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We introduce and study the notion of an n-Luzin gap, which is a natural generalization of
a Luzin gap. We prove that under Martin’s Axiom, every AD family A of size less than c
contains an n-Luzin gap or the corresponding Mrówka–Isbell space Ψ (A) is normal.
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0. Introduction

An infinite family A ⊂ P(ω) is almost disjoint (AD) if the intersection of any two distinct elements of A is finite. It is
maximal almost disjoint (MAD) if it is not properly included in any larger AD family or, equivalently, if given an infinite X ⊆ ω
there is an A ∈A such that |A ∩ X | = ω. Given an almost disjoint family A and two subfamilies B,C of A we say that a
set X ⊆ ω separates B and C if A ⊆∗ X for every A ∈ B and A ∩ X =∗ ∅ for every A ∈ C .

One of the first constructions of almost disjoint families with special properties is the construction of Luzin [14] of
an uncountable almost disjoint family A such that no two uncountable subfamilies of A can be separated. The ingenious
property used in the proof deserves a name:

Definition 0.1. An almost disjoint family A is Luzin if it can be enumerated as {Aα: α < ω1} so that ∀α < ω1 ∀n ∈ ω {β <

α: Aα ∩ Aβ ⊆ n} is finite.

Abraham and Shelah [1] called (and so do we) an almost disjoint family A inseparable if no two uncountable subfamilies
can be separated. It is easy to see that A is inseparable if and only if for every B,C ∈ [A]ω1 the set

⋃B ∩ ⋃C is infinite.
The point of Luzin’s proof was that, Luzin families are inseparable. Abraham and Shelah proved that (1) assuming CH, there
is an inseparable AD family which contains no Luzin subfamily, while (2) under MA + ¬CH every inseparable AD family is a
countable union of Luzin subfamilies.

Roitman and Soukup in [17] introduced the notion of an anti-Luzin family: An AD family A is an anti-Luzin family
if for every B ∈ [A]ℵ1 there are C,D ∈ [B]ℵ1 which can be separated (or equivalently, A does not contain uncountable
inseparable families) and proved that assuming MA + ¬CH, every AD family is either anti-Luzin or contains an uncountable
Luzin subfamily, and assuming

•|,3 there is an uncountable almost disjoint family which contains no uncountable anti-Luzin
and no uncountable Luzin subfamilies.
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More recently, Dow [7] showed that PFA implies that every MAD family contains an uncountable Luzin subfamily. Dow
and Shelah in [8] showed that Martin’s Axiom does not suffice by showing that it is relatively consistent with MA + ¬CH
that there is a maximal almost disjoint family which is ω1-separated, i.e. any disjoint pair of � ω1-sized subfamilies are
separated.

To every almost disjoint family one can naturally associate the so-called Mrówka–Isbell space:

Definition 0.2. Given an AD family A, define a space Ψ (A) as follows: The underlying set is ω ∪A, all elements of ω are
isolated and basic neighborhoods of A ∈A are of the form {A} ∪ (A \ F ) for some finite set F .

It follows immediately from the definition that Ψ (A) is a separable, scattered, zero-dimensional, first countable, locally
compact Moore space [16]. Normality of Ψ -spaces is characterized using separation as follows:

Proposition 0.3. ([20]) Ψ (A) is normal if and only if B and A \B can be separated for every B ⊆A.

Slightly abusing notation we will call an AD family A normal if the space Ψ (A) is normal. A natural choice would be
to call A completely separated, but unfortunately a very similar term is already in use [19,9,5]. By the above proposition it
follows that if Ψ (A) is normal, then 2|A| = c so A must have size less than the continuum.

Luzin families are often referred to as Luzin gaps. However, that name has recently [21,10] been used to describe a
weaker notion.

Definition 0.4. ([21]) A pair A= {Aα: α < ω1}, B = {Bα: α < ω1} of subfamilies of [ω]ω is called a Luzin gap if there is an
m ∈ ω such that

1. Aα ∩ Bα ⊆ m for all α < ω1, and
2. Aα ∩ Bβ is finite yet (Aα ∩ Bβ) ∪ (Aβ ∩ Bα) � m for all α �= β < ω1.

Every Luzin family A contains many Luzin gaps: given a pair {Aα: α < ω1}, {Bα: α < ω1} of disjoint subfamilies of A,
there is an uncountable X ⊆ ω1 such that {Aα: α ∈ X}, {Bα: α ∈ X} forms a Luzin gap. The basic property of a Luzin gap
is that the two families A and B cannot be separated, and the property of being a Luzin gap is indestructible by forcing
preserving ω1 (see [21,10] or Section 1). Hence, the space Ψ (A) cannot be normal (in any forcing extension preserving ω1)
for any AD family A containing a Luzin gap.

The following weakening of the notion of a Luzin gap is central for our considerations.

Definition 0.5. Let n ∈ ω and Bi = {Bi
α | α ∈ ω1} be disjoint subfamilies of an AD family A for i < n. We call 〈Bi | i < n〉 an

n-Luzin gap if there is m ∈ ω such that

1. Bi
α ∩ B j

α ⊆ m for all i �= j, α < ω1 and

2.
⋃

i �= j(Bi
α ∩ B j

β) � m for all α �= β < ω1.

We say that A contains an n-Luzin gap if there is an n-Luzin gap 〈Bi | i < n〉 where each Bi is a subfamily of A. We will
see that any family containing an n-Luzin gap is not normal, and our main theorem states that the converse is also true
assuming Martin’s Axiom:

Theorem 0.6. Assume MA. Let A be an AD family. Then A is normal if and only if |A| < c and A does not contain n-Luzin gaps for
any n ∈ ω.

Assuming PFA the theorem can be strenghtened (see Theorem 3.8). We also show that the result does not follow from
MA(σ -centered), as

Theorem 0.7. It is consistent with MA(σ -centered) that there is an inseparable AD family of size ω1 which does not contain n-Luzin
gaps for any n ∈ ω.

The situation is reminiscent of ω1-trees and Hausdorff gaps, an inseparable family that does not contain n-Luzin gaps
for any n ∈ ω being the equivalent of a Suslin tree or a ccc destructible gap. A Suslin tree can be destroyed by two different
means: (1) one can force with the tree an add an uncountable branch and (2) one can specialize the tree by a ccc forcing
making it a union of countably many antichains. Similar situation occurs with ccc destructible Hausdorff gaps ([13] see [18])
a destructible Hausdorff gaps can be either (1) filled or (2) frozen, both by ccc forcing. Here, an inseparable family with no
n-Luzin gaps can be either (1) forced normal or (2) frozen by forcing it to contain a Luzin gap, both by a ccc forcing.
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An early (probably the first) example of a Ψ -space appears in [3]: A topology of the real line is refined by declaring
all rational points isolated. To each irrational point a convergent sequence is chosen and the cofinite subsets of the given
convergent sequence are declared basic open neighborhoods of the irrational number.

We call an almost disjoint family A R-embeddable (see [11]) if there is an injection e :ω → Q such that for every A ∈A
there is an rA ∈ R such that e[A] converges to rA and, moreover, rA �= rB whenever A �= B . Evidently, this is equivalent that
there is an injective and continuous f :Ψ (A) → R such that f (n) ∈ Q for every n ∈ ω. Using Tietze’s theorem, it is easy to
show that every normal family is R-embeddable.

The notion of R-embeddability together with a strengthening of the notion of an anti-Luzin family are some of the main
tools used here.

Definition 0.8. An almost disjoint family A is partially separated if given a pair B = {Bα: α < ω1}, C = {Cα: α < ω1} of
disjoint subfamilies of A there is an uncountable X ⊆ ω1 such that the families {Bα: α ∈ X}, {Cα: α ∈ X} are separated.

We call an AD family A potentially P (for a property P) if there is a ccc forcing P such that �P “A has P”. Similarly,
we say that A is indestructibly P , if A has property P in all ccc forcing extensions. We show that

Theorem 0.9. The following are equivalent for an AD family A:

1. A does not contain n-Luzin gaps for any n ∈ ω,
2. A is potentially normal,
3. A is potentially R-embeddable,
4. A is potentially partially separated.

Dow and Shelah’s [8] result mentioned above shows that it is consistent with MA that there is a MAD family which is
potentially normal, while assuming PFA [7] all MAD families contain Luzin families, hence, also Luzin gaps. It is worth men-
tioning that Áviles and Todorčević also studied gaps of higher dimensions in [4], however their versions are strengthenings
rather than weakenings of the classical notion.

1. Normality of AD families in ccc extensions

In the following, A will always be an AD family. Given B,C disjoint subsets of A, we will define a forcing that adds a
set separating B from C . Let SBC be the set of all (s,F ,G) such that,

1. s ∈ <ω2, F ∈ [B]<ω , G ∈ [C]<ω .
2. If B ∈F and C ∈ G then B ∩ C ⊆ |s|.

We say (s,F ,G) � (s′,F ′,G′) if and only if,

1. s′ ⊆ s, F ′ ⊆F , G′ ⊆ G .
2. If i ∈ dom(s) \ dom(s′) then,

a) If i ∈ ⋃F ′ then s(i) = 1.
b) If i ∈ ⋃G′ then s(i) = 0.

It is easy to prove that for all n ∈ ω, B ∈ B and C ∈ C the following sets {(s,F ,G) | |s| � n}, {(s,F ,G) | B ∈ F} and
{(s,F ,G) | C ∈ G} are dense, so SBC adds a set separating B from C .

Lemma 1.1. If A is partially separated, then SBC is ccc.

Proof. Let {pα | α ∈ ω1} be a set of conditions, and write pα = (sα,Fα,Gα). Without loss of generality, we may assume
that there are n,m ∈ ω such that |Fα | = n and |Gα | = m for every α ∈ ω1. Let us enumerate Fα = {Fα(i) | i < n} and
Gα = {Gα(i) | i < m}.

Let B0 = {Fα(0) | α ∈ ω1} and C0 = {Gα(0) | α ∈ ω1}. Since A is partially separated, there are Z0 ∈ [ω1]ω1 and k0 such
that Fα(0) ∩ Gβ(0) ⊆ k0 for every α,β ∈ Z0. Now, let B1 = {Fα(0) | α ∈ Z0}, C1 = {Gα(1) | α ∈ Z0} and find Z1 ∈ [Z0]ω1 ,
k1 ∈ ω such that Fα(0) ∩Gβ(1) ⊆ k1 for every α,β ∈ Z1. Repeating this process (mn times) we conclude there is Z ∈ [ω1]ω1

and k such that Bα(i) ∩ Cβ( j) ⊆ k for every α,β ∈ Z and i < n, j < m.
For every α ∈ Z , take s′

α such that (s′
α,Fα,Gα) � (sα,Fα,Gα) and k < |s′

α |. Naturally, there are s ∈ <ω2 and α,β ∈ Z
with the property that s = sα = sβ . We claim that (s,Fα,Gα) and (s,Fβ,Gβ) are compatible (and then, so are pα and pβ ).
To prove this, we only need to realize that (s,Fα ∪Fβ,Gα ∪ Gβ) is a condition, but this is trivial since k < |s′

α |. �
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We will prove that R-embedabbility implies partial separability next.

Proposition 1.2. If A is R-embeddable, then it is partially separated.

Proof. Let h :Ψ (A) → R witness that A is R-embeddable and take B = {Bα | α ∈ ω1}, C = {Cα | α ∈ ω1} disjoint subsets
of A. Fix D a countable base for R and for every α ∈ ω1, find disjoint Uα, Vα ∈ D such that h(Bα) ∈ Uα and h(Cα) ∈ Vα .
Choose also mα ∈ ω such that h[Bα \ mα] ⊆ Uα and h[Cα \ mα] ⊆ Vα . Now, let X ∈ [ω1]ω1 be such that there are U , V ∈ D
and m with the property that Uα = U , Vα = V and mα = m for all α ∈ X . It is clear that if α,β ∈ X then Bα ∩ Cα ⊆ m.

From the above we may conclude even more: note that being R-embeddable is an indestructible property, so an
R-embeddable family is actually indestructibly partially separated.

Corollary 1.3. The following are equivalent,

1. A is potentially R-embeddable,
2. A is potentially indestructibly partially separated,
3. A is potentially normal.

Proof. By the above comment it follows that 1 implies 2. Clearly 3 implies 1. In order to prove that 2 implies 3, let P be a
ccc forcing such that 1P forces that an AD family A is indestructibly partially separated. Then, the forcing notions SBC will
always be ccc (in any ccc extension) so we may iterate them and get a model where A is normal. �

As a consequence, assuming Martin’s Axiom, small almost disjoint families which are potentially normal, are precisely
those which are normal already.

Corollary 1.4. Assume MA. Let A be an AD with |A| < c, then A is potentially normal if and only if A is normal.

Proof. Let A be potentially normal and of size less than c. We must prove that every B,C disjoint subsets of A can be
separated. Since we are assuming MA, it is enough to show that the forcing SBC is ccc (because we only need |B| + |C| +ω
dense sets to do the job). Now, let P be a ccc forcing such that A is partially separated in V [G] for every generic filter
G ⊆ P. Note that SBC is the same as SV [G]

BC and since A is partially separated, then it is ccc in V [G]. This implies that SBC
is ccc in V (since any uncountable antichain in V would still be an uncountable antichain in V [G]). �

Assuming MA, we may get another equivalence of potential normality:

Corollary 1.5. Assume MA. A is potentially normal if and only if A is indestructibly partially separated.

Proof. Let A be potentially normal, let P be a ccc forcing and G ⊆ P a generic filter. We must prove that A is partially
separated in V [G]. For this it is enough to see that every subfamily of A of size ω1 is partially separated. To see this, in
V [G] choose A′ ∈ [A]ω1 and since P is ccc, then there is A′′ ∈ V a subset of A of size ω1 such that A′ ⊆A′′ . Since MA is
true in V , A′′ is R-embeddable, so it is partially separated in V [G], hence so is A′ . �

The previous corollary cannot be proved in ZFC, as we will see in Section 3.

2. n-Luzin gaps

We start by proving some elementary facts about n-Luzin gaps.

Lemma 2.1. If 〈Bi: i < n〉 is an n-Luzin gap (Bi = {Bi
α | α ∈ ω1}) then, for every X ∈ [ω1]ω1 and every k ∈ ω, there are α,β ∈ X such

that

⋃

i �= j

(
Bi

α ∩ B j
β

)
� k.

Proof. Let m ∈ ω testify that 〈Bi | i < n〉 is n-Luzin. Without loss of generality k > m. First, find Y ∈ [X]ω1 such that if α,β ∈
Y and i < n, then Bi

α ∩ k = Bi
β ∩ k. Take α,β ∈ Y distinct. There are i �= j such that Bi

α ∩ B j
β � m, but since Bi

α ∩ k = Bi
β ∩ k

and B j
β ∩ Bi

β ⊆ m ⊆ k, Bi
α and B j

β must intersect above k. �
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With the aid of this lemma, we can prove the following:

Lemma 2.2. If A is partially separated, then it does not contain n-Luzin gaps for any n ∈ ω.

Proof. Let A be partially separated and take {Bn
α: n ∈ ω} such that Bi

α ∩ B j
α ⊆ m when i �= j. Since A is partially separated.

There are X ∈ [ω1]ω1 and k ∈ ω such that Bi
α ∩ B j

α ⊆ k for all α,β ∈ X . Then, by the previous lemma, A cannot contain
n-Luzin gaps. �

Since normal families are partially separated, we immediately conclude:

Corollary 2.3. If A contains an n-Luzin gap, then it is not normal.

Using this, we will be able to give a combinatorial reformulation of potential normality of AD families. First, we will
introduce a forcing that makes A an R-embeddable family. Instead of trying to embed Ψ (A) into R, we will try to embed
it into the Cantor space ω2, identifying the rational numbers with the eventually 0 functions. It is easy to see that this
suffices. Let R(A) be the set of all (s,F) such that,

1. s ∈ <ωQ is injective and F ∈ [A]<ω .
2. If A, B ∈F then A ∩ B ⊆ |s|.

And (s,F) � (s′,F ′) if,

1. s′ ⊆ s, F ′ ⊆F .
2. If i ∈ dom(s) \ dom(s′) and there is A ∈ F ′ such that i ∈ A and j = max{A ∩ dom(s′)} then �(s(i), s′( j)) � |s′| (where

�(x, y) is the first n such that x(n) �= y(n)).

Note that the A is unique since (s′,F ′) is a condition.

Lemma 2.4. If R(A) is ccc, then A is potentially R-embeddable.

Proof. Given n ∈ ω, it is easy to prove that the set Dn = {(s,F) | n < |s|} is dense (this is due to the fact that if A, B ∈F then
A ∩ B ⊆F , so we may extend the condition (s,F) without changing F ). Also, if A ∈A then the set E A = {(s,F) | A ∈ F}
is dense. Given (s,F) we first find m ∈ ω such that X ∩ Y ⊆ m for every X �= Y ∈F ∪ {A} and then we extend (s,F) to a
condition (s′,F) such that m < |s′|. In this way, (s′,F ∪ {A}) is below (s,F).

Fix G a generic filter for R(A), we will prove that A is R-embeddable in V [G]. Let e = ⋃
(s,F)∈G s since the Dn are

dense, then e is a function from ω to R. We will show that if A ∈A then e[A] is a convergent sequence. For this, just note
that if A ∈F and A ∩ dom(s) �= ∅ then (s,F) �“if x, y ∈ A \ dom(s), then ė(x) � |s| = ė(y) � |s|”.

Let us call rA ∈ ω2 the limit of e[A]. It remains to be shown that rA �= rB whenever A �= B . Let D AB be the set of those
(s,F) that force rA to be different from rB . It is enough to show that this set is dense. Take a condition (s,F), without
loss of generality, we may assume that A, B ∈F and A ∩ dom(s), B ∩ dom(s) are not empty. Now, it is easy to extend this
condition in such a way that rA and rB belong to different clopen sets. �

We are finally ready to prove one of the main results of the paper.

Theorem 2.5. A is potentially normal if and only if A does not contain n-Luzin gaps for any n ∈ ω.

Proof. If A contains an n-Luzin gap, then A still contains it in any forcing extension that preserves ω1. Hence, we may
conclude that A cannot be potentially normal. So, we only need to prove that if A does not contain n-Luzin gaps then it is
potentially normal, or equivalently that it is potentially R-embeddable. For this, we just need to see that R(A) is ccc.

Assume this is not the case, then there is a set {(sα,Fα) | α ∈ ω1} of pairwise incompatible conditions. We may assume
that there is s ∈ <ωR such that sα = s for all α ∈ ω1 and {Fα | α ∈ ω1} forms a �-system with root R . Note that since
(s,Fα) and (s,Fβ) are incompatible so are (s,Fα \ R) and (s,Fβ \ R). So, we may further assume that R is the empty set
and all Fα are of the same size, say n. We may also assume that if i < n then Fα(i) ∩ m =Fβ(i) ∩ m for all α,β ∈ ω1.

Enumerate Fα = {Fα(i) | i < n} and let Bi = {Fα(i) | α ∈ ω1}. Note that, since each (s,Fα) is a condition, then Fα(i) ∩
Fα( j) ⊆ m. Since A does not contain n-Luzin gaps, there are α �= β such that if i �= j then Fα(i) ∩ Fβ( j) ⊆ m. We claim
that (s,Fα) and (s,Fβ) are compatible, which will be a contradiction. Note that (s,Fα ∪ Fβ) may fail to be a condition,
since there could be A, B ∈Fα ∪Fβ such that A ∩ B � |s| = m. However, in this case, A must be of the form Fα(i) and B
must be Fβ(i) (because (s,Fα) and (s,Fβ) are conditions and Fα(i) ∩Fβ( j) ⊆ m when i �= j). However, since Fα(i) and
Fβ(i) agree up to m, it is easy to extend (s,Fα ∪Fβ) to a condition. �
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Evidently, we may conclude,

Corollary 2.6. If A is partially separated then it is potentially R-embeddable.

The reader might wonder why we are only considering ccc extensions instead of extensions preserving ω1. It turns out
both concepts are equivalent, as the next result show,

Corollary 2.7. A is potentially normal if and only if there is a forcing notion P that does not collapse ω1 and forces A to be normal.

Proof. Note that if A contains an n-Luzin gap, then it still contains an n-Luzin gap in any forcing extension that pre-
serves ω1, so the result follows by the previous theorem. �

We may also prove the promised result,

Theorem 2.8. Assume MA. Let A be an AD family. Then A is normal if and only if |A| < c and A does not contain n-Luzin gaps for
any n ∈ ω.

Proof. The forward implication is clear, for the converse, just recall that under MA normality and potential normality are
equivalent for families of size less than c. �

We will show that, under the Proper Forcing Axiom, we may “remove the n” from the previous result. Assume B =
{Bα | α ∈ ω1}, C = {Cα | α ∈ ω1} are disjoint subfamilies of A and let X = {(Bα, Cα) | α ∈ ω1}. For every m ∈ ω we define a
coloring cm : [X]2 → 2 by

cm
(
(Bα, Cα), (Bβ, Cβ)

) = 1 iff (Bα ∩ Cβ) ∪ (Bβ ∩ Cα) ⊆ m.

We may see X as a subset of the polish space ω2 × ω2, so it carries a natural topology. In this way, note that c−1({0}) ⊆ X2

is an open set. Let us recall the Open Coloring Axiom (see [22] and [15]),

OCA) If X is a separable metric space and c : [X]2 → 2 is such that c−1({0}) is open, then one of the following holds,
�) There is M ∈ [X]ω1 that is monochromatic of color 0 (i.e. c restricted to [M]2 is the constant 0).

��) X may be cover by ω-monochromatic sets of color 1.

For us, it will be enough to observe that OCA implies that (given X is uncountable) there is always an uncountable
monochromatic set in one of the colors.

The following result is a consequence of Theorem 13.5 of [22]. We present its short proof for the sake of completeness.
Later (Theorem 3.8) we will see that it follows also from the P-ideal dichotomy.

Proposition 2.9. If OCA is true, then every almost disjoint family is partially separated or contains a Luzin gap.

Proof. Assume A is not partially separated, so there are disjoint subfamilies B = {Bα | α ∈ ω1}, C = {Cα | α ∈ ω1} of A such
that for every Y ∈ [ω1]ω1 and n ∈ ω, there are α,β ∈ Y with the property that Bα ∩ Cβ � n. We may assume there is m ∈ ω
such that Bα ∩ Cα ⊆ m for all α ∈ ω1.

Let X , and cm be defined as above. The previous remark tells us that there are no uncountable 1-monochromatic sets, so
OCA implies the existence of an uncountable 0-monochromatic set Y . Clearly {Bα | α ∈ Y }, {Cα | α ∈ Y } is a Luzin gap. �
Corollary 2.10. Assume PFA. Let A be an AD family. Then A is normal if and only if |A| < c and A does not contain Luzin gaps.

We do not know whether a version of PFA (OCA) is necessary for the conclusion of the corollary,

Question 2.11. Does the previous corollary hold assuming MA?

It cannot be proved in ZFC, since it is consistent with MA(σ -centered) that there are 3-Luzin gaps that do not con-
tain Luzin gaps. In order to prove this, first recall that a family D ⊆ P(ω) is independent if for any distinct A0, . . . , An,

B0, . . . , Bm ∈D the set A0 ∩ · · · ∩ An ∩ (ω \ B0) ∩ · · · ∩ (ω \ Bm) is infinite. We say that D separates points if for every distinct
n,m ∈ ω, there is D ∈D such that {n,m} ∩ D has size 1.

Given D an independent family that separates points, we define the topological space (ω, τD) which has D ∪ {ω − D |
D ∈D} as a subbase.

Lemma 2.12. (ω, τD) is homeomorphic to the rationals with the usual topology.
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Proof. This space is countable, first countable, zero-dimensional without isolated points, and this characterizes Q (this is an
old result of Sierpiński, see [12]). �

To construct our 3-Luzin gap, we will first construct (in ZFC) a special type of a Luzin gap, which is interesting on its
own,

Lemma 2.13. There is a Luzin gap B = {Bα | α ∈ ω1}, C = {Cα | α ∈ ω1} such that B and C are R-embeddable.

Proof. Let D = {Dn | n ∈ ω} and E = {En | n ∈ ω} be disjoint families such that both separate points and D ∪ E is an
independent family. As was remarked above, (ω, τD) and (ω, τE ) are both homeomorphic to the rationals, and every open
set of one topology is dense in the other. Identifying ω with Q, we may view R as the metric completion of (ω, τD) and
(ω, τE ). Pick {rα | α ∈ ω1} a set of distinct irrationals, we will recursively build B and C such that,

1. In (ω, τD), Bα is a convergent sequence to rα and it is dense in (ω, τE ).
2. In (ω, τE ), Cα is a convergent sequence to rα and it is dense in (ω, τD).
3. Bα ∩ Cα = ∅ while Bα ∩ Cβ , Bβ ∩ Cα are non-empty finite sets for every β < α.

It is clear that if the recursion could be carried out, we would have constructed the desired family. Assume Bξ , Cξ had
been constructed for every ξ < α, let’s find Bα and Cα . Let {Un | n ∈ ω} be a local base for rα with U0 ⊇ U1 ⊇ U2 ⊇ · · · in
(ω, τD) and {Vn | n ∈ ω} a base in (ω, τE ). Enumerate α = {ξn | n ∈ ω} and we recursively build Bα = {xn | n ∈ ω} ∪ {yn | n ∈
ω} such that:

1. xn, yn ∈ Un ,
2. xn ∈ Vn \ ⋃

m<n Cξm ,
3. yn ∈ Cξn \ ⋃

m<n Cξm .

It is easy to do that, since each Un is dense in (ω, τE ) and all the Vn and Cξn are dense in (ω, τD). Cα is built in the
same way, just making sure for it to be disjoint with Bα . �
Proposition 2.14. MA(σ -centered) is consistent with the existence of a 3-Luzin gap without Luzin subgaps.

Proof. We will see that there is such a family after adding a Cohen real. Let B = {Bα | α ∈ ω1}, C = {Cα | α ∈ ω1} be
a Luzin gap with Ba ∩ Cα = ∅ such that both B and C are R-embeddable. Assume D is a Cohen real. In V [D], define
B1 = {Bα ∩ D | α ∈ ω1}, B2 = {Bα \ D | α ∈ ω1}, we will prove that 〈B1,B2,C〉 is the family we are looking for. It is easy to
see that it is indeed a 3-Luzin gap, so it remains to show that it has no Luzin gaps.

In V [D], let m ∈ ω and X = {Xα | α ∈ ω1}, Y = {Yα | α ∈ ω1} be disjoint subfamilies of A such that Xα ∩ Yα ⊆ m. We
may assume X is a subset of B1,B2 or C (similarly for Y). However, since B and C are R-embeddable and every member
of B1 is disjoint from every member of B2, then we only need to consider the case where X is a subset of B1 or B2 and Y
is a subset of C . For concreteness, we will assume X ⊆ B1, while the other case is similar. Find a function h :ω1 → ω1 ×ω1
such that Xα = Bh(α)0 ∩ D and Yα = Ch(α)1 . We know there is an uncountable W ∈ V and s ∈ C such that s knows h � W ,
we may assume m < |s| = l. Let α,β ∈ W distinct such that Bh(α)0 ∩ l = Bh(β)0 ∩ l and Ch(α)1 ∩ l = Ch(β)1 ∩ l. Let r > l such
that Bh(α)0 ∩ Ch(β)1 , Bh(β)0 ∩ Ch(α)1 ⊆ r and choose s′ any extension of s such that r < |s′| and if x ∈ dom(s′) \ dom(s) then
s′(x) = 0. In this way, s′ forces Xα ∩ Yβ , Xβ ∩ Yα ⊆ m so (X ,Y) is not a Luzin gap.

To finish the proof, assume MA holds in V , then MA(σ -centered) is still true after adding a Cohen real (by a theorem of
Roitman, see [6, Theorem 3.3.8]). �
3. Schizophrenic AD families

Recall that A is inseparable if for every B,C ∈ [A]ω1 the set
⋃B ∩ ⋃C is infinite or equivalently, for every m ∈ ω there

are B ∈ B and C ∈ C such that B ∩ C � m. Clearly, every uncountable subfamily of an inseparable family is inseparable and
A is inseparable if and only if all of its subfamilies of size ω1 are inseparable.

Let us introduce a forcing aiming to add a Luzin family to a given AD family A. Assume that A = {Aα | α ∈ ω1} and
for every p ∈ [ω1]<ω let mp be the smallest integer such that Aα ∩ Aβ ⊆ mp for all α,β ∈ p distinct. We define the poset
SR(A) = [ω1]<ω (see [17]) and we say p � q if and only if,

1. q ⊆ p,
2. If α ∈ p \ q and there is β ∈ q with α < β , then Aβ ∩ Aα � mq .

Lemma 3.1. ([17]) If SR(A) is ccc, then A potentially contains a Luzin family.
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Proof. For every α ∈ ω1 define Dα = {p | p � α}. It is easy to see that this set is dense, since if p ⊆ α then p ∪ {α} � p. Let
G be a generic filter and in V [G] define B = {Aα | α ∈ ⋃

G}, then B is uncountable (since the forcing is ccc) and it is easy
to see that it is indeed a Luzin family. �

Using this result, we may obtain the following characterization due to Roitman and Soukup [17].

Proposition 3.2. ([17]) A is inseparable if and only if every uncountable subfamily of A potentially contains a Luzin family.

Proof. First, assume every uncountable subfamily of A potentially contains a Luzin family. Let B,C be uncountable subfam-
ilies of A and define A′ = B ∪ C . We know there is P a ccc forcing such that 1P forces that A′ contains a Luzin family.
Aiming for a contradiction, assume there is m ∈ ω such that B ∩ C ⊆ m for every B ∈ B and C ∈ C . Let G ⊆ P be a generic fil-
ter and in V [G] find D = {Xα | α ∈ ω1} ⊆A′ be a Luzin family. Clearly, there is α ∈ ω1 such that Xα ∈ B and {Xξ | ξ < α}∩C
is infinite, but then the set {ξ < α | Xα ∩ Xξ ⊆ m} is infinite, which contradicts that D is a Luzin family.

For the other implication, it is enough to prove that if A is inseparable of size ω1, then SR(A) is ccc. We will proceed
by contradiction, suppose {pα | α ∈ ω1} is an antichain, we may assume it forms a �-system with root r, every pα \ r has
size n and there is m ∈ ω such that mpα = m for all α ∈ ω1. Furthermore, thinning our family, we may assume that for all
α, every member of r is below every member of pα \ r and if α < β , then every member of pα \ r is below every member
of pβ \ r. Write pα \ r = {pα(i) | i < n} and we may suppose there is k > m such that pα(i) ∩ (k \ m) �= ∅ for all α ∈ ω1.
Thinning our family again, we may assume pα(i) ∩ k = pβ(i) ∩ k for all α,β ∈ ω1.

We will now see that there are X0, Y0 ∈ [ω1]ω1 such that if α ∈ X0 and β ∈ Y0 then pα(0) ∩ pβ(1) � m. Suppose this is
false, then for every x > m, at least one of the following sets Bx = {α | x ∈ pα(0)}, Cx = {α | x ∈ pα(1)} is countable (and they
are disjoint, since x is bigger than m). Let B be the set of all the pα(0) such that α /∈ ⋃

|Bx|�ω Bx and C be the set of all
pα(1) such that α /∈ ⋃

|Cx|�ω Cx . In this way, B and C are two uncountable subfamilies of A. However, if B ∈ B and C ∈ C
then B ∩ C ⊆ m, which contradicts that A was inseparable.

Repeating this process several times, we find there are X, Y ∈ [ω1]ω1 such that if α ∈ X and β ∈ Y then pα(i)∩ pβ( j) � m
when i �= j. However, we already knew that pα(i)∩ pβ(i) � m, since pα(i)∩k = pβ(i)∩k and pα(i)∩ (k\m) �= ∅. This implies
that pα ∪ pβ is a common extension of pα and pβ , which is a contradiction. �
Definition 3.3. We say that an AD family A is schizophrenic if it is inseparable and contains no n-Luzin gaps for any n ∈ ω.

Recall that by Theorem 2.5 an AD family which contains no n-Luzin gaps for any n ∈ ω is potentially normal, hence there
is a ccc forcing that makes it normal. On the other hand, by the previous result if A is inseparable there is another ccc
forcing one that freezes it by adding a Luzin gap, so it become indestructibly not normal!

Corollary 3.4. If A is schizophrenic, then R(A) and SR(A) are two ccc forcings such that R(A) × SR(A) is not ccc.

In particular, MA implies that there are no schizophrenic families (another way to prove this, is to remember that MA
implies that potentially normal entails indestructibly partially separated, and partially separated families does not contain
Luzin gaps).

We will now show that the existence of schizophrenic families is consistent with ZFC.
We will show that the existence of schizophrenic AD families is independent of the Martin Axiom for σ -centered partial

orders and from CH (note that this is exactly the same situation with Suslin trees). We will use the Cohen forcing C = <ω2.

Lemma 3.5. If Ȧ is a C name for an uncountable subset of ordinals, then there is s ∈ C and X ∈ V uncountable such that s � “X ⊆ Ȧ”.
In other words, any new uncountable set of ordinals contains an old uncountable set of ordinals.

Proof. For every s ∈ C, let As = {a | s � “a ∈ A”}. Clearly, if G ⊆ C is generic, then A = ⋃
s∈G As and since A is uncountable,

then one of the As must be uncountable. �
Now we will prove,

Theorem 3.6. The existence of a schizophrenic family is consistent with MA(σ -centered).

Proof. Let A = {Aα | α ∈ ω1} be an inseparable family (take a Luzin family, for example) and let D ⊆ ω be a Cohen real
over V . In V [D] define A � D to be the set of all Aα ∩ D with α ∈ ω1. We will show that this is a schizophrenic family
(note first that A �D is still an almost disjoint family).

Let us see that it is inseparable. In V [D], let B = {Bα | α ∈ ω1}, and C = {Cα | α ∈ ω1} be uncountable subfamilies
of A. In this way, we may define h :ω1 → ω1 × ω1 in such a way that Bα = Ah(α)0 ∩ D and Cα = Ah(α)1 ∩ D where
h(α) = (h(α)0,h(α)1). By the previous lemma, there is s ∈ C and X ∈ [ω1]ω1 (in V ) such that s knows h � X . We will find
an extension of s that forces what we need.
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Fix m ∈ ω, we need to show that there are α,β ∈ ω1 such that Bα ∩ Cβ = (Ah(α)0 ∩ Ah(β)1 ) ∩ D is not contained in m.
Let B′ = {Ah(α)0 | α ∈ X} and C′ = {Ah(α)1 | α ∈ X} since A is inseparable, there are α,β ∈ X and k > m, |s| such that
k ∈ Ah(α)0 ∩ Ah(β)1 . If s′ is any extension of s such that s′(k) = 1, then s′ � “k ∈ Bα ∩ Cβ ” and we are done.

Now, we will prove that A �D contains no n-Luzin gaps for any n ∈ ω. Let n ∈ ω and assume for every i < n we have
〈Bi

α | α ∈ ω1〉 subfamilies of A �D such that there is m ∈ ω with the property that Bi
α ∩ B j

α ⊆ m whenever i �= j. As before,
define a function h :ω1 → ωn

1 such that Bi
α = Ah(α)i ∩ D (with the same notation as before). Find s ∈ C that forces all of

this, and an uncountable X ∈ V such that s knows h � X . Let l = |s| and we may assume m < l.
Find α,β ∈ X distinct such that Ah(α)i ∩ l = Ah(β)i ∩ l for all i < n. Note that if i �= j then Ah(α)i ∩ Ah(β) j ∩ l = Ah(α)i ∩

Ah(α) j ∩ l ⊆ m. Let r > l such that Ah(α)i ∩ Ah(β) j ⊆ r when i �= j. Choose s′ any extension of s such that r < |s′| and if

x ∈ dom(s′) \ dom(s) then s′(x) = 0. In this way, s′ forces Bi
α ∩ B j

β ⊆ m for all i �= j, so it is not an n-Luzin gap.
Again, by Roitman’s theorem [6, Theorem 3.3.8], if we start with a model of MA then MA(σ -centered) holds in the

extension. �
Inspired by the construction of a Suslin tree under �, we will construct a schizophrenic family under this axiom. Given

A= {Aα | α ∈ ω1} we defined the poset R(A) which elements are pairs of the form (s,F) with F ∈ [A]<ω . Evidently, we
could instead define R(A) as pairs (z,G) with G ∈ [ω1]<ω . We use this reformulation in the next theorem.

Theorem 3.7. � implies the existence of a schizophrenic family.

Proof. Using � we will construct an inseparable A such that R(A) is ccc. Fix two sequences D1 = 〈(Xα, Yα) | α ∈ ω1〉 and
D2 = 〈Dα | α ∈ ω1〉 such that Xα and Yα are disjoint subsets of α and Dα is a collection of finite subsets of Q<ω × [α]<ω .
The idea is that D1 guesses pairs of disjoints subsets of ω1 and D2 guesses subsets of Q<ω × [ω1]<ω . More precisely, if
X, Y are disjoint subsets of ω1 then there are stationary many α such that (X ∩ α, Y ∩ α) = (Xα, Yα) and if B is collection
of finite subsets of Q<ω × [ω1]<ω then there are stationary many α such that B ∩ (Q<ω × [α]<ω) = Dα . We will use D1 to
get the inseparability and D2 to show that R(A) is ccc.

Recursively construct A= {Aα | α ∈ ω1} such that (denoting A<α = {Aξ | ξ < α} and A�α = {Aξ | ξ � α}) if β < α,

1. If Dβ is a maximal antichain in R(A<β) then it is still a maximal antichain in R(A�α).
2. If Xβ and Yβ are infinite then for any n ∈ ω there are ξ ∈ Xβ and η ∈ Yβ such that Aα ∩ Aξ and Aα ∩ Aη are not

contained in n.

We will first see that if the above construction can be carried out, then A is a schizophrenic family. We will prove the
inseparability first. Assume X, Y are disjoint uncountable subsets of ω1 and n ∈ ω, we will see there are ξ ∈ X and η ∈ Y
such that Aξ ∩ Aη � n. For the assumption of D1, there is β such that (X ∩ β, Y ∩ β) = (Xβ, Yβ) and Xβ, Yβ are infinite.
Since X is uncountable, there is α ∈ X such that β < α. Using 2, there is η ∈ Yβ ⊆ Y such that Aα ∩ Aη � n.

To prove that R(A) is ccc, let B ⊆R(A) be a maximal antichain. The set of β such that B∩ (Q<ω ×[β]<ω) is a maximal
antichain in R(A<β) contains a closed and unbounded set. So, there is a β such that B ∩ (Q<ω × [β]<ω) = Dβ and Dβ is a
maximal antichain of R(A<β). Then using 1, we conclude that Dβ is a maximal antichain in R(A) so B = Dβ hence B is
countable.

It remains to be seen that the construction can be carried out. Assume we have constructed everything up to α < ω1.
Let L1 = {βn | n ∈ ω} enumerate the set of all β < α such that Xβ and Yβ are infinite, also define L2 = {γn | n ∈ ω} as the

set of all γ < α such that Dγ is an infinite maximal antichain in R(A<γ ) and let R(A<α) = {(sn,Fn) | n ∈ ω}, it will also
be convenient to list α = {δn | n ∈ ω}. Furthermore, we may assume that for every β ∈ L1, γ ∈ L2, (s, F ) ∈R(A<α) and δ ∈ α
there is n ∈ ω such that βn = β,γn = γ , (sn, Fn) = (s, F ) and δn = δ. For any n ∈ ω we will recursively define Pn , mn and An

α
such that:

1. Pn ∈ [A<α]<ω , mn ∈ ω and An
α ⊆ mn .

2. If k < n then Pk ⊆Pn , mk < mn and Ak
α � An

α (where � denotes end extension).
3. If Aξ ∈Pk and k < n then Aξ ∩ An

α ⊆ Ak
α .

4. Aδn ∈Pn .
5. For every n ∈ ω there are ξ ∈ Xβn and η ∈ Yβn such that An

α ∩ Aξ , An
α ∩ Aη � n.

6. For every n ∈ ω either there is B ∈ Fn such that B ∩ An
α � |sn| or there is (z,G) ∈ R(A<γn ) and r ∈<ω Q with the

property that:
a) sn, z ⊆ r and |r| � mn .
b) If B ∈Fn and C ∈ G then B ∩ C ⊆ |r|.
c) If ξ ∈ G then Aξ ∈Pn and F ⊆Pn .

The idea is that An
α are finite approximations of Aα so at the end we will define Aα = ⋃

An
α . Pn are the elements we

“promise” not to intersect anymore. In point 6 we are making sure that either (sn,Fn ∪ {α}) is not a condition of R(A�α)
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or it is compatible with an element of R(A<γn ) since if (z,G), r satisfy the conditions from above then (r,G ∪F∪{α}) will
be a common extension of (z,G) and (sn,Fn ∪ {α}).

Assume we have defined everything up to n, let’s define Pn, An
α and mn . Let P ′

n = ⋃
i<n Pi ∪ {Aδn }, An′

α = ⋃
i<n Ai

α . First,
we find ξ ∈ Xβn and η ∈ Yβn such that Aξ , Aη /∈ P ′

n (this may be done easily since Xβn , Yβn are infinite and P ′
n is finite).

Define An′′
α an end extension of An′

α such that An′′
α ∩ Aξ , An′′

α ∩ Aη � n and with the property that An′′
α ∩ Aν ⊆ An′

α for all
Aν ∈ P ′

n . We must now take care of point 6. Take (sn,Fn) and if there is B ∈ Fn such that B ∩ An′′
α � |sn| we just let

An
α = An′′

α ,Pn = P ′
n ∪Fn and mn > max(An

α) and we are done. Moreover, if there is B ∈ Fn such that B /∈ P ′
n we just take

An
α and end extension of An′′

α such that B ∩ An
α � |sn| and we define Pn =P ′

n ∪Fn and mn > max(An
α) and the requirements

are fulfilled.
So assume B ∩ An′′

α ⊆ |sn| for all B ∈ Fn and Fn ⊆ Pn . To simplify the notation name s = sn and F =Fn . With out
loosing generality, we may assume An′′

α ⊆ |s| (if not, just extend s). Naturally, there is γn � ν < α such that (s,F) ∈R(A�ν)

so by our recursion hypothesis, there is (z,G) ∈R(A<γn ) that is compatible with (s,F). Let r be such that (r,F ∪ G) is a
common extension and define Pn =P ′

n ∪ G , mn > max{An
α, |r|} and An

α = An′′
α and we are finally done. �

In particular, there may be schizophrenic families in models of CH, however we will now show that the continuum
hypothesis is not sufficient for the existence of a schizophrenic family. This will be done with the aid of the P -ideal dichotomy
(see [2] and [15]). Recall than an ideal I is a P -ideal if for every {Yn |∈ ω} ⊆ I there is a Y ∈ I that contains mod fin
every Yn .

PID) If I ⊆ [ω1]�ω is a P -ideal then one of the following holds,
�) There is X ∈ [ω1]ω1 such that [X]ω ⊆ I .

��) There is a partition ω1 = ⋃
Sn such that [Sn]ω ∩ I = ∅ for every n ∈ ω.

PID is known to be consistent with CH (see [2, Section 3]). Given B = {Bα | α ∈ ω1} and C = {Cα | α ∈ ω1} we call
X ⊆ ω1 a partial separator if there is m ∈ ω such that if α,β ∈ X then Bα ∩ Cβ ⊆ n. Therefore, A is partially separated if any
two disjoint uncountable subsets have an uncountable partial separator. Applying the same ideas as in [2, Theorem 2.2] we
prove:

Theorem 3.8. If PID holds and A is an AD of size ω1 , then either A is partially separated or it contains a Luzin gap.

Proof. Let B = {Bα | α ∈ ω1} and C = {Cα | α ∈ ω1} be two disjoint subsets of A. We will prove that either there is a Luzin
gap contained in B,C or they have an uncountable partial separator. Given X ⊆ ω1 and n ∈ ω define

Xn(α) = {
ξ ∈ X ∩ α

∣∣ (Bξ ∩ Cα) ∪ (Bα ∩ Cξ ) ⊆ n
}
.

Now, let I be the set of all X ∈ [ω1]�ω such that if α � sup(X) and n ∈ ω, then Xn(α) is finite. It is easy to see that I is
an ideal and for the moment assume it is a P -ideal. Using PID either there is an uncountable X ⊆ ω1 such that [X]ω ⊆ I
or there is an uncountable S such that [S]ω ∩ I = ∅. We will see that if the first option holds, then B,C contains a Luzin
gap and if the second then we get an uncountable partial separator. Without loss of generality, we may assume that there
is n ∈ ω such that Bα ∩ Cα ⊆ n for all α ∈ ω1.

Assume first that there is X ∈ [ω1]ω1 such that [X]ω ⊆ I and define h : X → [X]<ω by h(α) = Xn(α) ⊆ α. By a standard
use of the pressing down lemma, there is S ⊆ X stationary (stationary in X , not necessary in ω1) such that h is constant
on S . It is immediate that {Bα | α ∈ S}, {Cα | α ∈ S} form a Luzin gap.

Now assume there is an uncountable S such that [S]ω ∩ I = ∅, we want to show that S contains an uncountable partial
separator for B and C . Assume this is not the case, let M ⊆ S be a maximal partial separator, so it is countable. Pick
γ ∈ S such that M ⊆ γ . Since γ /∈ M then there is αm ∈ M such that (Bαm ∩ Cγ ) ∪ (Bγ ∩ Cαm ) is not contained in m. Let
X = {αm | m ∈ ω} ∪ {γ } ⊆ S , since X /∈ I then there is m ∈ ω such that Xm(γ ) is infinite, but this is clearly a contradiction.
So we conclude there must be an uncountable partial separator.

To finish the proof, we only need to show that I is indeed a P -ideal. Let Y 0 ⊆ Y 1 ⊆ Y 2 ⊆ · · · ∈ I and α = sup(
⋃

n∈ω Y n).
Let α + 1 = {αn | n ∈ ω} and define the set:

Y 0 \ Y 0
0 (α0)

⋃ (
Y 1 \ Y 1

1 (α0) ∪ Y 1
1 (α1)

)

⋃ (
Y 2 \ Y 2

2 (α0) ∪ Y 2
2 (α1) ∪ Y 2

2 (α2)
)

...
...

It is easy to see that this set belongs to I and it is a pseudounion of the Y n . �
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So we may conclude the following,

Corollary 3.9. There is a model of C H without schizophrenic families.
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[6] T. Bartoszyński, H. Judah, Set Theory. On the Structure of the Real Line, A.K. Peters, Ltd., 1995.
[7] Alan Dow, Sequential order under PFA, Canad. Math. Bull. 54 (2) (2011) 270–276.
[8] Alan Dow, Saharon Shelah, Martin’s axiom and separated mad families, pre-print, 2012.
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