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Abstract. We study ultrafilters on countable sets and reaping families
which are indestructible by Sacks forcing. We deal with the combinato-
rial characterization of such families and we prove that every reaping
family of size smaller than the continuum is Sacks indestructible. We
prove that complements of many definable ideals are Sacks reaping
indestructible, with one notable exception, the complement of the
ideal Z of sets of asymptotic density zero. We investigate the exis-
tence of Sacks indestructible ultrafilters and prove that every Sacks
indestructible ultrafilter is a Z-ultrafilter.

Results concerning preservation of ultrafilters in generic extensions are
a well developed area of set theory of the reals. It turns out the most
general property of this kind is to be preserved (as an ultrafilter base)
by Sacks forcing. The main question guiding our interest in this topic is
existence of such ultrafilters.

Question 1 (Miller [35]). Does ZFC prove the existence of a Sacks-
indestructible ultrafilter?

A negative answer to this question would imply that there is a model V
such that there is no extension W ⊃ V with new reals and which would
contain an ultrafilter on ω generated by an ultrafilter from V .

1. Introduction and Notation

Our notation and terminology is fairly standard, we start by giving a
brief overview of notions used in this paper. We will also give an introduc-
tion to the topic and recall the most relevant results in the area.

An ideal on ω is a set I ⊂ P (ω) closed under subsets and finite unions.
We almost always assume that each ideal is proper and contains all finite
sets; fin ⊆ I 6= P (ω). For X ⊂ P (ω) we will denote the dual family by
X ∗ = {ωr X p X � X }. A set F ⊂ P (ω) is a filter if F∗ is an ideal. We
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INDESTRUCTIBLE ULTRAFILTERS 2

say that B ⊆ F is a base of a filter F if for each F � F exists B � B such
that B ⊆ F . A filter is an ultrafilter if it is a filter maximal with respect to
inclusion. Given an ideal I, we define the coideal I+ = P (ω)r I. When
F = I∗, we also use F+ to denote the coideal I+. We will often identify
subsets of ω with their characteristic function in 2ω. Consequently we
will treat subsets of P (ω) also as subspaces of the Cantor space.

If A, R � [ω]ω, we say that R reaps A if either R ⊂ A or R∩A= ;. We say
that R splits A if both sets A∩ R and Ar R are infinite. Given R ⊂ P (ω)
we say that R is a reaping family if for every A � [ω]ω exists R �R which
reaps A. The minimal size of a reaping is the cardinal invariant

r=min{ |R| pR is a reaping family }.

Notice that every coideal is a reaping family and a filter U is an ultrafilter
iff it has a base which is a reaping family iff every base of U is a reaping
family. The minimal cardinality of an ultrafilter base is the cardinal

u=min{ |B| p B is a reaping filter base }.

We have r ≤ u. For an ultrafilter U the character χ(U) is defined as the
minimal cardinality of its base;

χ(U) =min{ |B| p B is a base of U }.

For an ideal I (not necessarily on ω) we denote by cof(I) the cofinality
of the poset (I,⊆). For an ultrafilter we have χ(U) = cof(U∗).

We will also need some of the numerous other cardinal characteristics
of the continuum [5]. We say that a family of functions D ⊆ ωω is
dominating if for every f � ωω there is g � D such that f < g. The
dominating number is defined as

d=min{ |D| p D is a dominating family }.

We say that P � [ω]ω is a pseudo-intersection of a family X ⊂ [ω]ω if
P r X is finite for each X � X . The pseudo-intersection number is defined
as

p=min{ |B| p B is filter base without any pseudo-intersection }.

We say that an ideal I is a P+-ideal (or a P+-filter) if for every system
{Xn � I+ p n �ω } there exists Y =

�

yn � [Xn]
<ω p n �ω

	

such that
⋃

Y �
I+. All Fσ ideals onω are P+ [30]. If U is a P+-ultrafilter, then we say that
U is a P-ultrafilter. A filter F is a rare-filter if for every interval partition
E of ω there exist F � F which is a selector for E. Rare ultrafilters are
also called Q-ultrafilters. An ultrafilter U which is simultaneously both a
P-ultrafilter and a Q-ultrafilter is called selective or Ramsey. Such ultrafilter
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has the property that for every c : [ω]2→ 2 there is U � U such that c�[U]2

is constant. The existence of none of these ultrafilters is provable in ZFC,
this was first proved by Kunen [27] for selective ultrafilters, Miller [33]
for Q-ultrafilters and Shelah [41] for P-ultrafilters, see also [10].
The Katětov order introduced in [25] is a powerful tool for classifying

relations among ideals and filters. Let I be a family of subsets of a
countable set X and J be a family of subsets of a countable set Y . We
say that a function f : Y → X is a Katětov morphism if f −1[A] � J for
every A � I. If there exists such Katětov morphism, we write I ≤K J (I is
Katětov below J ). It is easy to see that the Katětov order ≤K is indeed a
reflexive and transitive relation.
Several definable ideals on countable sets will play an important role

in our considerations. Let us give here the definitions of the ideals we will
need.

fin The ideal fin consists of finite subsets of ω.
fin×fin The ideal fin×fin ⊂ P

�

ω2
�

consist of all subsets of ω×ω which
have only finite intersection with all but finitely many columns.

nwd The ideal nwd consists of nowhere dense subsets of the ratio-
nals Q.

conv The ideal conv ⊂ P (Q) is generated by all converging sequences
of rational numbers.

Z The density zero ideal Z consist of all A⊂ω such limn→∞
|A∩n|

n = 0.
Equivalently, A � Z iff

lim
n→∞

�

�A∩ [2n, 2n+1)
�

�

2n
= 0.

ED The ideal ED on ω2 is a sub-ideal of the ideal fin × fin; it is
generated by the columns and by graphs of functions. I.e. a set is
in ED if the size of its intersection with all but finitely columns is
bounded by some number n �ω.

I1/n The summable ideal I1/n consists of all sets A⊂ω such that

∑

§

1
n+ 1
p n � A

ª

<∞.

Gc The ideal Gc ⊂ P
�

[ω]2
�

is defined by E � Gc iff the graph (ω, E)
does not contain an infinite complete subgraph.

SC The ideal SC ⊂ P (ω) is generated by SC-sets. A set A ⊂ ω is
a SC-set if for each n � ω the set

�

{ a, b } � [A]2 p |a− b|< n
	

is
finite. Equivalently, A � SC if there exists k �ω such that for any
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given ` � ω there are only finitely many intervals I of length `
such that k < |I ∩ A|.

The ideals fin, ED and I1/n are Fσ, nwd, Z and SC are Fσδ, while fin×fin
and conv are Fσδσ and the ideal Gc is co-analytic.

Let us briefly mention also some ideals on the Cantor space. The ideal
of meager subsets of 2ω is denotedM , the ideal of Lebesgue null subsets
is denoted N . We denote the Lebesgue measure on 2ω by µ. Every ideal
on the Cantor space has a naturally associated trace ideal. For a ⊆ 2<ω

define π(a) = { x � 2ω p (∃∞n �ω) x � n � a }. For every a the set π(a) is
Gδ and every Gδ set is of this form. Trace ideals derived from ideals on the
Cantor space or the Baire space were defined independently by several
authors, notably Brendle and Yatabe [8], Thümmel [40], and Hrušák and
Zapletal [24]. For an ideal I on 2ω the trace ideal tr(I ) of I is defined
by a � tr(I ) iff π(a) � I . Only the trace ideal tr(N ) will feature in this
paper. The following notions from [6] will be useful. For a ⊆ 2<ω let
M(a) be the set of minimal elements of a. Define ϕ : 2<ω→ R by

ϕ(a) =
∑

�

2−|s| p s � M(a)
	

= sup

¨

∑

s�b

2−|s| p b is an antichain in a

«

.

Let ϕ(a) = lim{ ar 2<n p n �ω }. Then µ(π(a)) = ϕ(a) and tr(N ) =
{ a ⊆ 2<ω p ϕ(a) = 0 }.
The Katětov order on the ideals we defined is fairly well understood,

see [23, 18]. In the following diagram the arrows indicate the directions
of the existing Katětov morphisms. Moreover, all the provable Katětov
relations are indicated.

conv ED

fin×fin

Gc

SCnwd

I1/n

tr(N )
Z

Given an ideal I on a set X , Baumgartner [3] defined the notion of an
I-ultrafilter. This notion can be easily formulated using the Katětov order.
An ultrafilter onω is an I-ultrafilter iff I �K U∗. Many standard properties
of ultrafilters can be expressed in this way, e.g. selective ultrafilters are
exactly ED-ultrafilters, P-ultrafilters are exactly fin× fin-ultrafilters, and
equivalently conv-ultrafilters and so on, the paper [7] contains a nice
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overview. The existence these classes of ultrafilters is typically not provable
in ZFC, some of the strongest results is this direction are the consistency
that there might be no nwd-ultrafilters [38], and that there is a model
with no I-ultrafilters for any Fσ ideal [9]. On the other hand, there
are ideals I for which the existence of I-ultrafilters is provable in ZFC,
see [16].

The phenomenon of central interest of this paper is destructibility and
indestructibility of ultrafilters. Let V be model of set theory, U � V be an
ultrafilter on ω, and let W be some extension of V . If 2ω ∩ V = 2ω ∩W ,
then nothing interesting is going on (from this point of view) and U is
an ultrafilter in W . On the other hand, if W contains new reals, U is
no longer closed with respect to supersets in W and is not even a filter.
Therefore we are rather interested in the filter generated by U in W . If U
generates an ultrafilter in W , we say that U is preserved in the extension,
otherwise we say that it is destroyed. The ultrafilter U is preserved in W
if and only if U is a reaping family in W .

Given a forcing P, we say that an ultrafilter U � V is P-indestructible if U
is preserved in every generic extension of V via P. Otherwise, if U is always
destroyed, we say that P destroys U . If the forcing notion P does not add
reals, then every ultrafilter is P-indestructible. If P adds an independent
real, that is when V∩P (ω) is not a reaping family in the generic extension,
then there are no P-indestructible ultrafilters. Miller [36] noticed that
if U ≤K V are ultrafilters and V is P-indestructible, then so U . An ideal
I was constructed in [1] such that whenever an ultrafilter U is disjoint
with I, then U is destroyed in every extension which contains new reals.
We will improve this result by proving Theorem 28 which states that the
ideal of density zero sets Z is also such an ideal.

P-ultrafilters enjoy a special position among ultrafilters when the ques-
tion of indestructibility arises. Baumgartner and Laver [4] proved that
selective ultrafilters are Sacks forcing-indestructible. Later Miller [35]
proved that P-ultrafilters are precisely Miller forcing-indestructible ul-
trafilters, and Blass noticed that this implies that P-ultrafilters are also
Sacks-indestructible. In fact, it turns out that Sacks-indestructibility is
provably the weakest among these properties [36], see Theorem 5 of this
paper. If a forcing P adds an unbounded real (i.e. V ∩ωω is not a dominat-
ing family in the generic extension), then every P-indestructible ultrafilter
has to be a P-ultrafilter. If the forcing P is ωω-bounding (i.e. does not add
an unbounded real) and U is a P-indestructible ultrafilter, then U × U is
also a P-indestructible ultrafilter and not a P-ultrafilter, see [35]. Let us
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also remark that if P is a proper forcing and U is a P-indestructible ultra-
filter, then U generates a P-ultrafilter in the generic extension. Moreover,
preserving P-ultrafilters is a property which behaves well with countable
support iteration of proper posets.
Preservation of ultrafilters and especially P-ultrafilters is extensively

studied in the literature. Zapletal proved [44] that for proper definable
forcing notions preserving P-ultrafilters is equivalent to the weak Laver
property and not adding independent reals. For general posets just the
forward implication needs to hold, see the paper of Zapletal for the precise
formulation of the result. Similarly, preserving selective ultrafilters is for
definable posets equivalent to the ωω-bounding property and not adding
independent reals, see [43]. When it comes to destroying ultrafilters, the
harm may be of varying kind. A forcing P diagonalizes an ultrafilter U if
it adds a pseudo-intersection of U . Mildenberger [32] showed that con-
sistently there is a forcing notion P which diagonalizes certain ultrafilter
while it preserves an P-ultrafilter at the same time.

This paper will deal extensively with subtrees and subsets of the binary
tree 2<ω. We adopt a fairly standard terminology. A tree p will typically
be an initial subset of (2<ω,⊂) without maximal elements. For n � ω
the level n of p is the set p ∩ 2n. For s � p we denote ps = {t � p p
t is compatible with s}. For A⊂ω we let p� A= { s � p ∩ 2n p n � A}. The
set of all branches of p is denoted [p] = { x � 2ω p x � n � p for all n �ω }.
For s � 2<ω we let [s] = { x � 2ω p s ⊂ x }.
A tree p ⊆ 2<ω is a perfect tree if for every s � p there exist s0, s1 � ps

such that s0 and s1 are incompatible. A node s � p is a stem of p if s
is the maximal node such that p = ps. The set of all perfect subtrees
of the binary tree is denoted by S. The set S equipped with inclusion
order is called the Sacks forcing. This forcing notion was introduced by
Sacks [37]. The forcing adds a generic real defined as g =

⋂

{ [p] p p � G }
where G is the generic filter on S. Every generic extension V [G] via the
Sacks forcing has a minimal degree of constructibility; whenever W is a
model of ZFC such that V ⊆W ⊆ V [G], then either W = V or W = V [G].
Another prominent property of the Sacks forcing is the so called Sacks
property. As we will actually not use the definition of this property, let
us just state that the Sacks property of a given forcing implies that the
forcing is ωω-bounding, we refer the reader to [37] for details.

Our terminology will prominently reference the Halpern–Läuchli theo-
rem for trees. However, only one special consequence of the full Halpern–
Läuchli theorem is relevant for our work.
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Proposition 2. Given a partition c : 2<ω → 2, there exists a perfect tree
p ⊆ 2<ω and an infinite set A � [ω]ω such that c is constant on p� A.

Let us remark that the full theorem is much stronger than the proposi-
tion. Since the formulation of the full Halpern–Läuchli theorem would
need further notions irrelevant for this paper, we opt for only giving a
reference to the original paper [17] and for a paper of Laver [29] which
also treats this result.

2. Halpern–Läuchli families

Olga Yiparaki called ultrafilters with the following property hlt-ultrafilters
in her thesis.

Definition 3 (Yiparaki [42]). A family R ⊂ [ω]ω is called a Halpern–
Läuchli family if for every c : 2<ω→ 2 there are p � S and A �R such that
c is constant on p� A.

The name of Halpern–Läuchli families comes from the consequence of
the Halpern–Läuchli theorem we stated as Proposition 2.

Proposition 4. The coideal fin+ is a Halpern–Läuchli family.

When dealing with an ideal I ⊆ P (ω), we will say that I is HL as
a shortcut for the statement that I+ is a Halpern–Läuchli family. I.e.
Proposition 4 can be phrased ‘fin is a HL ideal.’

By considering colorings c which are constant on the levels of the tree
2<ω we can easily see that every Halpern–Läuchli family is a reaping
family. In fact, the following theorem states that this property charac-
terizes reaping families which are indestructible by the Sacks forcing.
The theorem is basically a compilation of results of Miller, Eisworth and
Yiparaki. We will provide the proof for the sake of completeness.

Theorem 5 (Eisworth, Miller [36], Yiparaki [42]). For a familyR ⊂ [ω]ω

the following conditions are equivalent.
(1) R is a Halpern–Läuchli family.
(2) R is a reaping family in every generic extension via the Sacks forcing.
(3) There is an extension W ⊃ V of the universe V such that W r V ∩

P (ω) 6= ; and R is a reaping family in W .
(4) For every p � S and c : p→ 2 there is q � S, q ≤ p and A �R such

that q� A is constant.
(5) For every p � S there is q � S, q ≤ p and A � R such that either

A⊆ x for each x � [q] or A∩ x = ; for each x � [q].
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Proof. Implications (2)⇒(3) and (4)⇒(1) are trivial. To prove (2)⇒(4)
consider a Sacks indestructible reaping family R, p � S and c : p→ 2. Let
rS � [p] be a Sacks generic real and define x = {n �ω p c (rS� n) = 1 }.
Since R is a reaping family in V [rS] there is A � R and q ≤ p such that
either q � A⊆ ẋ or q � A∩ ẋ = ;. In any case c is constant on q� A.
To see (4)⇒(5) just consider the function c : p→ 2 defined by c(t) =

t(|t| − 1) for t � p. For (5)⇒(2) first notice that (5) implies that R is
a reaping family. Suppose r ⊂ ω is a real in a Sacks generic extension
W ⊃ V , we need to prove that R reaps r. If r � V , we are done. If
r �W r V , then r itself is a Sacks generic real over V . Now it is sufficient
to notice that (5) states that S contains a dense set of conditions q for
which there is A �R such that q forces that the generic real either contains
A or is disjoint from A.
For (3)⇒(5) let p � S and suppose W ⊃ V is as in (3). As W contains

a new real, there exists x � ([p] ∩W )r V and A � R such that A ⊆ x
or A∩ x = ;. If A ⊆ x let q̄ = { y � [p] p A⊂ y }, if A∩ x = ; let q̄ =
{ y � [p] p A∩ y = ;}. In any case, q̄ � V is a closed subset of [p] and
x � q̄. Thus q̄ is uncountable and there exists a q � S, q ≤ p such that
[q] ⊆ q̄. The condition q is as required in (5).

It remains to show that (1)⇒(2). Let ẋ be a Sacks name for a subset of
ω and let p � S be a condition. Using the usual fusion argument we can
recursively construct an infinite set K � [ω]ω and a condition q � S, q ≤ p
such that there is a tree isomorphism ϕ : 2<ω→ q�K and for each t � 2<ω

the condition qϕ(t) forces either |t| � ẋ or |t| � ẋ . Define c : 2<ω → 2 by
c(t) = 1 iff qϕ(t) � |t| � ẋ . Since R is a Halpern–Läuchli family there is
o � S and A � R such that c has constant value i on o� A. Let q′ be the
downwards closure of ϕ[o], i.e. q′ � S and q′ ≤ q. Now if i = 1, then
q′ � A⊂ ẋ and if i = 0, then q′ � A∩ ẋ − ;.

Corollary 6. Every reaping family R of size smaller that c is a Sacks inde-
structible reaping family.

Proof. We will verify thatR satisfies condition (5) of Theorem 5. Suppose
p � S, for every A � R let p̄0(A) = { x � [p] p A∩ x = ;} and p̄1(A) =
{ x � [p] p A⊆ x }. Note that [p] =

⋃

{ p̄i(A) p i � 2, A �R } since R is a
reaping family. As |R| < c there is i � 2 and A � R such that p̄i(A) is an
uncountable closed set. Consequently this set contains a perfect set, i.e.
there is q � S such that [q] ⊆ p̄i(A); q and A are as required.

Yiparaki was also looking into possible cardinalities of Halpern–Läuchli
families. She introduced the following variation of the Halpern–Läuchli
property.
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Definition 7 (Yiparaki [42]). A family R ⊂ [ω]ω is called a Halpern–
Läuchli family by levels if for every c : 2<ω→ 2 there are p � S and A �R
such that c is constant on p� {n } for each n � A.

The following two definitions are also appeared in [42].

hlt=min{ |R| pR is a Halpern–Läuchli family }

hlt′ =min{ |R| pR is a Halpern–Läuchli family by levels }

Proposition 8 (Yiparaki [42]). The following inequalities hold.¹
(1) r≤ hlt≤max{d, rσ }
(2) hlt=max{ r,hlt′ }

Yiparaki asked whether hlt = hlt′. We will answer this question in
positive.

Theorem 9. hlt= hlt′ = r

Let us start with hlt.

Proposition 10. hlt= r

Proof. If r< c, then the reaping family R of size r is Halpern–Läuchli by
Corollary 6 and Theorem 5.

Lemma 11. LetR ⊂ [ω]ω be family of size less than r. There exists a family
S ⊂ [ω]ω of pairwise disjoint sets, |S| = ω such that A∩ S is infinite for
every A �R and S � S.

Proof. We can assume that R is closed with respect to finite modifications.
Construct S by repeating the following procedure. SinceR is not a reaping
family, there exists S � [ω]ω such that both sets A∩S and ArS are infinite
for every A �R. Add the set S into the family S which is being constructed
and repeat the procedure for ωr S in place of ω and {A∩ S p A �R } in
place of R. After ω many steps we get the desired family S.

Proposition 12. hlt′ = r

Proof. Due to Propositions 8 and 10 it suffices to prove that r≤ hlt′. Let
R ⊂ [ω]ω be a family of size smaller than r, we will show that R is not
Halpern–Läuchli by levels. Let S = {S(t) p t � 2<ω } be as in Lemma 11.
We now define c : 2<ω→ 2 in the following way. Given s � 2<ω, if there

1The cardinal rσ is a relative of r. As we will not work with this cardinal, we refer the
interested reader e.g. to [5] for the definition. Let us just mention that it is unknown
whether rσ = r in ZFC.
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exist t � 2<ω and i � 2 such that |s| � S(t) and tái ⊆ s, then let c(s) = i.
Otherwise define c(s) arbitrarily.

Suppose A �R and p � S is a Sacks tree with stem t. Choose n � A∩S(t)
such that n > |t|. Now for both i � 2 there exist si � p, tái ⊆ si, and
|si|= n. Thus c(si) = i for i � 2; c is not constant on p�{n } and n � A.

3. Halpern–Läuchli ideals

We are going to show that many of the standard definable ideals are HL
with one notable exception – the density zero ideal Z. Let us start with a
simple observation that the HL property of ideals is preserved downwards
in the Katětov order.

Lemma 13. Let I,J ⊆ P (ω) be ideals, I ≤K J . If J is a HL ideal, then
so is I.

Proof. Let f : ω → ω be a Katětov morphism witnessing I ≤K J . Let
W ⊃ V be an extension such that W |= J + is a reaping family, we show
that the same holds for I+. Let X � P (ω) ∩W , there is A � J + which
reaps f −1[X ]. Then f [A] � I+ and f [A] reaps X .

It is easy to define examples of ideals which are not HL. Let c : 2<ω→ 2
be a map, for p � S define

Hc(p) = {n �ω p c is constant on p� {n } }.

Let Ic be the (possibly improper) ideal generated by {Hc(p) p p � S }. In
fact, it is easy to see that these ideals are critical for the HL property.

Observation 14. An ideal J is not HL if and only if there exist c : 2<ω→ 2
such that Ic ⊆ J .

Notice that condition (4) of Theorem 5 implies that an equivalent
condition for Observation 14 is also the existence of c : 2<ω→ 2 and q � S
such that the ideal Ic(q) generated by {Hc(p) p p ≤ q } is contained in J .

It turns out that many examples of ideals are HL. We start by a general-
ization of the result of Miller on Sacks indestructibility of P-ultrafilters [35].

Proposition 15. If an ideal I is P+, then I is a HL ideal.

Proof. Suppose I is P+ and pass to a generic extension via the poset
Q = (I+,⊂∗). As Q is σ-closed, the generic extension does not contain
any new reals and the HL property is absolute between V and the generic
extension. Let U be the generic filter on Q. It is easy to see that U is a
P-ultrafilter and I ⊆ U∗. And since P-ultrafilters are Sacks indestructible,
U∗ is HL and so is I.



INDESTRUCTIBLE ULTRAFILTERS 11

Corollary 16. All Fσ ideals are HL.

We can use a similar argument to reason that the ideal Gc of graphs
which do not contain an infinite complete subgraph is HL.

Proposition 17. The ideal Gc is a HL ideal.

Proof. We can assume that there exists a Ramsey ultrafilter U . For if not,
pass to a generic extension with no new reals and a Ramsey ultrafilter
(by P (ω)/fin). The HL property is absolute between the ground model
and the extension. We will show that G+c remains a reaping family after
adding a Sacks real. Suppose X ⊂ [ω]2 is a set in a Sack extension. Since
U is Sacks indestructible (as first proved by Baumgartner and Laver [4])
and remains Ramsey in the extension, there exists A � U such that [A]2

reaps X . Notice that [A]2 � G+c ∩ V .

Lemma 13 now gives us:

Corollary 18. The ideals fin×fin, ED, conv are HL.

For the next result we will need a game introduced by Laflamme [28].
Suppose I is an ideal onω. The game G(I) associated to I takesω many
rounds and proceeds as follows: At round n player I chooses In � I and
player II responds by choosing kn �ωr In.

player I I0 � I I1 � I . . . In � I . . . { kn p n �ω } � I
player II k0 � I0 k1 � I1 . . . kn � In . . . { kn p n �ω } � I

Player I wins if { kn p n �ω } � I, otherwise player II wins. We will use a
result of Hrušák which is contained in the proof of the category dichotomy
theorem [22, 23].

Proposition 19 (Hrušák [23]). Let I be an ideal, if player I has a winning
strategy in the game G(I), then there exists X � I+ such that ED ≤K I� X .

Proposition 20. If an ideal I is not HL, then there exists X � I+ such that
ED ≤K I� X .

Note that the ideal ED is a HL ideal.

Proof. Assume than an ideal I does not fulfill the conclusion of the propo-
sition and consequently player I does not have a winning strategy in the
game G(I). We will show that I is a HL ideal. Let c : 2<ω → 2 be a
function, for every s � 2<ω let I(s) be the set of all n �ω, n> |s|+ 1 such
that there exists at most one t � 2n, t ⊃ s, and c(t) = 0.
We will consider two cases; first assume there is s � 2<ω such that

I(s) � I+. Choose A = { a(n) p n �ω } � P (I(s)) ∩ I+ such that a(n) +
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1 < a(n+ 1) for each n � ω. We will recursively construct a tree S =
{ s(t) � 2<ω p t � 2<ω }.
Put s(;) = s and choose s(〈0 〉), s(〈1 〉) � 2a(0) as two different exten-

sions of s such that c(s(〈0 〉)) = c(s(〈1 〉)) = 1. This is possible since s has
at least 4 extensions in 2a(0) and c has value 0 in at most one of these
extensions. Similarly, if s(t) � 2a(n) is constructed for t � 2n+1, choose
s(tái) � 2a(n+1), s(tái) ⊃ s(t), c(s(tái)) = 1 for i � 2; two different exten-
sions of s(t). Finally let p be the downwards closure of S. The construction
implies that p is a Sacks tree and c has constant value 1 on p� A.
For the other case assume that I(s) � I for each s � 2<ω. We will

define a strategy for player I in the game G(I). While playing, player I
simultaneously constructs a tree S = { s(t) � 2<ω p t � 2<ω }. She starts
by declaring s(;) = ;, and in general, before the round n of the game is
played, player I had already constructed { s(t) p t � 2n }. In round n the
move of player I is the set

⋃

{ I(s(t)) p t � 2n } � I. Suppose the response
of player II is kn. Since kn � I(s(t)) for each t � 2n, player I can choose
a set of pairwise different sequences

�

s(t) p t � 2n+1
	

⊂ 2kn such that
s(t) ⊂ s(tái) and c(s(tái)) = 0 for each t � 2n and i � 2.

As the described strategy of player I cannot be winning, we can assume
that amatch of G(I)was played, player I followed the strategy, constructed
tree S, and lost; K = { kn p n �ω } � I+. Let p be the downwards closure of
S. The construction again implies that p is a Sacks tree and c has constant
value 0 on p� (K r 1).

Corollary 21. The ideal nwd is HL.

Proof. For every X � nwd+ the ideal nwd� X is isomorphic to nwd and
ED 6≤K nwd, see [23].

We do have a similar result for the ideal conv. Let us first recall a
theorem proved by Meza Alcántara.

Theorem 22 (Meza Alcántara. [31], see also [21]). For an ideal I ⊂ P (ω)
the following are equivalent.

(1) conv≤K I
(2) There is a countable family X ⊂ [ω]ω such that for each Y � I+

there is X � X which splits Y .

Proposition 23. If an ideal I is not HL, then conv≤K I.

Let us again note that conv itself is a HL ideal.

Proof. Suppose conv �K I and let c : 2<ω→ 2 be any map. We will show
that Ic ∩ I+ 6= ;, i.e. I is HL. Let X ⊂ 2ω be a countable dense set. For
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x � X and i � 2 let Ki(x) = {n �ω p c(x � n) = i }. Theorem 22 implies
that there is Y � I+ such that for every x � X there is i(x) � 2 such that
Y ⊆∗ Ki(x)(x). For i � 2 let Xi = { x � X p x(i) = i }, at least one of these
sets has to be somewhere dense, assume that X0 is dense above s.

We will recursively construct two Sacks trees pe, po with stems extend-
ing s and an increasing sequence { k(n) �ω p n �ω }. Start by choosing
k(0) such that there exists x � X0, s ⊂ x , and Y ⊆ K0(x) r k(0), and
declare x � k(0) � pe ∩ po.

If k(n), pe ∩ 2≤k(n) and po ∩ 2≤k(n) are already constructed and n �ω is
even, choose k(n+ 1), pe ∩ 2≤k(n+1) and po ∩ 2≤k(n+1) such that:

(1) Every t � pe ∩ 2k(n) has at least two extensions in pe ∩ 2k(n+1).
(2) For every t � pe ∩ 2k(n+1) there exists x � X0, t ⊂ x such that

Y ⊆ K0(x)r k(n+ 1).
(3) Every t � po ∩ 2k(n) has an extension in po ∩ 2k(n+1) and for every

t � po ∩ 2k(n+1) and m � Y ∩ [k(n), k(n+ 1)) is c(t�m) = 0.
In case n is odd, choose k(n+1), pe∩2≤k(n+1) and po∩2≤k(n+1) in a similar
way, just switch the requirements for pe and po.

For even n, to choose suitable elements of pe ∩ 2k(n+1) fulfilling (1)
and (2) it is sufficient to use the density and the definition of X0. To
choose suitable elements of pe ∩ 2k(n+1) we can use the sets x required
in (2) of the previous step of the construction. If n is odd, the situation is
analogous.

Finally, we have that Y ⊆ Hc(pe)∪Hc(po) � Ic and we are done.

For some ideals the verification of the HL property gets more interesting.

Theorem 24. The ideal SC is a HL ideal.

Proof. Let c : 2<ω → 2 be any map, we will find a Sacks tree q such
that Hc(q) � SC+. For ` � ω let I` be the set of all intervals of length `,
I` = { [m, m+ `) p m �ω }. For n,` �ω, n≤ ` let

B`n = { p � S p ∃∞b � I`, n≤ |b ∩Hc(p)| }.

Note that these sets are downwards closed in S. We want to construct
q � S such that for each n � ω there is ` � ω such that q � B`n, this will
demonstrate that Hc(q) � SC+.
We first prove that B`

`
is dense in S for each ` � ω. As in the proof of

Proposition 17 we can assume that there exists a Ramsey ultrafilter U .
Take any p � S and let g � [p] be a Sacks generic real over V . In V [g]
define a map d : ω → 2` by d(m)(i) = c(g(m + i)). Since U generates
an ultrafilter in V [g], there is U � U , z � 2`, and r � S, r ≤ p such that
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r � d(m) = z for each m � U . Thus necessarily [m, m + `) ⊂ Hc(r) for
each m � U , and consequently r � B`

`
.

Next we want to get set up for a fusion construction of the desired tree
q. We will say that a Sacks tree p is complete if for every k, n � ω the
following condition holds:

?(p, k, n) For every set
�

p j ≤ p p j � k
	

of conditions in S with mutually
incompatible stems there exist ` � ω and

�

q j ≤ p j p j � k
	

such
that

⋃�

q j p j � k
	

� B`n.

We will show that there exists a complete Sacks tree.
If 2<ω is not complete, let k � ω be minimal for which there is n � ω

such that ?(2<ω, k, n) fails. Let
�

p j ≤ p p j � k
	

be the set of conditions
witnessing this failure. Note that k > 1 since Bn

n is dense. We will
prove that p0 has to be complete. Fix k′, n′ �ω and

�

r j ≤ p0 p j � k′
	

for
verifying ?(p0, k′, n′). The minimality of k implies ?(2<ω, k− 1, n′ + nk′),
in particular there exist ` � ω and

�

q j ≤ p j p j � kr 1
	

such that q′ =
⋃�

q j p j � kr 1
	

� B`n′+nk′ . This means that there exist b � [`]n
′+nk′ ,

e : b→ 2 and A � [ω]ω such that c(t) = e(i) for every t � q′� { a+ i } such
that a � A and i � b.

Suppose that g is a Sacks generic real. In V [g] define a map d : ω→ 2b

by d(m)(i) = c(g(m+ i)). Assume again that U is a Ramsey ultrafilter
such that A � U . Since U generates an ultrafilter in every Sacks extension,
we can find U � U , U ⊂ A, conditions r ′j ≤ r j, and functions z j � 2b such
that for each j � k′ we have r ′j � d(m) = z j for each m � U . For j � k′

let x j =
�

i � b p z j(i) = e(i)
	

. Since
�

p j p j � k
	

witnesses the failure of
?(2<ω, k, n), it has to be the case that

�

�x j

�

�< n for each j � k′, otherwise
r ′j would work as q0 together with

�

q j p j � kr 1
	

for ?(2<ω, k, n). Let
y = br

⋃�

x j p j � k′
	

. We have |y| ≥ n′ + nk′ − nk′ = n′. Note that if
i � y , and j, j′ � k′ then z j(i) 6= e(i) 6= z j′(i), i.e. z j(i) = z j′(i). Thus ` and
¦

r ′j p j � k′
©

are as required in ?(p0, k′, n′).
We proved that there is a complete Sacks tree p. Using a standard fusion

construction we can now build q as a perfect subtree of p by infinitely
refining p and making sure that for each n � ω there exists ` such that
q � B`n.

We need a couple of auxiliary results before we can deal with the
ideal tr(N ). The following proposition is a characterization of the Sacks
property, see [34, 2].
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Proposition 25. A forcing P has the Sacks property if and only if it strongly
preserves outer Lebesgue measure. That is if V [G] is a generic extension via
P and O � V [G] is an open subset of 2ω such that µ(O) < ε, then there
exists an open set U � V , µ(U)< ε such that O ⊆ U .

Lemma 26. Let B ⊂ 2ω be a Borel set of positive measure. There exists a
tree r such that [r] ⊆ B and µ(rs)> 0 for each s � r.

Proof. Let C ⊆ B be a closed such that µ(C)> 0. Define

X = { s � 2<ω p µ([s]∩ C) = 0 }

and let D = C r
⋃

{ [s] p s � X }. D is a closed set and for every t � 2<ω

either D∩ [t] = ; or µ(D∩ [t])> 0. The tree r = { x � n p x � D, n �ω } is
as desired.

Theorem 27. The ideal tr(N ) is a HL ideal.

Proof. Let ȧ be an S-name for a subset of 2<ω. We will prove that ȧ
is forced to be reaped by an element of tr(N )+ ∩ V . Let p � S be any
condition.

Case 1. There is q � S, q ≤ p and b ⊆ 2<ω such that q � µ(π(ȧ ∩ b)) <
µ(π(b)).

The condition q forces that there is an open set O such thatπ(ȧ∩b) ⊆ Ȯ
and µ(Ȯ)< µ(π(b)). Proposition 25 gives us an open set U � V , µ(U)<
µ(π(b)) such that there is a condition q0 ≤ q such that q0 � Ȯ ⊆ U . Using
Lemma 26 we can find r such that [r] ⊂ π(b)rU and µ(rs)> 0 for each
s � r. Find q1 < q0 and s � r such that q1 � rs ∩ (ȧ ∩ b) is finite. We have
that rs ∩ b � tr(N )+ and q1 forces this set to be almost disjoint with ȧ.

Case 2. p � µ(π(ȧ ∩ b)) = µ(π(b)) for every b ⊆ 2<ω.

In particular, p forces that π(ȧ) has full measure.

Claim. For every m, n �ω and { pi ≤ p p i � n } there exist {qi ≤ pi p i � n }
and a finite antichain b � 2<ω r 2<m such that 1− 1

m <
∑�

2−|s| p s � b
	

and qi � b ⊆ ȧ for every i � n.

We prove the claim by induction on n �ω. For n = 1 the claim holds
since π(ȧ) is forced to have full measure. Suppose the claim holds for
n, we will prove it for n+ 1. Fix m �ω and { pi ≤ p p i � n+ 1 }. We can
recursively find descending sequences

�

pk
i p k �ω

	

for i � n and finite
antichains { bk p k �ω } such that

(1) p0
i = pi for i � n,
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(2) bk ⊆ 2<ωr 2<k for k �ω,
(3) 1− 1

k <
∑�

2−|s| p s � bk

	

for k �ω, and
(4) pk

i � bk ⊂ ȧ for i � n.
Let b =

⋃

{ bk p k �ω } and note that µ(π(b)) = 1, thus pn � µ(π(ȧ ∩
b)) = 1. There is qn ≤ pn and a finite antichain c ⊂ b r 2<m such that
qn � c ⊂ ȧ and 1− 1

m <
∑�

2−|s| p s � c
	

. Since c is finite, there is k � ω
such that pk

i � c ⊆ ȧ for each i � n and the claim is proved. �
Using the claim we can run a standard fusion construction; construct

q ≤ p, q � S and finite antichains { bk p k �ω } such that
(1) bk ⊆ 2<ωr 2<k for k �ω,
(2) 1− 1

k <
∑�

2−|s| p s � bk

	

for k �ω, and
(3) q � bk ⊆ ȧ for each k �ω.

Finally b =
⋃

{ bk p k �ω } � tr(N )+ and q � b ⊆ ȧ.

We know only one notable example of an ideal without the HL property.

Theorem 28. The ideal Z of sets of asymptotic density 0 is not HL.

A related result was proved by Steprāns [39].

Proof. Choose a slowly branching tree p � S, in particular
�

�p ∩ 2n+1
�

� =
n for n � ω r 1. I.e. at levels in the interval (2n, 2n+1] the tree p has
exactly n branches. Given n �ωr 1 enumerate p ∩ 22n+1

as
¦

sn
j p j � n

©

.
Choose a function c : p → 2 such that for each n � ωr 1 the function
bn : (2n, 2n+1]→ 2n defined by bn(i) = ( j 7→ c(sn

j � i)) is a bijection. (When
we track what the function c does on levels in the interval (2n, 2n+1], we
find each combination of assigning 0 and 1 to the n branches on exactly
one level.)
Notice that for q ≤ p, q � S and n � ω r 1, if

�

�q ∩ 2n+1
�

� = k, then
�

�Hc(q)∩ (2n, 2n+1]
�

�= 2n−k+1. Since q is perfect, the number of branches
�

�q ∩ 2n+1
�

� diverges to infinity with increasing n, and consequently Hc(q) �
Z. We have Ic(p) ⊆ Z.

4. Halpern–Läuchli ultrafilters

Our main interest is the existence of Sacks indestructible ultrafilters.
The typical approach to constructing these ultrafilters is to attempt a
recursive construction, starting with a filter (or a dual ideal) and enlarging
it to construct an ultrafilter while trying to get the control over the HL
property. In fact, even our motivation for looking into HL ideals was this
approach.

The following is an immediate corollary of Theorem 28.
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Corollary 29. Every Halpern–Läuchli ultrafilter is a Z-ultrafilter.

Proof. If an ultrafilter U is not a Z-ultrafilter, then Z ≤K U∗. As Z is not
HL, neither is U∗.

The existence of Z-ultrafilters is an open question.

Question 30 (Hrušák [22]). Do Z-ultrafilters exist in ZFC?

A related result was proved by Gryzlov [15] who showed that in ZFC
there is an ultrafilter U such that for every injective function f : ω →
ω there is U � U such that f [U] � Z. This result was improved by
Flašková [13] who proved that the same holds true for the summable
ideal I1/n in place of Z.

The situation is most favorable for constructing a given type of ultrafilter
when any given filter generated by <c many sets can be extended to an
ultrafilter of this type. This phenomenon was studied by several authors,
explicit treatment is in [7].

Definition 31 (Brendle–Flašková [7]). A class C of ultrafilters exists
generically if every filter base of size <c can be extended to an ultrafilter
in C .

Let us define a cardinal characterizing the generic existence of Halpern–
Läuchli ultrafilters.

Definition 32.

hl=min{ cof(I) p I is a non-HL ideal }

Ketonen proved that P-ultrafilters exist if the dominating number d= c.
In fact, since every ideal generated by<d sets is a P+-ideal, Proposition 15
has the following corollary.

Corollary 33. d≤ hl

Question 34. Is d= hl a theorem of ZFC?

Question 35. Is cov(N )≤ hl a theorem of ZFC?

Proposition 36. Halpern–Läuchli ultrafilters exist generically if and only if
hl= c.

Proof. Suppose that hl= c and I is an ideal generated by <c many sets.
Then I is HL, and given any c : 2<ω→ 2 there is U � I+ and p � S such
that p� U is c-monochromatic. Using this observation, we can extend any
small filter in c many steps into an ultrafilter while making sure that the
Halpern–Läuchli condition is fulfilled for every c. The other implication is
immediate.
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Corollary 37. If u≤ hl, then there is a Halpern–Läuchli ultrafilter.

Proof. If u< c, then the ultrafilter witnessing this is Halpern–Läuchli by
Corollary 6. Otherwise u= hl= c.

Our original hope was that it might be the case that u ≤ hl is just a
theorem of ZFC and Corollary 37 could give an absolute result on the
existence of Halpern–Läuchli ultrafilters. However, this turns out not to
be the case.
Brendle and Flašková [7], and independently Hong and Zhang [19]

introduced the cardinal characteristic ge(I) of an ideal I called the generic
existence number. They observed that ge(I) = c is equivalent to the generic
existence of I-ultrafilters.

Definition 38. Let I be an ideal on ω.

ge(I) =min{ cof(J ) p I ⊆ J ,J is a proper ideal on ω }

The cardinal has been also studied in [16] where it was called the
exterior cofinality.

The definition gives us that non∗(I)≤ ge(I)≤ cof(I) for each ideal I.
Note also that if I is not a HL ideal, then hl ≤ ge(I). We can combine
Theorem 28 with a result of Fremlin [14] that cof(Z) = cof(N ) to get:

Corollary 39.
hl≤ ge(Z)≤ cof(N )

It is also known that consistently ge(Z)< cof(N ), see [7]. Notice that
ω1 = hl = cof(N ) < u does hold in the Silver model and there are no
P-ultrafilters [10].

Question 40. Do Halpern–Läuchli ultrafilters exist in the Silver model?

The existence of P-points in the random is currently an open ques-
tion [10, 11, 12]. What about Sacks indestructible ultrafilters?

Question 41. Do Halpern–Läuchli ultrafilters always exist in the random
model?

Let us overview the properties of Halpern–Läuchli ultrafilters and com-
pare them with P-ultrafilters.

• Halpern–Läuchli ultrafilters exist generically iff hl= c.
• Let U be an ultrafilter such that χ(U) < c. Then U is Halpern–
Läuchli.
• If u≤ hl, then Halpern–Läuchli ultrafilters exist.

And for P-ultrafilters we have:
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• P-ultrafilters exist generically iff d= c [7].
• Let U be an ultrafilter such that χ(U) < d. Then U is a P-ultra-
filter [26].

A set X ⊂ 2ω is said to have property (s) (Marczewski (Szpilrajn))
if for every perfect tree p � S there exists q � S, q < p such that either
[q] ⊆ X or [p] ∩ X = ;. Ultrafilters with property (s) were studied
by Miller [36]. Condition (2) of Theorem 5 directly implies that every
Halpern–Läuchli ultrafilter does have property (s). Miller showed [36]
that property (s) is (consistently) really weaker than Sacks indestructibility
and under cov(M ) = c constructed a non-Halpern–Läuchli ultrafilter with
property (s).

Question 42 (Miller [36]). Do ultrafilters with property (s) exist in ZFC?

Miller also asked about ultrafilters indestructible with iterated Sacks
S ∗ S forcing and countable product of Sacks forcing Sω.

Question 43 (Miller [36]). Is there any difference between Halpern–
Läuchli ultrafilters and ultrafilters indestructible with S ∗ S? What about
Sω?

Finally there are examples of destructible ultrafilters which do have
some nice properties. Various nwd-ultrafilters which are not Z-ultrafilters,
and hence not Halpern–Läuchli were constructed assuming CH e.g. by
Hong and Zhang [20]. This demonstrates that unlike being a P-point,
these properties do not imply indestructibility.

Theorem 44. If p= d, then there exists a non-Halpern–Läuchli Q-ultrafilter.

Proof. We will show that the construction of a non-Halpern–Läuchli ul-
trafilter due to Yiparaki [42] can be also used to produce a Q-ultrafilter.
For n � ω let Xn be the set of all partitions of 2n into sets of size 2 and
let X =

⋃

{Xn p n �ω }. Choose a system of pairwise disjoint infinite sets
{Ax p x � X } ⊂ [ω]ω, such that min Ax ≥ n for x � Xn. Define c : 2<ω→ 2
as follows. If t � 2k, k � Ax , x � Xn, t � n = si � b = { s0, s1 } � x , and
s0 <lex s1, then c(t) = i. Otherwise define c(t) arbitrarily.
Next we fix a system {Dα p α � d } of interval partitions of ω which is

dominating, i.e. for every interval partition E of ω there is α � d such that
each element of E intersects at most two intervals of Dα, see e.g. [5]. Using
the fact that p= d we can recursively in p many steps construct a filter F
which contains a selector for every Dα, α � d and such that {Ax p x � X } ⊆
F+. The filter F is a rare filter and every ultrafilter extending F is a
Q-ultrafilter.
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We claim that F ∪ I∗c generates proper filter, i.e. for every for P � S<ω

is
⋃

{Hc(p) p p � P } � F . Since P is finite, there is n �ω and x � Xn such
that for each p � P there is b � x , b ⊂ p. Notice that the way c was
defined guarantees that for every k � Ax , if b � x � Xn, b ⊂ p, then there
are t0, t1 � p ∩ 2k, b = { t0� n, t1� n } and consequently c(t0) 6= c(t1), and
in particular k � Hc(p). We got Ax ∩

⋃

{Hc(p) p p � P } = ;, and Ax � F+
gives us the desired conclusion.

Every ultrafilter extending F ∪I∗c is a non-Halpern–Läuchli Q-ultrafilter
as it is disjoint with Ic.
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