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IDEAL INDEPENDENT FAMILIES AND THE ULTRAFILTER NUMBER

JONATHAN CANCINO, OSVALDO GUZMÁN, AND ARNOLDW. MILLER

Abstract. We say that I is an ideal independent family if no element of I is a subset mod finite of

a union of finitely many other elements of I. We will show that the minimum size of a maximal ideal

independent family is consistently bigger than both d and u, this answers a question of Donald Monk.

§1. On a question of Monk. Let smm be the minimal cardinality of a maximal
ideal independent family i.e., an infinite family B⊆ [ù]ù such that no element of
B is a subset mod finite of a union of finitely many other elements of B and B
is maximal with respect to this property, i.e., for any X ∈ [ù]ù \ B, it cannot be
added to B and remain ideal independent. This means that there is F ∈ [B]<ù such
that either X⊆∗

⋃

F or there is B ∈ B\F with B⊆∗X ∪
⋃

F . We will compare smm
with the ultrafilter number and the dominating number, for the definition and basic
properties of the usual cardinal invariants see Blass [4].
In May 2013 at a conference at the Ben-Gurion University of the Negev Donald

Monk asked if smm was equal to u (this questionwas communicated toArnoldMiller
by Juris Steprans). In this note, we will provide a negative answer to this question.
It is interesting to determine which ideals can be generated by ideal independent

families. As far as we know, this topic has been mostly unexplored. The next two
results tackle this problem. Although they will not be needed in this note, they
are useful to get intuition on ideal independent families. Our hope is that this will
motivate the study of which ideals can be generated by ideal independent families.

Proposition 1. If I is an ideal generated by a strictly ⊆∗-ascending sequence
Aα⊆ù for α < ù1, then I is not generated by an ideal independent family.

Proof. By hypothesis, I = {B : ∃α <ù1 B⊆
∗Aα}. Suppose B⊆I generates I,

we will prove that B is not ideal independent. For each α choose Fα⊆B finite such
that Aα⊆

∗ ∪Fα . By a direct application of the ∆-system lemma, we can assume
that {Fα : α ∈ ù1} is a delta system. Now, for α ∈ ù1 there is â > α such that
⋃

Fα ⊆
∗ Aâ . But Aâ ⊆

∗
⋃

Fâ , so for any B ∈ (Fα \Fâ), B⊆
∗∪Fâ and this implies

that B is redundant. �
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Although many ideals can be generated by an ideal independent family, this is not
the case for the prime ideals.

Proposition 2. A non-principal prime ideal I onù cannot be generated by an ideal
independent family.

Proof. Suppose B is an ideal independent family generating I. Let {An : n <
ù}⊆B be distinct. By adding at most one thing to each An we may suppose ∪n<ùAn
is ù. Let

B=
⋃

n

(A2n \∪i<2nAi) and C =
⋃

n

(A2n+1 \∪i<2n+1Ai)

and note these are complementary sets. If B ∈ I then for some finite F⊆B we
have B⊆∗ ∪ F . But this means A2n⊆

∗
⋃

F ∪
⋃

i<2nAi for n large enough, which
contradicts that B is ideal independent. We conclude that A2n /∈ F . The argument
for C ∈ I is similar. �

The next proposition answers Monk’s question negatively. In the rational perfect
set model d= ù2 and U = ù1, see Miller [12] and Blass-Shelah [3].

Theorem 3. max{d,r} ≤ smm.

Proof. Given a maximal ideal independent family I, it is easy to see that the
following family of sets is a reaping family:

{A\
⋃

F : F ∈ [I]<ù ∧A ∈ I \F}.

It remains to prove that d≤ smm. Assume otherwise that smm < d, and let A be
a witness for this. Note that ù =∗

⋃

A, so we can assume that indeed the equality
holds. Let {An : n∈ù}⊆A be such that its union isù, Wemay assume thatAn 6=Am
whenever n 6= m. Define C0 = A0 and Cn+1 = An+1 \

⋃

i≤nAi. For each F ∈ [A]<ù

and B ∈ A\ (F ∪{Ai : i <ù}), define a function as follows:

ϕF ,B(n) = min{k ∈ ù : (∃j ≥ n)(Cj ∩B∩k \
⋃

F 6= ∅)}.

Since the family A is ideal independent, the functions ϕF ,B are always well defined.
Let h0 be an increasing function not dominated by

{ϕF ,B : F ∈ [A]<ù , B ∈ A\ (F ∪{Ai : i <ù})}.

Define Dn = Cn \ h0(n). Now for each F ∈ [A]<ù , whenever it is possible, define a
function as follows:

ϕ̃F(n) = min{k ∈ ù : (∃j ≥ n)(Dj ∩k \
⋃

F 6= ∅)}.

This is defined for n, otherwise
⋃

j≥n

Dj =
⋃

j≥n

(Cj \h0(j))⊆
⋃

F .

But then for some j ≥ n such that Aj /∈ F we would have

Aj⊆
∗
⋃

i<j

Ai ∪
⋃

F

which contradicts that the family is ideal independent.
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Let h1 > h0 be an increasing function not dominated by any totally defined ϕ̃F for
F ∈ [A]<ù and such that Cn∩ [h0(n),h1(n)) is nonempty for all n.
Let

Y =
⋃

n∈ù

(Cn∩ [h0(n),h1(n))) =
⋃

n∈ù

Dn∩h1(n).

Let’s see that A∪{Y} is an ideal independent family.

Claim 1. For all F ∈ [A]<ù , Y 6⊆∗
⋃

F.

If the function ϕ̃F is not defined, thenY ∩
⋃

F is finite. Otherwise, by the definition
of the function ϕ̃F , if ϕ̃F(n)≤ h1(n), then for some j≥ nwe haveDj∩ϕ̃F(n)\

⋃

F 6= ∅,
which implies

∅ 6=Dj ∩h1(n)\
⋃

F⊆Dj ∩h1(j)\
⋃

F⊆Y .

Since this happens for infinitely j and the family {Dj : j ∈ù} is disjoint, we are done.

Claim 2. For any F ∈ [A]<ù \{∅} and B ∈ A\F, we have B 6⊆∗ Y ∪
⋃

F.

If B = An for some n this is clear. Otherwise, by the definition of ϕF ,B and the
choice of h0, we have that if ϕF ,B(n)≤ h0(n), then for some j ≥ n,

∅ 6= Cj ∩B∩ϕF ,B(n)\
⋃

F ⊆ Cj ∩B∩h0(j)\
⋃

F .

If m ∈ Cj ∩B∩ h0(j) \
⋃

F , then m /∈ Y ∪
⋃

F . Since this happens infinitely many
times, we are done. �

We will now show that smm can be smaller than the continuum, in fact this holds
in the side by side countable support Sacks model.

Theorem 4. In the side by side countable support Sacks model there is a maximal
ideal independent family of sizeù1. In this model the continuum can bemade arbitrarily
large but smm = U = d= ù1.

Proof. We are forcing with the countable support product of κ-many Sacks
posets for any κ over a model of CH.
To get a maximal ideal independent family which remains maximal after forcing,

It is enough work with the ù-product of Sacks forcing P= Sù . We will give a short
explanation of why this is the case. Let κ be any cardinal number, p ∈ Sκ and ô an
Sκ-name such that p 
 “ô ∈ [ù]ù .′′ LetM be a countable elementary submodel of
H (è) (for a large enough è) such that κ,p,ô ∈M. Since Sκ is proper, we may now
find an M-genric condition q ≤ p such that the support of q is M ∩κ. Note that
below q, it is the case that ô is an SM∩κ-name and clearly SM∩κ is isomorphic to Sù

sinceM is countable.
By Laver’s combinatorial generalization of the Halpern–Lauchli Theorem [11],

for any P-name ô for a subset of ù and p ∈ P there is q≤ p and Z ∈ [ù]ù such that
either

q 
“Z⊆ô or q 
Z∩ ô = ∅.”

As Laver points out this may be used to build a descending mod finite sequence
Zα ∈ [ù]

ù for α < ù1 in the ground model with the property that they generate a
Ramsey ultrafilter in the extension.
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Lemma 5. Given (Yn ∈ [ù]
ù : n < ù) pairwise disjoint in the ground model, ô a

P-name for a subset of ù, and p ∈ P, there are Wn ∈ [Yn]
ù and q≤ p such that

q 
“∀n (Wn⊆ô or Wn∩ ô = ∅).” �

Proof of lemma. Let (fn : ù→ Yn)n be a sequence of bijections in the ground
model and define ôn = f

–1
n (ô). Let G be generic with p ∈ G. We go to the generic

extension V [G] . Since {Zα | α ∈ ù1} is a ⊆
∗-decreasing sequence that generates a

(Ramsey) ultrafilter, we can find α < ù1 such that:

∀n ∈ ù(
(

Zα ⊆
∗ ôGn

)

∨
(

Zα ⊆
∗ ù \ ôGn

)

).

(Note that we are using thatù1 was not collapsed, which follows by the properness
of P). DefineUn = fn [Zα] (clearlyUn is a subset ofYn). Note that eitherUn is almost
contained in ôG or is almost disjoint from it. In this way, we can define a function
g : ù −→ ù such that for every n ∈ ù, either Un \ g (n) ⊆ ô

G ∩Yn or Un \ g (n) ⊆
Yn \ ô

G. Moreover, since P is ùù-bounding, we can find a ground model function h
dominating h. Let Wn = U \ f (n) (note that Wn is a ground model set). It follows
that eitherWn ⊆ ô

G ∩Yn orWn ⊆ Yn \ ô
G. Back to the ground model, we can find

a condition q ∈ P extending p such that q 
“ ∀n((Wn ⊆ ô∩Yn)∨ (Wn ⊆ Yn \ ô))”.
This finishes the proof of the lemma. �

Now we continue with the proof of Proposition 4. Using the Continuum
Hypothesis and the fact that Sù is proper, it is possible to construct a sequence
{(pα ,ôα) | α ∈ ù1} where pα ∈ Sù and ôα is an Sù-name for a subset of ù such
that if ô is an Sù-name for a subset of ù and p ∈ Sù , then there is α < ù1 such
that pα ≤ p and pα 
 “ôα = ô.

′′ We may further assume that each (pα ,ôα) appears
uncountably many times. By recursion, construct an increasing family of countable
ideal independent families Iα for α ∈ [ù,ù1). Start with a partition of ù, say
Iù = {An : n ∈ ù}.
At stage α+1 proceed as follows: let {An : n ∈ ù} be a reenumeration of Iα ,

and then define Bn = (An \∪i<nAi), construct Yn ∈ [Bn]
ù such that Yn are infinite

pairwise disjoint, Bn \Yn is infinite, and Yn ∩Ak is finite for k 6= n (this is possible
since Iα is an ideal independent family).
By Lemma 5, there is {Wn ∈ [Yn]

ù : n<ù} and q≤ pα such that

q 
“∀n (Wn⊆ôα orWn∩ ôα = ∅).”

Take W = ∪n<ù(Bn \Wn) and let Iα+1 = Iα ∪{W}. At limit steps just take Iα to
be the union of all the previous constructed families. It is not hard to see that this
family is indeed ideal independent. We claim that ô is forced by q to never be added
to our ideal independent family. Let G be generic with q ∈ G.
If for some n,Wn⊆ô

G
α , thenW ∪ôGα covers Bn and hence ô

G,W, Ai for i< n cover
An.
If for all nWn ∩ ô

G
α = ∅, then ôG⊆W since the Bn partition ù, and so the pair is

redundant.
Hence I =

⋃

α<ù1
Iα will be a maximal ideal independent family in the

ground model which remains a maximal ideal independent family in the generic
extension.
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§2. Parametrized Diamonds. Recall the following definition by Vojtáš [15]

Definition 6. We say (A,B,→) is an invariant if,

(1) → ⊆A×B.
(2) For every a ∈ A there is b ∈ B such that a→ b.
(3) There is no b ∈ B such that a→ b for all a ∈ A.

We say that D⊆B is dominating if for every a ∈ A there is a d ∈ D such
that a → d, so (2) means that B is dominating and (3) that no singleton is
dominating. Given an invariant (A,B,→) we define it’s evaluation by 〈A,B,→〉 =
min{|D| :D⊆B and D is dominating} . An invariant (A,B,→) is called Borel ifA,B
and→ are Borel subsets of a polish space. Most of the usual (but not all) invariants
are actually Borel invariants. In [6] for any Borel invariant (A,B,→) , a guessing
principle ♦(A,B,→) is defined and it is proved that it implies 〈A,B,→〉≤ù1 and it
holds inmost of the natural models where this inequality holds. For our applications
in this note, we need to work in a slightly more general framework than the one in
[6]. The following is a particular case of the diamond principles introduced in [8]
and [7]:

Definition 7. We say an invariant (A,B,→) is an L(R)- invariant if A,B and→
are subsets of Polish spaces and all three of them belong to L(R) .

Following [6] we define the following guessing principle for any L(R)-invariant
(A,B,→).

Definition 8. ♦L(R) (A,B,→)
For everyC : 2<ù1 →A such thatC ↾ 2α ∈L(R) for all α<ù1 there is a g :ù1→B

such that for every R ∈ 2ù1 the set {α | C (R ↾ α)→ g (α)} is stationary.

Exactly as in the Borel case, ♦L(R) (A,B,→) implies 〈A,B,→〉 ≤ ù1. Given two
L(R)-invariants A = (A–,A+,A→) and B=(B–,B+,B→) we define the sequential
compositionA;B= (A–×Bor(B

A+
– ),A+×B+,→) where Bor(B

A+
– ) denotes the set of

codes of all Borel functions from A+ to B– and (a–, f )→ (a+,b+) if a–A → a+ and
f (a+)B → b+. It is easy to see that A;B is an L(R)-invariant and in [4] it is proved
that 〈A;B〉=max{〈A〉 ,〈B〉} .
As usual we will write d instead of (ùù ,ùù ,≤∗) and ró instead of the invariant

(

([ù]
ù)
ù
, [ù]ù , is ó-reaped

)

(we say that 〈Xn〉n∈ù ∈ ([ù]
ù)
ù
is ó-reaped by A ∈ [ù]ù

if for every n ∈ ù, either A⊆∗ Xn or A⊆∗ ù \Xn).

Theorem 9. ♦L(R) (ró ;d) implies smm = ù1.

Proof. We need to define a function F into [ù]ù×Bor((ùù)
[ù]ù ) such that for

all α ∈ ù1, F ↾ 2α is in L(R). For each α < ù1, let eα : ù→ α be an enumeration of
α in L(R). By a suitable coding, we can assume that the domain of F is the set

⋃

α∈ù1

[ù]ù× ([ù]ù)α .

Given (A, EI) ∈ [ù]ù× ([ù]ù)α proceed as follows. If I = 〈Ieα(n) : n ∈ ù〉 is not an

ideal independent family, define F(A, EI) = (ù,e), where e(X) for X ∈ [ù]ù is the
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enumeration of X. Otherwise, define B
EI
n = Ieα(n) \

⋃

i<n Ieα(i). For each n, let Z
EI
n ⊆B

I
n

be an infinite subset such that for all â 6= eα(n), Z
I
n ∩ Iâ is finite,

1 and let ϕ EI,n be a

recursive enumeration ofZ
EI
n . Then defineAn = ϕ

–1
EI,n
[Z

EI
n ∩A]. Now define a function

fA, EI : [ù]
ù → ùù as follows: if X ∈ [ù]ù reaps An for all n, then define

fA, EI(X)(n) = min{k ∈ ù : X \k⊆An∨ (X \k)∩An = ∅}

Otherwise define fA, EI(X) to be the identity function. Finally, the value of F in (A,
EI)

is given by F(A, EI) = (〈An : n ∈ù〉, fA, EI). Let g :ù1 −→ [ù]
ù×ùù be a♦L(R)(ró ;d)-

guessing sequence for F. We can assume that for all α the set Aα in g(α) = (Aα ,hα)
is coinfinite. Recursively define an ideal independent family as follows:

(1) Start with a partition of ù into infinitely many infinite sets EIù = 〈In : n ∈ ù〉.
(2) Suppose we have defined EIα = 〈Iâ : â < α〉. Now define Iα as follows:

Iα =
⋃

n∈ù

B
EIα
n \ϕ

EIα
n [Aα \hα(n)].

Let EIα+1 be the family 〈Iâ : â ≤ α〉. Finally, let I = 〈Iα : α ∈ ù1〉 be the family
obtained by the above recursion. Let’s see that I is a witness for smm.

Claim 1. I is an ideal independent family. We proceed by induction of α ∈ ù1.
Clearly Iù is ideal independent. Assume EIα is an ideal independent family. Then EIα+1
is ideal independent, let H1 = {Iâ | â ∈H} :

(a) Iα 6⊆
∗

⋃

H1. Let n ∈ù be such that H is contained in the set {eα(0), ... ,eα(n)},
so

⋃

H1⊆
⋃

i≤nB
Iα
i . By the definition of Iα , Iα \

⋃

i≤nB
Iα
i is infinite.

(b) For all â ∈ α \H, Iâ 6⊆
∗ Iα ∪

⋃

H1. Let n be such that â = eα(n). By the choice

of Z
EIα
n , we have that for any ã ∈ α \ {â}, Z

EIα
n ∩ Iã is finite, so in particular,

Z
EIα
n ∩

⋃

H1 is finite. Also by the construction of Iα , B
EIα
n ∩ Iα ∩ϕ

EIα
n [Aα \hα(n)]

is finite. This both facts together give ϕ
EIα
n [Aα \ hα(n)] \ Iα ∪

⋃

H1 is infinite.

Since ϕ
EIα
n [Aα \hα(n)]\ Iα ∪

⋃

H1⊆Iâ \ Iα ∪
⋃

H1, we are done.

Claim 2. I is maximal. Pick any X ∈ [ù]ù . If g guesses (X ,〈Iα : α ∈ ù1〉) in
ã, then we have that Aãó-reaps 〈Xn : n ∈ ù〉 and hã almost dominates the function
l = fX ,Iã (Aã). There are two cases:

(i) There are infinitelymany n∈ù such thatAã⊆
∗Xn. Pick n such that l(n)≤ hã(n).

Then Aã \hã(n)⊆Xn, so ϕ
EIã
n [Aã \hã(n)]⊆X ∩B

EIã
n . Then by the definition of Iã ,

B
EIã
n ⊆Iã ∪ϕ

EIã
n [Aã \hã(n)]⊆Iã ∪X, which implies Ieã (n)⊆X ∪ Iã ∪

⋃

i<n Ieã (n).

(ii) For almost all n∈ùAã⊆
∗ù \Xn. Then for almost all n, ϕ

EIã
n [Aã \hã(n)]⊆Z

EIã
n \

X, so for almost all n, X ∩Z
EIã
n ⊆Iã , and for finitely many n, Aã⊆

∗Xn, so

ϕ
EIã
n [Aã \ hã(n)]⊆

∗Z
EI
n ∩X⊆Bn ∩X, which implies Bn \X⊆∗Bn \ ϕ

EIã
n [Aã \

hã(n)]⊆Iã . Putting all this together we have that X⊆∗Iã ∪
⋃

i≤kBi, for some
k ∈ ù. �

1Z
EI
n ⊆B

I
n should be found in a recursive way and should depend only on EI.
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It is interesting that we are using ró instead of r. We do not know if we can prove
the result above using only r.
The following result was proved by Hiroaki Minami [13] for Borel invariants,

however, the proof for L(R)-invariants is the same.

Proposition 10. Let
〈

Pα ,Q̇α | α ≤ ù1
〉

a finite support iteration of ccc forcings and
(A,B,→) be an L(R) -invariant with the following property: For all α < ù1 there is
b∈B∩V [Gα+1] such that a→ b for all a∈A∩V [Gα]. ThenPù1 
 “♦L(R) (A,B,→) .”

With the previous proposition we can conclude the following:

Corollary 11. There is a finite support iteration of ccc forcings of length ù1 such
that Pù1 
 “smm = ù1.”

Proof. Define Pα ,Q̇α for α < ù1 as follows. Let Pα 
 “Q̇α =M
(

U̇α
)

∗ Ḣ” where

U̇α is the name of any ultrafilter, M
(

U̇α
)

is its Mathias forcing and H is Hechler
forcing. It is well known that the Mathias forcing associated to an ultrafilter is ó-
centered, and the same is true for the Hechler forcing, so we have an iteration of ccc
forcings. Let us see that the second condition of the theorem holds for this iteration.
Pick any (〈Xn : n ∈ ù〉,F) ∈ [ù]

ù ×Borel((ùù)[ù]
ù
)∩V [Gα], where Gα is the

generic for Pα . We claim that (ẋα , ḟα), the generic for Q̇α , bounds (〈Xn : n ∈ ù〉,F).
To see that ẋαó-reaps 〈Xn : n ∈ ù〉, just note that Xn ∈ Uα or ù \Xn ∈ Uα , and since
the generic ẋα is almost contained in every element of Uα , it follows that ẋαó-reaps
〈Xn : n∈ù〉. Now, F(ẋα) is a function inV [Gα][ẋα], and the generic fα is dominating
over V [Gα][ẋα], so in particular F(ẋα) ≤

∗ fα , as required. Finally, by the previous
proposition it follows that ♦L(R) (ró ;d) holds in Pù1 and then smm is equal to ù1 in
the extension. �

In [6] it is shown that for any Borel invariant (A,B,→) , most countable support
iterations of proper forcings that force 〈A,B,→〉 ≤ ù1 will also force ♦(A,B,→) .
This is also true for L(R)-invariants with the same proof.

Theorem 12. Let 〈Qα | α ∈ù2〉 be a sequence of Borel proper partial orders where
each Qα is forcing equivalent to ℘ (2)

+×Qα and let Pù2 be the countable support
iteration of this sequence. If (A,B,→) is anL(R)-invariant andPù2
“〈A,B,→〉≤ù1”
then Pù2 
 “♦L(R) (A,B,→) .”

We will need the following notion:

Definition 13. By Pfin we denote the set of trees p ⊆ ù
<ù with the following

properties:

(1) p is a finitely branching tree.
(2) For every n ∈ù, there is l ∈ù such that if s ∈ T and |s| ≥ l then |sucT (s)| ≥ n

Given p,q ∈ Pfin define p≤ q if p⊆ q.

The forcing Pfin has been studied (in much more generality) by Laflamme (see
[10]), Zapletal (see [16] section 4.4.3, where Pfin is a particular case of a fat tree
forcing) and by Hrušák and Hernández (see [9]). Furthermore, the following is a
particular case of Theorem 4.4.8 of [16]:

Proposition 14 ([16]). Pfin is proper,ù
ù-bounding and does not add splitting reals.
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Moreover, by theorem3.4.1 of [16] it follows thatPfin preservesRamseyultrafilters.
The following result is well known, we prove it for the sake of completeness:

Lemma 15. Forcing with Pfin makes ù
ù ∩V a meager set.

Proof. Let G ⊆ Pfin be a generic filter. Let rgen =
⋂

G, it is easy to see that
rgen ∈ ù

ù (moreover, rgen and G are interdefinable). For every n ∈ ù, define Nn =
{x ∈ ùù | ∀m> n(rgen (m) 6= x(m))} and letM =

⋃

n∈ù
Nn. It is easy to see that each

Nn is a nowhere dense set, soM is a meager set. Furthermore, a simple genericity
argument shows that ùù ∩V ⊆M. �

We can now prove the following:

Theorem 16. There is a model where smm < non(M) (in particular, the inequality
smm < i is consistent).

Proof. We perform a countable support iteration 〈Pα ,Q̇α | α ≤ ù2〉 where Pα 

“Q̇α = Pfin.” We claim that this is the model we are looking for. Let G ⊆ Pù2 be a
generic filter. Since Pfin is ù

ù-bounding, then d= ù1 holds in V [G]. By theorem of
Zapletal, there is a Ramsey ultrafilter in V [G] of character ù1, so ró = u=ù1 holds
as well. By the previous remarks, we conclude that♦ù1 (ró ;d) holds inV [G] , so smm
is equal to ù1 in the extension. Finally, since Pfin makes the ground model meager,
so non(M) = ù2 holds in the extension (finally, recall that non(M) ≤ cof (M) ≤ i

by [1]). �

§3. Final remarks. By the results in the previous sections, it might be conjectured
that smm =max{d,ró} (note this equality holds in all the Cohen, random, Hechler,
Sacks, Laver, Mathias and Miller models), however, it can be proved that this is
not the case: the inequality max{ró ,d}< smm holds in Shelah’s model from [2]. The
proof that smm is big in this model follows the same lines for proving that the almost
disjoint number a, is the cardinality the continuum. Since giving this proof in detail
is very technical, we just mention this result without proof.
There are still some interesting questions for which we don’t know the answer:

Question 17. Is u≤ smm?

Question 18. Is smm ≤ i?

We would like to remark that in [14] Shelah built a model of i< u (see also [5]) so
in that model one of the questions has a negative answer, but we do not know which
one.
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