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ABSTRACT

We answer an old question of Michael Hrusak by constructing a + Ramsey
MAD family without the need of any additional axioms beyond ZFC. We
also prove that every Miller indestructible MAD family is + Ramsey; this
improves a result of Michael Hrugak

1. Introduction

A family A C [w]¥ is almost disjoint (AD) if the intersection of any two
different elements of A is finite, a MAD family is a maximal almost disjoint
family Almost disjoint families and MAD families have become very important
in set theory, topology and functional analysis (see [7]) It is very easy to prove
that the Axiom of Choice implies the existence of MAD families However, con
structing MAD families with special combinatorial or topological properties is a
very difficult task without an additional hypothesis beyond ZFC Constructing
models of set theory for which certain kinds of MAD families do not exist is
very difficult We would like to mention some important examples regarding
the existence or non existence of special MAD families:
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(1) (Simon [21]) There is a MAD family which can be partitioned into two
nowhere MAD families
(2) (Mrowka [16]) There is a MAD family for which its ¥ space has a unique
compactification
(3) (Raghavan [17]) There is a van Douwen MAD family
(4) (Raghavan [18]) There is a model with no strongly separable MAD fam
ilies
If 7 is an ideal on w, then by ZT we denote the setp(w)\Z and its elements
are called Z positive sets If A is an AD family, by Z(A) we denote the ideal
generated by A. In [12] Adrian Mathias proved that if A is a MAD family then
Z(A)T is a happy family, which is a kind of Ramsey like property In [6] Michael
Hrugak introduced a stronger Ramsey property:

Definition 1: (1) By A+ we denote the set of all X C w such that AU{X}

is almost disjoint

(2) If A is an AD family, by Z(A)*+ we denote the set of all X C w such
that there is B € [A]“ such that | X N B| = w for every B € B.

(3) Let X C [w]“, we say a tree T C w<%¥ is a X branching tree if
sucr(s) € X for every s € T (where sucp(s) ={ncw|s™(n) € T})

(4) An AD family A is + Ramsey if for every Z(A)" branching tree T,
there is f € [T] such that im(f) € Z(A)*.

In [6] it is proved that there is a MAD family that is not + Ramsey On the
other hand, + Ramsey MAD families can be constructed under b=c, cov(M)=c,
a < cov(M) or O(b) (see [6] and [8]) Michael Hrusak asked the following:

Problem 2 (Hrugak [6]): Is there a + Ramsey MAD family in ZFC?

In this note we will provide a positive answer to this question In [20] (see also
[7] and [15]) Saharon Shelah developed a novel and powerful method to construct
MAD families He used it to prove that there is a completely separable MAD
family if s < a or a < s and a certain PCF hypothesis holds Our technique for
constructing a + Ramsey MAD is based on the technique of Shelah (however,
in this case we were able to avoid the PCF hypothesis) It is worth mentioning
that the method of Shelah has been further developed in [19] and [15] where
it is proved that weakly tight MAD families exist under s < b. Our notation is
mostly standard; the definition and basic properties of the cardinal invariants
of the continuum used in this note can be found in [2]
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2. Preliminaries

A MAD family A is completely separable if for every X € Z(A)*" there is
A € Asuch that A C X. This type of MAD families was introduced by Hechler
in [5] A year later, Shelah and Erdds asked the following question:

Problem 3 (Erdés Shelah): Is there a completely separable MAD family?

It is easy to construct models where the previous question has a positive
answer It was shown by Balcar and Simon (see |1]) that such families exist
assuming one of the following axioms: a=r¢, b =10, 2 <a and s = wy. In [20]
(see also [7] and [15]) Shelah developed a novel and powerful method to con
struct completely separable MAD families He used it to prove that there are
such families if either s < a or a < s and a certain (so called) PCF hypothesis
holds (which holds, for example, if the continuum is less than R,) Since the
construction of Shelah of a completely separable MAD family under s < a is
key for our construction of a + Ramsey MAD family, we will recall it on this
section This exposition is based on [15] and |7]

Definition 4:

(1) We say that S splits X if SN X and X \ S are both infinite

(2) S Clw]¥ is a splitting family if for every X € [w]* there is S € S such
that S splits X.

(3) Let S € [w]¥ and P = {P, | n € w} be an interval partition We say S
block-splits P if both of the sets

{n|P,CS} and {n|P,NS=0}
are infinite
(4) A family S C [w]“ is called a block-splitting family if every interval
partition is block split by some element of S.

Recall that the splitting number s is the smallest size of a splitting family
It is well known that s has uncountable cofinality; it is below the dominating
number 9 and independent from the unbounding number b (see [2]) Regarding
the smallest size of a block splitting family we have the following result of
Kamburelis and Weglorz:

PROPOSITION 5 ([10]): The smallest size of a block splitting family is max{b,s}.

Some other notions of splitting are the following:
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Definition 6: Let S € [w]* and X ={X,, | n € w} C [w]*

(1) We say that S w splits X if S splits every X,.

(2) We say that S (w,w) splits X if both the sets {n | | X, N S| =w} and
{n | X, N (w\S)| = w} are infinite

(3) We say that & C [w]¥ is an w splitting family if every countable
collection of infinite subsets of w is w split by some element of S.

(4) We say that S C [w]“ is an (w,w) splitting family if every countable
collection of infinite subsets of w is (w,w) split by some element of S.

It is easy to see that every block splitting family is an w splitting family The
following is a fundamental result of Mildenberger, Raghavan and Steprans:

PROPOSITION 7 (|15]): There is an (w,w) splitting family of size s.

The key combinatorial feature of (w,w) splitting families is the following re
sult of Raghavan and Steprans:

PRrOPOSITION 8 ([19]): If § is an (w,w) splitting family, A an AD family and
X € Z(A)*, then there is S € S such that X NS, X N (w\S) € Z(A)*.

Given X C w we denote X° = X and X! = w\ X. By the previous result,
if A is an AD family, X € Z(A)* and S = {5, | @ < s} is an (w,w) splitting
family, then there are o < s and 75 € 2 such that:

A
(1) I B < a then X N S5~ e 7().
(2) XNSy, X\ Sy eZ(AT.
Clearly 7% € 2<% is unique, and if Y € [X]* N Z(A)T then 75! extends 7¢.
We can now prove the main result of this section:

THEOREM 9 (Shelah [20]): If s < a, then there is a completely separable MAD
family

Proof Let [w]¥ = {X4 | @ < ¢}. We will recursively construct A = {A, | o < ¢}
and {0, | @ < ¢} C 2<% such that for every a < ¢ the following holds (where
Ao = {A¢ | € < a}):

(1) A, is an AD family

(2) If Xo € Z(Aq) T then A, C X,.

(3) If o # 8 then o, # 0p.

(4) If € < dom(o) then A C* 7).
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It is clear that if we manage to do this, then we will have achieved to construct
a completely separable MAD family Assume As = {A¢ | £ < 6} has already
been constructed Let X = Xj if X5 € T(As)™, and if X5 € Z(As) let X be
any other element of Z(As)"™ We recursively find {X; | s € 2<%} C Z(As)T,
{ns|s€2%} C 2<% and {as | s € 2<¥} as follows:
(1) Xy =X.
(2) ns = 7'3(45‘5 and a; = dom(n;).
(3) Xe~0=XsNS8,, and X~ = XN (w\ Sa,)-
Note that if ¢ C s, then Xy, C X; and 7; C 1 On the other hand, if s is
incompatible with ¢, then 7, and 7; are incompatible For every f € 2% let
e = nsin:
new
Since s has uncountable cofinality each 1y is an element of 2<°, and if f # ¢ then
ny and 7, are incompatible nodes of 2<°. Since § is smaller than ¢, there is f € 2¢
such that there is no ao < ¢ such that o, extends ny Since {Xyf, | n € w} is
a decreasing sequence of elements in Z(As)", there is Y € Z(As)™ such that
Y C* Xy, for every n € w (see [12] proposition 0 7 or |7] proposition 2)
Letting 8 = dom(ny), we claim that if £ < § then Y N Sgl_nf(g) €I(A) To
prove this, let n be the first natural number such that ¢ < dom(n¢;,) By our
construction we know that Xy, N S;fnf(g) € I(A), and since Y C* Xy}, the
result follows
For every £ < 3 let F € [A]<“ be such that Y N Sglinf(g) C* |J Fe and let
W ={Aq | 0a Cnys}. Let
D=Wu|J Fe
£<pB
and note that D has size less than s, hence it has size less than a. In this way
we conclude that Y | D is not a MAD family, so there is As € [Y]“ that is
almost disjoint with every element of D and define o5 = . We claim that As
is almost disjoint with As. To prove this, let o < §; in case A, € W we already
know A, N As is finite so assume A, ¢ W. Letting £ = A(0s,04) we know that
A, C* Séfga(g) so A, N As C* |J Fy, but since Fy C D we conclude that As is
almost disjoint with |J F¢ and then A, N As must be finite

Recall that an AD family A is nowhere MAD if for every X € Z(A)* there
is Y € [X]“ such that Y is almost disjoint with A. A key feature in the previous
proof is that each As = {A¢ | £ < 0} is nowhere MAD
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The first step to construct a + Ramsey MAD family is to prove that every
Miller indestructible MAD family has this property If A is a MAD family and
P is a partial order, then we say A is P indestructible if A is still a MAD
family after forcing with P. The destructibility of MAD families has become
a very important, area of research with many fundamental questions still open
(the reader may consult [8], [9], or [4] to learn more about the indestructibility
of MAD families and ideals) The following property of MAD families plays a
fundamental role in the study of destructibility:

Definition 10: A MAD family A is tight if for every
{Xp|new CT(A)T
there is B € Z(A) such that B N X, is infinite for every n € w.

In [8] it is proved that every tight MAD family is Cohen indestructible and
that every tight MAD family is + Ramsey We will prove that every Miller
indestructible MAD family is + Ramsey; this improves the previous result since
Miller indestructibility follows from Cohen indestructibility (see [4]) First we
need the following lemma:

LEMMA 11: Let A be a MAD family and T an Z(A)" branching tree Then
there is a subtree S C T with the following properties:
(1) If s € S, there is As € A such that sucs(s) € [A,].
(2) If s and t are two different nodes of S, then As # A; and
sucg(s) Nsucg(t) = 0.

Proof Since T is an Z(A)" branching tree and A is MAD, sucy(t) infinitely
intersects many infinite elements of A for every t € T' Recursively, for every
t € T we choose A; € A and B; € [A; Nsucy ()] such that B; N B; = () and
As # A; whenever t # s. We then recursively construct S C T such that, if
s € S, then sucg(s) = Bs.

With the previous lemma we can now prove the following:
ProposiTION 12: If A is Miller indestructible then A is + Ramsey

Proof Let A be a Miller indestructible MAD family and 7" an Z(A)* branching
tree Let S be an Z(.A) branching subtree of T" as in the previous lemma We
can then view S as a Miller tree Let 7'gen be the name of the generic real and
X the name of the image of 7gen.
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We will first argue that S |- “X ¢ Z(A)” Assume this is not true, so there
is S1 < S and B € Z(A) (B is an element of V) such that Sy IF “X C B
In this way, if ¢ is a splitting node of Sy then sucg, () € B, but note that if
t1 # to are two different splitting nodes of Sy then sucg, (t1) and sucg, (t2) are
two infinite sets contained in different elements of A, so then B € Z(A)™ which
is a contradiction

In this way, X is forced by S to be an element of Z(A)T, but since A is still
MAD after performing a forcing extension of Miller forcing, we then conclude
there are names {A,, | n € w} for different elements of A such that S forces
that X N A, is infinite We then recursively build two sequences {S, | n € w}
and {B,, | n € w} such that for every n € w the following holds:

1) S, is a Miller tree and B,, € A.

2) Sp <8, and if n < m then S,, < S,.

) S, lF “A, = B,” (it then follows that B, # B, if n # m)

) If i <n then stem(S,) N B; has size at least n.

We then define r=|J, __stem(S,,), so clearly r € [S] and im(r)eZ(A)*.

(
(
(3
(4
neEw

The converse of the previous result is not true in general; this will be shown
in Corollary 27 It is known that every MAD family of size less than 0 is Miller

indestructible (see [4]) We can then conclude the following unpublished result
of Michael Hrugak, which he proved by completely different means

COROLLARY 13 (Hrusak): Every MAD family of size less than 0 is + Ramsey
In particular, if a < 0 then there is a + Ramsey MAD family

3. The construction of a +-Ramsey MAD family

In this section we will construct a + Ramsey MAD family without any extra
hypothesis beyond ZFC We will use the construction of Shelah of a completely
separable MAD family; however, the previous result will help us avoid the need
of a PCF hypothesis for our construction From now on, we will always assume
that all Miller trees are formed by increasing sequences If p is a Miller tree, we
denote Split(p) the set of all splitting nodes of p.

Definition 14: Let p be a Miller tree Given f € [p] we define
Sp(p, f) ={f(n) | f I n € Split(p)}

and

[Plspie = {Sp(p, £) | f € [pl}-
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We will need the following definitions:

Definition 15: Let p be a Miller tree and H : Split(p) — w. We then define:
(1) Catch3(H) is the set

{Sp(f.p) | f € ] AF¥n(f I n € Split(p) A f(n) < H(f [ n))}.
(2) Catchy(H) is the set

{Sp(f.p) | f € [pl AV n(f [ n € Split(p) A f(n) < H(f | n))}.

(3) Define K(p) as the collection of all A C [p]spis for which there is
G : Split(p) — w such that

A C Catchz(G).

Note that if B = {f, | &« < b} C w* is an unbounded family of increasing
functions, then for every infinite partial function ¢ C w X w there is a < b
such that the set {n € dom(g) | g(n) < fo(n)} is infinite With this simple
observation we can prove the following lemma

LEMMA 16: K(p) is a o ideal in [plspiis that contains all singletons and
b =add(K(p)) = cov(K(p)).

Proof In order to prove that b <add(K(p)), it is enough to show that if k < b
and {H, | a < k} C wSPlt®) then Ua<, Catchs(Hy) € K(p). Since £ is smaller
than b, we can find H : Split(p) — w such that if o < &, then Hy(s) < H(s)
for almost all s € Split(p). Clearly

U Catcha(H,) C Catchg(H).

a<w

Now we must prove that cov(K(p)) < b. Let Split(p) = {s, | » < w} and

B ={fs]a<b} Cw” be an unbounded family of increasing functions Given
a < b define H, : Split(p) — w, where

Ha(sn) = fa(n).
We will show that {Catch3(H,) | o < b} covers [plspit. Letting f € [p], define
A={n]|s, C f} and construct the function g : A — w, where

g(n) = (Jsal) +1

for every n € A. By the previous remark, there is a < b such that f, [ A is not
dominated by g [ A. It is then clear that Sy(p, f) € Catch3(H,).
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Letting p be a Miller tree and S € [w]*, we define the game G(p, S) as follows:
I s $1
I 7o 1
(1) Each s; is a splitting node of p.
(2) r €w.
(3)
(4) sit+1(|si]) € S and is bigger than r;.

Si+1 extends S;.

Player | wins the game if she can continue playing for infinitely many rounds
Given S € [w]¥, we denote by Hit(S) the set of all subsets of w that have infinite
intersection with S.

LEMMA 17: Letting p be a Miller tree and S € [w]*, for the game G(p, S) we
have the following:

(1) Player | has a winning strategy if and only if there is ¢ < p such that
[]sprit € [S]“.

(2) Player |l has a winning strategy if and only if there is H : Split(p) — w
such that if f € [p], then the set {f | n € Split(p) | f(n) € S} is almost
contained in {f | n € Split(p) | f(n) < H(f [ n)} (in particular
[Plotic N Hit(S) € K(p))

Proof The first equivalence is easy so we leave it for the reader Now assume
there is a winning strategy = for Il We define H : Split(p) — w such that if
s € Split(p) then

m(x) < H(s)

where x is any partial play in which player | has build s and |l has played
according to m (note there are only finitely many of those x so we can define
H(s)) We want to prove that if f € [p], then {f [ n € Split(p) | f(n) € S} is
almost contained in the set

{f I'n €Split(p) | f(n) <H(f [ n)}.

Assume this is not the case Let B be the set of all n € w such that f [n € Split(p)
with f(n) € S but H(f | n) < f(n). By our hypothesis B is infinite and then
we enumerate it as B = {b,, | n € w} in increasing order Consider the run of
the game where | plays f | b, at the n th stage This is possible since f(b,) € S
and H(f | bn) < f(by) so | will win the game, which is a contradiction The
other implication is easy
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Since G(p, S) is an open game for Il by the Gale Stewart theorem (see [11])
it is determined, so we conclude the following dichotomy:

COROLLARY 18: Ifp is a Miller tree and S € [w]* then one and only one of the
following holds:
(1) There is q < p such that [q]spiit < [S]¥.
(2) There is H : Split(p) — w such that if f € [p], then the set defined as
{f I n € Split(p) | f(n) € S} is almost contained in the following set:
{f I'n € Split(p) | f(n) < H(f In)} (and [plspre N Hit(S) € K(p))

In particular, for every Miller tree p and S € [w]¥ there is ¢ < p such that
either [g]spiit C [S]“ or [g]spiis € [w\ S]“ (although this fact can be proved easier

without the game)

Definition 19: Let p be a Miller tree and S € [w]“. We say S tree-splits p if
there are Miller trees gg,q1 < p such that

[q0)sprie € [S]¥ and  [g1]sprie € [w \ S]*;

S is a Miller tree-splitting family if every Miller tree is tree split by some
element of S.

It is easy to see that every Miller tree splitting family is a splitting family
and it is also easy to see that every w splitting family is a Miller tree splitting
family We will now prove there is a Miller tree splitting family of size s. I want
to thank the referee for supplying the following argument which is simpler than
the original one

PROPOSITION 20: The smallest size of a Miller tree splitting family is s.

Proof We will construct a Miller tree splitting family of size s. In case b < s
there is an w splitting family of size s (see Proposition 5 and the remark after
Definition 6) and this is a Miller tree splitting family as remarked above

Now assume s < b. We will show that any splitting family of size s is a
Miller tree splitting family We argue by contradiction Let

S=1{S.|a<s)

be a splitting family which does not tree split the Miller tree p. In this way,
for every a < s there is i(a) < 2 such that there is no ¢ < p for which
[q)spit [S;(a)]“’. By Corollary 18, there is H, : Split(p) — w such that for
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every f € [p] the following holds:
{f I'neSplit(p) | f(n) € S} C* {f I n € Split(p) | f(n) < H(f [ n)}
or equivalently
V¥n(f I n € Split(p) A Ho(f [ n) < f(n) — f(n) € SL7).

Since s < b there exists H : Split(p) — w dominating each H,. Take f € [p]
such that for every n € w, if f [ n € Split(p) then f(n) > H(f | n). Then

Vo < sVn(f | n e Split(p) — f(n) € SL74),

Let X ={f(n) | f | n € Split(p)}; note that X C* SE7 for every a < s.
But this contradicts that S was a splitting family

The following lemma is probably well known:

LEMMA 21: Assume k < 0, and for every a < k let F,, C [w]|<%¥ be an infinite
set of disjoint finite subsets of w and g,, : |J Fo —> w. Then thereis f : w — w
such that for every o < k there are infinitely many X € F, such that

ga I X < fTX.

Proof Given « < k, find an interval partition P, = {Py(n) | n € w} such that
for every n € w there is X € F, such that X C P,(n) (this is possible since
Fo is infinite and its elements are pairwise disjoint) Then define the function
Jo, @ w — wsuch that g, | P,(n) is the constant function max{gy [P, (n+1)]}.
Since k is smaller than 0, we can then find an increasing function f : w — w
that is not dominated by any of the g, . It is easy to prove that f has the desired

property
Now we can prove the following lemma that will be useful:

LEMMA 22: Let g be a Miller tree and x < 0. If {H, | a < &} C wSP(9) then
there is r < q such that Split(r) = Split(q) N r and

[T]split N U Catchv(Ha) = 0.
a<r
Proof We will first prove there is G': Split(q) — w such that (J,, ., Catchy(H,)
is a subset of Catch3(G). Given t € Split(q), let T'(¢,«) be the subtree of ¢ such
that if f € [T(t,«)] then t C f,andif ¢t C f [ n and f | n € Split(q) then
fn) € Hy(f | n). Clearly T(t,«) is a finitely branching subtree of g. Then
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define F(t,a) = {Split,,(¢) N T(t,«) | n < w} which is an infinite collection of
pairwise disjoint finite sets, and let g o) : U F(t, ) — w given by

g(t,a)(s) = Ha(s).

Since k < 0 by the previous lemma, we can find G : Split(¢) — w such that
if « < k and t € Split(q), then there are infinitely many Y € F(¢, «) such that
Ity 'Y <G 1'Y. We will now prove that (. Catchy(H,) C Catch3(G). Let
a < k and f € Catchy(H,). Find ¢ € Split(g) such that t C f, and if t C f [ m
and f | m € Split(q) then f(m) € H,(f [ m). Note that f is a branch through
T(t,a). Let Y € F(t,a) such that g o) [ Y < G ['Y and, since f € [T(t,a)],
there is n € w such that f [n €Y so f(n) < Ho(f [ n) < G(f [ n).

Define r < ¢ such that Split(r) = Split(g) N r and suc,(s) = sucq(s) \ G(s).
Clearly [r]spiit is disjoint from Catchs(G).

We can then finally prove our main theorem
THEOREM 23: There is a + Ramsey MAD family

Proof If a <s then a is smaller than 9 so then there is a + Ramsey MAD
family (in fact, there is a Miller indestructible MAD family, see Corollary 13)
So we assume § < a for the rest of the proof Fix an (w,w) splitting family
S = {5, | @ < s} that is also a Miller tree splitting family TLet {L, R} be
a partition of the limit ordinals smaller than ¢ such that both L and R have
size continuum Enumerate by {X, | @ € L} all infinite subsets of w and by
{T. | @ € R} all subtrees of w<*. We will recursively construct 4 = {A¢ | £ < ¢}
and {o¢ | £ < ¢} as follows:

1) Ais an AD family and o, € 2<° for every a < c.

2) If 0, € 27 and & < 3, then A, C* Sga(f).

3) If o # B, then o, # 05.

4) If § € L and X5 € Z(As)T, then Asi,, C X5 for every n € w (where
As = {A¢ [ £ < 0})

(5) If 6 € R and Ty is an Z(As)* branching tree, then there is f € [T5] such

that Asin, C im(f) for every n € w.

(
(
(
(

It is clear that if we manage to perform the construction, then A will be
a + Ramsey MAD family (and it will be completely separable too) Let ¢ be
a limit ordinal and assume we have constructed A¢ for every £ < 6. In case
0 € L we just proceed as in the case of the completely separable MAD family,
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so assume 0 € R. Since As = {A¢ | £ < ¢} is nowhere MAD (recall that A;
is nowhere MAD by the proof of Theorem 9) we can find p, an Aj branching
subtree of T (recall that Aj3 is the set of all infinite sets that are almost disjoint
with every element of Aj3)
First note that since S is a Miller tree splitting family, for every Miller tree
g there is o < 5 and 74 € 2% such that:
(1) S, tree splits q.
(2) If £ < a, then there is no ¢’ < ¢ such that [¢']spiit C [Sgl_T"(g)]“.
Note that if ¢ < ¢, then 7 extends 7,. If ¢ < p and 7, € 2% we fix the
following items:

(1) Wolg) ={{ <a|FB<d(og =148}

and

Wilg) ={€ < a| I8 < 6(A(0g,74) = E)}.!
(2) Let & € Wy(q) We then find S such that g = 7, | £ and define
Gy, : Split(q) — w such that if s € Split(g) then

Ap Asucy(s) € Goels)

(this is possible since ¢ is Ay branching)
(3) Given £ € Wi(q) we know there is no ¢’ < ¢ such that

[q/]split g [S;*Tq(f)]w )

We know that there is H, ¢ : Split(¢) — w such that if f € [g], the set
defined as {f | n € Split(q) | f(n) € Sgl_T"(g)} is almost contained in
the set

{f I'neSplit(q) | f(n) < Hee(f [1)}-

(4) XU € [Wy(g)]<¥ and V € [W1(q)]< choose any J, v,y : Split(q) — w
such that if s € Split(g), then

Jeuv(s) > max{Gge(s) | £ € U}, max{Hye(s) | £ € V}.
(5) Alq) = {Ac € As | 7y £ ¢}
Note that if £ € Wy(g), then there is a unique 8 < § such that og = 7, [ £

(although the analogous remark is not true for the elements of Wi(¢)) The
following claim will play a fundamental role in the proof:

CLAIM 24: If ¢ < p, then there is r < q such that [r]spis € Z(A(g))"
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Proof of Claim 24 Let o < s such that 7, € 2%. Since s <9, we know there is
r < g such that [r]spie is disjoint from

(U{Catehy(Jo,uv) | U € [Wo(@)]<*,V € [Wi(q)] <}

and Split(r) = Split(q) N r. We will now prove [r]spiie € Z(A(g))" but assume
this is not the case Therefore, there is f € [r] and F € [A(g)]<“ such that

X =Sp(r, f) C UF

Let ' = FiUF, and U € [Wy(q)]<%, V € [Wi(g)]=* such that for every Ag € F}

there is £g € U such that g = 7, [ s, and for every A, € F; thereis n, € V

such that A(ry,0,) =ny. Let D C {n| f [ n € Split(r)} be the (infinite) set of

all n < w such that the following holds:

) f I neSplit(r) and f(n) e JF.

2) If ny € V then A, \n C S1 Tal),

3) f(0) > T (f ).

4) Tt neVand f(n) € Sy then f(n) < Hy(f [ n) < Jyuv (f [ n)
(recall that {f [ m € Split(q) | f(m) € Si~ """V} is almost contained in
{f I'm € Split(q) | f(m) < Hyn(f I m)})

We first claim that if n € D, ég € U and n, € V, then f(n) ¢ A US%:T"(””).
On one hand, since Ag Nsucy(f [ n) € Gge,(f [ n) < Jeuv(f | n) and
f(n) > Jguv(f | n) then f(n) ¢ Ag. On the other hand, if it was the case that
f(n) € S&,;TQ("”) 0 f(n) < Hypn(f I n) < Jguv(f | n), but we already know
that f(n) > Jyuv(f | n). Since n < f(n) (recall every branch through p is
increasing) f(n) ¢ A, for every n, € V because A,\n C S%:T"(n”). This implies
f(n) ¢ U F which is a contradiction and finishes the proof of the claim

(1
(
(
(

Back to the proof of the theorem, we recursively build a tree of Miller trees
{p(s) | s € 2<“} with the following properties:
(1) p(@) = p.
(2) p(s™i) < p(s) and the stem of p(s™i) has length at least |s|.
(3) Tp(s—0) and Tp(s—~1y are incompatible
(4) [p(s™1)]sprie © Z(A(p(s))) "
This is easy to do with the aid of the previous claim For every g € 2“ let
= U7p(g1m)- Note that if g1 # go, then 75, and 7,, are two incompatible nodes
of PASE Slnce A(; has size less than the continuum, there is g € 2 such that
there is no § < § such that g extends 7, and then As = J,,c., A(p(g | m)).
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Let f be the only element of (1, [p(g [ m)]. Obviously, f is a branch through
p and we claim that im(f) € Z(As)*. This is easy since if Ag,,..., Ae, € As,
then we can find m < w such that A¢,...,Ag, € A(p(g | m)) and then we
know that Sp(p(g | m+1), f) €* Ag, U---U A, , and since Sp(p(g | m+1), f)
is contained in im(f) we conclude that im(f) € Z(As)™.

Finally, find a partition {Z,, | n € w} C Z(As)* of im(f) and using the
method of Shelah, construct Asy, such that Asy, C Z,. This finishes the
proof

4. More constructions

In this last section, we will show the relationship between + Ramsey and other
properties of MAD families Recall that an ideal Z in w is tall if for every
X € [w]¥ there is Y € T such that X NY is infinite Note that if A is an
AD family, then Z(A) is tall if and only if A is MAD Note that the proof of
Theorem 23 in fact gives the following result:

COROLLARY 25 (s < a): If T is a tall ideal, then there is a + Ramsey MAD
family A such that A C T.

The following are properties of MAD families that have been studied in the
literature:

Definition 26: Let A be a MAD family

(1) A is P indestructible if A remains MAD after forcing with P (we are
mainly interested where P is Cohen, random, Sacks or Miller forcing)

(2) Ais weakly tight if for every {X,, | n € w} C Z(A)" thereis B € Z(A)
such that |B N X,| = w for infinitely many n € w.

(3) Ais tight if for every {X,, | n € w} C Z(A)" there is B € Z(A) such
that B N X, is infinite for every n € w.

(4) A is Laflamme if A can not be extended to an F, ideal

(5) Ais + Ramsey if for every Z(A)" branching tree T\ there is f € [T
such that im(f) € Z(A)*.

It is known that tightness implies both weak tightness and Cohen indestruc
tibility (see [8]) It is also easy to see that Cohen indestructibility implies
Miller indestructibility and Sacks indestructibility is weaker than both Miller
indestructibility and random indestructibility (see [4])
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COROLLARY 27 (s < a): There is a + Ramsey MAD family that is not Sacks
indestructible, Laflamme or weakly tight

Proof The corollary follows by the previous result In [9] it was proved that
there is a tall ideal Z such that every MAD family contained in Z is Sacks
destructible A similar result for weak tightness was proved in [3]

The following is a very important definition:

Definition 28: We say ¢ : p(w) — w U {w} is a lower semicontinuous
submeasure if the following hold:

(1) p(w) =w.

(2) ¢(A4) =0 if and only if A = 0.

(3) ¢(A) < p(B) whenever A C B.

(4) p(AUB) < p(A) + ¢(B) for every A,B C X.

(5) (lower semicontinuity) if A C w then p(A) = sup{p(ANn)|n € w}.

Given a lower semicontinuous submeasure ¢ we define Fin(y) as the family
of those subsets of w with finite submeasure The following is a very interesting
result of Mazur:

PROPOSITION 29 (Mazur [13]): Z is an F, ideal if and only if there is a lower
semicontinuous submeasure such that Z = Fin(yp).

If a C w<¥ we define

w(a) ={f € w’ | 3I®(f | n €a)}.
Given f € w¥, define
f={fr1nlnew)
and let BR = {f | f € w*}. By J we denote the ideal on w<* consisting of all
sets a C w<* such that 7(a) is finite Clearly BR C 7. The next result follows

easily from the results in [14], but we include a proof for the convenience of the
reader:

LEMMA 30: J cannot be extended to an F, ideal

Proof Let ¢ : p(w) — wU{w} be a lower semicontinous submeasure We will
prove that J is not a subset of Fin(¢). Given s € w<“, we denote

Bo(s)={tew<¥|sCt} and Bi(s)={tew<“|s Lt}
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(where s L ¢ denotes that s and ¢ are incompatible) Let w<“ = {s,, | n € w}.
We recursively construct two sequences (i, | n € w) and (F, | n € w) such that
for every n € w the following holds:

(1) i, € {0, 1}.

(2) F, is a finite subset of w and p(F,) > n+ 1.

(3) Ny<n By, (s;) € Fin()*

(4) Fn Cﬂj<n 5 ()

The construction is very easy to perform Let G = J,,Fn. Note that
G € Fin(¢)*. Furthermore, for every s € w<%“ either G is almost contained in
By(s) or is almost disjoint from it It is easy to see that G € J so J is not
contained in Fin(yp).

We can now prove the following:
PrOPOSITION 31 (CH): There is a Laflamme MAD family that is not + Ramsey

Proof Let {Z, | o € w1} be the set of all F, ideals in w<*. We construct
A ={A, | @ < w1} such that the following holds:

(1) AUBR is an AD family

(2) If s € w<¥, then A contains an infinite partition of {s™n | n € w} into
infinite sets

(3) If ALUBR C Z,,, then A, ¢ Z, (where A, = {A4¢ | £ < a})

(4) A, is countable

At step a assume that BRUA, C Z, Since Z,, is an F,, ideal and it contains
all branches, there is @ € ZJ N J. Let 7(a) = {f1,..., fn} and we now define
b=a\(fiU--Uf,). Note that 7(b) = 0 and b € Z}. Let ¢ be a lower
semicontinuous submeasure such that Z,, = Fin(y) and let A, = {B,, | n € w}.
We recursively find s, C b\ (BoU---UBy,) such that ¢(s,) > n (this is possible
since b € Z) Then Ay = (J,,c,,5n is the set we were looking for It is easy to
see that AU BR is a Laflamme MAD family that is not + Ramsey

We will now prove that weak tightness does not imply being + Ramsey Given
s € w<¥ we define

[s] = {t e w~¥|s Ct}

LEMMA 32: If A C w<% does not have infinite antichains, then A can be covered
with finitely many chains
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Proof Define S as the set of all unsplitting nodes of A, ie, s € A if and
only if every two extensions of s in A are compatible Note that S C A and
every element of A can be extended to an element of S (otherwise A would
contain a Sacks tree and hence an infinite antichain) Let B C S be a maximal
(finite) antichain For every s € B let bs € w* be the unique branch such that
AN [s] Cbs. Then (by the maximality of B) we conclude A C UsEB/b\S‘

We need the following lemma:

LEMMA 33: If A= {A, | n € w} C p(w<¥) is a collection of infinite antichains,
then there is an antichain B such that BNA,, is infinite for infinitely many n € w.

<@ watchesA,, if s has infinitely many extensions in A,,.

Proof We say s € w
Define T C w<% such that s € T if and only if there are infinitely many n € w
such that s watches A4,,. Note that T is a tree First assume there is s € T' that
is a maximal node By shrinking A if needed, we may assume s watches every
element of A. We now define the set C' = {4,, | 3°m (A, N[s"m] # @)}. In case
C is infinite, we can find an antichain B that has infinite intersection with every
element of C. Now assume that C is finite; by shrinking A we may assume C'is
the empty set In this way, for every A, there is m,, such that s~ m, watches
A,,. We can then find an infinite set X € [w]¥ such that m,, # m, whenever
n #rand n,r € X (recall that s is maximal) Then B =, o x[s7ma| N A, is
the set we were looking for

Now we may assume 7T does not have maximal nodes If T contains a Sacks
tree, then we can find an infinite antichain Y C T For every s € Y we choose n
such that s watches A, , and if s # t then A, # A,,. Then B = (J .y [s]NAp,
is the set we were looking for

The only case left is that there is s € T that does not split in 7" and is not
maximal Let f € [T] be the only branch that extends s. We may assum+e s
watches every element of A and every A,, is disjoint from fA (this is because A,
is an antichain and f is a branch) We say 4, is a comb with f if A(A4,,N[s], f)
is infinite  We may assume that either every element of A is a comb with f or
none is In case all of them are combs we can easily find the desired antichain
So assume none of them are combs In this way, for every n € w we can find
t, extending s but incompatible with f of minimal length such that t¢,, watches
A,,. Since t,, ¢ T we can find W € [w] such that ¢, # ¢, for all n,m € W
where n # m. Then we recursively construct the desired antichain
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We can then conclude the following;:

PROPOSITION 34 (CH): There is a weakly tight MAD family that is not
+ Ramsey

Proof Let {X, | w < a < wi} enumerate all countable sequences of infinite
subsets of w<*. Let BR = {f | f € w*} We construct A = {A, | a@ < w;} such
that the following holds:
(1) Every A, is an antichain
(2) AUBR is an AD family
(3) If s € w<¥, then A contains a partition of suc(s) = {s™n|n € w}.
(4) For every w < a < wy, if X, = {X,, | n € w} C Z(ALUBR)T then
A,NX, is infinite for infinitely many n € w (where A, = {A¢ | { < a})
At step a = {ay, | n € w} assume X, = {X, | n € w} C (A,UBR)T. We
first claim that there is an infinite antichain X! C X, such that X, € AL. Let
Y={Ac A, ||AnX,| =w}. In case ¥ is finite, by Lemma 32 we can find an
infinite antichain X/ C X,, \ UZ. If ¥ is infinite, then by Lemma 33 we can find
an infinite ¥’ C ¥ and By € [AN X,]¥ for A € ¥/ such that | J{Ba | A € ¥/}
is an antichain It is then easy to choose distinct {s4 € Ba | A € X'} so that
X%Z{SAGBA|A€E/}€A$.
Let Y, = X| \ (Ao, U---UA,, ) which is an infinite antichain By Lemma
33 we can find an antichain
A C (JYa
new
such that A, NY,, is infinite for infinitely many n € w.
Clearly AU BR is not + Ramsey (recall that weakly tight families are max
imal)

Recall that Miller indestructibility implies being + Ramsey We will now
prove that (in particular) Sacks or random indestructibility are not enough to
get + Ramseyness We will say a family A on w<¥ is a standard K, family
if the following holds:

(1) Ais an AD family
(2) If A€ A, either m(A) =0 or A is a finitely branching tree on w<%.
(3) If s€w<¥, then {s"n|new}eZ(A)TT.
Recall that if a C w<%, we denoted 7w(a) = {f € w¥ | I®°n(f [ n € a)}. We
now need the following lemma:
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LEMMA 35: Let P be an w* bounding forcing and A a countable standard K,
family If p € P and b is a P name for an infinite subset of w<“ such that
plF “be AL ”?_ then there are ¢ < p and B a countable standard K, family such
that A C B and ¢ IF “b ¢ B~".

Proof Let A ={T, | n € w}U{a, | n € w} where T, is a finitely branching
subtree of w<* and 7(a,) = 0 for every n € w. We may assume that p forces
that 7T(i)) is either empty or a singleton We first assume there is 7 such that
p Ik “m(b) = {#}”. Since P is w* bounding, we may find p; < pand T € V a
finitely branching well pruned subtree of w<“ such that p; IF “* € [T]”. Once
again, since P is w* bounding we may find ps < p; and f € w* such that the

following holds:

(1) f is an increasing function
(2) po Ik “(T, Ua,) N7 C w</07,

For each n € w, define
To={s€Tu| f(n) < |s|}
and define the set @, as {t | 3s € an(s € an A f(n) < f(n))}. Let
K =T\ Upeo(Tn Uty).

It is easy to see that K is a finitely branching tree, po I- “* € [K]” and K € A*.
We now simply define B = AU{K}.

Now we consider the case where 7r(b) is forced to be empty Let S be the
tree of all s € w<* such that s has infinitely many extensions in b. We will first
assume there are p; < p and s such that p; forces that s is a maximal node
of S. Since P is w* bounding, we can find a ground model interval partition
P ={P, | n € w}and ps < p; such that if n € w, then py forces that there
is 11, € P, such that ([s™ri,]Nb)\ (ToU---UT,UagU---Uay,) # 0. Given
n,m € w we define K, , = {s7i"t|i € P, At € m™}. Using once again that
P is w* bounding, we may find p3 < ps and an increasing function f:w — w
such that if n € w then p3 forces (K, ¢(n) N O\ (ToU---UT,UagU---Uay,) is
non empty for every n € w. We now define

a=U,coKn sy \ (ToU---UT, UagU---Uay).

It is easy to see that m(a) = ), a € A+, and p3 forces that a and b have infinite
intersection
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Now we assume that p forces that S does not have maximal nodes Let 7
be a name for a branch of S. First assume that 7 is forced to be a branch
through some element of A. We may assume that p |- “r € [Tp]”. Since P is
w® bounding, we may find p; < p and an increasing ground model function
f 1w — w such that if n € w, then p; forces that all extentions of 7 | f(n) to
b are not in ToU---UT, UagU---Ua,. Once again, we may find py < p; and
g : w —> w such that if n € w, then b has a non empty intersection with the set
{F 1 fn)"t|tegn)y I\ (Thu---UT, UagU---Ua,). We now define

a= |J {sTtltegm)? ™I\ (Thu---UT, UagU---Uay)).
Se(To)f(n)

It is easy to see that a has the desired properties

Finally, in case that 7 is not forced to be a branch through some element of
A, we find a finitely branching tree T € AL such that p I- “¢ € [T]” as we did
at the beginning of the proof If T" has infinite intersection with b we are done,
and if not then we apply the previous case

With a standard bookkeeping argument we can then conclude the following:

ProPOSITION 36 (CH): If P is a proper w* bounding forcing of size wy, then
there is a MAD family A that is P indestructible but is not + Ramsey
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