
Topology and its Applications 305 (2022) 107871
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

More on MAD families and P -points ✩

S. Garcia-Ferreira, O. Guzmán ∗

Centro de Ciencias Matemáticas, UNAM, Mexico

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 July 2021
Received in revised form 6 October 
2021
Accepted 6 October 2021
Available online 9 October 2021

Keywords:
MAD families
P-points
Franklin space
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first author.
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1. Introduction

Given a MAD family A, its Mrówka-Isbell space Ψ(A) is defined as follows: the underlying space is ω∪A, 
the points of ω are isolated, and if A ∈ A, it has a local base of the form 

{
(A \ F ) ∪ {A} | F ∈ [ω]<ω}. It 

is easy to see that Ψ(A) is a Hausdorff, first countable, separable, locally compact, zero dimensional space. 
These spaces are important not only in set theory and topology, but also in other areas like functional 
analysis (in the study of Banach spaces and Banach algebras). The reader can learn more on Mrówka-Isbell 
spaces in [11] or [13].

Since Ψ(A) is locally compact, we can take its Alexandroff (one-point) compactification (see [17]). This 
space is denoted as Fr(A) and is called the Franklin space of A. We need to recall the following notion:

Definition 1. Let X be a topological space. We say that X is Fréchet–Urysohn if for every a ∈ X and A ⊆ X, 
if x ∈ A, then there is a sequence 〈xn〉n<ω in A such that limn→∞ xn = x.

If A is a MAD family, it is easy to see that Fr(A) is not a Fréchet–Urysohn space (the maximality of A
implies that the point at infinity cannot be the limit point of a convergent sequence of natural numbers). 
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This suggests to look at some weakening of the Fréchet–Urysohn property that may hold for the Franklin 
space of a MAD family.

Definition 2 (Folklore). Let U be an ultrafilter on ω and X a topological space.

1. Let x ∈ X and 〈xn〉n∈ω be a sequence of elements of X. We say that x is the U-limit of 〈xn〉n∈ω

(denoted by x = limU 〈xn〉n∈ω) if for every open neighborhood V ⊆ X of x, the set {n < ω | xn ∈ V }
belongs to U .

2. We say that X is Fréchet–Urysohn with respect to U (for short, X is FU(U)) if for every x ∈ X and 
A ⊆ X, if x ∈ A, then there is a sequence 〈xn〉n∈ω in A such that x = limU 〈xn〉n∈ω.

Given a MAD family A we may wonder if Fr(A) is FU(U) for some an ultrafilter U on ω. In [4] Boldjiev 
and V. I. Malykhin proved the following:

Proposition 3 ([4]). If A is a MAD family and U is not a P -point, then Fr(A) is FU(U).

In fact, by combining results of [4] and [8], in [9] it was pointed out the following:

Proposition 4 (CH). Let U be an ultrafilter. The following are equivalent:

1. U is a P -point.
2. There is a MAD family A such that Fr(A) is not FU(U).

By the above results, the question whether Fr(A) is FU(U) is only interesting in the case where U is a 
P -point. A famous theorem of S. Shelah establishes that it is consistent that there are no P -points (see [2], 
see also [7] for a different model). In this way, it is consistent that Fr(A) is FU(U) for every ultrafilter. The 
following problem was suggested by V. I. Malykhin and S. Garcia-Ferreira:

Problem 5 ([8]). Does CH imply that for every MAD family A, there is a P -point U such that Fr(A) is 
FU(U)?

In the paper [9], the authors made an important advanced on this problem:

Proposition 6 ([9]). Let V |= CH. If A is a K-uniform MAD family, then there is a P -point U such that 
Fr(A) is FU(U).

The definition of a K-uniform MAD family will be reviewed in the next section.
In this paper, we will provide a complete answer to the Problem 5. Concretely, we will prove that the 

Continuum Hypothesis implies that for every MAD family A, there is a P -point U such that Fr(A) is FU(U).

2. Preliminaries

An infinite family A ⊆ [ω]ω is almost disjoint (AD) if the intersection of any two different elements of 
A is finite, a MAD family is a maximal almost disjoint family. For A, B ∈ [ω]ω, by A ⊆∗ B we mean that 
A \ B is finite and we say that A is an almost subset of B. An ultrafilter is a maximal filter on ω. In this 
note, all ultrafilters are assumed to be non-principal. An ultrafilter U on ω is a P -point if for every H =
{An | n < ω} ⊆ U there is B ∈ U such that B ⊆∗ An for every n < ω (in this case, we say that B is a 
pseudointersection of H).
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We assume that ideals on ω contain all finite sets, but not ω (i.e. all ideals are non-trivial). If Y ⊆ [ω]ω

by 〈Y〉 we denote the ideal generated by Y (and finite sets). For an AD family A, by I (A) we denote the 
ideal generated by A and by I(A)∗ we denote the dual filter. If I is an ideal, we define I+ = ℘ (ω)�I.

Definition 7. Let U and V ultrafilters on ω.

1. We say f : ω −→ ω is a Rudin-Keisler function from (ω,U) to (ω,V) if for every A ⊆ ω the following 
holds:

A ∈ V if and only if f−1 (A) ∈ U

2. We say V ≤RK U if there is a Rudin-Keisler function from (ω,U) to (ω,V).

Given a function f : ω −→ ω and an ultrafilter U , define f(U) = {A | f−1 (A) ∈ U}. It is not hard to 
see that f(U) is an ultrafilter and it is generated by the family {f [B] | B ∈ U} (see [17]). Note that if U
and V are ultrafilters, then V ≤RK U if and only if there is a function f : ω −→ ω such that V = f(U). 
The Rudin-Keisler order can also be thought as follows: Given a function f : ω −→ ω, we may view it as 
a continuous function f : ω −→ βω, so we can find a (unique) continuous extension f : βω −→ βω. In this 
way, it is not hard to see that f : ω −→ ω is a Rudin-Keisler function from (ω,U) to (ω,V) if and only if 
V = f(U).

Definition 8. Let A and B be two countable sets, I, J ideals on X and Y respectively and f : Y −→ X a 
function.

1. We say f is a Katětov function from (Y,J ) to (X, I) if f−1 (A) ∈ J for every A ∈ I.
2. We define I ≤K J (I is Katětov smaller than J or J is Katětov above I) if there is a Katětov function 

from (Y,J ) to (X, I).

A MAD family A is called K-uniform if I(A) � X ≤K I(A) for every X ∈ I(A)+. In order to learn more 
about the Katětov order, the reader is referred to [15], [14], [1] or [12]. As mentioned before, P. Szeptycki and 
S. Garcia-Ferreira proved (under the Continuum Hypothesis), that if A is a K-uniform MAD family, then 
there is a P -point U such that Fr(A) is FU(U). This was an important advance in solving the Problem 5. 
Nevertheless, it does not fully answer the problem since it is known that there are MAD families that are 
not K-uniform. However, it is interesting to note that it is unknown if K-uniform MAD families exist in
ZFC (they exist under certain hypothesis like CH or p = c).

The main tool in order to decide if a Franklin space is FU(U) (for an ultrafilter U) is the following result 
from [8]:

Proposition 9 ([8]). Let A be a MAD family and U an ultrafilter. The following are equivalent:

1. The space Fr(A) is not FU(U).
2. There is C ∈ I (A)+ such that for every ultrafilter V, if V ≤RK U and C ∈ V, then I(A)∗ � V.

We rewrite this result in a more convenient way for us:

Proposition 10 ([8]). Let A be a MAD family and U an ultrafilter. The following are equivalent:

1. The space Fr(A) is FU(U).
2. For every C ∈ I (A)+ there is V ≤RK U such that C ∈ V and I(A)∗ ⊆ V.
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Using this result, we will prove that the Continuum Hypothesis implies that for every MAD family A, 
there is a P -point U such that Fr(A) is FU(U). For the convenience of the reader we follow the following 
conventions: A and B we will denote AD families, U and V will denote ultrafilters and p, q, r will denote 
conditions in the forcing that we will define in the next section.

3. MAD families and P-points

In this section we solve Problem 5. In fact, we will prove that for every MAD family A there is a σ-closed 
forcing notion PA such that PA adds a P -point Ugen such that Fr(A) is FU(Ugen). Furthermore, it will 
be clear by the construction that in order to build an ultrafilter with those properties, we only need to 
intersect c many open dense subsets of PA (where c denotes the size of the continuum). It follows that the 
construction can be carried out under the Continuum Hypothesis.

Definition 11. Let R be a family of ideals on ω. We say that R is a compatible set of ideals if 
⋃
{I | I ∈ R}

generates an ideal (equivalently, for every I1, ..., In ∈ R, the family I1 ∪ ... ∪ In generates an ideal).

We will say that two ideals I and J are compatible if {I,J } is a set of compatible ideals. If R is a 
collection of AD families, we will say that R is a compatible set of AD families if the family of its respective 
ideals is compatible. We now introduce the following forcing notion:

Definition 12. Define P as the set of all p = (S, Y) with the following properties:

1. S ∈ [ω]ω.
2. Y = {An | n ∈ ω} is a countable collection of compatible AD families. Let I(Y) be the ideal generated 

by 
⋃

n∈ω
I(An).

3. S ∈ I+
Y .

If p = (Sp, Yp) and q = (Sq, Yq) are in P , define p ≤ q if the following holds:

1. Yq ⊆ Yp.
2. Sp \ Sq ∈ I(Yp).

If we want to force with P , we must first prove the following:

Lemma 13. (P , ≤) is a preorder.

Proof. We only need to see that the relation is transitive. Let p = (Sp, Yp), q = (Sq, Yq) and r = (Sr, Yr)
be elements in P such that p ≤ q ≤ r. We need to prove that p ≤ r. We know the following:

1. Yr ⊆ Yq and Yq ⊆ Yp.
2. Sq \ Sr ∈ I(Yq) and Sp \ Sq ∈ I(Yp).

From the first item it follows that Yr ⊆ Yp. Now, note that Sp \ Sr ⊆ (Sp \ Sq) ∪ (Sq \ Sr). Furthermore, 
since I(Yq) ⊆ I(Yp) we get that Sp \ Sr ∈ I(Yp) by the item 2 above. �

The following is a very important notion in the theory of ideals on countable sets:

Definition 14. Let I be an ideal. We say that I is a P+-ideal if for every ⊆-decreasing sequence H =
{Bn | n ∈ ω} ⊆ I+, there is A ∈ I+ that is a pseudointersection of H.
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The following is a very well known result. The reader may consult [13] for a proof.

Proposition 15. If A is an AD family, then I(A) is a P+-ideal.

We will now prove the following:

Proposition 16. Let I be an ideal and B an AD family such that I and I(B) are compatible. If I is P+, 
then J = 〈I ∪ I(B)〉 is P+.

Proof. Let X = {Xn | n ∈ ω} ⊆ J+ be an ⊆-decreasing sequence. We need to prove that X has a pseu-
dointersection in J+. The following is a trivial remark, but we need to keep it in mind:

If Y ∈ I+ is a pseudointersection of X with Y ∈ J , then
there are B ∈ B and C ⊆ B ∩ Y such that C ∈ I+.

We will proceed by contradiction, so assume that X does not have a pseudointersection in J+.
Given A ∈ I(B) and m ∈ ω, define Xm (A) = {Xn \ A | n > m}. It is clear that Xm (A) is a countable 

subset of J +. We will now recursively find 〈Yn, Bn, Cn〉n∈ω such that for every n ∈ ω, the following 
conditions hold:

1. Yn ∈ I+ and Yn ⊆ Xn.
2. Yn is a pseudointersection of Xn(

⋃

i<n

Bi).

3. Bn ∈ B and Bn 
= Bm whenever n 
= m.
4. Cn ⊆ Bn ∩ Yn and Cn ∈ I+.

The construction is essentially trivial. First, we take Y0 ⊆ X0 a pseudointersection of X such that Y0 ∈ I+. 
Since Y0 ∈ J , we choose B0 ∈ B and C0 ⊆ B0 ∩ Y0 with C0 ∈ I+ (recall the remark at the beginning of 
the proof). Assume we have already defined Yn, Bn and Cn. Let Yn+1 ⊆ Xn+1 be a pseudointersection of 
Xn+1(

⋃

i≤n

Bi) such that Yn+1 ∈ I+. Since Yn+1 ∈ J , we choose Bn+1 ∈ B and Cn+1 ⊆ Bn+1 ∩ Yn+1 with 

Cn+1 ∈ I+.
Define W =

⋃

n∈ω
Cn and note that it is a pseudointersection of X . We claim that W ∈ J +. For this, it is 

enough to prove that if D ∈ I and E ∈ I (B), then W is not contained in D ∪ E. Since E ∈ I(B), we can 
find m ∈ ω such that E ∩Cm is finite. Since Cm ∈ I+, we know that Cm is not almost cover by D, so W is 
not covered by D ∪E. In this way, W ∈ J+ and is a pseudointersection of X , which is a contradiction. �

We can now prove the following lemma:

Lemma 17. Let R = {An | n ∈ ω} be a compatible collection of AD families. The ideal J = 〈
⋃

n∈ω
I(An)〉 is 

a P+-ideal.

Proof. For every n ∈ ω, let In = 〈
⋃

i≤n

I(Ai)〉 and K = {In | n ∈ ω}. Clearly K is a compatible set of ideals. 

Furthermore, by the Proposition 16, every In is a P+-ideal. Let {Bn | n ∈ ω} be a decreasing sequence of 
J +-sets. Since each In is a P+-ideal, for every m ∈ ω, we can find Am with the following properties:

1. Am ∈ I+
m.

2. Am is a pseudointersection of {Bn | n ∈ ω}.
3. Am ⊆ Bm.



6 S. Garcia-Ferreira, O. Guzmán / Topology and its Applications 305 (2022) 107871
Let A =
⋃

m∈ω
Am, it is easy to see that A is a pseudointersection of {Bn | n ∈ ω} and A ∈ J+. �

By identifying ℘ (ω) with 2ω and providing this latter with the product topology, we can talk about the 
topological properties of ideals, such as being Borel or being meager. Understanding the topological nature 
of ideals is fundamental in order to study them.

Definition 18. Let I be an ideal on ω and P = {Pn | n ∈ ω} a partition of ω into finite sets. We say that P
is a Talagrand partition for I if for every X ⊆ ω, if X contains infinitely many elements of P, then X ∈ I+.

The following is a classical theorem in the theory of ideals. The reader may consult [2] for a proof:

Theorem 19 (Talagrand, Jalali-Naini). Let I be an ideal on ω. The following are equivalent:

1. I is meager.
2. I has a Talagrand partition.

The following result is well known, we prove it here for the sake of completeness:

Lemma 20. If I is a meager ideal, then there is an infinite partition of ω in I+ pieces.

Proof. Let P = {Pn | n ∈ ω} be a Talagrand partition for I. Choose any {Bn | n ∈ ω} partition of ω such 
that each Bn is infinite. For every n ∈ ω, define An =

⋃

i∈Bn

Pi. It is clear that {An | n ∈ ω} has the desired 

properties. �
By the results above, it follows that if p = (S, Y) ∈ P , then I(Y) is a P+-ideal. Furthermore, since the 

ideal of every AD family is meager, it follows that I(Y) is meager as well.
Let Q be a partial preorder. Recall that Q is σ-closed if every countable decreasing sequence of conditions 

in Q has a lower bound. Armed with the previous results, we can prove the following:

Lemma 21. P is σ-closed.

Proof. Let 〈(Sn, Yn)〉n∈ω be a decreasing sequence of conditions of P . Define Y =
⋃
Yn. We know that Y is 

a countable collection of AD families. Note that I(Y) is an ideal. We now have the following:

Claim 22. Sn ∈ I(Y)+ for every n ∈ ω.

Let n ∈ ω, it is enough to argue that Sn ∈ I(Ym)+ for every m ∈ ω. If m ≤ n, by definition we know 
that Sn ∈ I(Yn)+. Since I(Ym) ⊆ I(Yn), we are done in this case. Now, assume that n < m. We know 
that Sm \ Sn ∈ I(Ym). If Sn ∈ I(Ym) we would have that Sm ∈ I(Ym), but by definition we know that 
this is not the case.

By Lemma 17, I(Y) is a P+-ideal, so there is Z ∈ I(Y)+ a pseudointersection of 〈Sn〉n∈ω. Let p = (Z, Y), 
it is clear that p is a lower bound for 〈(Sn, Yn)〉n∈ω. �

The following notion will be very important for the rest of the paper:

Definition 23. Let G ⊆ P be a generic filter. In the extension V [G], define Ugen = {S | ∃Y((S, Y) ∈ G)}.

We will refer to Ugen as the generic ultrafilter. Of course, we need to prove first that U̇gen will be an 
ultrafilter (in fact a P -point) in the extension. The following result will help us to achieve that:
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Lemma 24. Let p = (S, Y) ∈ P and W ∈ [ω]ω. The following two statements are equivalent:

1. p �“W ∈ U̇gen”.
2. S \W ∈ I(Y).

Proof. We will first prove that 1 implies 2. We argue by contradiction, assume that p �“W ∈ U̇gen”, but 
S \ W /∈ I(Y), so S \ W ∈ I(Y)+. Let q = (S \ W, Y), this is a condition extending p. Let G ⊆ P be a 
generic filter such that q ∈ G. Since r �“W ∈ U̇gen”, we know that W ∈ U̇gen [G]. In this way, there must 
be a condition r = (W, X ) ∈ G.

Since q, r ∈ G and G is a filter, there must be q = (R, Z) ∈ G extending both q and r. Since q ≤ q, we 
know that R \ (S \W ) ∈ I(Z). Furthermore, since R∩W ⊆ R \ (S \W ), we know that R∩W is in I(Z) as 
well. Since q ≤ r, we have that R \W ∈ I(Z). In this way, we get that R ∈ I(Z), which is a contradiction 
(since q is a condition).

We will now prove that 2 implies 1. Once again, we argue by contradiction. Assume that S \W ∈ I(Y)
but unfortunately p does not force that “W ∈ U̇gen”. In this way, we can find q = (Z, X ) ≤ p such that 
q �“W /∈ U̇gen”. Since q extend p, we know that Z \ S ∈ I(X ). Now we have the following:

1. Z ∈ I(X )+.
2. Z ⊆ (S \W ) ∪ (Z \ S) ∪ (Z ∩W ).
3. S \W , Z \ S ∈ I(X ).

It follows that Z ∩W ∈ I(X )+. In this way, r = (Z ∩W, X ) is a condition extending q. However, r also 
extends (W, X ), so r is an extension of q forcing that W is in U̇gen, which is a contradiction. �

We say that a family R ⊆ [ω]ω is upwards closed if whenever A ∈ R and A ⊆ B, we have that B ∈ R. 
We can now prove the following:

Proposition 25.

1. U̇gen is forced to be upwards closed.
2. If p = (S, Y) ∈ P , then p �“{S} ∪ I(Y)∗ ⊆ U̇gen”.
3. U̇gen is forced to be a P -point.

Proof. We will first prove that U̇gen is forced to be upwards closed. It is enough to show that if p = (S,Y) ∈
P , A, B ∈ [ω]ω are such that A ⊆ B and p �“A ∈ U̇gen”, then p �“B ∈ U̇gen”. Since p �“A ∈ U̇gen”, by 
Lemma 24, we know that S \A ∈ I(Y). Since A ⊆ B, we have that S \B ∈ I(Y) and again by Lemma 24, 
we get that p �“B ∈ U̇gen”.

We will now show that if p = (S, Y) ∈ P , then p � “{S} ∪ I(Y)∗ ⊆ U̇gen”. By definition, we know that 
p �“S ∈ U̇gen”. Now, let B ∈ I(Y)∗. Clearly we have that S \ B ∈ I(Y), so by the Lemma 24 we get that 
p �“B ∈ U̇gen”.

Now we need to prove that U̇gen is forced to be a P -point. We already know that U̇gen is forced to be 
closed upwards. We will now prove that it will be closed under intersections. It is enough to show that if 
p = (S,Y) ∈ P , A, B ∈ [ω]ω are such that p �“A, B ∈ U̇gen”, then p �“A ∩ B ∈ U̇gen”. By the Lemma 24
we know that S \ A, S \B ∈ I(Y). In this way, we get that S \ (A ∩B) ∈ I(Y), which we know it implies 
that p �“A ∩B ∈ U̇gen”.

Now we will prove that U̇gen is forced to be an ultrafilter. Note that by the Lemma 24, U̇gen will not 
contain any finite set. Since P is σ-closed, we only need to prove that for every A ⊆ ω (with A in the ground 
model) and p = (S, Y) ∈ P , there is q ≤ p such that either q �“A ∈ U̇gen” or q �“ω \ A ∈ U̇gen”. Since 
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S ∈ I(Y)+ we know that one of q1 = (A ∩S, I(Y)) or q1 = (S \A, I(Y)) is a condition (maybe both). Since 
U̇gen is forced to be upward closed, we are done.

Finally, we will prove that U̇gen will be a P -point. For this (since P is σ-closed), it is enough to prove 
that if p = (S, I(Y)) ∈ P and {Bn | n ∈ ω} is a decreasing sequence such that p �“Bn ∈ U̇gen”, then there 
are A a pseudointersection of {Bn | n ∈ ω} and q ≤ p such that q �“A ∈ U̇gen”. Since p �“Bn ∈ U̇gen” for 
every n ∈ ω, it follows that S ∩Bn ∈ I(Y)+ for every n ∈ ω. We know that I(Y) is a P+-ideal, so we can 
find Z ⊆ S such that Z ∈ I(Y)+ and Z ⊆∗ Bn for every n ∈ ω. It follows that q = (Z, Y) is the desired 
condition. �

If A is a MAD family, define PA = {p ∈ P |p ≤ (ω, {A})}. Note that forcing with PA adds a P -point 
extending I∗(A). We now have the following:

Theorem 26. If A is a MAD family, then PA �“Fr(A) is FU(U̇gen)”.

Proof. Let p = (S, Y) ∈ PA and C ∈ I(A)+. By extending p if necessary, we may assume that either 
p �“C ∈ U̇gen” or p �“C /∈ U̇gen”. In case that p �“C ∈ U̇gen”, it follows that U̇gen is forced to have the 
desired properties. Assume that p �“C /∈ U̇gen”, by extending if necessary, we may assume that S ∩C = ∅.

Claim 27. There is a bijection f : S −→ C such that I(Y) and the ideal J =
{
f−1 (A) | A ∈ I(A)

}
are 

compatible. Furthermore, S is not in the ideal generated by I(Y) and J .

Let {An | n ∈ ω} ⊆ I(A) be a partition of C such that if n 
= m, then An and Am are almost contained 
in different elements of A (remember that C ∈ I(A)+). Since IY � S is a meager ideal, by Lemma 20, we 
can find {Xn | n ∈ ω} ⊆ I (Y)+ a partition of S. Choose f : S −→ C a bijection such that f [Xn] = An. 
We claim that f is as desired. Let E ∈ I(A) and D ∈ I(Y), we need to prove that S � f−1 (E) ∩D. Since 
E ∈ I(A), we know that there is n ∈ ω such that E ∩ An is finite, so f−1 (E) ∩ Xn is finite too. Since 
Xn ∈ I(Y)+, it can not be almost covered by D, so S can not be almost covered by f−1 (E) ∩D.

Since f is a bijection, we can find B an AD family such that I(B) = J . By the above claim, we know that 
q = (S, Y∪{B}) is a condition extending p. Let g : ω −→ ω a bijection extending f . Let V̇ be a PA-name 
for g(U̇gen). In other words, V̇ is the name for {X | g−1 (X) ∈ U̇gen}. We claim that q forces that V̇ has the 
desired properties.

Since q �“S ∈ U̇gen” and g−1 (C) = S, it follows that q �“C ∈ V̇”. It is clear that q also forces that V̇ is 
Rudin-Keisler below U̇gen. Now, since q �“I (B)∗ ⊆ U̇gen”, it follows that q �“I (A)∗ ⊆ V̇”.

Note that A remains a MAD family since PA does not add new reals.
By the Proposition 10, we get the desired conclusion. �
We can now answer the problem of Malykhin and the first author:

Theorem 28 (CH). For every MAD family A, there is a P -point U such that Fr(A) is a FU(U)-space.

Proof. Let A be a MAD family. By the Theorem 26, we know that PA forces that Fr(A) is a FU(U̇gen)-space. 
However, it is clear by the proof that in order to construct U̇gen, we only need to meet c many dense sets. 
Since PA is σ-closed, we can construct such ultrafilter using the Continuum Hypothesis. �
4. Open questions

In this last section, we will state some problems that we do not know how to solve. The following question 
was motivated by Lemma 17:
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Problem 29. Let R = {In | n ∈ ω} be a family of compatible P+-ideals. Is the ideal J = 〈
⋃

n∈ω
In〉 a P+-ideal?

We proved this is indeed the case where the ideals are generated by AD families, but we were unable to 
prove the general case.

We may wonder what happens when we are no longer in the realm of the Continuum Hypothesis. Of 
course, the question is only interesting in models where there are P -points. Recall that the dominating 
number (denoted by d) is the smallest size of a family D ⊆ ωω that is cofinal under the eventual domination 
(the reader may consult [3] to learn more about d and other cardinal invariants of the continuum). The 
following is a classical result of Ketonen: ([16], see also [2])

Theorem 30 ([16]). The following statements are equivalent:

1. d = c.
2. P -points exist generically.1

In particular, there are many P -points if d is equal to c. It is then natural to ask the following:

Problem 31. Does d = c imply that for every MAD family A, there is a P -point U such that Fr (A) is FU(U)?

We conjecture that the previous problem has a positive answer. The following question was suggested to 
us by the referee, which we think is very interesting:

Problem 32. Is there a model of ZFC in which there are P -points, yet there is a MAD family A for which 
there is no P -point U such that Fr(A) is FU(U)?
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