and its applications, Contemp. Math., 533, Amer. Math. Soc., 29-69, 2011.
[26] M. Hrušák, Katětov order on Borel ideals, Arch. Math. Logic 56, no. 7-8, 831-847, 2017.
[27] Hrušák, Michael Almost disjoint families and topology. Recent progress in general topology III, 601-638, Atlantis Press, Paris, 2014.
[28] Hrušák, Michael; Simon, Petr Completely separable MAD families. Open problems in Topology II, 179-184, Elsevier, 2007.
[29] Hrušák, Michael; Verner, Jonathan L. Adding ultrafilters by definable quotients, Rend. Circ. Mat. Palermo (2) 60 (2011), no. 3, 445-454.
[30] M. Hrušák, J. Zapletal, Forcing with quotients, Arch. Math. Logic 47, no. 7-8, 719-739, 2008.
[31] W. Just, A. Krawczyk, On certain Boolean algebras $\mathcal{P}(\omega) / \mathcal{I}$ Trans. Amer. Math. Soc. 285, no. 1, 411-429, 1984.
[32] A. Kamburelis, B. Wȩglorz. Splittings, Arch. Math. Logic 35 (1996), no. 4, 263-277.
[33] Koppelberg, Sabine, Handbook of Boolean algebras. Vol. 1. Edited by J. Donald Monk and Robert Bonnet. North-Holland Publishing Co., Amsterdam, 1989.
[34] Louveau, Alain Caractérisation des sous-espaces compacts de $\beta \mathbb{N}$, Bull. Sci. Math. (2) 97 (1973), 259-263 (1974).
[35] A. Louveau, B. Veličković, Analytic ideals and cofinal types, Ann. Pure Appl. Logic 99, no. 1-3, 171-195, 1999.
[36] M. S. Kurilić, Posets of isomorphic substructures of relational structures, Zb. Rad. (Beogr.) 17(25) (2015), Selected topics in combinatorial analysis, 117-144.
[37] Kurilić, Miloš S.; Todorčević, Stevo Posets of copies of countable nonscattered labeled linear orders, Order 37 (2020), no. 1, 59-72.
[38] Kurilić, Miloš S.; Todorčević, Stevo Stevo Copies of the random graph, Adv. Math. 317 (2017), 526-552.
[39] Kurilić, Miloš S.; Todorčević, Stevo The poset of all copies of the random graph has the 2-localization property, Ann. Pure Appl. Logic 167 (2016), no. 8, 649-662.
[40] Kurilić, Miloš S.; Todorčević, Stevo Forcing by non-scattered sets, Ann. Pure Appl. Logic 163 (2012), no. 9, 1299-1308.
[41] Miller, Arnold W. Rational perfect set forcing Axiomatic set theory (Boulder, Colo., 1983), 143-159, Contemp. Math., 31, Amer. Math. Soc., Providence, RI, 1984.
[42] Oliver, M. R. Contiunuum-many Boolean algebras of the form $\mathcal{P}(\omega) / \mathcal{I}, \mathcal{I}$ Borel. J. Symb. Log., 69 (2004) no. 3, 799-816.
[43] Shelah, Saharon MAD saturated families and SANE player. Canad. J. Math. 63 (2011), no. 6, 14161435.
[44] R. Sikorski. Boolean Algebras, Third Edition. Springer Verlag. 1969.
[45] S. Solecki. Analytic ideals, Bull. Symb.Log., (2) no. 3, (1996): 339-348.
[46] Solecki, Slawomir Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), no. 1-3, 51-72.
[47] Solecki, Slawomir; Todorčević, Stevo Cofinal types of topological directed orders, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 6, 1877-1911 (2005).
[48] Steprāns, Juris Many quotient algebras of the integers modulo co-analytic ideals, Logic and its applications, 271-281, Contemp. Math., 380, Amer. Math. Soc., Providence, RI, 2005.
[49] Szymański, Andrzej; Zhou Hao Xua The behaviour of $\omega^{2^{*}}$ under some consequences of Martin's axiom. General topology and its relations to modern analysis and algebra, V (Prague, 1981), 577-584, Sigma Ser. Pure Math., 3, Heldermann, Berlin, 1983.
[50] B. Veličković. Playful Boolean algebras, Trans. Amer. Math. Soc., 296(1986):727-740.
[51] J. Zapletal. Forcing idealized Cambridge Tracts on Mathematics, 174, Cambridge University Press, 2008.

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, CDMX, 04510, MÉxico

E-mail address: gcampero@ciencias.unam.mx
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, MÉxico

E-mail address: oguzman@matmor.unam.mx
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, México

E-mail address: michael@matmor.unam.mx
Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, CDMX, 04510, MÉxico

E-mail address: dmeza@ciencias.unam.mx

