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GENERIC EXISTENCE OF MAD FAMILIES

OSVALDO GUZMAN-GONZALEZ, MICHAEL HRUSAK, CARLOS AZAREL MARTINEZ-RANERO,
AND ULISES ARIET RAMOS-GARCIA

Abstract. In this note we study generic existence of maximal almost disjoint (MAD) families. Among
other results we prove that Cohen-indestructible families exist generically if and only if b = ¢. We obtain
analogous results for other combinatorial properties of MAD families. including Sacks-indestructibility
and being +-Ramsey.

§1. Introduction. An infinite family </ of infinite subsets of w is almost dis-
joint (AD) if the intersection of any two distinct elements of <7 is finite. It is
maximal almost disjoint (M AD) ifit is not properly included in any larger AD family
or, equivalently, if given an infinite X' C w thereisan 4 € </ such that |[ANX| = w.

Many MAD families with special combinatorial or topological properties can be
constructed using set-theoretic assumptions like CH, MA, or b = ¢. However, special
MAD families are notoriously difficult to construct in ZFC alone. The reason being
the lack of a device ensuring that a recursive construction of a MAD family would
not prematurely terminate, an object that would serve a similar purpose as indepen-
dent linked families do for the construction of special ultrafilters (see [16]). There
is also a definite lack of negative (i.e., consistency) results. The following problem
due to J. Steprans presents one the basic open test problems for understanding the
behaviour of MAD families in forcing extensions.

ProBLEM 1.1 ([25]). Is there a Cohen-indestructible MAD family in ZFC?

As we mentioned before, the main difficulty lies in ensuring that a recursive
construction of a MAD family does not terminate prematurely. This can be done
typically either by means of cardinality considerations alone or by using an ad hoc
construction for the problem at hand. In this paper we focus on the former.

The following is one of the most important definitions in this note.

DEerINITION 1.2. Let P be a property of MAD families. We say M AD families with
property P exist generically if every AD family of size less than ¢ can be extended to
a MAD family with property P.

We begin with a simple example. Recall that a MAD family A is completely
separable if every subset of w which can not be almost covered by finitely many
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304 OSVALDO GUZMAN-GONZALEZ ET AL.

elements of A contains an element of A. It is not known, whether completely
separable MAD families exist in ZFC [24]. However, it is easy to see that completely
separable MAD families exist generically if and only if @ = ¢. On the one hand,
assuming a = c, a straightforward and well-known recursive construction permits
to extend any AD family of size less than ¢ to a completely separable MAD family,
while if a < ¢, then there is a MAD family of size less than ¢, which is not completely
separable! and since it is already maximal can not be extended to a completely
separable MAD family.

One of the main results in this paper is the following theorem which gives a partial
answer to the Problem 1.1.

THEOREM 1.3. Cohen-indestructible families exist generically if and only if b = c.

Extensions of AD families to maximal ones have been previously investigated by
Leathrum in [19] and by Fuchino, Geschke, and Soukup in [8]. Generic existence
of ultrafilters has been introduced by Canjar in [7] and was recently investigated by
Brendle and Flaskova in [5].

Given a forcing notion P, a MAD family <7 is P-indestructible if </ remains
maximal after forcing with P. It follows from the proof of b < a (see [2]) that if
P adds a dominating real then it destroys every MAD family from the ground
model, so the definition is only interesting when P does not add dominating reals.
Our main focus is on Sacks and Cohen indestructible MAD families.

If o7 is an AD family on & (or any countable set) we denote by o7 the set of all
infinite X' C  that are almost disjoint with every element of .«7. If .# is an ideal on
w, we denote by .# " as those subsets of w that are not in .#. We shall only consider
ideals which extend the ideal of finite sets. If X € .#* then by .# | X we will denote
the restriction of .# to X, thatis, .# | X = {INX: I € .#} whichis anideal on X.
We say .# is tall if for every infinite X C  there is an infinite A € .# such that
A C X. There is a close relationship between MAD families and definable ideals
(typically Borel of low complexity). We shall also investigate the connection here.

DEerFINITION 1.4, Let .# be an ideal (on a countable set). Then:

(1) We define cov* (.#) as the least size of a family 2 C .# such that for every

infinite X' € .# there is B € & for which B N X is infinite.

(2) If .7 is tall, we define cov' (.#) as the least size of a family % C .# such that

forevery Y € .#% thereis B € £ for which B N Y is infinite.
(3) We say an AD family <7 C .# is a MAD family restricted to .# if for every
infinite X € .# thereis 4 € .« such that |X N 4| = w.

(4) a(.#) is the least size of a MAD family restricted to .#.

(5) For tall ideals, we define a™ (.#) as the least size of an AD family <7 such
that & U &/ C .# (or in other words, if ¥ € . then there is 4 € & such
that |Y N A| = o).

Note that if .# is tall, then cov* (.#) is just the least size of a family # C .¥
such that for every infinite X C w there is B € £ for which B N X is infinite, also
cov' (F) < cov* (F). In general, cov* (#) < a(#) and for tall ideals cov?t (.#) <
at (&) and at (#) < a(F). For the definitions of the classical invariants of the
continuum see [2].

IEvery completely separable MAD family has size c.
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GENERIC EXISTENCE OF MAD FAMILIES 305

§2. Destructibility of MAD families. Let .# be a tall ideal on w and IP be a forcing
notion. Recall that .# is P-indestructible if .# remains tall after forcing with P and
otherwise it is P-destructible. It is easy to see that a MAD family .7 is P-indestructible
ifand only if .# («7) is P-indestructible. For the sake of the reader, we will now quote
some results about destructibility. The key is to associate to every o-ideal on the
Baire space (Cantor space) an ideal on w<® (2<¢) and this is done by the notion of
trace ideal.

DErFINITION 2.1 ([6]). Given ¢ C w<? we define n(a) = {b € w®:
3°n | n € a)}. If I is a o-ideal on w® define its trace ideal tr (I) =
{a Cw<?:n(a)eI}.

Clearly 7 (a) is a G set for every a C <. The Katétov order plays a crucial
role when studying destructibility of ideals and MAD families.

DErFINITION 2.2, Let 4, B be two countable sets and ., ¢ be two ideals on 4
and B, respectively.

(1) We say that . is Katétov below ¢ (denoted by .# <gx _#) if there is a
function f: B — A such that f~![/] € ¢, forall I € .#. The function
J is called a Katétov function. We say that . is a Katétov-Blass below ¢
(# <kp #) if the function /" may be taken finite-to-one (in this case / is
called a Katétov-Blass function).

(2) We say that . is Katétov equivalent to ¢ if & <x ¢ and ¢ <k .# and we
denote it by .# ~¢ _# . the analogous definition holds for the Katétov-Blass
order.

Observe that if a forcing notion P destroys an ideal # and .¥# <yx ¢, then P
also destroys .#. In fact, suppose that P destroys _# and that f: B — A witness
# <g ¢ .Find aP-name X for an infinite subset of B such that |- “IXNJ| < o for
allJ € #.” Notethatl- “f"”X ¢ .#.” soin particular is infinite and it also witness
that .# is not tall in the extension. It is also immediate to see that if X € .#* then
S <gp 4 | X.Anideal .7 is called Katétov-Blass uniform if .# is Katétov-Blass
equivalent to all its restrictions (equivalently, if X € .#*, then . | X <gp .¥).

Given a g-ideal I on w?®, P; denotes the collection of all Borel sets in I+ ordered
by the /-almost inclusion. The ideal I has the continuous reading of names [26] if for
all B € P; and each Borel function /' : B — w®. there is a Borel set C € I such
that C C B and f | C is continuous. We shall need the following result of Hrusak
and Zapletal.

ProPOSITION 2.3 ([12]). Let I be a o-ideal on w® such that Py is proper with
continuous reading of names and g be an ideal on . Then the following are equivalent:

(1) Thereisa B € Py such that B I “_¢ is not tall.”
(2) Thereisana € tr (I)" suchthat ¢ <k tr (I) | a.

In many cases occurring in practice, particularly for the forcing notions discussed
in this article, the previous items are also equivalent to there is an @ € #r (1) such
that / <kp tr (1) [a.

Let I be a o-ideal on w®, recall that I is continuously homogeneous if for every
B € P; there is a continuous function f: @” — B such that f ~![A4] € I forevery
Ael | B.
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COROLLARY 2.4 ([12]). Let I be continuously homogeneous c-ideal on w® such
that Py is proper with continuous reading of names such that tr (I) is Katétov-Blass
uniform and 7 be an ideal on «. Then the following are equivalent:

(1) 7 isP;-destructible,

(2) 7 <kt (I).

(3) / <kp tr (1)

Let nwd be the ideal of all nowhere dense sets of the rational numbers, ctbl be the
o-ideal of all countable sets in the Baire space, and K, be the ideal generated by all
a-compact sets of the Baire space. It can be shown that 7r (M) is Katétov equivalent
to nwd and it is easy to see that both M and ctbl are continuously homogeneous.
Therefore, we can conclude the following.

COROLLARY 2.5 ([10]and [6]). Let .# be an ideal on w, then the following holds:

(1) & is Cohen-destructible if and only if .9 <xp nwd.,

(2) # is Sacks-destructible if and only if % <yp tr (ctbl),

(3) # is Miller-destructible if and only if % <gp tr (K,).

Sacks destructibility is particularly interesting due to the following result.

ProposITION 2.6 ([10]). If P adds a new real, then P destroys tr(ctble).
Therefore, if 7 is Sacks-destructible, then it is Q-destructible by any forcing Q that
adds a new real.

PrOOF. Let r € V [G] be a new real and set 7 = {r | n: n € w}. Note that if
a € (tr (ctbl)) N V. then r ¢ 7 (a). This implies that 7N @ =* 0. hence 7 (ctbl)”
was destroyed. -

By a similar argument, we can show the following:

PrOPOSITION 2.7 ([6]). If P adds an unbounded real, then P destroys tr (K,).
Therefore, if 7 is Miller-destructible, then it is Q-destructible by any forcing Q that
adds an unbounded real.

It is easy to show that if .7 <g ¢ then cov* (_#) < cov* (#). It is a result of
Keremedis [15] (see also [1]) that cov* (nwd) = cov (M), it is not hard to see that
cov™ (¢r (ctbl)) = cand cov* (tr (K,)) = 0. If &7 is a MAD family. then it is straight
forward to check that cov* (¥ (&)) = |.<7|.

COROLLARY 2.8. Let of be a MAD family. Then:

(1) If @ is Cohen-destructible, then cov (M) < |.o/

(2) If o is Sacks-destructible, then |/ | = «,

(3) If o is Miller-destructible, then d < |.o/

It follows.

CorOLLARY 2.9 ([10]and [6]). (1) If a < cov (M), then there is a Cohen-

indestructible MAD family,

(2) If a < c, then there is a Sacks-indestructible MAD family,

(3) If a < 0. then there is a Miller-indestructible MAD family.

Given an AD family < we say that it is #/-MAD if .% (/) %xp &.

PROPOSITION 2.10. .#-MAD families exist generically if and only if a™ (%) = «.

Proor. First assume a® (#) = c¢. We will show that .#-MAD families exist
generically. Let o7 be an AD family of size less than ¢ we will show how to extend

s
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GENERIC EXISTENCE OF MAD FAMILIES 307

it to a MAD family % so that . (%) %xp -#. Let (fo: @ € ¢) be an enumeration
of the set of all finite to one functions from »<“ to w. We will construct recursively
an increasing sequence (%4, : « € ¢) of AD families such that:

(1) o=,

(2) |<%a| <cg,

(3) fa:®<® — o is not a Katétov function from (<%, .#) into

(. 7 (Bas1)).

Assume we are at step a and f, : ®<° — w is a Katétov function from
(w0=?, ) into (w, I (B.)). Let Z = £ [%,] and note that, since f, is finite to
one, Z is an almost disjoint family and it is contained in .#. Since Z has size less
than c, it follows that 2 is not contained in .# so there is X ¢ .# that is almost
disjoint with Z. Let Y = f, [X] and note that #, = 2 U{Y} is almost disjoint
and f, : ©<“ — w is no longer a Katétov function.

For the forward implication, note that if a* (.#) < ¢, then there is an AD family
</ of size strictly less than continuum such that .o/ U .o/ L C 7. and obviously .o

can not be extended to a MAD family not K-below .#. -
We now address the question of when IP;-indestructible MAD families exist
generically.

COROLLARY 2.11. Let I be a a-ideal with continuous reading of names such that
tr (I) is KB-uniform. Then P;-indestructible MAD families exist generically if and
only if a* (tr(I)) = c.

§3. Cohen-indestructibility. We will now show that b = a™ (nwd). First we give
several formulations of b that might be of independent interest.

ProPOSITION 3.1.  Let & be an infinite cardinal, then the following are equivalent:

(1) k< b.
(2) If o is an AD family of size k and {C,: n € w} C &/+, then thereis X € o+
such that C,, C* X for every n € w, i.e., &/ is a P-ideal.
(3) If < is an AD family of size k and {C,: n € w} C o/, then thereis X € o/
such that | X N C,| = w for every n € o.
(4) If o is an AD family of size k and {C,: n € w} C &/+, then thereis X € o/+
such that X N C, # 0 for every n € o.
(5) If o is an AD family of size k and {C,: n € w} C &/ is a pairwise disjoint
family, then there is X € </ such that |X N C,| = w for every n € w.
(6) If o is an AD family of size k and for every pairwise disjoint family
{Ch:nc€w}y C ot then there is X € o/* such that X N C, # @ for
every n € .
ProOF. Obviously 2 implies 3, and 3 implies 5. It is easy to see that 4 implies
3 by splitting each C, in countably many disjoint parts. By a similar reasoning it
follows that 5 and 6 are equivalent. We now show that 1 implies 2. Let x < b,
o ={A,: @ € K} bean AD family in w and {C,: n € w} C /. Enumerate each
C, = {c}:i € w} and for every a < k. define /o : @ — w in such a way that
AoaNC, C{cli< fo(n)}. foreveryn € w. Since k < b, we can find an increasing
function g : @ —» o that dominates each f4. and define X = {c5"): n € w}. Itis
clear that X has the desired properties.
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We now show that 5 implies 1 by contrapositive. Let Z C »® be an unbounded
family of size w. define the function H : ®” — 2 by H ((xa),c,)
0% ~170%"170%" ... (where 0™ is the sequence of x, consecutive 0’s). Let
Q C 2% be the set of all sequences that are eventually zero, it is not hard to
see that H is an homeomorphism between w® and 2 \ Q. Given b € 2% define
b= {bIn:necw}andlet &/ = {H/(f\) f € %} which clearly is an AD family
and note that {7: ¢ € Q} € &/*. We must now show there isno X € .« such that
|X Ng| = ow forevery g € Q.

Suppose this is not the case. For each n € w. define U, = {b € 2¢: |E NX|>n}
and note that each U, is an open set, hence G = (| U, is a G5 set and Q C G while
GNH(P) =0.Let K =2°\ G. Itis clear that H [#] C K and K is g-compact.
It follows that H ~! [K] is o-compact and contains %, which is a contradiction. -

We are now ready to prove the main theorem of the section.

THEOREM 3.2. Cohen-indestructible MAD families exist generically if and only if
b=c

PrOOF. It suffices to show that b = a® (nwd). First, let £ < b be given. Let us
show that k < a® (nwd). Let &/ be an AD family in Q such that &/ C nwd. we
must prove that </ is not contained in nwd. Let (U,: n € @) be a base for the
topology of the rational numbers. Since x < b, then it is also smaller than a, so
oy = @ | Uy, is not a MAD family in U, (note that U, ¢ .# (&) as the elements
of o7 are nowhere dense) so we can find an infinite C, C U, that is almost disjoint
from every element of «7,. Using k < b and the previous proposition, we can find
an X € o/ that intersects every C,. and hence it is dense.

In order to show that at (nwd) < b, we will construct an AD family .«7 of size b
such that both &7 and <7+ are contained in nwd. Recursively, we construct families
{1 s € =} and {Cy: s € @<} such that:

(1) o7 is an AD family on w of size b which is not maximal,

(2) C,= {C (n) : n € w} are pairwise disjoint infinite sets,

(3) @~ (n) is an AD family on C; (n) of size b which is not maximal.

(4) Cyis a partition of @ and C,~ (ny is a partition of C; (n).

(5) Cy C A+ andif Y € [w]” intersects infinitely every C; (n) then Y ¢ 7%,
(6) Forevery a,b € w there are s and n such that [{a,b} N Cs (n)| = 1.

In order to do this, fix an enumeration {{a;.bi}: k € w} of [w]*. Using
Proposition 3.1(5), there exists an AD family &7 of size b on w and a pairwise dis-
joint family {C(n): n € w} C &+ such thatif ¥ € [w]” intersects infinitely every
C (n)then Y ¢ o&/+. Put o = </ and by a adding finitely many points to each C (n)
we may assume {C (n): n € w} forms a partition of w. Moreover, by making finite
changes we can assume that |{ag. bo} N C(0)| = 1. Nowset Cy = {C(n): n € w}.

Suppose that we have constructed <% and C; for s € »=". Again using
Proposition 3.1(5), for every n € w and s € w™, there exists an AD family .o/
of size b on Cy(n) and a pairwise disjoint family {C (k): k € o} C &/~ such that
if Y € [w]” intersects infinitely every C (k) then Y ¢ &/~. Put /- ,, = </ and by
a adding finitely many points to each C (k) we may assume {C(k): k € w} forms
a partition of Cy(n). Moreover, by making finite changes. we can assume that if
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am. by € Cs(n) then [{ay.byu} N C(0)] = 1. Now set C,~(,y = {C(k): k € w}.
This concludes the construction.

Let 7 be the topology on w generated by declaring each C; () clopen. It follows
from a result of Sierpinski (see [17] or [14]) that (w, ) is homeomorphic to the
rational numbers with the usual topology. Let &/ = J, <. <. it suffices to show
that &7 U &/ C nwd. Let 4 € <7, and C,(n) first note thatif 4 N C(n) # @ then
t and s are incompatible, by further extending s if necessary we may assume that
s extends 7. By (5) we extend s even further to s’ so that 4 N C(n) # @ is finite
and then using (6) we can find an open subset of C,(n) disjoint from A. Thus,
o/ C nwd. The argument for .7 is analogous. .

A closely related notion is that of a tight MAD family [20].

DEFINITION 3.3. We say a MAD family 7 is tight if for every (X,: n € ) C
7 (/)" thereis B € .# (o) such that [B N X,| = o for every n € w.

Every tight family is Cohen indestructible and every Cohen indestructible family
has a restriction that is tight (see [11,18]). In particular, the existence of a tight
MAD family is equivalent to the existence of a Cohen indestructible MAD family.

COROLLARY 3.4. Tight families exist generically if and only if b = ¢.

Proor. If tight families exist generically then obviously there exist Cohen-
indestructible MAD families, therefore b must be equal to ¢. The other implication
follows from standard recursive construction. B

We will now show that there are also tight families in many models where b equals
to w;. The following guessing principle was defined in [22].

& (b): For every Borel coloring C : 2<“ — @® thereis a G : w; — w® such
that for every R € 2“' the set {a: C (R [ &) * % G (a)} is a stationary set
(such G is called a guessing sequence for C).

A coloring C : 2“1 — w® is Borel if for every a, the function C [ 2% is Borel
in the classical sense. It is easy to see that < (b) implies that b = w; and in [22] it
was proved that it implies a = ;. The following answers a question of Hrusak and
Garcia-Ferreira from [11].

PROPOSITION 3.5.  Assuming <> (b), there is a tight MAD family.

PrOOF. For every @ < i, fix an enumeration @ = {a,:n € w}. Using a
suitable coding, the coloring C will be defined on pairs t = (<. X;), where
o = (As: ¢ < a)and X; = (X, n € w). We define C (¢) to be the constant 0
function in case <7 is not an almost disjoint family or X, is not a sequence of ele-
ments in . (<7)". In the other case. define an increasing function C (1) : & — @
such that foreveryn € w andi < ntheset X; N (C (r —1),C (1)) \ Ao, U--- U A,,
is not empty (where C (¢) (—1) = 0).

By ¢ (b) there is a guessing sequence G : w; — w® for C, changing G if
necessary, we may assume that all the G («) are increasing and if & < f then
G (a) <* G (f). We will now construct our MAD family by recursion on w;: Let
{4, n € w} be a partition of w. Suppose we have defined A for all £ < a, we put
Ao = U,eo (G () (n) \ Aoy U---U Ag,) in case this is an infinite set. otherwise
just take any A4, that is almost disjoint with .7, .
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We will now show that < is a tight family. Let X = (X,: n € w) where each
X, € 7 (/)" Consider the branch R = ((4:: & < w;), X) and pick f > o
such that C (R | f) * # G (f). It follows from the construction that A, intersects
infinitely every X;,. -

With the aid of a result of [22] we can conclude the following.

PROPOSITION 3.6 ([22]). Let (Qu: @ € wy) be a sequence of Borel proper partial
orders where each Q,, is forcing equivalent to (2)* x Q, and let P, be the countable
support iteration of this sequence. Then there is a tight family in any forcing extension
by P,,.

Proor. IfP,, forces b = cthen tight families exist generically, otherwise, it follows
from [22] that PP,,, forces < (b) and. hence forces the existence of tight families.

The following weakening of tightness was introduced in [11].

DeriNITION 3.7. We say that o7 is weakly tight if for every {B,:n € w} C
7 (/)" thereis A € « such that |4 N B,| = w for infinitely many 7 € w.

Obviously every tight family is weakly tight. The proof of the next proposition is
virtually identical to the proof of Corollary 3.4.

PROPOSITION 3.8. Weakly tight families exist generically if and only if b = c.

Mildenberger, Raghavan, and Steprans (see [23] and [21]) proved that if s < b
then there is a weakly tight family. However, it is still open if it is possible to construct
a weakly tight family without any additional axioms beyond ZFC.

The following invariant was introduced by Shelah in [24].

DEerFNITION 3.9. We define a, as the minimal size of an AD family .« such that
there are (disjoint) Cy. Cy. Cs. ... € &/~ such that forevery B € [w]” if C,NB #* ()
for infinitely many C, then there is 4 € &/ for which 4 N B #£* {).

The relation of a, with the other cardinal invariants is the following.

ProposITION 3.10 ([24]). b < a.< a.

ProoF. By the characterization of b, it is clear that b < a,. In order to prove
that a, < a, let & be a MAD family of minimum size. Choose Cy. C;, (3. ... € &
and let 4 = &/ \ {C,: n € w} we will show that &/ is a witness for a... Assume
C, N B #* () for infinitely many C,,, then it follows that B\ Co U - - - U C, is infinite
for every n € w, so we may find B’ C B that is almost disjoint from every C,. Since

o/ is MAD, it follows that there is an A € ./ such that A N B #* (). H
ProposITION 3.11. a, has uncountable cofinality.
PrOOF. Assume cof(a,) = o and let A be an AD family of size a, and

{C,|n€w} C At such that for every B with the property that there are
infinitely many n € w such that |C, N B| =  then there is 4 € A for which
|4 N B| = w. Since a, has countable cofinality then we can find an increasing chain
{4, | n € w} C p(A)suchthat A= J A, and |A4,| < a, forevery n € w.

new
(1) Since |Ay| < a, then we can find By € Ay such that Dy = {n: |C, N By| =
w} is infinite. Let my = min (D).
(2) Let Ay = A; | By since |A]| < a. then we can find By C By such that
By € Af and Dy = {n > my | |(C, N By) N By| = w} is infinite. Let m; =
min (Dy).
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(3) Let A5 = A, | By since |A5| < a. then we can find B, C B; such that
By € Ay and Dy = {n>m | |(C, N Bi) N B| = w} is infinite. Let my =
min (D).

Finally, let X = U, (Bi N C,,) then X intersects infinitely every C,, and
X € A+ which is a contradiction. .

With the previous proposition we can conclude the following,

COROLLARY 3.12. There is a model where a.,. < a.

Proor. In [4] Brendle constructed a model where a has countable cofinality.
By the previous proposition, it is clear that a,. < a holds in that model. o

§4. Sacks-indestructibility. For simplicity, call ag,.s = at (1 (ctbl)) which is
the least size of an AD family 7 C ¢r (ctbl) such that for every X € tr (ctbl)™
there is A € .« such that 4 N X is infinite. Recall that Sacks-indestructible MAD
families exist generically if and only if ag,ks = ¢. Likewise. call aj,,;,,, = a (tr (K;))
and as before, Miller indestructible MAD families exist generically if and only if
apsitier = €. Since ctbl € K, € M thenb =a (nwd)+ < apgitier < ASacks -

The following result is an easy one but is very important.

COROLLARY 4.1. If a < agueks then there is a Sacks-indestructible family.

PrOOF. Assume a < dg,.s. On the one hand if a < ¢, then any MAD family of
size a is Sacks indestructible. On the other hand, if a = ¢, then ag,s = ¢ and so
there are also Sacks indestructible MAD families. B

We do not know if a can consistently be bigger than ag;cx;-
PrOBLEM 4.2. Is a < agyerg?

Givens € 2<”wedefine (s)_, = {t € 2?: s C t}.itisclear thatif X N(s)_, # 0
for every s € 2<“ then X ¢ ¢r (ctbl). Let A% be the ideal of 2<“ generated
by branches, in this way BR* is the ideal of all well-founded subsets of PACH
its elements are called off-branch, it is clear that BR C tr (ctbl). We have the
following simpler characterization of cov™ (#r (ctbl)):

LEMMA 4.3. cov* (tr (ctbl)) is the minimum size of a family B C BR* such that
for every A € tr (ctbl)” there is B € % such that |[AN B| = w.

ProoOF. Call x the minimum size a family Z C B%" such that for every A4 €
tr (ctbl)” thereis B € # such that |4 N B| = w. Itis clear that cov* (¢r (ctbl)) < u,
we shall now prove the other inequality. We split the proof in two cases: if
cov™ (#r (ctbl)) = c then there is nothing to prove, so assume cov'’ (zr (ctbl)) is less
than size of the continuum and let & C tr (ctbl) witness this fact. Since 2% = 2®
we may find a partition {[7,] : a < ¢} of 2® where each T, is a Sacks tree. Since
2 C tr(ctbl) and has size less than c, then there is 7, such that 7 (B) N[T,] = 0 for
every B € A. The splitting nodes of T, is isomorphic to 2<¢ and for every B € #
it is the case that B N T, is off-branch in 7. B

Using an analogous argument, we can prove the following.

LEMMA 4.4, aggers IS the smallest size of an almost disjoint family <7 C BR* such
that &/ U /> C tr (ctbl).
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We call a maximal AD family restricted to %2~ a M OB family. In [19] Leathrum
defined o as the smallest size of a MOB family and he showed that a < o.

LemMmA 4.5, aggers < 0.

PrOOF. Let & be a MOB family of size o, then & C BR* and any 4 € O+ must
be contained in a union of finitely many branches. therefore 4 € ¢r (ctbl). -

We have the following inequalities:
LeEmMa 4.6. covt (tr (ctbl)) < min {asgcks, cov* (%ﬁ%’l) }

PrOOF. The inequality cov’ (¢ (ctbl)) < agqexs follows by definition, and for the
other it is enough to recall that any B € #r (ctbl)" contains an infinite antichain. -

Now we compare them with some of the category related cardinal invariants.
ProposITION 4.7. cov (M) < cov™ (tr (ctbl)).

PROOF. Let k < cov(M) and &7 ={Ad,: a € k} C BZ*. we ought to find
B € tr(ctbl)” that is AD with .. Let P be the partial order of all finite trees
contained in 2<¢ ordered by end extension. Obviously, P is isomorphic to Cohen
forcing. Let T, cen De the name for the generic tree. clearly Tgen 1s forced to be a
Sacks tree. For every a < k define the set D, of all T € P such thatif s € T is a
maximal node, then (s)_, N 4, = 0. It is straightforward to see that D, is dense.
Since k < cov (M) then we can find, in the ground model, a filter that intersects
every D, and the result follows. -

We recursively define S = {#,: s € 2<“} as follows:
We will now compare the Miller related invariants with the unbounding number.
Recall that cov* (11 (K,)) = 0.

ProposiTION 4.8. cov™ (17 (K,)) = b.

ProOF. We first show that cov’ (¢ (K,)) < b.Let {f: a € b} be an unbounded
family of strictly increasing functions. For every s € w<® and a < b, we define
T, (s) as the downward closed subtree of the set consisting of nodes of the form
s~ (n)"t. wheren € w and ¢ € /=",

Note that each T, (s) is in tr (K,), as (T, (s)). Now let A C 2<% be such that
7 (A) is unbounded. Find s € w<® such that for infinitely many n € w, s~ (n) has
a successor in 4. For each n € w, let g(n) be the minimum integer k so that there
isat € ok withs ~ (n)t € A. Using that { f: @ € b} is an unbounded family, we
can find a < b so that f,* £ g. It follows that A N T, () is infinite.

Now, let k < b and {4,: @ € &} C tr (K,). we must show it is not a covering
family. Since k < b we can find f that bounds n (4,) for every a < k. Let T be
the tree such that every branch though T is bigger or equal than /', we may assume
T =w<®.

For every s € w<® choose b, € (s) and given o < k define [, : ©<? — o be
such that if m > f, (s) then by | m ¢ A, (recall 4, is off-branch in T = ©<*)
since k is less than b, we may find g : ®<” — ® that dominates every f,. We
define a Miller tree S in the following way:

(1) The stem of Sis by | g ().

(2) If s € S is a splitting node, then succs (s) = w,

(3) If s is a splitting node. then the next splitting node below s~ (1) is by~ () |

g(s™ (m).

Downloaded from https:/www.cambridge.org/core. UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO, on 23 Mar 2017 at 23:08:26, subject to the Cambridge
Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2016.54


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2016.54
https:/www.cambridge.org/core

GENERIC EXISTENCE OF MAD FAMILIES 313

Let B = split (S) which obviously is ¢ (K,) positive, we now claim B N A, is
finite for every « but this is clear. -

Likewise, cov’ (nwd) is smaller than cov* (nwd).
PrOPOSITION 4.9. cov' (nwd) = add (M).

ProOF. On the one hand. cov™ (nwd) < cov* (nwd) = cov (M) and on the
other hand, cov™ (nwd) < cov' (K,) = b. Now we proceed to prove add (M) <
covt (nwd). Let k < add (M) and {N,: o € k} C nwd. Let {U,: n € w} be a base
for Q and note that since k < cov* (nwd), then we may find an infinite B, C U,
almost disjoint from every N,. Define h,: o — [Q]~* where h, (n) = B, N A,.
Since £ < b then there is g: @ — [Q]=” such that for every « it is the case that
ho (n) C g (n) for almost all n € w. we may further assume that g (n) C B,. Define
B =,c, (Bx \ g (n)) then B is dense and almost disjoint with each 4,. .

In [13] Kamburelis and Weglorz introduced the following definitions,

DEFINITION 4.10. (1) 5(%,) is the smallest size of a family of open sets
U C & (2?) such that for every infinite antichain {s,: n € w} C 2<® there
is U € 7 such that both sets {n: (s,) C U} and {n: (s,) N U = 0} are
infinite.

(2) Given x € 2° and n € w. let r (x,n) be the sequence of length n + 1 that
agrees with x in the first # places but disagrees in the last one.

(3) Letx €2”, 4 € [@]”, and U C 2% an open set. We say U separates (x, A) if
x ¢ U and there are infinitely many n € A4 such that (r (x.n)) C U.

(4) sep is the smallest size of a family of open sets % such that for every (x, A)
thereis U € % that separates (x. 4).

It was later proved by Brendle in [3] that the two previous invariants are actually
equal.

PROPOSITION 4.11. cov* (%@L) = sep.

Proor. We first show that sep < cov* (%%l) Let Z C BR* be a witness for

cov® (t%{%ﬂ) , we might assume it is closed under finite changes. For every B € 4,
let s = U{(s):s € B}. Wewill show that {%p: B € %} witness sep. Let x € 2%,
A € [®]” and define the off-branch family ¥ = {r (x,n) : n € A} then find B € A
such that B N Y is infinite. Since B is off-branch, by taking a finite subset of it we
may assume no restriction of x is in B, it then follows that % separates (x, A).
We will now show cov* (%ﬁ%’l) < 5(%). Let {Up: p<s(%)} be a witness

for s (%) and {fs: o < b} be an unbounded set of functions where each f', :
o — [2<°1°” and if n < m then f, (n) C fo(m). For every f < 5(%,). let
Ap = {s,f: ne a)} C 25 be the set of all minimal nodes of {s: (s) C Us}. note
that they form an antichain. For every o < b and f < s (%). define B (o ff) =

ApU LEJ ( fa(m)N <sf ><w) observe that this is an off-branch set. We will show

that for every infinite off branch Y there are & < band f < s (%) such that B (e, f5)
intersects Y infinitely.
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Let A C Y be an infinite antichain, first find f < s(%) such that the set
X = {1 € A4: (t) C Ug} is infinite. Define g : @ — [2<*]~ such that for every
n € o there is m > n such that there is r € 4 and ¢ extends s,ﬁ. Let o < b such that
g (n) C f4 (n) for infinitely many n € w. It is then clear that B (e, f§) intersects A4
infinitely. Finally since b < 5 (%) (see [3]) we get the desired result. -

It then follows by a result of Kamburelis and Weglorz (see [13]) that cov* (%%"l)
< cof (N).

§5. +-Ramsey MAD families. Let .# be an ideal, we say T C @w<? is & *-
branching if for every s € T, the set succr (s) = {n: s~ (n)} € 7. We say .¥ is
+-Ramsey if for every .# " -branching tree T', thereis b € [T]such thatran (b) € & .
An AD family & is called +-Ramsey if .# (<) is +-Ramsey. The following was
introduced in [9].

DEFINITION 5.1. va is the minimum size of an AD family that is not +-Ramsey.

In respect to the generic existence of +-Ramsey families, we have the following:
PROPOSITION 5.2. va = ¢ if and only if +-Ramsey families exist generically.

Proor. First assume va = ¢ and let .« be an AD family of size less than the con-
tinuum. Enumerate {7, : o < c} all the trees in <®. Recursively, we shall construct
a sequence (2, : o < ¢) of AD families such that:

(1) o=,

(2) Ifa < f then o7, C o7 and if y is limit then 7, = {J,_, .

(3) Every 7, has size less than c,

(4) For every a < ¢ either T, is not a %" (4, )-branching tree or there is

b € [T,] such thatran (b) € .7 (ps1)" .

It is clear that if the construction can be carried out, we just extend (J,_. % to
a MAD family and this will be a +-Ramsey MAD family. Assume <7, has been
defined, we will see how to define 7, . First consider the case where there is
s € T, such that succr, (s) ¢ & (o) ". If succr, (s) € .7 (Z,) then we just
define <7, = <, otherwise we can find an infinite 4 C succy, (s) thatis AD with
. 50 we just define <7, .| = o/, U {A}. Now assume succr, (s) € .7 (o/,)"" for
every s € T,. Since .7, has size less than va then we know there is b € [T, ] such that
ran (b) € .7 (/,) . Incaseran (b) € .7 (o,)"" then we can just define o7, | = .
in the other case as before, we can find pairwise disjoint {4,: n € w} C [b]” N "
and let @7, | = 7, U{A,: n € w}.

Now assume ta < ¢, let &7 be an non +-Ramsey AD family of size less than ¢. In
this way, we know there is 7' a .# (.o7,)" branching tree such that if » € [T] then
ran (b) € 7 (,). =
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