G. CAMPERO-ARENA, O. GUZMÁN, M. HRUŠÁK, AND D. MEZA-ALCÁNTARA

ABSTRACT. We study forcing properties of the Boolean algebras $\mathcal{P}(\omega)/\mathcal{I}$, where \mathcal{I} is a Borel ideal on ω . We show (Theorem 2.9) that (under a large cardinal hypothesis) $\mathcal{P}(\omega)/\mathcal{I}$ does not add reals if and only if it has a dense σ -closed subset. For analytic P-ideals \mathcal{I} we show (Theorem 3.3) that either $\mathcal{P}(\omega)/\mathcal{I}$ is ω^{ω} -bounding or it is not proper. We also investigate the existence of completely separable \mathcal{I} -MAD families.

1. INTRODUCTION

In recent years, a large body of work has been done on the structure of definable (Borel, analytic, co-analytic, ...) ideals on a countable set and their corresponding quotients (Brendle-Mejia [9], Farah [16], Fremlin [22], Hrušák-Zapletal [30], Hrušák [25, 26], Louveau-Veličković [35], Solecki [45] [46], Solecki-Todorčević [47], He-Hrušák-Rojas-Solecki [23], Chodounský-Guzmán-Hrušák [12]).

We contribute to this line of research by studying the quotient Boolean algebras $\mathcal{P}(\omega)/\mathcal{I}$ for definable ideals \mathcal{I} as forcing notions. We build on work done by Farah in [17, 18, 16]; by Just and Krawczyk in [31]; by Balcar, Hernández and Hrušák in [5]; by Hrušák and Zapletal in [30]; by Kurilić and Todorčević in [37], [38], [39], [40]; by Steprāns in [48].

First let us briefly consider quotients $\mathcal{P}(\omega)/\mathcal{I}$ without any definability restrictions. It was pointed out to us by Alan Dow, that every

Date: February 12, 2023.

First and fourth authors thank support from UNAM-PAPIIT IN119320 grant. Second author was supported by a PAPIIT grant IA102222. Third author was supported by a CONACYT grant A1-S-16164 and grant IN101323. Fourth author was supported by a UNAM-DGAPA-PASPA grant.

²⁰²⁰ Mathematics Subject Classification: 03G05, 03E40, 03E17, 03E15.

Key words and phrases: Boolean algebras, Borel ideals, Forcing, Quotiens over definable ideals.

forcing of size at most \mathfrak{c} is forcing equivalent to a quotient $\mathcal{P}(\omega)/\mathcal{I}$ for some ideal \mathcal{I} on ω .

Theorem 1.1 (Dow). For every partial order \mathbb{P} of size at most \mathfrak{c} there is an ideal \mathcal{I} on ω such that the algebra $\mathcal{P}(\omega)/\mathcal{I}$ can be densely embedded into the completion $RO(\mathbb{P})$ of \mathbb{P} .

We present its simple proof for the sake of completeness. First we recall some well-known facts. Recall that a family \mathcal{J} of elements of a Boolean algebra \mathbb{B} is *independent* if $\bigwedge_{a \in E} a \land \bigwedge_{a \in E'} -a \neq \mathbf{0}$ for any pair of disjoint finite subsets E, E' of \mathcal{J} . An old theorem of Fichtenholz and Kantorovich [21] states that there is an independent family of size \mathfrak{c} in $\mathcal{P}(\omega)/\mathfrak{fin}$. It is a well known fact that the subalgebra \mathbb{C} of any Boolean algebra \mathbb{B} generated by an independent family $\mathcal{J} \subseteq \mathbb{B}$ is free, that is any function f from \mathcal{J} to any Boolean algebra \mathbb{A} has a (unique) extension to a homomorphism $F : \mathbb{C} \to \mathbb{A}$.

Another known fact is Sikorski's extension theorem (see [44]): given a subalgebra \mathbb{C} of a Boolean algebra \mathbb{B} and a complete Boolean algebra \mathbb{A} , any homomorphism $F : \mathbb{C} \to \mathbb{A}$ has an extension to a homomorphism $\overline{F} : \mathbb{B} \to \mathbb{A}$.

Proof. Given a partial order \mathbb{P} of size at most \mathfrak{c} , let \mathcal{J} be an independent family of size \mathfrak{c} in $\mathcal{P}(\omega)/\mathfrak{fin}$ and let $f: \mathcal{J} \to \mathbb{P}$ be any surjection. Now, according to the observations made above there is a homomorphism F: $\mathcal{P}(\omega)/\mathfrak{fin} \to RO(\mathbb{P})$ extending f. Let $\mathcal{I} = F^{-1}(\mathfrak{0})$. Then $\mathbb{B} = rng(F)$ is a dense subalgebra of $RO(\mathbb{P})$ containing \mathbb{P} , and \mathbb{B} is isomorphic to $\mathcal{P}(\omega)/\mathcal{I}$. \Box

In fact, this proof has the following immediate corollary.

Corollary 1.2. For every complete Boolean algebra \mathbb{B} of size at most \mathfrak{c} there is an ideal \mathcal{I} on ω such that the algebra $\mathcal{P}(\omega)/\mathcal{I}$ is isomorphic to \mathbb{B} .

Proof. Apply the previous proof to $\mathbb{P} = \mathbb{B}$.

Assuming the Continuum Hypothesis, Louveau [34] completely characterized which Boolean algebras are isomorphic to algebras of the type $\mathcal{P}(\omega)/\mathcal{I}$. Recall that a Boolean algebra \mathbb{B} is weakly σ -complete if it contains no (ω, ω) -gaps, i.e if given two countable subsets A, B of \mathbb{B} such that $a \wedge b = \mathbf{0}$ for every $a \in A$ and $b \in B$, there is a $c \in \mathbb{B}$ such that C separates A and B, that is, $a \leq c$ for all $a \in A$ and $c \wedge b = \mathbf{0}$ for all $b \in B$. It is easy to see that every $\mathcal{P}(\omega)/\mathcal{I}$ is weakly σ -distributive. On the other hand, Louveau also proved the following result. **Theorem 1.3** ([34] Assuming CH). For every weakly σ -complete Boolean algebra \mathbb{B} of size at most \mathfrak{c} there is an ideal \mathcal{I} on ω such that the algebra $\mathcal{P}(\omega)/\mathcal{I}$ is isomorphic to \mathbb{B} .

This theorem is neither true in ZFC [13] nor characterizes CH [15].

The situation is quite different if we restrict our attention to definable ideals and their quotients. The first notable difference is that no c.c.c. forcing can be represented as $\mathcal{P}(\omega)/\mathcal{I}$ for a definable ideal \mathcal{I} . We prove this and that no such quotient can be complete from the following theorem, which characterizes ideals with the Baire property.

Theorem 1.4 (Jalali-Naini–Talagrand, see [1]). An ideal \mathcal{I} satisfies the Baire Property if and only if there is a partition $\{I_k : k \in \omega\}$ of ω in finite pieces, such that for every infinite $A \subseteq \omega$, $\bigcup_{k \in A} I_k$ is \mathcal{I} -positive.

Hence, by taking $\{A_{\alpha} : \alpha < \mathfrak{c}\}$ an almost disjoint family of subsets of ω , $\mathcal{A} = \{[\bigcup_{k \in A_{\alpha}} I_k] : \alpha < \mathfrak{c}\}$ is an antichain in $\mathcal{P}(\omega)/\mathcal{I}$ of size \mathfrak{c} . Moreover, by considering the family $F = \{\sup C : C \subseteq \mathcal{A}\}$ we get a subset of the completion of $\mathcal{P}(\omega)/\mathcal{I}$ of size 2^{\mathfrak{c}}. Hence $\mathcal{P}(\omega)/\mathcal{I}$ cannot contain F since its size is \mathfrak{c} .

Farah asked in [16] if there are infinitely many analytic P-ideals (arbitrary analytic, definable ideals) whose quotients are provably in ZFC pairwise non-isomorphic. Oliver [42] proved that there are \mathfrak{c} -many pairwise non-isomorphic quotients on Borel ideals, however, his method does not seems to produce quotients which are distinct as forcing notions. On the other hand, Steprāns [48], and Hrušák and Zapletal [30] have shown that there are many distinct, and even forcing nonequivalent, definable quotients $\mathcal{P}(\omega)/\mathcal{I}$. However, most of these are co-analytic or more complex. This prompted the following question:

Question 1.5 ([25]). Are there uncountably many forcing non-equivalent quotients $\mathcal{P}(\omega)/\mathcal{I}$ for Borel ideals \mathcal{I} ?

In fact, only a handful of quotients over Borel ideals have been studied as forcing notions:

- $\mathcal{P}(\omega)$ /fin is the prototypical example, as seen in [4, 3].
- If I is F_σ, then P(ω)/I is σ-closed by a theorem of Just-Krawczyk [31]. In fact, under CH, P(ω)/I is isomorphic to P(ω)/fin for every F_σ ideal I. On the other hand, this consistently fails, see [9].
- The forcing $\mathcal{P}(\omega \times \omega)/\text{fin} \times \text{fin}$ was considered in [49], [8], [29] and [24], and it was shown in [24], that even though it is also σ -closed, it is consistently not forcing equivalent with $\mathcal{P}(\omega)/\text{fin}$.

- The quotient P(Q)/nwd was considered in [5],[30], [19] and [10], and it is known to be forcing equivalent to C * P
 , where C is the Cohen forcing and P
 is a C-name for a σ-closed forcing.
- Kurilić and Todorčević in [37] studied the quotient P(Q)/L-scatt, where L-scatt is the co-analytic ideal of scattered linearly ordered subsets of the rationals Q, and showed that it is forcing equivalent to S * P, where S is the Sacks forcing and P is an S-name for a σ-closed forcing.
- This ideal is not to be confused with T-scatt, the co-analytic ideal of topologically scattered subsets of the rationals, i.e. the subsets of \mathbb{Q} all of whose subsets have an isolated point. The quotient $\mathcal{P}(\mathbb{Q})/T$ -scatt is, in fact, forcing equivalent with \mathbb{M} , Miller's rational perfect set forcing [41]. By Lemma 2.4 in [11], there is a dense embedding from $\mathbb{M} = \{A \subseteq \mathbb{Q} : A \text{ is crowded and closed}\}$ in $\mathcal{P}(\mathbb{Q})/T$ -scatt.
- Three quotients over analytic P-ideals have been identified:
 - a) [17] $\mathcal{P}(\omega)/\mathcal{Z} \simeq \mathcal{P}(\omega)/\text{fin} * \mathbb{B}(\mathfrak{c})$, where \mathcal{Z} is the ideal of asymptotic density zero subsets of ω ,

$$\mathcal{Z} = \{A \subseteq \omega : \lim_{n \to \infty} \frac{|A \cap n|}{n} = 0\},$$

and $\mathbb{B}(\kappa)$ denotes the measure algebra for adding κ -many random reals,

- b) [30] $\mathcal{P}(\omega)/tr(\mathcal{N}) \simeq \mathbb{B}(\omega) * \mathbb{P}$ for some forcing \mathbb{P} not adding reals, and
- c) [30] the non-proper P(ω)/J, with J an analytic P-ideal, described in Example 3.12 of [30].
 We will say more about non proper quotient forcings in

We will say more about non-proper quotient forcings in Section 4.

• Finally, the Mathias-Prikry forcing for destroying an F_{σ} P-ideal gives rise to a Borel quotient (see [30]).

Here, we continue the study of forcings of the type $\mathcal{P}(\omega)/\mathcal{I}$. In particular, we provide answers to questions from [29] and [30].

2. ω -distributive quotients

In this section we answer a question of Hrušák and Verner from [29], by showing that every definable quotient not adding sequences of ordinals has a σ -closed dense subset. This puts another restriction on the class of forcings which can be represented as definable quotients as, for instance, Baumgartner's forcing shooting club through a stationary set [2] cannot be represented in this way.

5

We say that a partially ordered set \mathbb{P} is ω -distributive if for every sequence $\{U_n : n < \omega\}$ of dense open sets in \mathbb{P} , $\bigcap_n U_n$ is dense. We say that \mathbb{P} is σ -closed if for every decreasing sequence $p_n \in \mathbb{P}$, there exists $p \in \mathbb{P}$ such that $p \leq p_n$ for all n. We say that \mathbb{P} is separative if for every $p, q \in \mathbb{P}$, such that $p \nleq q$, there is $r \leq p$ incompatible with q.

The following lemmas hold for $\mathbb{P} = \mathcal{P}(\omega)/\mathcal{I}$, with \mathcal{I} a Borel ideal.

Lemma 2.1. Let \mathbb{P} be a separative ordered set with size at most \mathfrak{c} . Then the following conditions are equivalent.

- (1) \mathbb{P} is ω -distributive
- (2) \mathbb{P} does not add sequences of ordinals
- (3) \mathbb{P} does not add reals
- (4) \mathbb{P} does not add sequences of reals

Proof. To see that (1) implies (2), let τ be a \mathbb{P} -name for a sequence of ordinals, and for each n, let U_n be an open dense set of conditions deciding $\tau(n)$. By our assumption, $\bigcap_n U_n$ is dense, then for every condition p there are $q \leq p$, and a sequence of ordinals f in V such that $q \Vdash \tau = f$.

Clearly, (2) implies (3).

By a suitable (definable) bijection, sequences of reals are codified by reals, which proves that (3) implies (4).

We now prove that if \mathbb{P} is not ω -distributive, then \mathbb{P} adds a new real. Let $\{U_n : n < \omega\}$ be a sequence of dense open sets in \mathbb{P} , such that $\bigcap_n U_n$ is not dense. Take $r \in \mathbb{P}$ such that $\{s \in \mathbb{P} : s \leq r\} \cap \bigcap_n U_n = \emptyset$. For each n, take a maximal antichain A_n of conditions in U_n below r. Let G be a \mathbb{P} -generic filter with $r \in G$. In V[G], define $F = \{(n, p) : p \in G \cap A_n\}$. Clearly $r \Vdash F \in (\mathbb{P})^{\omega}$. Note that F can be seen as a sequence of reals. Also, for all $f \in (\mathbb{P})^{\omega} \cap V$, $r \Vdash F \neq f$, because otherwise, if some $s \leq r$ forces that F = f, then for all n, by separativity, there is $p_n \in A_n$ (namely $p_n = f(n)$) such that $s \leq p_n$, and consequently $s \in U_n$ for all n, which is a contradiction. \Box

In order to investigate the relation between being ω -distributive and containing a dense σ -closed set, the next lemma shows one implication is easy.

Lemma 2.2. If there exists a σ -closed dense set $D \subseteq \mathbb{P}$, then \mathbb{P} is ω -distributive.

Proof. It follows from a classical Baire-category argument. Let $\{U_n : n < \omega\}$ be a family of open dense subsets of \mathbb{P} , and $A \in \mathbb{P}$. Then, taking $A \ge A_0 \ge D_0 \ge A_1 \ge D_1 \dots$, with $A_n \in U_n$ and $D_n \in D$, by σ -closedness, there is $C \in D$ such that $C \le D_n$ for all n. Hence, $C \le A$ and $C \in \bigcap U_n$.

To obtain the implication in the other direction, we need to work a bit more.

Definition 2.3 ([3]). Let \mathbb{P} be a partially ordered set. We say that \mathbb{P} has the *Base Tree property* (in short BT-property) if there is a dense subset D of P such that

- D is atomless, i.e. for every $d \in D$ there are incompatible $d_1, d_2 \in D$ below d,
- D is σ -closed, and
- $|D| \leq \mathfrak{c}$.

The following lemma relaxes conditions for a partially ordered set to have the BT-property.

Lemma 2.4. If \mathbb{P} is an atomless partially ordered set such that

- (1) \mathbb{P} contains a dense subset D with $|D| \leq \mathfrak{c}$, and
- (2) \mathbb{P} contains a dense σ -closed subset E

then \mathbb{P} has the BT-property.

Proof. Let κ be a big enough cardinal, and M an elementary submodel of $H(\kappa)$ such that

- (1) \mathbb{P}, D, E are in M,
- (2) $M^{\omega} \subseteq M$,
- (3) |M| = c, and
- (4) $D \subseteq M$.

Let us define $R = M \cap E$. We will prove that R is the dense set that we are looking for. By (3), $|R| \leq \mathfrak{c}$. For a given $p \in \mathbb{P}$, take $d \in D$ with $q \leq p$. By (4), $q \in M$, and since M is an elementary submodel of $H(\kappa)$, there is $r \in R$ such that $r \leq q$, proving that R is dense. Since E is σ -closed, by (2) R is σ -closed. Finally, R is atomless because \mathbb{P} is.

Corollary 2.2 in [3] claims that a partially ordered set \mathbb{P} has the BT-property if and only if its Boolean completion $RO(\mathbb{P})$ has it. We now change our focus to completions of quotients of type $\mathcal{P}(\omega)/\mathcal{I}$. It is well known that the ordered sets $\mathcal{P}(\omega)/\mathcal{I}$, $RO(\mathcal{P}(\omega)/\mathcal{I})$ (the Boolean completion of $\mathcal{P}(\omega)/\mathcal{I}$), and $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$ ordered by the \mathcal{I} -almost inclusion defined as

 $A \subseteq_{\mathcal{I}} B$ if and only if $A \setminus B \in \mathcal{I}$,

are forcing-equivalent. As usual, \subseteq^* denotes the relation \subseteq_{fin} . We will show that under large cardinal assumptions, $\mathcal{P}(\omega)/\mathcal{I}$ has the BT-property, if $\mathcal{P}(\omega)/\mathcal{I}$ is ω -distributive. For this, we consider the *Banach-Mazur* game played on a partially ordered set $\mathcal{G}(\mathbb{P})$ (see [50]) defined as

follows. At step n, players Empty and Non-empty choose (respectively) p_n and q_n in \mathbb{P} such that $p_0 \ge q_0 \ge p_1 \ge q_1 \ge \ldots$. Non-empty wins if there is $r \in \mathbb{P}$ such that $r \le q_n$ for all n. Recall the following result from [50].

Theorem 2.5 (Veličković). Let \mathbb{B} be a complete Boolean algebra containing a dense subset D with $|D| \leq \mathfrak{c}$. If Non-empty has a winning strategy in $\mathcal{G}(\mathbb{B})$, then \mathbb{B} has a dense σ -closed subset.

Lemma 2.6. If $\mathcal{P}(\omega)/\mathcal{I}$ is ω -distributive, then Empty does not have a winning strategy in $\mathcal{G}(RO(\mathcal{P}(\omega)/\mathcal{I}))$.

Proof. Let us assume that Empty has a winning strategy σ contained in $(\mathbb{P}(\omega)/\mathcal{I}))^{<\omega}$. We may assume that for all $t \in \sigma$ if |t| is even, $t \frown p \in \sigma$, and $t \frown q \in \sigma$, then p = q; and if |t| is odd, then $t \frown p \in \sigma$, for all $p \leq t(|t| - 1)$. Let us denote $p_0 = \sigma(\emptyset)$. Note that for all n, the family

$$U_n = \{ p \in \mathcal{P}(\omega) / \mathcal{I} : (\exists t \in \sigma \cap (\mathcal{P}(\omega) / \mathcal{I})^{2n+1}) (t \frown p \in \sigma) \}$$

is open and dense below p_0 (or below a $p'_0 \leq p_0$ in $\mathcal{P}(\omega)/\mathcal{I}$, if the reader prefers). If $p \in \bigcap_n U_n$, then we can identify a branch x in σ such that $p \leq x(x \upharpoonright 2n+1)$, contradicting that σ is a winning strategy for *Empty*. Hence $\bigcap_n U_n = \emptyset$, and so, $\mathcal{P}(\omega)/\mathcal{I}$ is not ω -distributive. \Box

Note that we can obtain a winning strategy for some player in $\mathcal{G}(RO(\mathcal{P}(\omega)/\mathcal{I}))$ from a given winning strategy for the same player in $\mathcal{G}(\mathcal{I}^+)$, and viceversa. Moreover, $\mathcal{G}(\mathcal{I}^+)$ is equivalent to the game $\mathcal{C}(\mathcal{I}^+)$ defined as follows: At step n, players Empty and Non-empty choose (respectively) A_n and B_n in \mathcal{I}^+ such that $A_0 \supseteq B_0 \supseteq A_1 \supseteq B_1 \supseteq \ldots$. Non-empty wins if there is $C \in \mathcal{I}^+$ such that $C \subseteq_{\mathcal{I}} B_n$ for all n. We will use this game and the following theorem to prove that $\mathcal{G}(RO(\mathcal{P}(\omega)/\mathcal{I}))$ is determined when \mathcal{I} is a Borel ideal.

Let W be a subset of U^{ω} . The game in U with payoff set W, denoted by $\mathcal{CS}(W)$, is defined as follows: Players I and II alternately choose elements $a_0, b_0, a_1, b_1, \ldots$ of U, and Player I is declared the winner if and only if the sequence $(a_0, b_0, a_1, b_1, \ldots)$ belongs to W. Our game $\mathcal{C}(\mathcal{I}^+)$ is an example of this type of game, and the following theorem establishes some conditions that render it determined.

Theorem 2.7 (Martin). (LC) Let U be a set, $A \subseteq U^{\omega}$ be a Borel set, X a Polish space, $f : A \to X$ a continuous function, and $B \subseteq X$ a universally Baire set. Then the game whose payoff set is $f^{-1}(B)$ is determined.

As usual, LC denotes a large cardinal hypothesis. This and other details can be consulted in Zapletal's book [51]. In our case, the payoff set will be co-analytic, and hence, it is a universally Baire set.

Lemma 2.8 (LC). If \mathcal{I} is a Borel ideal, then $\mathcal{G}(RO(\mathcal{P}(\omega)/\mathcal{I}))$ is determined.

Proof. We now verify that $\mathcal{C}(\mathcal{I}^+)$ satisfies the hypothesis of Martin's theorem. Consider $U = \mathcal{I}^+$ and define $A = \{C \in U^\omega : (\forall n)C_{n+1} \subseteq C_n\}$. Hence, A is a Borel set. Consider $X = (\mathcal{P}(\omega))^\omega$, which is a Polish space. The identity function from A to X is clearly continuous. Define $B = \{C \in X : (\exists D \in \mathcal{I}^+)(\forall n)D \subseteq_{\mathcal{I}} C(n)\}$. B is an analytic subset of X and $\mathcal{C}(\mathcal{I}^+)$ is the game whose payoff set is $f^{-1}(X \setminus B)$. Note that $X \setminus B$ is co-analytic, and so is universally Baire. By Martin's theorem, $\mathcal{C}(\mathcal{I}^+)$ is determined, and hence, $\mathcal{G}(RO(\mathcal{P}(\omega)/\mathcal{I}))$ is determined. \Box

Theorem 2.9 (LC). If \mathcal{I} is a Borel ideal and $\mathcal{P}(\omega)/\mathcal{I}$ is ω -distributive, then $\mathcal{P}(\omega)/\mathcal{I}$ contains a dense σ -closed set.

Proof. By Lemma 2.8 and Lemma 2.6, Non-empty has a winning strategy for $\mathcal{G}(RO(\mathcal{P}(\omega)/\mathcal{I}))$. By Theorem 2.5, $RO(\mathcal{P}(\omega)/\mathcal{I})$ contains a dense σ -closed subset. Note that $RO(\mathcal{P}(\omega)/\mathcal{I})$ is atomless and contains a dense subset of cardinality \mathfrak{c} , namely $\mathcal{P}(\omega)/\mathcal{I}$. By Lemma 2.4 and Corollary 2.2 in [3], $\mathcal{P}(\omega)/\mathcal{I}$ has the BT-property, in particular, $\mathcal{P}(\omega)/\mathcal{I}$ contains a dense σ -closed set. \Box

The conditions listed for \mathcal{I} in Theorem 2.1 are not equivalent to \mathcal{I} being σ -closed. From a σ -closed \mathcal{I} on ω , we can construct an ideal \mathcal{I}^{ω} such that $\mathcal{P}(\omega \times \omega)/\mathcal{I}^{\omega}$ has a σ -closed dense subset, but is not σ -closed. We define \mathcal{I}^{ω} as follows. For all $A \subseteq \omega \times \omega$,

 $A \in \mathcal{I}^{\omega}$ if and only if for every $n, \{m : \{(n,m) \in A\}\}$ belongs to \mathcal{I} .

For every $n, X_n = [n, \infty) \times \omega$ is \mathcal{I}^{ω} -positive, and if for every $n, X \setminus X_n \in \mathcal{I}$, then $X \in \mathcal{I}^{\omega}$, which proves that the decreasing sequence $\{X_n : n \in \omega\}$ does not have an \mathcal{I}^{ω} -positive lower bound. On the other hand, the family $\mathcal{D} = \bigcup_n \{X \in (\mathcal{I}^{\omega})^+ : X \subseteq \{n\} \times \omega\}$ is a dense σ -closed subset of $(\mathcal{I}^{\omega})^+$.

3. DICHOTOMY FOR QUOTIENTS OVER ANALYTIC P-IDEALS

We now deal with the important family of analytic P- ideals. Recall that \mathcal{I} is a *P*-ideal if for every countable subset \mathcal{C} of \mathcal{I} , there is $B \in \mathcal{I}$ such that $C \subseteq^* B$, for all $C \in \mathcal{C}$. Solecki [46] characterized the analytic P-ideals as the ideals of the form

$$\mathcal{I} = Exh(\varphi) = \{ A \subseteq \omega : \lim_{n} \varphi(A \setminus n) = 0 \},\$$

where φ is a *lower semicontinuous submeasure* (lscsm), i.e. a function from $\mathcal{P}(\omega)$ to $[0, \infty)$ satisfying that for all $A, B \subseteq \omega$,

- $\varphi(\emptyset) = 0$,
- max{ $\varphi(A), \varphi(B)$ } $\leq \varphi(A \cup B) \leq \varphi(A) + \varphi(B)$, and
- $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap n).$

We say that a family $\mathcal{A} \subseteq \mathcal{I}^+$ is a strong partition when $A \cap B = \emptyset$ for all $A \neq B \in \mathcal{A}$, and $I \in \mathcal{I}$ if and only if $I \cap A \in \mathcal{I}$, for all $A \in \mathcal{A}$. Strong partitions represent countable maximal antichains in $\mathcal{P}(\omega)/\mathcal{I}$.

An example of a strong partition for \mathcal{Z} is the following: For $n \in \omega$, define $A_n = \{k : k \equiv 2^n - 1 \pmod{2^{n+1}}\}$. Note that the density of A_n is 2^{-n} , and if A is a set such that for all $n, A \cap A_n \in \mathcal{Z}$, the density of A can be bounded by ε , for all $\varepsilon > 0$, as follows. Let n be such that $2^{-n+1} < \varepsilon$. Then, the density of $\bigcup_{k=n+1}^{\infty} A_k$ is 2^{-n} , and for some big enough N_k , we know that the density of $(A \cap A_k) \setminus N_k$ is less than 2^{-n-k} . Then, for N sufficiently large, the density of $(A \cap \bigcup_{k=1}^n A_k) \setminus N$ is less than 2^{-n} . Hence, the density of $A \setminus N$ is less than ε .

This example illustrates the general characterization of strong partitions on analytic P-ideals.

Theorem 3.1. If $\mathcal{I} = Exh(\varphi)$ for some $lscsm \varphi$ and $P = \{A_n : n \in \omega\}$ is a partition of ω in \mathcal{I} -positive pieces, then P is a strong partition if and only if for all $\varepsilon > 0$ there are N, M such that $\varphi(\bigcup_{n>N} A_n \setminus M) < \varepsilon$.

Proof. Let us prove that if for some fixed ε , $\varphi(\bigcup_{n\geq N} A_n \setminus M) \geq \varepsilon$, for all N, M, then P is not a strong partition. We recursively define two increasing sequences n_k and m_k ($k \in \omega$) such that

- (1) $m_0 = 0 = n_0$,
- (2) $\varphi([m_k, m_{k+1}) \cap \bigcup_{j=n_k}^{\infty} A_j) > \frac{\varepsilon}{2}$, and
- (3) $\varphi(\bigcup_{j=n_k}^{n_{k+1}-1} A_j \setminus m_k) > \frac{\varepsilon}{2}.$

For (2), suppose n_k and m_k are defined. Since $\varphi(\bigcup_{j=n_k}^{\infty} A_j \setminus m_k) \geq \varepsilon$, by the lower semicontinuity of φ , there is $m_{k+1} > m_k$ such that $\varphi(\bigcup_{j=n_k}^{\infty} A_j \cap [m_k, m_{k+1})) > \frac{\varepsilon}{2}$. For (3), let n_{k+1} be the maximal $j > n_k$ such that $A_{j-1} \cap [m_k, m_{k+1}) \neq \emptyset$. Now we define $X_k = \bigcup_{j=n_k}^{n_{k+1}-1} A_j \cap [m_k, m_{k+1})$, and $X = \bigcup_k X_k$. Clearly, for all $k, \varphi(X_k) \geq \frac{\varepsilon}{2}$, and so $\varphi(X \setminus M) > \frac{\varepsilon}{2}$, for all M, proving that $X \in \mathcal{I}^+$. However, for all $m \in \omega$, $X \cap A_m \subseteq [m_k, m_{k+1})$, for the unique k such that $m_k \leq m < m_{k+1}$.

The argument for the other implication is a replica of the argument given in the previous example. Let $X \subseteq \omega$ be such that $X \cap A_j \in \mathcal{I}$ for all j, and let $\varepsilon > 0$ be fixed. Take N, M such that $\varphi(\bigcup_{n \geq N} A_n \setminus M) < \frac{\varepsilon}{2}$. Let $K \geq M$ be such that $\varphi(\bigcup_{j=0}^{N-1} A_j \setminus K) < \frac{\varepsilon}{2}$. Then, $\varphi(X \setminus K) \leq$ $\varphi(\bigcup_{j=0}^{N-1} A_j \setminus K) + \varphi(\bigcup_{n \geq N} A_n \setminus K) < \varepsilon$. Hence, $X \in \mathcal{I}$. \Box

9

For a partial ordered set \mathbb{P} , $p \in \mathbb{P}$ and $A \subseteq \mathbb{P}$, we denote

$$p||A = \{q \in A : p||q\}.$$

where p||q means that p and q are *compatible*, i. e. there is $r \in \mathbb{P}$ such that $r \leq p$ and $r \leq q$.

Definition 3.2. We say that \mathbb{P} is $(\omega, \cdot, \omega_1)$ -distributive if for every countable family \mathcal{A} of maximal antichains in \mathbb{P} , there is a dense subset B of \mathbb{P} such that for all $p \in B$ and all $A \in \mathcal{A}$, the set p||A is countable.

It is clear that every proper forcing is $(\omega, \cdot, \omega_1)$ -distributive.

Theorem 3.3. Let \mathcal{I} be an analytic P-ideal. Then either $\mathcal{P}(\omega)/\mathcal{I}$ is ω^{ω} -bounding or it is not $(\omega, \cdot, \omega_1)$ -distributive (and hence, it is not proper).

Proof. Let φ be a lscsm such that $\mathcal{I} = Exh(\varphi)$, and let us suppose that $\mathcal{P}(\omega)/\mathcal{I}$ is $(\omega, \cdot, \omega_1)$ -distributive. Let f be a name for a real number in ω^{ω} . For n, let \mathcal{A}_n be a maximal antichain deciding f(n). Let us deal with \mathcal{I}^+ instead of $\mathcal{P}(\omega)/\mathcal{I}$, which is also $(\omega, \cdot, \omega_1)$ -distributive. Taking $X \in \mathcal{I}^+$ as the B in the definition of $(\omega, \cdot, \omega_1)$ -distributivity, we see that the restrictions of \mathcal{A}_n in X are strong partitions of X. Let us denote by $||\varphi \upharpoonright Z|| = \lim_{k \to \infty} \varphi(Z \setminus k)$. Let $r = ||\varphi \upharpoonright X||$, and for each n, let us recursively define $\mathcal{B}_n \in [\mathcal{A}_n \upharpoonright X]^{<\omega}$, $a_n \in [\omega]^{<\omega}$, and an auxiliary C_n , as follows:

- (1) $\mathcal{B}_0 \in [\mathcal{A}_0 \upharpoonright X]^{<\omega}$ such that for $C_0 = \bigcup \mathcal{B}_0, ||\varphi \upharpoonright C_0|| > \frac{r}{2}$,
- (2) $a_0 \in [C_0]^{<\omega}$, with $\varphi(a_0) \ge \frac{r}{2}$, (3) $\mathcal{B}_{n+1} \in [\mathcal{A}_{n+1} \upharpoonright X]^{<\omega}$ such that $C_{n+1} = C_n \cap \bigcup \mathcal{B}_{n+1}$ satisfies $\begin{aligned} ||\varphi \upharpoonright C_{n+1}|| &> \frac{r}{2} \text{ and } \bigcup_{k=0}^{n} a_k \subseteq C_{n+1}, \text{ and finally} \\ (4) \ a_{n+1} \in [C_{n+1}]^{<\omega} \text{ with } \varphi(a_{n+1}) > \frac{r}{2}, \text{ and } \min(a_{n+1}) > \max(a_n). \end{aligned}$

Let us assume that this construction is possible, and define Y = $\bigcup_k a_k$. By (4), $Y \in \mathcal{I}^+$. Note that \mathcal{B}_n is a finite maximal antichain below Y of conditions deciding f(n), for all n. Hence, Y forces that f is dominated by a ground-model function.

We now verify our construction. Since $\mathcal{A}_0 \upharpoonright X$ is a strong partition of X, by 3.1, for $\varepsilon = \frac{r}{4}$, there are a finite subset \mathcal{B}_0 of \mathcal{A}_0 , and an $N \in \omega$ such that $\varphi(\bigcup \{A \in \mathcal{A}_0 : A \notin \mathcal{B}_0\} \cap X \setminus N) < \varepsilon$. Then, $||\varphi \upharpoonright C_0|| > \frac{r}{2}$. By lower semicontinuity, C_0 contains some finite subset a_0 with $\varphi(a_0) > \frac{r}{2}$. An analogous argument shows that we can choose a finite subset \mathcal{B}_{n+1} of $\mathcal{A}_{n+1} \upharpoonright X$ such that $||\varphi \upharpoonright C_{n+1}|| > \frac{r}{2}$. We may add finitely-many pieces from $\mathcal{A}_{n+1} \upharpoonright X$, if necessary, in order to achieve $\bigcup_{k=1}^{n} a_k \subseteq C_{n+1}.$ One would conjecture that if $\mathcal{P}(\omega)/\mathcal{I}$ is not proper, then it is equivalent to the collapse forcing $RO(^{\omega}\mathbf{c})$, at least in a positive restriction. For analytic P-ideals, we confirm this fact under CH.

Recall that an antichain \mathcal{A} is a *refinement* of an antichain \mathcal{B} if every $A \in \mathcal{A}$ is contained in some $B \in \mathcal{B}$.

Definition 3.4. We say that an antichain \mathcal{A} of $\mathcal{P}(\omega)/\mathcal{I}$ has true cardinality \mathfrak{c} if for every \mathcal{I} -positive set X, the family $\{[A] : A \cap X \in \mathcal{I}^+\}$ is countable or has cardinality \mathfrak{c} . An ideal \mathcal{I} has the property $RP(\mathcal{I})$ if every maximal antichain \mathcal{B} in $\mathcal{P}(\omega)/\mathcal{I}$ has a refinement \mathcal{A} which is a maximal antichain and has true cardinality \mathfrak{c} .

Recall the following theorem that compares a partially ordered set with the collapse forcing $c^{<\omega}$, which we will use in the next proof. See Theorem 14.17 in [33].

Theorem 3.5 (McAloon). Let \mathbb{P} be a partially ordered set with $|\mathbb{P}| \leq \mathfrak{c}$. If there is a countable family \mathcal{A} of maximal antichains of \mathbb{P} such that for every $p \in \mathbb{P}$ there is $A \in \mathcal{A}$ such that $|p||A| = \mathfrak{c}$, then \mathbb{P} is forcing equivalent to $\mathfrak{c}^{<\omega}$.

Proposition 3.6. If \mathcal{I} satisfies $RP(\mathcal{I})$, and $\mathcal{P}(\omega)/\mathcal{I}$ is not $(\omega, \cdot, \omega_1)$ distributive, then there is $X \in \mathcal{I}^+$ such that $\mathcal{P}(X)/\mathcal{I} \upharpoonright X$ is forcingequivalent to $\mathfrak{c}^{<\omega}$.

Proof. Using the non $(\omega, \cdot, \omega_1)$ -distributivity, we may choose a sequence $\{A_n : n < \omega\}$ of maximal antichains in $\mathcal{P}(\omega)/\mathcal{I}$, and an \mathcal{I} -positive set X such that for every \mathcal{I} -positive $Y \subseteq_{\mathcal{I}} X$, there is n such that $[Y]||A_n$ is uncountable. By $RP(\mathcal{I})$, for each n we can choose a maximal antichain B_n having true cardinality \mathfrak{c} and refining A_n . Hence, for all $Z \in \mathcal{P}(X)/\mathcal{I} \upharpoonright X$ there is n such that $Z||A_n$ is uncountable. Since B_n has true cardinality \mathfrak{c} , we conclude that $|Z||A_n| = \mathfrak{c}$. By McAloon's Theorem 3.5, $\mathcal{P}(X)/\mathcal{I} \upharpoonright X$ is forcing-equivalent to $\mathfrak{c}^{<\omega}$.

Corollary 3.7 (CH). Let \mathcal{I} be an analytic P-ideal. Then either $\mathcal{P}(\omega)/\mathcal{I}$ is ω^{ω} -bounding or there is $X \in \mathcal{I}^+$ such that $\mathcal{P}(X)/\mathcal{I} \upharpoonright X$ is forcing-equivalent to the collapse forcing $\mathfrak{c}^{<\omega}$.

Proof. If follows directly from Theorem 3.3 and Proposition 3.6, and the trivial fact that under CH, every \mathcal{I} -MAD family is of true cardinality \mathfrak{c} .

4. Completely separable \mathcal{I} -MAD families

Clearly, now the main question is if $RP(\mathcal{I})$ is true for all analytic P-ideals \mathcal{I} , or even for all hereditarily meager. In this direction, we

adapt the notion of a completely separable MAD family ([14], [6], [28]), and a construction of such families due to Shelah [43] (also see [27]). Proposition 3.6 motivates us to study $RP(\mathcal{I})$ and complete separablilty in the general context of Borel ideals. This is interesting in itself, beyond the context of forcing.

By $\mathcal{I}(\mathcal{A})$ we denote the ideal generated by $\mathcal{I} \cup \mathcal{A}$, where \mathcal{I} is an ideal and \mathcal{A} is a family of (typically \mathcal{I} -positive) sets. We say that a family \mathcal{A} of \mathcal{I} positive sets is \mathcal{I} -almost disjoint (in short, \mathcal{I} -AD) if $A \cap B \in \mathcal{I}$ for all $A \neq B \in \mathcal{A}$. Note that if \mathcal{A} is \mathcal{I} -AD, then the family of equivalence classes of elements of \mathcal{A} is an antichain in $\mathcal{P}(\omega)/\mathcal{I}$. We say that an \mathcal{I} -AD family \mathcal{A} is an \mathcal{I} -MAD family if it is a maximal one. Let us recall that an *interval partition* of ω is a set $\{P_n : n < \omega\}$ of consecutive intervals of natural numbers.

Definition 4.1. Let \mathcal{I} be an ideal. We say that an \mathcal{I} -MAD family is *completely separable* if for every $\mathcal{I}(\mathcal{A})$ -positive set X, there is $A \in \mathcal{A}$ such that $A \subseteq X$.

Proposition 4.2. Let \mathcal{I} be a hereditarily meager ideal and \mathcal{A} an \mathcal{I} -AD family. Then $\mathcal{I}(\mathcal{A})$ is hereditarily meager.

Proof. We first prove the case when \mathcal{A} is an \mathcal{I} -MAD family. Let X be an $\mathcal{I}(\mathcal{A})$ -positive set. We will show that $\mathcal{I}(\mathcal{A}) \upharpoonright X$ satisfies Talagrand's characterization of meager ideals. Since X is $\mathcal{I}(\mathcal{A})$ -positive, there is a countable subfamily $\{A_n : n < \omega\}$ of \mathcal{A} such that $X \cap A_n \in \mathcal{I}^+$, for all n. By Theorem 1.4, there are interval partitions $P^n = \{P_m^n : m < \omega\}$ of A_n such that for every $R \subseteq X \cap A_n$, if $P_m^n \subseteq R$ for infinitely many $m \in \omega$, then R is $\mathcal{I} \upharpoonright (X \cap A_n)$ -positive. Here, we are considering that the interval partition P^n of $X \cap A_n$, has the form $P_m^n = X \cap A_n \cap [k_m^n, k_{m+1}^n)$ for some increasing sequence $k_m^n \in \omega$ $(m < \omega)$. Recursively, we define k_n for $n < \omega$ as follows: Let $k_0 = 0$, and let $k_{n+1} > k_n$ be big enough so that for each $j \leq n$, there is m_j such that $P_{m_j}^j \subseteq A_j \cap [k_n, k_{n+1})$. Then, $P = \{X \cap [k_n, k_{n+1}) : n < \omega\}$ is an interval partition of X, such that if $R \subseteq X$ contains infinitely many pieces of P, then for every n, R contains infinitely many pieces of P^n , showing that $R \cap A_n$ is $\mathcal{I} \upharpoonright (X \cap A_n)$ -positive, for every n. Hence, such R is $\mathcal{I}(\mathcal{A})$ -positive.

For the general case, we can extend $\mathcal{A} \upharpoonright X$ to an $\mathcal{I} \upharpoonright X$ -MAD family \mathcal{A}' on X, and we may conclude by noting that $\mathcal{I}(\mathcal{A}) \upharpoonright X \subseteq \mathcal{I} \upharpoonright X(\mathcal{A}')$, and $\mathcal{I} \upharpoonright X(\mathcal{A}')$ is meager. \Box

Definition 4.3. Let S be a set of infinite subsets of ω . We say that S is a *block-splitting family* if for every interval partition $\{P_n : n < \omega\}$, there exists $S \in S$ such that the sets $\{n : P_n \subseteq S\}$ and $\{n : P_n \cap S = \emptyset\}$ are infinite.

We say that an ideal \mathcal{I} is a P^+ -ideal if for every *subseteq*^{*}-decreasing sequence $\{X_n : n < \omega\}$ of \mathcal{I} -positive sets, there is an \mathcal{I} -positive X such that $X \subseteq^* X_n$ for all n.

Lemma 4.4. Let \mathcal{I} be a hereditarily meager ideal, S a block-splitting family, \mathcal{A} an \mathcal{I} -AD family and X an $\mathcal{I}(\mathcal{A})$ -positive set. There exists $S \in S$ such that $X \cap S$ and $X \setminus S$ are $\mathcal{I}(\mathcal{A})$ -positive.

Proof. Let us note that, if there is an \mathcal{I} -positive set $Y \subseteq X$ such that $\mathcal{A} \upharpoonright Y$ is not an $\mathcal{I} \upharpoonright Y$ -MAD family, then there is a $W \subseteq Y$ such that $\mathcal{I}(\mathcal{A}) \upharpoonright W = \mathcal{I} \upharpoonright W$, and hence $\mathcal{I}(\mathcal{A}) \upharpoonright W$ is a meager ideal. On the other hand, by 4.2, if $\mathcal{A} \upharpoonright X$ is an \mathcal{I} -MAD family, then $\mathcal{I}(\mathcal{A}) \upharpoonright X$ is a meager ideal. Hence, without loss of generality, we will assume that $\mathcal{I}(\mathcal{A}) \upharpoonright X$ is a meager ideal. By 1.4, there is an interval partition $\{P_n : n < \omega\}$ of X such that for every $W \subseteq X$, if $P_n \subseteq W$ for infinitely many $n \in \omega$, then W is $\mathcal{I}(\mathcal{A}) \upharpoonright X$ -positive. Since \mathcal{S} is a block-splitting family, there is $S \in \mathcal{S}$ such that the sets $\{n : P_n \subseteq S\}$ and $\{n : P_n \cap S = \emptyset\}$ are infinite, which proves that S and $X \setminus S$ are $\mathcal{I}(\mathcal{A}) \upharpoonright X$ -positive sets. \Box

Lemma 4.5. Let \mathcal{I} be a hereditarily meager P^+ -ideal, and \mathcal{A} an \mathcal{I} -AD family. Then $\mathcal{I}(\mathcal{A})$ is a P^+ -ideal.

Proof. Let $\{X_n : n < \omega\}$ be a decreasing sequence of $\mathcal{I}(\mathcal{A})$ -positive sets. If there is an \mathcal{I} -positive pseudointersection B of $\{X_n : n < \omega\}$ such that $B \cap A \in \mathcal{I}$ for all $A \in \mathcal{A}$, then B is an $\mathcal{I}(\mathcal{A})$ -positive pseudointersection of $\{X_n : n < \omega\}$.

Let us assume that for every \mathcal{I} -positive pseudointersection B of $\{X_n : n < \omega\}$, there is $A \in \mathcal{A}$ such that $B \cap A \in \mathcal{I}^+$. We will choose sequences of sets A_n , B_n and C_n as follows. B_0 is an \mathcal{I} -positive pseudointersection of $\{X_n : n \in \omega\}$, $A_n \in \mathcal{A}$ is such that $A_n \neq A_k$ for all k < n and $C_n := A_n \cap B_n$ is \mathcal{I} -positive, and B_{n+1} an \mathcal{I} -positive pseudointersection of $\{X_k \setminus \bigcup_{j \leq n} A_j : k > n\}$ contained in X_n . This construction works since $X_n \setminus \bigcup_{j < n} A_j$ is \mathcal{I} -positive, and so, for each n, there is $A_n \in \mathcal{A}$ such that $A_n \neq A_k$ for all k < n, and $A_n \cap X_n \in \mathcal{I}^+$. Hence, $B = \bigcup B_n$ is an $\mathcal{I}(\mathcal{A})$ -positive pseudointersection of $\{X_n : n < \omega\}$. \Box

Lemma 4.6. Let \mathcal{I} be a hereditarily meager ideal. If \mathcal{A} is a completely separable \mathcal{I} -MAD family, then for every $\mathcal{I}(\mathcal{A})$ -positive set X, the set $\{A \in \mathcal{A} : A \subseteq X\}$ has cardinality \mathfrak{c} .

Proof. Since $\mathcal{I}(\mathcal{A})$ is hereditarily meager, there is an interval partition $\{P_n : n < \omega\}$ of X such that for every $x \in [\omega]^{\omega}, \bigcup_{n \in x} P_n$ is an $\mathcal{I}(\mathcal{A})$ -positive set. Let t be a bijection from $2^{<\omega}$ onto ω , and define $X_y =$

 $\bigcup_n P_{t(y \mid n)}$, for all $y \in 2^{\omega}$. Then, the family $\{X_y : y \in 2^{\omega}\}$ is an ADfamily of $\mathcal{I}(\mathcal{A})$ -positive sets, each of them containing a set A_y from \mathcal{A} , by the complete separability of \mathcal{A} . It is clear that $A_u \neq A_w$, for all $y \neq w \in 2^{\omega}$. Hence, X contains at least (and also at most) \mathfrak{c} sets from \mathcal{A} .

Recall that the *block splitting number* \mathfrak{bs} is the minimal size of a block spiltting family. By Kamburelis and Weglorz [32], it is known that $\mathfrak{bs} = \max{\mathfrak{b}, \mathfrak{s}}.$

Definition 4.7. Let \mathcal{I} be an ideal. We denote the minimal size of an \mathcal{I} -MAD family by $\mathfrak{a}(\mathcal{I})$.

Proposition 4.8. Let \mathcal{I} be a hereditarily meager P^+ -ideal. If $\mathfrak{bs} <$ $\mathfrak{a}(\mathcal{I})$, then there is a completely separable \mathcal{I} -MAD family.

Remark 4.9. By a result of Farkas and Soukup [20], if \mathcal{I} is an analytic *P*-ideal, then $\mathfrak{b} \leq \mathfrak{a}(\mathcal{I})$. Hence, in this case, the hypothesis is reduced to $\mathfrak{s} \leq \mathfrak{a}(\mathcal{I})$, and it is fulfilled whenever $\mathfrak{s} \leq \mathfrak{b}$.

Proof. Fix an enumerated block-splitting family $\mathcal{S} = \{S_{\alpha} : \alpha < \mathfrak{bs}\}$ of minimal size. For a given \mathcal{I} -AD family \mathcal{A} and an $\mathcal{I}(\mathcal{A})$ -positive set X, by 4.4, there is a minimal $\alpha < \mathfrak{bs}$ such that $X \cap S_{\alpha}$ and $X \setminus S_{\alpha}$ are $\mathcal{I}(\mathcal{A})$ -positive. Hence, for such \mathcal{A}, X and α we can define a sequence $\tau_X^{\mathcal{A}}$ in 2^{α} such that $\tau_X^{\mathcal{A}}(\beta) = j$ if and only if $X \cap S_{\beta}^{1-j} \in \mathcal{I}(\mathcal{A})$. Note that if Y is an $\mathcal{I}(\mathcal{A})$ -positive subset of X, then $\tau_Y^{\mathcal{A}}$ extends $\tau_X^{\mathcal{A}}$. Fix an enumeration $\{X_{\alpha} : \alpha < \mathfrak{c}\}$ of $[\omega]^{\omega}$. Recursively, we construct two sequences $\mathcal{A} = \{A_{\alpha} : \alpha \in \mathfrak{c}\} \subseteq [\omega]^{\omega}$ and $\{\sigma_{\alpha} : \alpha \in \mathfrak{c}\} \subseteq 2^{<\mathfrak{bs}}$ such that for all α ,

- (1) $\mathcal{A}_{\alpha} = \{A_{\beta} : \beta < \alpha\}$ is an \mathcal{I} -AD family,
- (2) $\sigma_{\alpha} \not\subseteq \sigma_{\beta}$, for all $\beta < \alpha$,
- (3) if X_{α} is $\mathcal{I}(\mathcal{A}_{\alpha})$ -positive then $A_{\alpha} \subseteq X_{\alpha}$, and (4) $A_{\xi} \subseteq_{\mathcal{I}} S_{\xi}^{\sigma_{\alpha}(\xi)}$, for all $\xi < dom(\sigma_{\alpha})$.

It is clear that if the construction works, then \mathcal{A} is a completely separable \mathcal{I} -MAD family. Let us assume that \mathcal{A}_{α} and σ_{β} ($\beta < \alpha$) were already constructed, and also assume that X_{α} is $\mathcal{I}(\mathcal{A})$ -positive (if not, take ω in its place). We recursively construct a family $\{X_s : s \in 2^{<\omega}\}$ of $\mathcal{I}(\mathcal{A}_{\alpha})$ -positive sets, a family $\{\eta_s : s \in 2^{<\omega}\}$ of sequences in $2^{<\mathfrak{b}\mathfrak{s}}$, with $dom(\eta_s) = \alpha_s$ satisfying

(1) $X_{\emptyset} = X_{\alpha},$ (1) $Y_{\psi} = T_{\alpha}^{\alpha}$, (2) $\eta_s = \tau_{X_s}^{\mathcal{A}_{\alpha}}$, and (3) $X_{s \frown 0} = X_s \cap S_{\alpha_s}$ and $X_{s \frown 1} = X_s \setminus S_{\alpha_s}$.

Let us note that since $\alpha_s = dom(\tau_{X_s}^{\mathcal{A}_{\alpha}})$, we have that $S_{\alpha_s} \cap X_s$ and $X_s \setminus S_{\alpha_s}$ are $\mathcal{I}(\mathcal{A}_{\alpha})$ -positive. Moreover, if $t \subseteq s$ then $\eta_t \subseteq \eta_s$ and $X_s \subseteq$ X_t ; and if s and t are incompatible then η_s and η_t are incompatible. For every $f \in 2^{\omega}$, let us define $\eta_f = \bigcup_n \eta_{f \mid n}$. Since **bs** has uncountable cofinality, η_f is in $2^{<\mathfrak{b}\mathfrak{s}}$, and moreover, if $f \neq g$, then η_f and η_g are incompatible. Since $\alpha < \mathfrak{c}$, there is $f \in 2^{\omega}$ such that there is no $\beta < \alpha$ such that $\eta_f \subseteq \sigma_\beta$. The sequence $\{X_{f \mid n} : n < \omega\}$ is a decreasing sequence of $\mathcal{I}(\mathcal{A}_{\alpha})$ -positive sets. By 4.5, there is an $\mathcal{I}(\mathcal{A}_{\alpha})$ -positive set Y such that $Y \subseteq^* X_{f \upharpoonright n}$ for all *n*. That is, for all *n*, $Y \setminus X_{f \upharpoonright n} \in fin$, consequently, for all $\xi \in dom(\eta_f)$, $Y \cap S_{\xi}^{1-\eta_f(\xi)} \in \mathcal{I}(\mathcal{A}_{\alpha})$. This means that for all $\xi \in dom(\eta_f)$, there are a finite subset F_{ξ} of \mathcal{A}_{α} and $I_{\xi} \in \mathcal{I}$, such that $Y \cap S_{\xi}^{1-\eta_f(\xi)} \subseteq I_{\xi} \cup \bigcup F_{\xi}$. Let us define $\mathcal{D} = \{A_{\beta} : \sigma_{\beta} \subseteq \eta_f\} \cup \bigcup_{\xi \in dom(\eta_f)} F_{\xi}$. Note that \mathcal{D} is a subset of \mathcal{A}_{α} with less than \mathfrak{bs} elements, and since $\mathfrak{bs} \leq \mathfrak{a}(\mathcal{I}) \leq \mathfrak{a}(\mathcal{I} \upharpoonright Y), \mathcal{D}$ is not maximal. Let A_{α} be an infinite subset of Y, which is \mathcal{I} -AD with all sets in \mathcal{D} , and define $\sigma_{\alpha} = \eta_f$. It only remains to verify that A_{α} is \mathcal{I} -AD with A_{β} for all $\beta < \alpha$, but that is clearly the case when $A_{\beta} \in \mathcal{D}$. Suppose $A_{\beta} \notin \mathcal{D}$. In this case, $\sigma_{\beta} \nsubseteq \eta_{f}$. If $\xi = \Delta(\sigma_{\alpha}, \sigma_{\beta})$, we have that $A_{\alpha} \subseteq_{\mathcal{I}} S_{\xi}^{\sigma_{\alpha}(\xi)}$ and $A_{\beta} \subseteq_{\mathcal{I}} S_{\xi}^{\sigma_{\beta}(\xi)}$. Since $\sigma_{\alpha}(\xi) = 1 - \sigma_{\beta}(\xi)$, A_{α} and A_{β} are \mathcal{I} -AD.

We will now prove that a completely separable \mathcal{I} -MAD family exists if some cardinal characteristic condition plus a certain pcf/guessing principle are satisfied.

Lemma 4.10. Let \mathcal{I} be a hereditarily meager P^+ -ideal. Let C be an infinite subset of ω and $\{C_n : n < \omega\}$ a partition of C in infinite pieces. There is a family \mathcal{B} of \mathfrak{b} infinite subsets of C such that if \mathcal{A} is an \mathcal{I} -AD family and X is a subset of C for which there are a family $\{A_i : i < \omega\} \subseteq \mathcal{A}$ and a sequence $\{n_i : i < \omega\}$ such that

(1) $X \cap A_i \in \mathcal{I}^+$, (2) $A_i \subseteq C_{n_i}$, and (3) $n_i \neq n_j$ if $i \neq j$,

then there is $B \in \mathcal{B}$ such that $B \cap X$ and $X \setminus B$ are $\mathcal{I}(\mathcal{A})$ -positive.

Proof. Let $\mathcal{D} = \{f_{\alpha} : \alpha < \mathfrak{b}\}$ be an unbounded family of increasing functions defined on C. Also, let $\mathcal{P} = \{P_{\alpha} : \alpha < \mathfrak{b}\}$ be an unbounded family of interval partitions of C, i.e. for every interval partition P of C, there is $\alpha < \mathfrak{b}$ such that for infinitely many I in P_{α} , there is J in P such that $J \subseteq I$. For every α and β in \mathfrak{b} , let $g_{\alpha\beta}$ be given by $g_{\alpha\beta}(j) = f_{\alpha}(k)$, for the maximal $k \ge 0$ such that $[j, k] \subseteq I$, for some $I \in P_{\beta}$. For each pair $\alpha, \beta \in \mathfrak{b}$, define $B_{\alpha\beta} = \{m \in C : \forall j (m \in C_j \to m \le g_{\alpha\beta}(j))\}$. We now define the family $\mathcal{B} = \{B_{\alpha\beta} : \alpha, \beta \in \mathfrak{b}\}$. Let $X, \{A_i : i < \omega\}$ and $\{n_i: i < \omega\}$ be as in the hypothesis. We may assume that $X = \bigcup_i A_i$.

We first deal with the case in which $\mathcal{A} \upharpoonright X$ is not an \mathcal{I} -MAD family. Let Y be an \mathcal{I} -positive set such that $Y \cap A \in \mathcal{I}$, for all $A \in \mathcal{A}$. Note that $\mathcal{I}(\mathcal{A}) \upharpoonright Y = \mathcal{I} \upharpoonright Y$. Since \mathcal{I} is a P^+ -ideal, we can find a subset D of Ysuch that $D \cap A_n$ is finite, for all n. Let $Q = \{I_n : n < \omega\}$ be an interval partition of D such that every set containing infinitely many pieces from Q is \mathcal{I} -positive. Let $R = \{J_n : n < \omega\}$ be an interval partition of ω such that for every n, there is m(n) with $I_{m(n)} \subseteq \bigcup_{j \in J_n} C_j$. Let $\beta < \mathfrak{b}$ be such that $P_{\beta} = \{K_i : i < \omega\}$ is not dominated by R, i.e. the set $H = \{i : \exists n(i) (J_{n(i)} \subseteq K_i)\}$ is infinite. For every $i \in H$, define $h(i) = max(I_{m(n(i))})$, and let $\alpha < \mathfrak{b}$ be such that $f_{\alpha} \upharpoonright H$ is not dominated by h, i.e. the set $K = \{i \in H : h(i) < f_{\alpha}(i)\}$ is infinite. Hence, for each $i \in K$, $I_{m(n(i))} \subseteq \bigcup_{j \in J_{n(i)}} \{r \in C_j : r \leq g_{\alpha\beta}(i)\}$, and then $B_{\alpha\beta} \cap D$ contains infinitely many intervals from Q. This proves that $B_{\alpha\beta} \cap D$ is a positive subset of X. On the other hand, $X \setminus B_{\alpha\beta}$ contains $X \setminus D$, which is an $\mathcal{I}(\mathcal{A})$ -positive set.

Now we deal with the case in which $\mathcal{A} \upharpoonright X$ is an \mathcal{I} -MAD family. By the maximality of $\mathcal{A} \upharpoonright X$, we can find a sequence $\{A'_j : j < \omega\} \subseteq \mathcal{A}$ satisfying

- (1) $A'_i \neq A_i$ for all i,
- (2) $A'_j \neq A'_k$ if $j \neq k$, and (3) $A'_j \cap X \in \mathcal{I}^+$.

Since $\mathcal{I}(\mathcal{A})$ is a P^+ -ideal, for the sequence $X_n := \bigcup_{i>n} A_i$, there is an $\mathcal{I}(\mathcal{A})$ -positive pseudointersection Y. Let us denote with D_n the set $A'_n \cap X$. Since \mathcal{I} is a hereditarily measure ideal, for every n, there is an interval partition Q_n of $Y \cap D_n$, such that every set containing infinitely many pieces of Q_n is \mathcal{I} -positive. For all n, take an interval partition $\{R_n : n < \omega\}$ of Y in such a way that each interval J in R_n is large enough for $\bigcup_{i \in J} C_j$ to contain an interval I in Q_i , for all $i \leq n$. Let us fix enumerations for $Q_n = \{I(n, j) : j < \omega\}$ and $R_n = \{J(n, m) : j < \omega\}$ $m < \omega$, and a function j(n, m, k), such that for all $n, m \in \omega$ and $k \leq n, I(k, j(n, m, k)) \subseteq \bigcup_{r \in J(n, m)} C_r$. Let $R = \{K_s : s < \omega\}$ be an interval partition in such a way that for every s and every $t \leq s$, there is $m(s,t) < \omega$ such that $J(t,m(s,t)) \subseteq K_s$. Let $\beta < \mathfrak{b}$ be such that $P_{\beta} = \{L_n : n < \omega\}$ is not dominated by R, i.e. the set $H = \{n \in \mathbb{N}\}$ $\omega : \exists m(n)(K_{m(n)} \subseteq L_n)$ is infinite. For all $n \in H$, let h(n) be the maximum of $\bigcup \{I(k, j(t, m(s(n), t), k) : t \leq s(n), k \leq m(s(n), t)\}$. Let $\alpha < \mathfrak{b}$ be such that $f_{\alpha} \upharpoonright H \not\leq^* h$. Hence, the set

$$M = \bigcup \{ I(k, j(t, m(s(n), t), k) : h(n) \le f_{\alpha}(n), t \le s(n), k \le m(s(n), t) \}$$

is an $\mathcal{I}(\mathcal{A})$ -positive set contained in $X \cap B_{\alpha\beta}$. Clearly, $X \setminus B_{\alpha\beta}$ is $\mathcal{I}(\mathcal{A})$ -positive.

By a simple modification of the proof above, we may conclude that under the lemma's hypothesis $RP(\mathcal{I})$ is satisfied.

The pcf/guessing principle mentioned before is defined as follows.

Definition 4.11. Let $\kappa \geq \mathfrak{b}$ be a cardinal number. By $P(\mathfrak{b}, \kappa)$ we denote the property that there is a family $\{U_{\alpha} : \omega \leq \alpha < \kappa\}$ such that

- (1) $U_{\alpha} \subseteq \alpha$, and the order type of U_{α} is ω , for all $\alpha < \kappa$, and
- (2) for every $X \subseteq \kappa$ with order type \mathfrak{b} , there is $\alpha < \sup X$ such that $|U_{\alpha} \cap X| = \omega$.

Shelah proved (in ZFC) that if $\mathfrak{b} \leq \kappa < \aleph_{\omega}$ then $P(\mathfrak{b}, \kappa)$ holds.

Theorem 4.12. Let \mathcal{I} be a hereditarily meager P^+ ideal. If

- (1) $\mathfrak{bs} \leq \mathfrak{a}(\mathcal{I}), or$
- (2) $P(\mathfrak{b},\mathfrak{s})$ and $\mathfrak{b} < \mathfrak{a}(\mathcal{I})$

then there is a completely separable \mathcal{I} -MAD family. In fact, $RP(\mathcal{I})$ holds.

Proof. Case 1 is a consequence of Proposition 4.8. For Case 2, let us additionally assume that Case 1 is not true. Hence, $\mathfrak{b} \leq \mathfrak{a}(\mathcal{I}) < \mathfrak{s}$, and so $\mathfrak{bs} = \mathfrak{s}$, i.e. there is a block-splitting family of size \mathfrak{s} . Let $\{U_{\alpha}(n) : n < \omega\}$ be an enumeration of U_{α} , and $\{P_{\alpha} : \alpha < \mathfrak{s}\}$ a partition of \mathfrak{s} such that

- $|P_0| = \mathfrak{s}$ and $\omega \subseteq P_0$,
- for all $\alpha > 0$, $|P_{\alpha}| = \mathfrak{b}$ and $\alpha < \min(P_{\alpha}) < \sup(P_{\alpha}) \le \alpha + \mathfrak{b}$.

Let $\{S_{\alpha} : \alpha \in P_0\}$ be a block-splitting family and $\{X_{\alpha} : \alpha < \mathfrak{c}\}$ an enumeration of $[\omega]^{\omega}$. Recursively, we construct three sequences $\{A_{\alpha} : \alpha \in \mathfrak{c}\}, \{\sigma_{\alpha} : \alpha \in \mathfrak{c}\}, \{\sigma_{\alpha} : \alpha \in \mathfrak{c}\}, \text{ and } \{C_{\alpha} : \alpha \in \mathfrak{c}\}, \text{ such that for all } \alpha < \mathfrak{c},$

- (i) $\mathcal{A}_{\alpha} = \{A_{\xi} : \xi < \alpha\}$ is an \mathcal{I} -AD family,
- (ii) $\sigma_{\alpha} \in 2^{<\mathfrak{s}}$
- (iii) $C_{\alpha}: 2^{<\mathfrak{s}} \to \mathcal{P}(\omega),$
- (iv) $A_{\alpha} \subseteq C_{\alpha}(\sigma_{\alpha} \upharpoonright \xi)^{\sigma_{\alpha}(\xi)}$, for all $\xi \in dom(\sigma_{\alpha})$,
- (v) $A_{\alpha} \subseteq X_{\alpha}$ if $X_{\alpha} \in \mathcal{I}(\mathcal{A}_{\alpha})^+$, and
- (vi) $\sigma_{\alpha} \not\subseteq \sigma_{\beta}$, for all $\beta < \alpha$.

First we define C_{α} , assuming that C_{η} , A_{η} and σ_{η} are defined for all $\eta < \alpha$. Let τ be in $2^{<\mathfrak{s}}$, let us say $\tau \in 2^{\xi}$. If $\xi \in P_0$, then define $C_{\alpha}(\tau) = S_{\xi}$. If $\xi \in P_{\delta}$ for some $\delta > 0$, recall that $\delta \leq \xi < \delta + \mathfrak{b}$. Let us focus on the sequence $\{\tau \upharpoonright U_{\delta}(n) : n < \omega\}$. Let $R_{\alpha,\tau} = \{\gamma < \alpha : (\exists n < \omega)(\tau \upharpoonright U_{\delta}(n) = \sigma_{\gamma})\}$. Note that if $\gamma \in R_{\alpha,\tau}$, then there is a unique n

such that $\tau \upharpoonright U_{\delta}(n) = \sigma_{\gamma}$. For all n, define $A_n^{\alpha,\tau} = A_{\gamma}$, if $\gamma \in R_{\alpha,\tau}$ and $\sigma_{\gamma} = \tau \upharpoonright U_{\delta}(n-1)$, and define $A_n^{\alpha,\tau} = \emptyset$, if not. For each n, fix

$$B_n^{\alpha,\tau} = \bigcap_{i \le n} \left(C_\alpha(\tau \upharpoonright U_\delta(i)) \setminus A_n^{\alpha,\tau} \right).$$

We will pick an enumerated family $\mathcal{D}_{\alpha}^{\tau} = \{D_{\alpha}^{\tau}(\nu) : \nu \in P_{\delta}\}$ in such a way that

- if $\xi > \min P_{\delta}$, then $\mathcal{D}_{\alpha}^{\tau} = \mathcal{D}_{\alpha}^{\tau \restriction \min P_{\delta}}$,
- if $R_{\alpha,\tau} = R_{\beta,\tau}$ for some $\beta < \alpha$, then $\mathcal{D}^{\tau}_{\alpha} = \mathcal{D}^{\tau}_{\beta}$, and
- in the remaining case, take $C_{\alpha}(\tau \upharpoonright U_{\delta}(0))$ and $B_{n}^{\alpha,\tau} \setminus B_{n+1}^{\alpha,\tau}$ as the *C* and C_{n} (respectively) in the hypothesis of Lemma 4.10, and then pick the family $\mathcal{D}_{\alpha}^{\tau}$ as the family \mathcal{B} given by this Lemma, and fix an enumeration for it, indexed by P_{δ} .

Now we define $C_{\alpha}(\tau) = D_{\alpha}^{\tau}(\xi)$.

We claim that for all $\beta < \alpha$ and $\eta \in dom(\sigma_{\beta})$,

$$C_{\beta}(\sigma_{\beta} \upharpoonright \eta) = C_{\alpha}(\sigma_{\beta} \upharpoonright \eta).$$

Let us prove it by induction on η . By induction hypothesis, we have that $C_{\alpha}(\sigma_{\beta} \upharpoonright U_{\delta}(i)) = C_{\beta}(\sigma_{\beta} \upharpoonright U_{\delta}(i))$ for all *i*. On the other hand, note that clearly $R_{\beta,\sigma_{\beta}\restriction\eta} \subseteq R_{\alpha,\sigma_{\beta}\restriction\eta}$, but actually, the reverse inclusion is also true, because for every τ , if $\gamma \in R_{\alpha,\tau} \setminus R_{\beta,\tau}$ then $\gamma > dom(\sigma_{\beta})$, and so $\tau \notin \sigma_{\beta}$. Hence $\mathcal{D}_{\alpha}^{\tau} = \mathcal{D}_{\beta}^{\tau}$ and the claim follows immediately from the definitions.

From the claim and an inductive argument based on condition (iv), we may deduce that

$$A_{\beta} \subseteq^* C_{\alpha}(\sigma_{\beta} \upharpoonright \xi)^{\sigma_{\beta}(\xi)},$$

for all $\beta < \alpha$, and $\xi \in dom(\sigma_{\beta})$.

Now we define σ_{α} . By recursion on ω , let T_n be the subset of $2^{<\mathfrak{s}}$ defined by $T_0 = \emptyset$ and $\tau \in T_{n+1}$ if and only if there is $s \in T_n$ such that

- $s = \tau \upharpoonright |s|,$
- either $X \cap C_{\alpha}(\tau \upharpoonright \xi)$ or $X \setminus C_{\alpha}(\tau \upharpoonright \xi)$ belong to $\mathcal{I}(\mathcal{A}_{\alpha})$, for all $|s| < \xi < |\tau|$, and
- $X \cap C_{\alpha}(\tau)$ and $X \setminus C_{\alpha}(\tau)$ are $\mathcal{I}(\mathcal{A}_{\alpha})$ -positive.

Since $T = \bigcup_n T_n$ has \mathfrak{c} many branches, there is a branch B of T such that $\bigcup B \not\subseteq \sigma_\beta$ for all $\beta < \alpha$. Define $\sigma_\alpha = \bigcup B$. Let Y be an $\mathcal{I}(\mathcal{A}_\alpha)$ -positive pseudointersection of $\{C_\alpha(\sigma_\alpha \cap T_n) : n < \omega\}$, i.e. $Y \in \mathcal{I}(\mathcal{A}_\alpha)^+$ and $Y \setminus C_\alpha(\sigma_\alpha \cap T_n) \in \mathcal{I}(\mathcal{A}_\alpha)$ for all n. Moreover, note that for all $\xi < dom(\sigma_\alpha)$, if $\sigma_\alpha \upharpoonright \xi$ is not in T, then $Y \cap C_\alpha(\sigma_\alpha \upharpoonright \xi)^{1-\sigma_\alpha(\xi)}$ is in $\mathcal{I}(\mathcal{A}_\alpha)$.

We claim that $\mathcal{A}_{\alpha} \upharpoonright Y$ is not an \mathcal{I} -MAD family. To see it, let us consider the set

$$W = \{\xi < dom(\sigma_{\alpha}) : (\exists \beta < \alpha)(\xi = dom(\sigma_{\beta}) \lor \xi = dom(\sigma_{\alpha} \cap \sigma_{\beta}))\}.$$

We claim that W has less than \mathfrak{b} many elements. Suppose not. Let W_0 be the set of the first \mathfrak{b} elements of W. By $P(\mathfrak{b}, \mathfrak{s})$, there is $\delta < \sup W_0$ such that $U_{\delta} \cap W_0$ is infinite. Let ε be the minimum of P_{δ} . By its definition, the family $\mathcal{D}_{\alpha}^{\sigma_{\alpha} \models \varepsilon}$ splits Y, i.e. there is $\nu \in P_{\delta}$ such that $Y \cap D_{\alpha}^{\sigma_{\alpha} \models \varepsilon}(\nu)$ and $Y \setminus D_{\alpha}^{\sigma_{\alpha} \models \varepsilon}(\nu)$ are $\mathcal{I}(\mathcal{A}_{\alpha})$ -positive. Hence, $Y \cap C_{\alpha}(\sigma_{\alpha} \models \nu)$ and $Y \setminus C_{\alpha}(\sigma_{\alpha} \models \nu)$ are $\mathcal{I}(\mathcal{A}_{\alpha})$ -positive, in particular, $Y \cap C_{\alpha}(\sigma_{\alpha} \models \nu)^{1-\sigma_{\alpha}(\nu)}$ is $\mathcal{I}(\mathcal{A}_{\alpha})$ -positive, which is a contradiction, since $\varepsilon < \nu < dom(\sigma_{\alpha})$.

For each $\xi \in W$, let $Z(\xi)$ be defined as follows:

- If there is $\beta < \alpha$ such that $\xi = dom(\sigma_{\beta})$, then $Z(\xi) = \{A_{\beta}\}$.
- If not, then define $Z(\xi)$ as a finite subset of \mathcal{A}_{α} such that $Y \cap C_{\alpha}(\sigma_{\alpha} \upharpoonright \xi)^{1-\sigma_{\alpha}(\xi)} \subseteq \bigcup Z(\xi)$. This finite set exists since $Y \cap C_{\alpha}(\sigma_{\alpha} \upharpoonright \xi)^{1-\sigma_{\alpha}(\xi)}$ is in $\mathcal{I}(\mathcal{A}_{\alpha})$.

Clearly, $\bigcup_{\xi \in W} Z(\xi)$ has less than \mathfrak{b} many elements. We claim that for all $\beta < \alpha, Y \cap A_{\beta}$ is \mathcal{I} -almost contained in $Z(\xi)$ for some $\xi \in W$. This is clear when $\xi = dom(\sigma_{\beta})$. In the other case, the claim follows from the fact that $A_{\beta} \subseteq C_{\alpha}(\sigma_{\alpha} \upharpoonright \xi)^{1-\sigma_{\alpha}(\xi)}$. Since $\mathfrak{b} \leq \mathfrak{a}(\mathcal{I}), \mathcal{A}_{\alpha} \upharpoonright Y$ cannot be an \mathcal{I} -MAD family. \Box

5. Open questions

The existence of a completely separable MAD family is a famous problem of Erdös and Shelah [14]. We conjecture the same for quotients over analytic P-ideals. We list some interesting open questions.

Question 5.1. Are there \mathfrak{c} -many non forcing equivalent quotients $\mathcal{P}(\omega)/\mathcal{I}$ with \mathcal{I} Borel?

Question 5.2. Does $(\omega, \cdot, \omega_1)$ -distributivity imply properness for $\mathcal{P}(\omega)/\mathcal{I}$ with \mathcal{I} a Borel ideal?

Question 5.3. Is it true that if \mathcal{I} is Borel and $\mathcal{P}(\omega)/\mathcal{I}$ is ω^{ω} -bounding, then one of the following conditions holds?

- (a) $\mathcal{P}(\omega)/\mathcal{I}$ does not add reals.
- (b) There exists an \mathcal{I} -positive set X such that $\mathcal{I} \upharpoonright X$ is a P-ideal.

Question 5.4. Is it true (in ZFC) that if \mathcal{I} is Borel and not proper, then there exists an \mathcal{I} -positive set X such that $\mathcal{P}(X)/(\mathcal{I} \upharpoonright X)$ is forcing equivalent to $c^{<\omega}$? **Question 5.5.** Let \mathcal{I} be a Borel ideal. Does there exist (in ZFC) a completely separable \mathcal{I} -MAD family?

Question 5.6. Let \mathcal{I} be a Borel ideal. Is $RP(\mathcal{I})$ true (in ZFC)?

Question 5.7. Is it possible to avoid the large cardinals assumption in Theorem 2.9?

References

- T. Bartoszynski, H. Judah. Set Theory: On the Structure of the Real Line, AK Peters / CRC Press. 1995.
- [2] J.E. Baumgartner, L.A. Harrington, E.M. Kleinberg. Adding a closed unbounded set, The Journal of Symbolic Logic 41(2):481-482, 1976.
- [3] Balcar, Bohuslav; Doucha, Michal; Hrušák, Michael Base tree property, Order 32 (2015), no. 1, 69-81.
- [4] Balcar, Bohuslav; Pelant, Jan; Simon, Petr The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), no. 1, 11-24.
- [5] B. Balcar, F. Hernández-Hernández, M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. 183, no. 1, 59-80, 2004.
- [6] Balcar, Bohuslav; Simon, Petr Disjoint refinement. Handbook of Boolean algebras, Vol. 2, 333-388, North-Holland, Amsterdam, 1989.
- [7] B. Balcar, P. Stepánek. *Teorie množin*. Academia, 2001.
- [8] Blass, Andreas; Dobrinen, Natasha; Raghavan, Dilip, The next best thing to a P-point, J. Symb. Log. 80 (2015), no. 3, 866-900.
- J. Brendle, D.A. Mejia, Rothberger gaps in fragmented ideals, Fundamenta Mathematicae 227(1), 35-68, 2014.
- [10] Brendle, Jörg; Montoya, Diana Carolina A base-matrix lemma for sets of rationals modulo nowhere dense sets Arch. Math. Logic 51 (2012), no. 3-4, 305-317.
- [11] Cancino-Manríquez, Jonathan; Hrušák, Michael; Meza-Alcántara, David Countable irresolvable spaces and cardinal invariants. Topology Proc. 44 (2014), 189-196.
- [12] Chodounský, David; Guzmán González, Osvaldo; Hrušák, Michael Mathias-Prikry and Laver type forcing; summable ideals, coideals, and +-selective filters, Arch. Math. Logic 55 (2016), no. 3-4, 493-504.
- [13] van Douwen, Eric K.; van Mill, Jan Subspaces of basically disconnected spaces or quotients of countably complete Boolean algebras, Trans. Amer. Math. Soc. 259 (1980), no. 1, 121-127.
- [14] Erdös, Paul; Shelah, Saharon Separability properties of almost-disjoint families of sets. Israel J. Math. 12 (1972), 207-214.
- [15] Dow, A.; Frankiewicz, R.; Zbierski, P. On closed subspaces of ω^* , Proc. Amer. Math. Soc. 119 (1993), no. 3, 993-997.
- [16] I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148, no. 702, 2000.
- [17] I. Farah, Analytic Hausdorff gaps in DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 58, Amer. Math. Soc., 65-72, 2002.
- [18] I. Farah, Luzin gaps, Trans. Amer. Math. Soc. 356(6), 2197-2239, 2004.

- [19] Farah, Ilijas; Solecki, Slawomir *Two* $F_{\sigma\delta}$ *ideals*, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1971-1975.
- [20] B. Farkas, L. Soukup. More on cardinal invariants of analytic P-ideals. Comment. Math. Univ. Carolin. 50 (2009), no. 2, 281-295.
- [21] G.M. Fichtenholz, L.V. Kantorovich. Sur les opérations linéires dans l'espace des fonctions bornées, Studia Math. 5:69-98, 1935.
- [22] D.H. Fremlin, The partially ordered sets of measure theory and Tukey's ordering, Note di Matematica, 11 (1991), 177-214.
- [23] He, Jialiang; Hrušák, Michael; Rojas-Rebolledo, Diego; Solecki, Slawomir Tukey order among F_{σ} ideals, J. Symb. Log. 86 (2021), no. 2, 855-870
- [24] Hernández-Hernández, Fernando Distributivity of quotients of countable products of Boolean algebras, Rend. Istit. Mat. Univ. Trieste 41 (2009), 27-33 (2010)
- [25] M. Hrušák, Combinatorics of filters and ideals in Set theory and its applications, Contemp. Math., 533, Amer. Math. Soc., 29-69, 2011.
- [26] M. Hrušák, Katětov order on Borel ideals, Arch. Math. Logic 56, no. 7-8, 831-847, 2017.
- [27] Hrušák, Michael Almost disjoint families and topology. Recent progress in general topology III, 601-638, Atlantis Press, Paris, 2014.
- [28] Hrušák, Michael; Simon, Petr Completely separable MAD families. Open problems in Topology II, 179–184, Elsevier, 2007.
- [29] Hrušák, Michael; Verner, Jonathan L. Adding ultrafilters by definable quotients, Rend. Circ. Mat. Palermo (2) 60 (2011), no. 3, 445-454.
- [30] M. Hrušák, J. Zapletal, Forcing with quotients, Arch. Math. Logic 47, no. 7-8, 719-739, 2008.
- [31] W. Just, A. Krawczyk, On certain Boolean algebras P(ω)/I Trans. Amer. Math. Soc. 285, no. 1, 411-429, 1984.
- [32] A. Kamburelis, B. Węglorz. Splittings, Arch. Math. Logic 35 (1996), no. 4, 263-277.
- [33] Koppelberg, Sabine, Handbook of Boolean algebras. Vol. 1. Edited by J. Donald Monk and Robert Bonnet. North-Holland Publishing Co., Amsterdam, 1989.
- [34] Louveau, Alain Caractérisation des sous-espaces compacts de βN, Bull. Sci. Math. (2) 97 (1973), 259-263 (1974).
- [35] A. Louveau, B. Veličković, Analytic ideals and cofinal types, Ann. Pure Appl. Logic 99, no. 1-3, 171-195, 1999.
- [36] M. S. Kurilić, Posets of isomorphic substructures of relational structures, Zb. Rad. (Beogr.) 17(25) (2015), Selected topics in combinatorial analysis, 117-144.
- [37] Kurilić, Miloš S.; Todorčević, Stevo Posets of copies of countable nonscattered labeled linear orders, Order 37 (2020), no. 1, 59-72.
- [38] Kurilić, Miloš S.; Todorčević, Stevo Stevo Copies of the random graph, Adv. Math. 317 (2017), 526-552.
- [39] Kurilić, Miloš S.; Todorčević, Stevo The poset of all copies of the random graph has the 2-localization property, Ann. Pure Appl. Logic 167 (2016), no. 8, 649-662.
- [40] Kurilić, Miloš S.; Todorčević, Stevo Forcing by non-scattered sets, Ann. Pure Appl. Logic 163 (2012), no. 9, 1299-1308.

- [41] Miller, Arnold W. Rational perfect set forcing Axiomatic set theory (Boulder, Colo., 1983), 143-159, Contemp. Math., 31, Amer. Math. Soc., Providence, RI, 1984.
- [42] Oliver, M. R. Continuum-many Boolean algebras of the form P(ω)/I, I Borel. J. Symb. Log., 69 (2004) no. 3, 799–816.
- [43] Shelah, Saharon MAD saturated families and SANE player. Canad. J. Math. 63 (2011), no. 6, 14161435.
- [44] R. Sikorski. Boolean Algebras, Third Edition. Springer Verlag. 1969.
- [45] S. Solecki. Analytic ideals, Bull. Symb.Log., (2) no. 3, (1996): 339–348.
- [46] Solecki, Slawomir Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), no. 1-3, 51-72.
- [47] Solecki, Slawomir; Todorčević, Stevo Cofinal types of topological directed orders, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 6, 1877-1911 (2005).
- [48] Steprāns, Juris Many quotient algebras of the integers modulo co-analytic ideals, Logic and its applications, 271-281, Contemp. Math., 380, Amer. Math. Soc., Providence, RI, 2005.
- [49] Szymański, Andrzej; Zhou Hao Xua The behaviour of ω^{2^*} under some consequences of Martin's axiom. General topology and its relations to modern analysis and algebra, V (Prague, 1981), 577-584, Sigma Ser. Pure Math., 3, Heldermann, Berlin, 1983.
- [50] B. Veličković. Playful Boolean algebras, Trans. Amer. Math. Soc., 296(1986):727-740.
- [51] J. Zapletal. Forcing idealized Cambridge Tracts on Mathematics, 174, Cambridge University Press, 2008.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. CIRCUITO EXTERIOR S/N, CIUDAD UNI-VERSITARIA, CDMX, 04510, MÉXICO

E-mail address: gcampero@ciencias.unam.mx

Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, México

E-mail address: oguzman@matmor.unam.mx

Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, México

E-mail address: michael@matmor.unam.mx

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. CIRCUITO EXTERIOR S/N, CIUDAD UNI-VERSITARIA, CDMX, 04510, MÉXICO

E-mail address: dmeza@ciencias.unam.mx