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Abstract. We study gruff ultrafilters on the rational numbers and give some
constructions under CH with some additional properties. We also compare
gruff ultrafilters and P-points. To do this, it will be necessary to study the
ideal of scattered sets of Q.

1. Introduction and Preliminaries

A nonprincipal ultrafilter G is gruff if it has a base of perfect sets of Q, i.e. closed
and crowded (without insolated points) sets. Gruff ultrafilters were introduced
in [10] by Eric van Douwen when he carried out an investigation about certain
points in the Čech–Stone compactification of Q with the property that they actually
generate an ultrafilter on Q. The existence of gruff ultrafilters follows from different
combinatorial principles, as cov(M ) = c (in [10]), b = c (in [7]) and ♢(b) (more
recently in [11]). The question of whether the existence of gruff ultrafilters can be
proved in ZFC is still open.

We start by giving a brief overview of the notions used in this paper. Through-
out this section, X will denote a countable set (typically ω or the set of rational
numbers Q). An ideal on X is a set I ⊆ P(X)\{X} closed under subsets and finite
intersections. For A ⊆ P(X) the dual family is the set A∗ = {X\A : A ∈ A}. If I
is an ideal on X and A ⊆ X, we say that A is I positive if A /∈ I. The collection of
all I positive sets is denoted by I+. If A ∈ I+, the restriction of I to A (denoted by
I ↾ A) is the set {I ∩A : I ∈ I}. The restriction of I to A is also an ideal. An ideal
I on X is tall if for every A ∈ [X]ω exists I ∈ I such that |I ∩A| = ω.

A set F ⊆ P(X) is a filter if F∗ is an ideal. If F is ⊆-maximal we say that F is
an ultrafilter. We say that an ultrafilter U is a P -point if for every B ∈ [U]ω there
exists U ∈ U almost included in each element of B. Finally, we say that B ⊆ F is
a filter base if for every F ∈ F exists B ∈ B such that B ⊆ F .

Some of the ideals mentioned in this paper are:
(1) fin = [ω]<ω the ideal of the finite sets of ω.
(2) Disc = {I ⊆ Q : I is discrete}.
(3) conv the ideal on Q ∩ [0, 1] generated by sequences in Q ∩ [0, 1] convergent

in [0, 1].
(4) nwd = {I ⊆ Q : I is nowhere dense}.
(5) mz = {I ⊂ Q(2ω) : µ(I) = 0} where µ is the Lebesgue measure and Q(2ω) is

the set {x ∈ 2ω : ∃n∀m > n(x(m) = 0)}.
(6) Scat = {I ⊆ Q : I is scattered}.
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(7) Let I be an ideal on X and let J be an ideal on Y . Define I× J an ideal on
X × Y as follows:

A ∈ I× J ⇐⇒ {i ∈ X : A(i) ∈ J} ∈ I∗,

where A(n) = {m ∈ Y : (n,m) ∈ A}.
(8) Let I be an ideal on X and Ji be ideals on Yi (i ∈ X). Define limi→I Ji an

ideal on
∏

i∈X Yi as follows:

A ∈ lim
i→I

Ji ⇐⇒ {i ∈ X : A(i) ∈ Ji} ∈ I∗.

(9) Kσ the ideal on ωω σ-generated by compact sets, i.e, I ∈ Kσ if and only if
there exists {Kn : n ∈ ω} a countable collection of compact sets of ωω such that
I ⊆

⋃
n∈ω Kn.

An important tool for classifying relations among ideals and filters is the Katětov
order introduced in [21].

Definition 1. Let I be an ideal on a countable set X and J be an ideal on a
countable set Y . We say that I is Katětov below J (denoted by I ≤K J) if there
exists f : Y −→ X such that f−1[I] ∈ J for every I ∈ I. Such f is called Katětov
morphism. If I ≤K J and J ≤K I, then we say that I and J are Katětov equivalent
(denoted by I ∼=K J)

Some immediate properties of Katětov order are listed here. Let I, J be ideals
on countable sets.

(1) I ≤K fin if and only if I is not tall.
(2) If I ⊆ J, then I ≤K J.
(3) If A ∈ I+, then I ≤K I ↾ A.
(4) I, J ≤K I× J.

If I is an ideal such that I ↾ A ≤K I for every A ∈ I+, then we say that I is
Katětov uniform. To learn more about Katětov order see [3], [15] and [14] .

Destructibility and indestructibility of ultrafilters and ideals will play an impor-
tant role in this paper. Let V be a model of set theory, U ∈ V be an ultrafilter on
X, and W be some extension of V . If V ∩ [X]ω = W ∩ [X]ω, then U is ultrafilter in
W . On the other hand, if W contains new subsets of X, then U is no longer closed
with respect to supersets in W and is not even a filter. Therefore we are rather
interested in the filter generated by U in W . If U generates an ultrafilter in W ,
we say that U is preserved in the extension, otherwise we say that it is destroyed.
A similar phenomenon happens for tall ideals. If I ∈ V is a tall ideal on X and
V ∩ [X]ω = W ∩ [X]ω, then I is a tall ideal in W but, if W contains new subsets of
X we can not guarantee that I generates a tall ideal in W . Thus, if I generates a
tall ideal in W , we say that I is preserved in the extension, otherwise we say that
it is destroyed.

Given a forcing P, we say that an ultrafilter U ∈ V is P-indestructible if U is
preserved in every generic extension of V via P. Otherwise, if U is always destroyed,
we say that P destroys U. The destructibility and indestructibility of tall ideals by
P are defined analogously. To more about destructibility and indestructibility of
ultrafilters and ideals see [16], [5], [4], [8] and [6].

Recall that a family R ⊆ P(X) is a reaping family if for every A ∈ [X]ω exists
R ∈ R such that either R ⊆ A or R ∩ A = ∅. In such case, we say that R decides
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A. Note that U is ultrafilter if and only if every base of U is a reaping family.
So, an ultrafilter U is P-indestructible if and only if it is a reaping family in every
extension by P.

For any set X, we identify the family of finite sequences of X with X<ω. Con-
sequently, for s ∈ ω<ω with |s| = k + 1 we can write s = ⟨s(0), ..., s(k)⟩. The
concatenation of s = ⟨s(0), ..., s(k)⟩ with n is the set s⌢⟨n⟩ = ⟨s(0), ..., s(k), n⟩. A
set T ⊆ X<ω is a tree, if it is closed under initial segments, i.e., t ∈ T and s ⊆ t
implies s ∈ T. Given T ⊆ X<ω a tree, the stem of T is the ⊆-minimal element
of T with at least two immediate successors. For every t ∈ T , let nextT (t) be the
set {x ∈ X : t⌢⟨x⟩ ∈ T}. The splitting nodes of T is the set split(T ) = {t ∈ T :
|nextT (t)| = ω}. Finally, the tree Ts is defined by Ts = {t ∈ T : t ⊆ ∧s ⊆ t}.

We say that a tree p ⊆ 2<ω is a perfect tree if for every s ∈ p exists t ⊇ s such
that t⌢⟨0⟩ and t⌢⟨1⟩ are both in p. Sacks forcing (denoted by S) is the set of perfect
trees of 2<ω ordered by inclusion (see [26]). This forcing notion adds a generic real
defined as g =

⋂
{[p] : p ∈ G} where G is the generic filter on S.

We say that a tree T ⊆ ω<ω is a Miller tree if for every s ∈ T there exists t ⊇ s
such that t⌢⟨n⟩ ∈ T for infinite many n ∈ ω. Miller’s forcing (denoted by PT) also
known as rational perfect set forcing, is the set of Miller trees ordered by inclusion
(see [25] and [18]).

2. Some properties of the ideal Scat

Recall that a set I ⊆ Q is scattered if every subset of I has an insolated point;
equivalently I is scattered if it does not contain a crowded set. The collection
of all scattered sets forms a tall ideal on Q denoted by Scat. Note that if X is
homeomorphic to Q, then I = {I ⊆ X : I is scattered} is isomorphic to Scat.
Thus, the ideal Scat does not depend on which representation of Q is taken.

The rationals were characterized by W. Sierpiński (see [24]) as the unique (up to
homeomorphism) countable first countable regular space without isolated points.
Thus, Sierpiński’s theorem gives us a useful characterization of Scat positive sets;
C ∈ Scat+ if and only if it contains a homeomorphic copy of Q. Thus, Scat ↾ A ≤K

Scat for every A ∈ Scat+; in other words, Scat is Katětov uniform.
It is easy to see that Scat is a tall ideal, and since any scattered set is nowhere

dense, we have that Scat ≤K nwd.

Definition 2. Let I be a tall ideal on a countable set X. Define the following
cardinals associated with I:

(1) add∗(I) = min{|A| : A ⊆ I ∧ (∀I ∈ I)(∃A ∈ A)(A ⊈∗ I)}.
(2) cov∗(I) = min{|A| : A ⊆ I ∧ (∀Y ∈ [X]ω)(∃A ∈ A)(|A ∩ Y | = ℵ0)}.
(3) cof∗(I) = min{|A| : A ⊆ I ∧ (∀I ∈ I)(∃A ∈ A)(I ⊆∗ A}.
(4) non∗(I) = min{|A| : A ⊆ [X]ω ∧ (∀I ∈ I)(∃A ∈ A)(|A ∩ I| < ℵ0)}.

ℵ0 add∗(I)

cov∗(I)

non∗(I)

cof∗(I) 2ℵ0
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It is well known that I ≤K J implies cov∗(J) ≤ cov∗(I). The inequalities holding
among these cardinals are summarized in the above diagram.

A countable base of Q shows that non∗(Scat) = ℵ0, and in consequence, we have
that add∗(Scat) = ℵ0. What about cov∗(Scat) and cof∗(Scat)?

Proposition 3. There exists A ⊆ Disc of size c such that any scattered set contains
at most ω many elements of A.

Proof. For every q ∈ Q and n ∈ ω define the clopen set

Bn(q) = (q −
√
2/2n, q +

√
2/2n).

We will recursively construct F : 2<ω → [Q]<ω and {rn : n ∈ ω} ∈ [ω]ω such that
the following holds:

(I) F (s) ∩ F (t) = ∅ whenever s ̸= t.
(II) rn < rn+1 for every n ∈ ω.
(III) For every n ∈ ω, the collection {Brn(q) : q ∈ F (s) ∧ s ∈ 2≤n} is a family of

pairwise disjoint clopen sets.

Start by doing F (∅) = {0} and r0 = 0. Choose r1 > r0 and q0 such that
Br1(q0) ⊆ Br0(0)\Br1(0) and define F (⟨0⟩) = {q0}. On the other hand, denote by
1⃗ the constant sequence 1 and define F (⃗1 ↾ n) = {10n} for every n > 0.

Let n > 0 and suppose that we already defined ri for every i ≤ n and F (s) for
every s ∈ 2≤n satisfying all the conditions. For every s ∈ 2≤n define Es as the
set {t ∈ 2n+1 : s⌢⟨0⟩ ⊆ t}. Now choose rn+1 > rn such that for every s ∈ 2≤n

and every q ∈ F (s) exists G(s, q) = {pq,s,t : t ∈ Es} ⊆ Q such that the following
happens:

(a) Brn+1
(pq,s,t) ∩Brn+1

(pq,s,t′) = ∅ whenever t ̸= t′.
(b) Brn+1

(pq,s,t) ⊆ Brn(q)\Brn+1
(q) for every t ∈ Es.

For every t ∈ 2n+1 (except for the constant sequence 1 of length n+ 1) define

F (t) = {pq,s,t : s⌢⟨0⟩ ⊆ t ∧ q ∈ F (s)}.
Observe that if s ∈ 2<n and t ∈ Es, then for every q ∈ F (s) exists p ∈ F (t)

that is at most distance
√
2/2rn from q. This finishes the construction of F and

{rn : n ∈ ω}.
For every x ∈ 2ω define D(x) =

⋃
{F (x ↾ n) : x(n) = 1}.

Claim 4. Let x be an element of 2ω. Then D(x) is discrete.

Proof. Let q be an element of D(x), so exists n ∈ ω such that x(n) = 1 and
q ∈ F (x ↾ n). By condition (III) we have that Brn(q) is an open neighborhood that
separates q from any element of F (x ↾ m) for m ≤ n. On the other hand, since
x(n) = 1, then by construction F (t) ∩ Brn(q) = ∅ whenever x ↾ n + 1 ⊆ t. Thus,
Brn(q) ∩D(x) = {q}. □

Claim 5. Let x ∈ 2ω such that |x−1(1)| = ω and let n ∈ ω such that x(n) = 0.
Then F (x ↾ n) ⊆ D(x).

Proof. Let q be an element of F (x ↾ n). We will show that D(x) contains a
convergent sequence to q. Given k ∈ ω, choose m larger than n such that x(m+2) =

1 and
√
2/2rm < 1/k. Thus, by construction there exists p ∈ F (x ↾ m + 2) such

that p ∈ Brm(q) ⊆ {p ∈ Q : |q − p| < 1/k}. □
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Now suppose that S is scattered and that E = {x ∈ 2ω : F (x) ⊆ S} has size at
least ω1.

Claim 6. E is closed in 2ω.

Proof. Suppose that z ∈ 2ω\E. Thus, there exists n ∈ ω such that z(n) = 1 and
F (z ↾ n) ⊈ S but then {x ∈ 2ω : (z ↾ n + 1) ⊆ x} is an open neighborhood of z
that is disjoint to E . □

Since E is closed (in particular compact) and uncountable, then it contains a
Cantor set C (see [22, page 31]). Let T = {x ↾ n : x ∈ C∧n ∈ ω} and A = split(T ).
Note that T is a perfect subtree of 2<ω. The following claim finishes the proof.

Claim 7. F (A) =
⋃

s∈A F (s) is a crowded set included in S.

Proof. It is clear that F (A) ⊆ S. Now suppose that q ∈ F (s) for some s ∈ A. We
will show that q is not an insolated point of F (A). Since C is a Cantor set, we can
recursively construct x an element of C such that s⌢⟨0⟩ ⊆ x and N = {n ∈ ω : x ↾
n ∈ C ′ ∧ x(n) = 1} is infinite. By claim 5, D(x) contains a convergent sequence
to q. Finally, since N is infinite, it follows that D(x)∩ F (A) contains a convergent
sequence to q. □

□

Corollary 8. cof∗(Scat) = cof∗(Disc) = c.

Recall that an infinite family A ⊆ [ω]ω is an almost disjoint family (AD) if every
two distinct elements of A have finite intersection and it is maximal (MAD) if it
is maximal with that property. For an AD family A denote by I(A) the ideal
generated by A. If A is a MAD family, we say that a forcing notion P destroys A if
A is not longer maximal after forcing with P (see [4], [5]). Note that destructibility
of a MAD family A is equivalent to destructibility of the ideal I(A).

In [13] Hrušák stated the following:

Proposition 9. Let A be a MAD family. Then A is Miller indestructible if and
only if I(A) ≰K Scat.

Unfortunately this proposition is not true; later we will see that under CH it
is posible to give a counterexample. However, inspired by Hrušák’s result we ask
whether the destructibility by Miller forcing can be characterized in terms of the
ideal Scat. To answer this question we will need the following definition due to
Brendle [4].

Definition 10 (Brendle). Given a σ-ideal I on ωω, its trace ideal tr(I) is an ideal
on ω<ω defined by a ∈ tr(I) if and only if {r : ∃∞n ∈ ω(r ↾ n) ∈ a} ∈ I.

Although the use we will give to trace ideals in this paper is minimum, we
consider it important to mention that they play an important role in the study of
the destructibility of ideals (see [16], [4]). It turns out that for many forcings, the
class of ideals on ω (or any countable set) which are destroyed can be understood
in terms of the Katětov order and trace ideals. In particular, we have the following
important result of Hrušák and Zapletal [16].

Proposition 11 (Hrušák, Zapletal). Let I be a σ ideal on ωω such that PI is proper
and has the continuous reading of names. If J is an ideal on ω, then the following
are equivalent:



6 BALDERAS AND GUZMÁN

(1) There is a condition B ∈ PI such that B forces that J is not tall.
(2) There is a ∈ tr(I)+ such that J ≤K tr(I) ↾ a.

Given a σ-ideal I on a Polish space X, we denote by PI to the set Borel(X)/I
partial ordered by inclusion. In the case of Miller forcing, PT turns out to be
forcing equivalent to PKσ . It is well known that Sacks and Miller forcing have the
the continuous reading of names (see [16]).

Using the previous proposition together with the fact that tr(Kσ) is Katětov
uniform we have the following lemma.

Lemma 12. Let I be an ideal on a countable set. Then I ≤K tr(Kσ) if and only
if PT destroys I.

Thus, destructibility of ideals by Miller forcing can be understanding in terms
of the ideal tr(Kσ). Now we want to compare Scat with tr(Kσ).

Proposition 13. Disc is not destroyed by PT. In other words, Disc ≰K tr(Kσ).

Proof. We identify Q with Q(2ω). Let G ⊆ PT be a generic filter and fix X ∈
[Q]ω∩V [G], so there are Y ∈ [X]ω and r ∈ 2ω such that Y is a convergent sequence
to r in V [G].

Case r ∈ V : For every q ∈ Q let nq = min{k ∈ ω : (q ↾ k)⌢0⃗ = q}. On the other
hand, for every s ∈ 2<ω let [s] = {q ∈ Q : s ⊆ q}, i.e, [s] is the cone of s as subset
of Q. Now define Z = {n ∈ ω : Y ∩ [(r ↾ n)⌢⟨1− r(n)⟩] ̸= ∅}. Observe that since Y
is a convergent sequence to r, we can suppose that |Yn| ≤ 1 for every n ∈ ω where

Yn = Y ∩ [r ↾ n)⌢⟨1− r(n)⟩].
Let {nk : k ∈ ω} be an increasing enumeration of Z and define h : ω −→ ω by

h(k) = max{nq : q ∈
⋃

j≤nk+1

Yj}+ 1.

Since PT adds no dominating reals, exists f ∈ V strictly increasing such that
f ≰∗ h. Now for every n ∈ ω define An = {q ∈ Q(2ω) : nq ≤ f(n)} and let

A =
⋃
n∈ω

(An ∩ [r ↾ n)⌢⟨1− r(n)⟩]).

Note that A ∈ V since r and f are both in V . On the other hand, since each An is
finite, it follows that A is discrete. Finally, since f ≰∗ h, then |A ∩ Y | = ω.

Case r /∈ V : Let p be a forcing condition and ṙ, Ẏ be names for r and Y such
that p ⊩ “Ẏ is a convergent sequence to ṙ”. Using a fusion argument if it would
be necessary, we can assume that exists {rs : s ∈ split(p)} ⊆ 2ω ∩ V such that for
every s ∈ split(p) if sn is the ⊆-minimal element of split(p) such that s⌢⟨n⟩ ⊆ sn,
then the following happens:

(1) For each k ∈ ω and for all but finitely many n ∈ nextp(s),

psn ⊩ “rs ↾ k = ṙ ↾ k”.

(2) rsn ̸= rs and rsn ̸= rsm for each n,m ∈ nextp(s).
(3) ⟨rsn : n ∈ nextp(s)⟩ converges to rs.
(4) psn knows ysn an element of Ẏ such that

△(ysn , rsn) > △(rsn , rs),

where △(s, t) = min{n ∈ ω : s(n) ̸= t(n)}.
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Let q be an extension of p such that for every s ∈ split(q), every n ∈ nextq(s)
and every m ∈ nextq(sn) we have that

△(rsn , r(sn)m) > △(rsn , ysn).

Observe that q can be obtained by removing a finite number of sn to each s ∈
split(p). On the other hand, by condition (4) we have that for every s ∈ split(q)
and every n ∈ nextq(s), if k = △(ysn , rsn) + 1, then

[ysn ↾ k] ∩ {ys : s ∈ split(q)} = {ysn}.

Thus, A = {ys : s ∈ split(q)} is discrete and q ⊩ “|A ∩ Ẏ | = ω”. □

Corollary 14. Scat ≰K tr(Kσ).

Proof. It follows directly from Disc ≤K Scat and proposition 13. □

Proposition 15. tr(Kσ) ⪇K Scat.

Proof. It is enough to prove that tr(Kσ) ≤K Scat. Once again, we identify Q with
Q(2ω). Define g : ω<ω −→ 2<ω by induction on the lenght of the sequence:

(a) g(∅) = ∅.
(b) g(s⌢⟨n⟩) = g(s)⌢⟨0, 0, ..0⟩⌢⟨1⟩, where ⟨0, 0, ..0⟩ is the string of n zeros.

In other words, if s = ⟨a0, ..., an⟩, then g(s) = 0a0⌢1⌢0a1⌢1⌢ · · ·⌢ 0an⌢1 where 0aj

is the string of aj zeros. Observe that g has the following properties:
(1) s ⊆ t if and only if g(s) ⊆ g(t).
(2) g is injective.
(3) g is onto the sequences ending in 1.

Let g : ω<ω −→ Q defined by

g(s) = g(s)⌢0⃗

where 0⃗ is the constant sequence 0. Note that it follows from (2) and (3) that g is
bijective.

Let h be the inverse function of g. The following claim finishes the proof.

Claim 16. Let X be a crowded subset of Q. Then h[X] contains the set of splitting
nodes of a Miller tree. In particular, h is a witness of tr(Kσ) ≤K Scat.

Proof. It is equivalent to prove that there exists a Miller tree T such that

g[split(T )] ⊆ X.

We will recursively construct sets Tn ⊆ ω<ω such that g[Tn] ⊆ X for every
n ∈ ω. Let t ∈ ω<ω such that g(t) ∈ X and let T0 = {t}. Assume that n ≥ 0
and T0, ..., Tn have been constructed. For every s ∈ Tn choose X(s) ⊆ X and
E(s) ⊆ ω<ω satisfying the following:

(I) X(s) is a converget sequence to g(s).
(II) g(s) ⊂ x for every x ∈ X(s).
(III) g[E(s)] = X(s).
(I) and (II) can be done because X is crowded and g[Tn] ⊆ X; (III) is because

g is bijective.
Observe that from (1) it follows that s ⊆ r for every r ∈ E(s). Moreover, if

r, r′ ∈ E(s) and r ̸= r′, then r ∩ r′ = s. Now let Tn+1 =
⋃

s∈Tn
E(s). This finishes

the construction of {Tn : n ∈ ω}.
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Finally, consider T ′ =
⋃

n∈ω Tn and let T be the downwards closure of T ′. It is
clear that T is a Miller tree with split(T ) = T ′, and by construction g[split(T )] ⊆
X. □

□

Recall that given a proper ideal I on X containing all the singletons from X,
the covering number of I denoted by cov(I), is the smalest number of sets in I with
union X. On the other hand, observe that since any compact set of ωω is included in
a set of the form

∏
n∈ω[0, f(n)] for some f ∈ ωω, it is easy to see that cov(Kσ) = d.

Finally, it is shown in [16] that

cov(Kσ) ≤ cov∗(tr(Kσ)) ≤ max{cov(Kσ), d}.
Thus, cov∗(tr(Kσ)) = d and hence we have that cov∗(Scat) ≤ d.

We finish this section by giving an example of a MAD family A that is Miller
indestructible but I(A) ≤K Scat. All the following definitions and results of the
section are due to Brendle, Guzmán, Hrušák and Raghavan [17].

Definition 17. An ideal I is called Shelah-Steprāns if for every X ∈ (I<ω)+ there
is Y ∈ [X]ω such that

⋃
Y ∈ I. We say that I is nowhere Shelah-Steprāns if no

restriction of I is Shelah-Steprāns.

The property of being Shelah-Steprāns is upward closed in the Katětov order.

Lemma 18. Let I, J be ideals on countable sets. If I is Shelah-Steprāns and
I ≤K J, then J is Shelah-Steprāns.

It is easy to see that ideals as nwd and tr(Kσ) are Shelah-Steprāns. More-
over, since they are also Katětov uniform it follows that they are nowhere Shelah-
Steprāns.

Proposition 19. Let I, J be ideals such that I is nowhere Shelah-Steprāns and
J ≰K I. Then CH implies that there is a MAD family A ⊆ J such that I(A) ≰K I.

Since Scat ≰ tr(Kσ) and tr(Kσ) is nowhere Shelah-Steprāns, then by the propo-
sition 19 there is a MAD family A ⊆ Scat such that I(A) ≰K tr(Kσ). Since
I(A) ≰K tr(Kσ), then I(A) is Miller indestructible and since A ⊆ Scat, then
I(A) ≤K Scat.

3. The ideal Scat’

As we mentioned in the introduction, given a forcing notion P, an ultrafilter U

is P-indestructible if and only if it is a reaping family in each extention by P. In
the case of Sacks forcing, indestructibility of reaping families can be characterized
in terms of colorings from 2<ω into two colors.

The following proposition is only one special consequence of the full Halpern-
Läuchli theorem.

Proposition 20. Given a coloring c : 2<ω −→ 2, there exists a perfect tree p ∈ S
and an infinite subset A of ω such that c is constant on p ↾ A.

Let us remark that the full theorem is much stronger than the proposition. The
reader can consult [12], [27], [28] and [9] to learn more about the Halpern-Läuchli
theorem.
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Definition 21 (Yiparaki). A family R ⊆ [ω]ω is called a Halpern-Läuchli if for
every c : 2<ω → 2 there are p ∈ S and A ∈ R such that c is constant on p ↾ A.

By considering colorings c which are constant on the levels of the tree 2<ω

we can easily see that every Halpern-Läuchli family is a reaping family. In fact,
this property characterizes reaping families which are indestructible by the Sacks
forcing.

Theorem 22. (see [8]) R ⊆ [ω]ω is a Halpern-Läuchli family if and only if it is a
reaping family in every extension by Sacks forcing.

When dealing with an ideal I, we will say that I is HL as a shortcut for the
statement that I+ is a Halpern–Läuchli family.

Before continuing, it will be necessary to establish some notation for the rest of
the paper. We will write Q instead of Q+ = {q ∈ Q : q > 0}. For every n ∈ ω, we
use In to denote the clopen set (n

√
2, (n + 1)

√
2) . Finally, let Scat′ be the ideal

on Q generated by Scat ∪ {(0, n) : n ∈ ω}.

Observation 23. A ∈ Scat′ if and only if (∀∞n ∈ ω)(A ∩ In ∈ Scat).

Observation 24. X ∈ (Scat′)+ if and only if (∃∞n ∈ ω)(X ∩ In /∈ Scat).

It follows directly from the definition and the previous observation that Scat′ is
Katětov uniform.

Lemma 25. Scat′ is isomorphic to fin× Scat.

Proof. For every n ∈ ω let fn : In −→ Q be an homeomorphism. Now consider
f : Q −→ ω × Q defined by f(q) = (n, fn(q)) if and only if q ∈ In. Clearly f is
an homeomorphism (we are considering ω×Q with the product topology) and also
satisfies f [In] = {n}×Q for every n ∈ ω. It is easy to see that f is an isomorphism
between Scat′ and fin× Scat. □

From now on, we will also use Scat′ to refer to fin× Scat, so depending on the
context A ∈ Scat′ will mean that A ⊆ Q or A ⊆ ω ×Q.

Let π : ω ×Q −→ ω be the projection on the first coordinate. Given A ⊆ ω ×Q
and n ∈ ω define

A(n) = {q ∈ Q : (n, q) ∈ A}.

Lemma 26. Let I, J ⊂ P(ω) be ideals, I ≤K J. If J is HL, then so is I.

Proof. Let f : ω −→ ω be a witness of I ≤K J and W ⊇ V be an extension such
that J+ is a reaping family in W . Let A ∈ P(ω) ∩W and choose R ∈ J+ such that
R decides f−1[A]. Then f [R] ∈ I+ and f [R] decides A. □

Corollary 27. Scat is HL.

Proof. It follows because nwd is HL (see [8]) and the previous lemma. □

Lemma 28. Let I be an ideal Katětov uniform over a countable set X and let ẋ be
a S-name for a subset of X. If I is HL, then for every n ∈ ω and {pi : i ≤ n} ⊆ S
with mutually incompatible stems there are E ∈ I+ and {qi ≤ pi : i ≤ n} such that
every qi forces E decides ẋ.
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Proof. Since I is a HL ideal there exists a condition q0 ≤ p0 and F0 ∈ I+ such that
q0 ⊩ “F0 decides ẋ”. On the other hand, I ↾ F0 is a HL ideal and hence there are
q1 ≤ p1 and F1 ∈ (I ↾ F0)

+ such that q1 ⊩ “F1 decides ẋ”. Note that F1 ∈ I+ and
hence I ↾ F1 is a HL ideal. Continuing this way a finite number of steps we can get
a finite sequence F0 ⊇ F1 ⊇ · · · ⊇ Fn of I positive subsets such qi ⊩ “Fi decides ẋ”
for each i ≤ n. Finally, observe that the previous shows that if E = Fn, then
E ∈ I+ and qi ⊩ “E decides ẋ” for each i ≤ n. □

Proposition 29. Let I be a Katětov uniform ideal over a countable set X. If I is
HL, then so is fin× I.

Proof. We will show that fin× I is a reaping family in every extension via S. Let
ẋ be a name for a subset of ω ×X.

Using lemma 28 and a fusion argument we can recursively construct a condition
q ∈ S and E(|t|) ∈ I+ (t ∈ 2<ω) such that there is a tree isomorphism φ : 2<ω → q
and for each t ∈ 2<ω the condition qφ(t) ⊩ “E(|t|) decides ẋ(|t|)”. Define a coloring
c : 2<ω → 2 by c(t) = 1 if and only if qφ(t) ⊩ “E(|t|) ⊆ ẋ(|t|)”. By proposition 20
there are p ∈ S and A ∈ [ω]ω ∩ V such that c has constant value i on p ↾ A. Note
that

⋃
n∈A{n} × E(n) ∈ (fin × I)+. Let q′ be the downwards closure of φ(p). It

is clear that q′ ∈ S. Now if i = 1, then q′ ⊩ “
⋃

n∈A{n} × E(n) ⊆ ẋ” and if i = 0,
then q′ ⊩ “

⋃
n∈A{n} × E(n) ∩ ẋ = ∅”. □

Corollary 30. Scat′ is HL.

Proposition 31. Let {Jn : n ∈ ω} be a countable collection of HL Katetov uniform
ideals. Then limn→fin Jn is HL.

Proof. The proof is just a modification of the proof of proposition 29.
Assume that each Jn is an ideal on Xn and let ẋ be a S-name for a sub-

set of
∏

n∈ω Xn. Let q ∈ S and E(|t|) ∈ (J|t|)
+ (t ∈ 2<ω) such that there

is a tree isomorphism φ : 2<ω → q and for each t ∈ 2<ω the condition qφ(t)

forces “E(|t|) decides ẋ(|t|)”. Let c : 2<ω → 2 defined by c(t) = 1 if and only
if qφ(t) ⊩ “E(|t|) ⊆ ẋ(|t|)”. Let p ∈ S and A ∈ [ω]ω ∩ V such that c has
constant value i on p ↾ A and let q′ be the downwards closure of φ(p). Thus,
E =

⋃
n∈A{n} × E(n) ∈ (limn→fin Jn)

+, q′ ∈ S and if i = 1, then q′ ⊩ “E ⊆ ẋ”
and if i = 0, then q′ ⊩ “E ∩ ẋ = ∅”. □

Definition 32. For every α < ω1, define a countable set Xα and an ideal finα on
Xα as follows:

(1) X0 = {0} and fin0 = {∅}.
(2) Xα+1 = ω ×Xα and finα+1 = fin× finα.
(3) If α is a limit ordinal, define Xα =

∏
β<α Xβ and

finα = lim
β→bnd(α)

finβ

where bnd(α) is the ideal of the bounded sets of α.

The following is well-known result.

Lemma 33. Let α < ω1 be a limit ordinal and let B ⊆ α be a strictly increasing
sequence with limit α. If I = bnd(α) ↾ B, then finα is Katětov equivalent to
limβ→I fin

β .

Proposition 34. finα is HL for every α < ω1.
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Proof. By induction on α. It is clear that fin is HL. Now if α = β + 1, then by
proposition 29, finα is HL. Finally, suppose that α is a limit ordinal. Let B ⊆ α be
a strictly increasing sequence with limit α. Note that I = bnd(α) ↾ B is isomorphic
to fin and hence, by proposition 31, we have that limβ→I fin

β is HL. Finally, by
lemma 33, we have that finα is HL. □

We finish the section mentioning that it is easy to define examples of ideals which
are not HL. Given c : 2<ω −→ 2, for each p ∈ S define

Hc(p) = {n ∈ ω : c is constant on p ↾ {n}}.
Let Ic be the (possibly improper) ideal generated by {Hc(p) : p ∈ S}. It is easy to
see that an ideal I is not HL if and only if there exists c : 2<ω −→ 2 such that
Ic ⊆ I.

4. Gruff ultrafilters and P-points

In this section, we present some constructions of gruff ultrafilters under CH with
some additional properties. We start by giving some auxiliary results. The first
lemma is just a modification of a result of D. Fernández and M. Hrušák (see [11]).

Lemma 35. Let ⟨Xn : n ∈ ω⟩ be a sequence of Scat′ positive sets such that
Xm\Xn ∈ Scat′ whenever n ≤ m. Then exists Y ∈ (Scat′)+ such that Y \Xn ∈
Scat′ for every n ∈ ω.

Proof. We will construct an increasing sequence ⟨kn : n ∈ ω⟩ of natural numbers
and non-scattered sets Bn ⊆ Ikn

as follows: Choose k0 ∈ ω such that X0∩Ik0
/∈ Scat

and let B0 = C0 ∩ Ik0
. Suppose we have picked k0, ..., kn and B0, ..., Bn. Choose

kn+1 > kn large enough such that Xn+1∩Ikn+1
/∈ Scat and (Xn+1\Xj)∩Im ∈ Scat

for each j ≤ n and each m ≥ kn+1. Define Bn+1 = Cn+1 ∩ Ikn+1 .
Finally, let Y =

⋃
n∈ω Bkn

. It is clear that Y ∈ (Scat′)+. On the other hand, if
n ∈ ω, then (Y \Xn) ∩ Ij ∈ Scat for every j ≥ kn. Thus, Y \Xn ∈ Scat′. □

The following two lemmas were first proven by E. van Dowen in [10], we include
here the proof of one of them for completeness. For a complete proof of both lemmas
see [7].

Lemma 36. If X ⊆ Q is crowded, then it contains a perfect set.

As a concecuence of the previous lemma, we have that if X ∈ (Scat′)+, then it
contains a perfect unbounded set. In particular, it follows from lemmas 35 and 36
that if F is a countable filter base included in (Scat′)+, then there exists a perfect
unbounded set P such that P\F ∈ Scat′.

Lemma 37. Let F be a filter base consisting of perfect unbounded sets which extends
the filter of co-bounded clopen sets. For every R ⊆ Q and every F ∈ F define,

KR(F ) =
⋃

{L ⊆ F : L is crowded and L ⊆ L ∩R}.

Let A ⊆ Q. Then either for R = A or R = Q\A the collection

F ∪ {KR(F ) : F ∈ F}
is a free filter base consisting of perfect unbounded sets.

Proof. We will divide the proof into some easy claims.

Claim 38. For every F ∈ F the set KR(F ) is either empty or perfect.
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Proof. Assume KR(F ) is non-empty. Then it is crowded, being a union of crowded
sets. It also satisfies KR(F ) ⊆ KR(F ) ∩R and therefore

KR(F ) ∈ {L ⊆ F : L is crowded and L ⊆ L ∩R}.

On the other hand, since KR(F ) ⊆ F (because F is closed), then

KR(F ) ⊆ KR(F ) ∩R ⊆ KR(F ) ∩R.

Thus,
KR(F ) ∈ {L ⊆ F : L is crowded and L ⊆ L ∩R}

and hence KR(F ) = KR(F ). □

Note that since every F ∈ F is crowded, then either F ∩ A contains a crowded
set or F ∩ (Q\A) contains a crowded set. Thus, for each F ∈ F there exists
R ∈ {A,Q\A} such that KR(F ) is perfect.

Claim 39. For every F ∈ F there is R ∈ {A,Q\A} such that KR(F ) is unbounded.

Proof. First observe that KR(G) ⊆ KR(H) whenever G ⊆ H.
Let F ∈ F and suppose that KR(F ) is bounded for each R ∈ {A,Q\A}. Let

H ∈ F such that H ⊆ F\(KA(F ) ∪KQ\A(F )). Thus, both KA(H) and KQ\A(H)
are empty, which is impossible. □

Claim 40. There exists R ∈ {A,Q\A} such that KR(F ) is unbounded for every
F ∈ F.

Proof. Suppose that the claim is not true, then there are F,H ∈ F such that KA(F )
and KQ\A(H) are both bounded. Let G ∈ F be such that G ⊆ F ∩H. Then both
KA(G) and KQ\A(G) are bounded which contradicts the previous claim. □

Let R ∈ {A,Q\A} such that KR(F ) is unbounded for every F ∈ F. To prove
that F ∪ {KR(F ) : F ∈ F} is a filter base it suffies to prove that {KR(F ) : F ∈ F}
is a filter base because KR(F ) ⊆ F for each F ∈ F. Let B ∈ [F]<ω and choose
F ∈ F such that F ⊆

⋂
B. Thus, KR(F ) ⊆

⋂
{KR(H) : H ∈ B}. □

As a consequence of the proof of the previous lemma we have the following
corollary.

Corollary 41. Let F be a filter base consisting of perfect unbounded sets which
extends the filter of co-bounded clopen sets. Let P be a perfect unbounded set such
that KP (F ) is unbounded for every F ∈ F. Then F ∪ {KP (F ) : F ∈ F} is a free
filter base consisting of perfect unbounded sets and KP (F ) ⊆ P ∩F for every F ∈ F.

In [11] Fernández and Hrušák proved that ♢(d) implies that there exists a gruff
ultrafilter ω1-generated. Since ♢(d) is true in Sacks model (see [19]), then it follows
from their argument that, when iterating Sacks forcing, a gruff ultrafilter appears
in an intermediate model. The following theorem shows that actually there exists
a gruff ultrafilter in the ground model.

Theorem 42 (CH). There exists a gruff ultrafilter that is Sacks indestructible.

Proof. Let {Aα : α < c} be an enumeration of P(Q) and {cα : α < c} be an
enumeration of all colorings of 2<ω into two colors. We will recursively construct
sets Fα satisfying the following conditions for every α < c :

(1) Fα is a countable filter base consisting of perfect unbounded sets.
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(2) Fα ⊆ Fα+1.
(3) There is F ∈ Fα+1 such that F decides Aα.
(4) There are F ∈ Fα+1 and q ∈ S such that cα is constant on q ↾ F .
We start by definig F0 = {[n,∞) : n ∈ ω}. Assume that 0 < α < c and Fβ has

been constructed for every β < α. If α is a limit ordinal let Fα =
⋃

β<α Fβ . It is
clear that Fα satisfies all the conditions. Now suppose that α = β + 1. Since Fβ

is a countable filter base, then by lemma 35 there exists X ∈ (Scat′)+ such that
X\F ∈ Scat′ for every F ∈ Fβ . Let R ∈ {Aα,Q\Aα} such that X ′ = X ∩ R ∈
(Scat′)+. Now since Scat′ ↾ X ′ is HL there are q ∈ S and X ′′ ∈ (Scat′)+ such that
X ′′ ⊆ X ′ and cα is constant on q ↾ X ′′. Let P be a perfect unbounded set included
in X ′′, so by corollary 41 we have that Fα = Fβ ∪{KP (F ) : F ∈ Fβ} is a filter base
and it satisfies all the desired. This finishes the construction of the Fα’s.

Finally, let G be the filter generated by
⋃

α<c Fα. It is clear that G is a gruff
ultrafilter, and by condition (4), G is also a Halpern-Läuchli family. Thus, G is a
gruff ultrafilter Sacks indestructible. □

Let U be an ultrafilter on X and V be an ultrafilter on Y , define U × V as the
set

{A ⊆ X × Y : {x ∈ X : A(x) ∈ V} ∈ U}.
It is easy to see that U×V is an ultrafilter on X×Y . On the other hand, it follows
directly from the definition of U×V that π[A] ∈ U for each A ∈ U×V; in particular,
π shows that U∗ ≤K (U×V)∗. Now consider ω×Q equipped with product topology
(which is homeomorphic to Q) and suppose that U is an ultrafilter on ω and that
G is a gruff ultrafilter. If B is a filter base of perfect sets for G, then

{F ∈ U× G : ∀n ∈ ω(F (n) = ∅ or F (n) ∈ B)}
is a filter base of perfect sets for U×G. Thus, if gruff ultrafilters exist, then for any
ultrafilter U exists a gruff ultrafilter such that U∗ ≤K G∗.

Proposition 43. Assume that gruff ultrafilters exist. Then there exists a gruff
ultrafilter Sacks destructible. In particular d = c and ♢(d) imply that there exists a
gruff ultrafilter Sacks destructible.

Proof. Let I be an ideal that is not HL, and let U be an ultrafilter that extends
I∗. Let G be a gruff ultrafilter such that U∗ ≤K G∗ and suppose that G is Sacks
indestructible. Thus, G∗ is HL and hence, U∗ is HL. Finally, since I ⊆ U∗, then I

is HL, which is a contradiction. □

The next definition was introduced by J. Baumgartner in [2].

Definition 44. Let I an ideal on X and U be an ultrafilter on Y . We say that
U is a I-ultrafilter if for every f : Y −→ X there is U ∈ U such that f [U ] ∈ I.
Equivalently, U is a I-ultrafilter if and only if I ≰K U∗.

It follows directly from the definition that if U is a I-ultrafilter and I ≤K J, then
U is a J-ultrafilter.

Corollary 45. Assume that gruff ultrafilter exist. Then for every ideal I there
exists a gruff ultrafilter that is not I-ultrafilter.

Many standard combinatorial properties of ultrafilters can be characterized in
this way by Borel ideals of a low complexity. For example, it is known that if U is
an ultrafilter on ω, then U is P-point if and only if fin× fin ≰K U∗ if and only if
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conv ≰K U∗. Since conv ⊆ nwd, then conv ≤K nwd and therefore, any P-point is
a nowhere dense ultrafilter.

It is shown in [20, Prop. 5.5.5] that gruff ultrafilters cannot be P-points. How-
ever, we can ask whether there are gruff ultrafilters that are nowhere dense ultra-
filters.

Lemma 46 (Baumgartner [2]). Assume Martin’s Axiom for σ-centered partial or-
derings. Let F be a family of Scat positive sets such that F is closed under finite
intersections and |F| < c. Then for every f : Q −→ 2ω there is B ⊆ Q such that
f(B) ∈ mz and B ∩ F ∈ Scat+ for every F ∈ F.

Proposition 47 (CH). There exists a gruff ultrafilter that is mz-ultrafilter.

Proof. The proof will be just a modification of the proof of theorem 42. Let {Aα :
α < c} = P(Q) and {fα : α < c} = Q(2ω)Q. We will construct sets Fα such that
for each α < c we have the following:

(1) Fα is a countable filter base consisting of perfect unbounded sets.
(2) Fα ⊆ Fα+1.
(3) There is F ∈ Fα+1 such that F decides Aα.
(4) There is F ∈ Fα+1 such that fα(F ) ∈ mz.
If either α = 0 or α is a limit ordinal, define Fα as in the proof theorem 42.

So, assume α = β + 1. Let P be a perfect unbounded set such that P decides Aα

and P\F ∈ Scat′ for every F ∈ Fβ . Let F the closure under finite intersections of
Fβ∪{P}. Since Fβ is countable, then F is also countable. Now use lemma 46 to get
B ⊆ Q such that fα(B) ∈ mz and B∩F ∈ Scat+ for every F ∈ F. Note that B∩P

must be a Scat′ positive set, since [n,∞) ∈ F for every n ∈ ω. Finally, let P ′ be a
perfect unbounded set included in P ∩B and define Fα = Fβ ∪{KP ′(F ) : F ∈ Fβ}.

Let G be the filter generated by
⋃

α<c Fα. Then by construction G is a gruff
ultrafilter mz-ultrafilter. □

Corollary 48 (CH). There exists a gruff ultrafilter that is nwd-ultrafilter.

Proof. Since mz ⊆ nwd, then mz ≤K nwd. Thus, any mz-ultrafilter is a nwd-
ultrafilter. □

The previous corollary tells us that under CH we can construct gruff ultrafilters
that are “close” to P-points. Inspired on this an on the proof of theorem 42 we
have the following definition.

Definition 49. Let G be a gruff ultrafilter. We say that G is a PScat′-point if for
every F ∈ [G]ω exists P ∈ G such that P\F ∈ Scat′ for every F ∈ F.

Corollary 50. CH implies that PScat′-point exist.

The following proposition gives us an interesting relation between P-points and
PScat′ -points.

Proposition 51. Let G be PScat′-point on ω × Q. Then π[G] = {π[A] : A ∈ G} is
a P-point.

Proof. Let {Un : n ∈ ω} be a countable subset of π[G]. For every n ∈ ω define
An = π−1[Un] = Un × Q and note that each An is an element of G. Let P be an
element of G such that P\An ∈ Scat′ for every n ∈ ω. We can suppose that P is
perfect unbounded and therefore P ∩ ({n} × Q) /∈ Scat for every n ∈ ω. Now if
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π[P ]\Un were infinite for some Un, then P\π−1[Un] /∈ Scat′. Thus, π[P ] is almost
included in each Un. □

Although in general PScat′ -point is a stronger property than P-point, we can
show that both properties turn out to be equivalent for gruff ultrafilters which are
products.

Proposition 52. Let U be an ultrafilter on ω and G be a gruff ultrafilter. Then
U× G is PScat′-point if and only if U is P-point.

Proof. The only thing left is to prove that if U is P-point, then U×G is PScat′-point.
Let {An : n ∈ ω} be a countable subset of U × G. Without loss of generality the
collection of An’s is ⊆-decreasing. For every n ∈ ω define Un = {k ∈ ω : An(k) ∈ G},
it is clear that each Un belongs to U. Let U be an element of U almost included in
each Un and let ⟨xn : n ∈ ω⟩ be a strictly increasing sequence of natural numbers
such that U\xn ⊆ Un. For every n ∈ ω define Bn =

⋃
{{x} × An(x) : x ∈

[xn, xn+1) ∩ U}. Now consider B =
⋃

n∈ω Bn. Observe that B ∈ U × G because
{k ∈ ω : B(k) ∈ G} = U\x0 ∈ U. Finally, B\An ⊆

⋃
k<n Bk ∈ Scat′ for every

n ∈ ω. □

We finish this section by proving that P-point and PScat′ -point are not equivalent
properties.

Theorem 53 (CH). There exists G a gruff ultrafilter on ω × Q such that π[G] is
P-point but G is not PScat′-point.

Proof. Let {Aα : α < c} be an enumeration of all subsets of Q. For every n ∈ ω
define

Pn = [n,∞)×
⋃
k≥n

Ik

and let F = {Pn : n ∈ ω}.
We will recursively construct sets Fα satisfying the following conditions for every

α < c :
(1) F ⊆ Fα.
(2) Fα is a countable filter base consisting of perfect unbounded sets.
(3) There exists P ∈ Fα+1 such that P decides Aα.
(4) There exists U ∈ π[Fα+1] almost included in each element of π[Fα].
(5) For every P ∈ Fα there exists n ∈ ω such that for all but finitely many

m ∈ π[P ] we have that P (m) ∩ (0, n
√
2) /∈ Scat.

Start by doing F0 = F and if α is a limit ordinal let Fα =
⋃

β<α Fβ . So, we
can suppose that α = β + 1 and that Fβ has already been constructed. Let U
be an infinite subset of ω almost included in each element of π[Fβ ] and define
F′
β = {P ∩ U × Q : P ∈ Fβ}. Note that F′

β is a countable filter base consisting of
perfect unbounded sets and satisfies condition (5).

For every P ∈ F′
β , every X ∈ [U ]ω and every R ∈ {Aα, A

c
α} define the following

properties:

∗(P,X,R) := ∃n ∈ ω∃Y ∈ [X]ω(∀m ∈ Y )(P (m) ∩ (0, n
√
2) ∩R(m) ∈ Scat+).

△(P,X,R) := ∃n ∈ ω(∀∞m ∈ X)(P (m) ∩ (0, n
√
2) ∩R(m) ∈ Scat+).
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Claim 54. For every P ∈ F′
β and every X ∈ [U ]ω, exists R ∈ {Aα, A

c
α} such that

∗(P,X,R) holds.

Proof. It is clear from condition (5). □

Claim 55. Let P , X and R be such that ∗(P,X,R) is false. Then ∗(F, Y,Rc) holds
for every F ∈ F′

β and every Y ∈ [X]ω.

Proof. Suppose that there are F ∈ F′
β and Y ∈ [X]ω such that ∗(F, Y,Rc) is false.

Then ∗(K,Y,Rc) and ∗(K,Y,R) are both false for every K ∈ F′
β included in P ∩F ,

which contradicts the previous claim. □

Claim 56. There are X ∈ [U ]ω and R ∈ {Aα, A
c
α} such that △(P,X,R) holds for

every P ∈ F′
β.

Proof. By the previous claim we can assume that there are R ∈ {Aα, A
c
α} and

Y ∈ [X]ω such that ∗(P,Z,R) holds for every P ∈ F′
β and every Z ∈ [Y ]ω.

Let {Fn : n ∈ ω} be an enumeration of F′
β . Now recursively construct {Yk : k ∈

ω} a collection of infinite subsets of Y and {nk : k ∈ ω} a subset of ω such that for
every k ∈ ω we have the following:

(I) Yk ⊇ Yk+1.
(II) (∀m ∈ Yk)(Fk(m) ∩ (0, nk

√
2) ∩R(m) ∈ Scat+).

Let X be an infinite subset of Y almost included in each Yn. Then by construc-
tion △(P,X,R) holds for every P ∈ F′

β . □

Let X, R be as in the previous claim and enumerate F′
β as {Fn : n ∈ ω}. Now

consider {Ek : k ∈ ω} a sequence of perfect unbounded sets and {nk : k ∈ ω} a
sequence of natural numbers constructed as follows:

Let n0 be a natural number and Y0 be an infinite subset of X such that:
(a) X\Y0 is finite.
(b)(∀m ∈ Y0)(F0(m) ∩ (0, n0

√
2) ∩R(m) ∈ Scat+).

For every m ∈ Y0 choose a perfect set E0(m) ⊆ F0(m) ∩ (0, n0

√
2) ∩ R(m) and

define
E0 =

⋃
m∈Y0

{m} × E0(m).

Suppose we already defined E0, ..., Ek and n0, ..., nk. Now choose nk+1 ∈ ω and
Yk+1 ∈ [X]ω such that X\Yk+1 is finite and P (m) ∩ (0, nk+1

√
2) ∩ R(m) ∈ Scat+

for every m ∈ Yk+1, where P = (
⋂

i≤k Fi) ∩ Pnk
. Define Ek+1 in an analogous way

to E0. This finishes the construction of {Ek : k ∈ ω} and {nk : k ∈ ω}.
Note that {nk : k ∈ ω} is strictly increasing and hence {Ek : k ∈ ω} is pairwise

disjoint. So, E =
⋃

n∈ω En is a perfect unbounded set included in R and it also
satisfies that for every P ∈ Fβ exists n ∈ ω such that for all but finitely many
m ∈ π[E] we have that P (m) ∩ (0, n

√
2) /∈ Scat. Thus, it is easy to see that

Fα = Fβ ∪ {KE(P ) : P ∈ Fβ} satisfies all the conditions (See collolary 41).
To finish the proof, let G be the filter generated by

⋃
α<c Fα. Clearly G is gruff

and π[G] is a P-point. On the other hand, observe that by construction F ⊆ G and
there is not P ∈ G such that P\Pn ∈ Scat′ for every n ∈ ω. □

Corollary 57. CH implies that there are gruff ultrafilters on ω×Q that are not a
product, i.e, they do not have the form U× G where U is an ultrafilter on ω and G

is a gruff ultrafilter.
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5. The generic ultrafilter of (fin× Scat)+

This section is inspired by a result by A. Blass, N. Dobrinen and D. Raghavan
about the generic ultrafilter adds by (fin2)+ in [1, theorem 36]. For the rest of the
paper, we will use P to denote (fin × Scat)+ partially ordered by inclusion and
PScat′ to denote P(ω ×Q)/(fin× Scat) partially ordered by inclusion modulo the
ideal fin× Scat. Observe that PScat′ is the separative quotient of P and therefore
they are forcing equivalent; i.e, they produce the same extensions.

We call a forcing condition X ∈ P (or X ∈ PScat′) standard if every nonempty
section X(n) is crowded, i.e, any nonempty section X(n) is homeomorphic to Q.
It is easy to see that the collection of standard conditions is dense on P.

Note that lemma 35 implies that PScat′ is σ-closed and in particular, forcing with
P adds no new reals. On the other hand, observe that the function a : [ω]ω −→ P
defined by a[X] = π−1[X] is a complete embedding of the forcing notion ([ω]ω,⊆)
into P. In particular, if G ⊆ P is generic, then a−1[G] = π[G] is ([ω]ω,⊆)-generic
and therefore π[G] is selective.

Lemma 58. If G is P generic, then G is gruff ultrafilter in V [G].

Proof. Since P adds no reals, it is clear that G is an ultrafilter in V [G].
Let A be a forcing condition and Ẋ a name for a subset of ω × Q such that

A ⊩ “Ẋ ∈ Ġ”. Since P adds no reals, there are B ≤ A and X ∈ P such that
B ⊩ “X = Ẋ”. Note that B ⊩ “B ∈ Ġ”. Now let P be a perfect unbounded set
included in B ∩ X. Thus, P ≤ A and P ⊩ “P ⊆ Ẋ ∧ P ∈ Ġ”. This finishes the
proof. □

Lemma 59. Exists a sequence ⟨Pn : n ∈ ω⟩ of partions of Q such that every Pn

consists in two dense subsets and for every P ∈
∏

n∈ω Pn exists a crowded set C
almost disjoint to each P (n).

Proof. For every s ∈ 2<ω we will construct a dense subset Ds of Q as follows: We
start by doing D∅ = Q. If s ∈ 2<ω and Ds has already been defined, then divide
Ds into two dense subsets Ds⌢0 and Ds⌢1. Observe that:

(a) For every n ∈ ω we have that Q =
⋃

s∈2n Ds.
(b) If s ⊆ t, then Dt ⊆ Ds.
(c) If s ̸⊆ t and t ̸⊆ s, then Ds ∩Dt = ∅.

For every n ∈ ω define Pn = {Pn(0), Pn(1)} where

Pn(0) =
⋃

{Ds : s ∈ 2n+1 ∧ s(n) = 0},

Pn(1) =
⋃

{Ds : s ∈ 2n+1 ∧ s(n) = 1}.
It is clear that every Pn is a partition of Q into two dense pieces.

Let ⟨Pn(i(n)) : n ∈ ω ∧ i ∈ 2ω⟩ be and element to
∏

n∈ω Pn. Let ⟨Xn : n ∈ ω⟩
be a decreasing sequence of dense subsets of Q getting as follows:

X0 = D⟨1−i(0)⟩ = Q\D⟨i(0)⟩ = Q\P0(i(0)).

In general, if n ≥ 1 then

Xn = Xn−1\
⋃

{Ds : s ∈ 2n+1 ∧ s(n) = i(n)} = Xn−1\Pn(i(n)).

Recursively construct a sequence of finite subsets of Q as follows: Choose q ∈ X0

and define F0 = {q}. If n > 0 and Fn has already been defined, then for each q ∈ Fn
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choose pq ∈ Xn+1 such that |q − pq| < 1/2n+1. This can be done because Xn+1

is dense. Finally, if C =
⋃

n∈ω Fn, then C is crowded and C ∩ Pn(i(n)) ⊆ Fn for
every n ∈ ω. □

Definition 60. Let U be an ultrafilter on a countable set X. We say that U is a
weak P-point if for any countably many non-principal ultrafilters Vn ̸= U , there
exists A ∈ U such that A /∈ Vn for every n ∈ ω.

It follows directly from the definition that any P-point is a weak P-point, how-
ever, it can be proved that there are weak P-points that are not P-points. More-
over, in contrast to P-points, weak P-points actually exists in ZFC. In [23], Kunnen
proved that there are 2c weak P-points that are not P-points.

As we mentioned before, gruff ultrafilters cannot be P-points, however, they can
be weak P-points.

Theorem 61. If G is P generic, then G is weak P-point in V [G].

Proof. The proof is analogous to the proof of theorem 36 in [1] with obvious changes.
Let {Vn : n ∈ ω} ⊆ V [G] be a countable collection of ultrafilters on ω × Q. It will
be useful to distinguish four types of ultrafilters V ̸= G.

(0) π[V] is principal.
(1) π[V] is non-principal and distinct from U = π[G].
(2) π[V] = U y V ∩ (fin× Scat) ̸= ∅.
(3) π[V] = U y V ∩ (fin× Scat) = ∅.

We will show that if i ∈ 4 and all Vn belong to type (i), then there exists A ∈ U

such that A /∈ Vn for every n ∈ ω. It will suffice because in the general case we can
divide {Vn : n ∈ ω} in four sets, one for each type, find suitable sets A for each of
the four subsets and take the intersection of those A’s.

Type (0): Let X be a forcing condition such that:
(a) X is standard.
(b) X ⊩“The V̇n are ultrafilters of type (0)”.
(c) X knows a function f ∈ ωω ∩ V such that X ⊩“π[V̇n] is generated by
{f(n)}” for every n ∈ ω.
(d) π[X] ⊆ ran(f).

Conditions (a), (b) and (c) are easy because D = {X ∈ P : X is standard}
is dense and P adds no new reals. For (d), if Z = π[X]\ran(f) is infinite then
Y = π−1[Z] ∩X is an extension of X and Y ⊩ “Y ∈ Ġ\V̇n” for each n ∈ ω. So, Z
is finite and therefore Y = X\π−1[Z] is a condition that satisfies (d).

For the rest of the proof we will recursivelly construct a ⊆-decreasing sequence
of standard conditions ⟨Xn : n ∈ ω⟩, an increasing sequence of natural numbers
⟨xn : n ∈ ω⟩ and a sequence of Scat positive sets ⟨An : n ∈ ω⟩ such that:

(I) If i < j, then {xi} ×Ai ⊆ Xj .

(II) If f(n) = xi, then Xi+1 ⊩ “{xi} × (Q\Ai) ∈ V̇n”.

Start by doing X0 = X. Suppose that k ∈ ω and we already constructed Xi for
i ≤ k and also xj , Aj for j < k. We want to construct Xk+1, xk and Ak.

Choose xk any element of π[Xk] larger than xk−1 (to get x0 simply choose any
element of π[X0]) and define S = Xk(xk). Observe that S is homeomorphic to Q
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because Xk is a standard condition. Let ⟨Pn : n ∈ ω⟩ be a sequence of partitions
of S as in the lemma 59. Now consider N = {n ∈ ω : f(n) = xk}. Since Xk is an
extension of X then Xk knows that for each n ∈ N one of the following happens:

(1) {xk} ×Q\S ∈ V̇n.

(2) {xk} × Pn(0) ∈ V̇n.

(3) {xk} × Pn(1) ∈ V̇n.

Let Y be an extension of Xk that decides these options for each n ∈ N . Define
h ∈ 2ω as follows: If n ∈ N and Y ⊩ “{xk} × Pn(i) ∈ V̇n”, then h(n) = i. In
another case define h arbitrarily. Now consider ⟨Pn(h(n)) : n ∈ ω⟩ and use lemma
59 to find Ak a crowded subset of S such that Ak∩Pn(h(n)) is finite for each n ∈ ω.
Observe that by construction Y ⊩ “{xk} × (Q\Ak) ∈ V̇n” for each n ∈ N.

To finish the step k, obtain Xk+1 from Y by removing all scattered sections
and adjoining all the sets {xj} × Aj for j ≤ k. Observe that Xk+1 is a standard
condition included in Xk.

This completes the construction of the sequences of Xk’s, xk’s and Ak’s. Finally,
define

Y =
⋃
k∈ω

{xk} ×Ak.

It is clear that Y is a standard condition and Y ⊆ Xk for each k ∈ ω. We
claim that Y ⊩ “(ω × Q)\Y ∈ V̇n” for every n ∈ ω. Consider an arbitrary
n ∈ ω. If f(n) is not of the form xk for some k ∈ ω, we finished because
Y ∩ ({f(n)} × Q) = ∅ and {f(n)} × Q ∈ Vn. Assume that f(n) = xk. Then
by construction, Xk+1 ⊩ “{xk}× (Q\Ak) ∈ V̇n”. Finally, since Y is an extension of
Xk+1 and ({xk} × (Q\Ak)) ∩ Y = ∅, it follows that Y ⊩ “(ω ×Q)\Y ∈ V̇n”.

Type (1): Since U is selective in V [G], in particular it is a weak P-point. So
there exists A ∈ U such that A /∈ π[Vn] for every n ∈ ω. Thus, π−1[A] ∈ G\Vn for
every n ∈ ω.

Type (2): In V [G] choose Bn such that Bn ∈ Vn∩ (fin×Scat) for every n ∈ ω.
Fix n ∈ ω and Fn a finite subset of ω such that Bn(k) ∈ Scat whenever k /∈ Fn.
If F =

⋃
k∈Fn

{k} × Bn(k), then either F ∈ Vn or Bn\F ∈ Vn. If F ∈ Vn, then
Fn ∈ π[Vn] but this is impossible because π[Vn] = U and U is non-principal. So,
Bn\F ∈ Vn. Since n was arbitrary, we can suppose that Bn(k) ∈ Scat for every
n, k ∈ ω.

For every k ∈ ω define A(k) =
⋃

n≤k Bn(k). It is clear that every A(k) is
scattered and therefore

A =
⋃
k∈ω

{n} ×A(k) ∈ fin× Scat.

Using a previous argument it is easy to see that A ∈ Vn for every n ∈ ω. On the
other hand, A /∈ U since U is a subset of (fin× Scat)+. Thus, the complement of
A is in U\Vn for very n ∈ ω.

Type (3): Let X be a condition that forces that the V̇n are ultrafilters of type
(3). Since PScat′ is σ-closed we can extend X to a condition Y that forces, for
each n ∈ ω, a specific set An in the ground model to be in U̇\V̇n. Observe that
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Y \An ∈ fin × Scat and therefore Y ⊩ “Y \An /∈ V̇n” for every n ∈ ω. Thus,
Y ⊩ “Y ∈ Ġ\V̇n” for every n ∈ ω. □
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