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Abstract We study the Mathias–Prikry and the Laver type forcings associated with
filters and coideals. We isolate a crucial combinatorial property of Mathias reals,
and prove that Mathias–Prikry forcings with summable ideals are all mutually bi-
embeddable. We show that Mathias forcing associated with the complement of an
analytic ideal always adds a dominating real. We also characterize filters for which the
associated Mathias–Prikry forcing does not add eventually different reals, and show
that they are countably generated provided they are Borel. We give a characterization
of ω-hitting and ω-splitting families which retain their property in the extension by a
Laver type forcing associated with a coideal.
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Introduction

The Mathias–Prikry and the Laver type forcings were introduced in [17] and [11]
respectively. Recently, properties of these forcings were characterized in terms of
properties of associated filters, see [1,5,10,12]. We continue this line of research, and
investigate forcings associated with coideals.

1 Preliminaries

Our notation and terminology is fairly standard. We give here an overview of basic
notions used in this paper.We sometimes neglect the formal difference between integer
singletons and integers, if no confusion is likely to occur. We are mostly concerned
with filters and ideals on ω and on the set of finite sets of integers fin = [ω]<ω. If a
domain of a filter or ideal is not specified or obvious, it is assumed that the domain is
ω. All filters and ideals are assumed to be proper and to extend the Fréchet filter.

For a, b ⊆ ω we write a ⊂∗ b if a\b ∈ fin, a =∗ b if a ⊂∗ b and b ⊂∗ a, a < b if
n < m for each n ∈ a and m ∈ b, and a � b if there is n ∈ ω such that a = b ∩ n.

A tree T will usually be an initial subtree of the tree of finite sequences of integers
(ω<ω,⊆) with no leaves. The space of maximal branches of T is denoted [T ]. For
t ∈ T we denote by T [t] the subtree consisting of all nodes of T compatible with t .
An element r ∈ T is called the stem of T if r is the maximal node of T such that
T = T [r ]. For a ⊆ ω we denote by T [a] the set of all nodes t ∈ T such that |t | ∈ a
(i.e. the nodes from levels in a). A node t ∈ T is a branching node of T if t has at
least two immediate successors in T . For X ⊂ P (ω) we call t an X -branching node
if

{
i ∈ ω � t�i ∈ T

} ∈ X . A tree is an X -tree if every node of T is X -branching.
For X ⊂ P (ω) and A ⊆ ω we write X � A for the set { X ∩ A � X ∈ X }. For a

filter F we denote by F∗ the dual ideal, and by F+ the complement of F∗ (i.e. the F
positive sets). For an ideal I we denote I∗ the dual filter, I+ = (I∗)+. A complement
of an ideal is called a coideal. We will generally not distinguish between terminology
for properties of a filter and of the dual ideal, i.e. statements “F is ϕ” and “F∗ is
ϕ” are often regarded as synonymous. We will sometimes speak of filters on general
countable sets as if they were filters on ω. In these cases statements about these filters
are understood as statements about filters on ω isomorphic with them.

We call an ideal I summable if there is a function μ : ω → R such that I ={
I ⊆ ω �

∑ { μ(i) � i ∈ I } < ∞ }
. We say that I is tall if I ∩ [A]ω 
= ∅ for each

A ∈ [ω]ω. An ideal I is below an ideal J in the Rudin–Keisler order, I ≤RK J if
there is a function f : ω → ω such that I ∈ I iff f −1[I ] ∈ J for each I ⊆ ω. We say
that I is Rudin–Blass below J , I ≤RB J if the witnessing function f is finite-to-1.
The Rudin–Keisler and Rudin–Blass ordering on filters is defined in the same way as
on ideals. Note that for ideals is I ≤RK J iff I∗ ≤RK J ∗, and similarly for ≤RB.
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Mathias–Prikry and Laver type forcing 495

For a filter F we will consider the filter F<ω generated by sets [F]<ω for F ∈ F .
If F is a filter on ω, then F<ω is a filter on fin. Notice that for X ⊂ fin is X ∈ F<ω+
iff for each F ∈ F there is a ∈ X such that a ⊂ F , and iff for each F ∈ F there are
infinitely many a ∈ X such that a ⊂ F . The elements of F<ω+ are sometimes called
the F-universal sets.

A filter F is a P+-filter if for every sequence { Xn � n ∈ ω } ⊆ F+ there is a
sequence Y = { yn ∈ [Xn]<ω

� n ∈ ω } such that
⋃

Y ∈ F+.
The ideal of allmeager sets of reals is denoted byM . For f, g ∈ ωω write f =∞ g if

{ n ∈ ω � f (n) = g(n) } is infinite. Recall that cov(M ) = b(ωω,=∞) and non(M ) =
d(ωω,=∞). LetV be amodel of set theory.We say that e ∈ ωω is an eventually different
real (over V ) if e 
=∞ f for each f ∈ ωω ∩ V . We say that d ∈ ωω is a dominating
real (over V ) if f <∗ d for each f ∈ ωω ∩ V . Every dominating real is an eventually
different real. For every f ∈ ωω the set { g ∈ ωω

� g =∞ f } is a dense Gδ subset of
ωω. The following proposition is well known, the proof is analogous to the proof of
[2, Lemma 2.4.8].

Proposition 1 Let V be a model of set theory. The set V ∩ ωω is meager in ωω if and
only if there exists an eventually different real over V .

The Cohen forcing for adding a subset of a set X ⊆ ω will be denoted CX , and
C denotes Cω. The conditions of CX are finite subsets of X ordered by 
. A Cohen
generic real is the union of a generic filter on CX .

Let X be a family of subsets of ω, typically a filter or a coideal. The Mathias–
Prikry forcing M(X ) associated with X consists of conditions of the form (s, A)

where s ∈ fin and A ∈ X . Although we usually assume s < A, we do not require
it. The ordering is given by (s, A) ≤ (t, B) if t � s, A ⊆ B, and s\t ⊂ B. Given
a generic filter on M(X ), we call the union of the first coordinates of conditions in
the generic filter the M(X ) generic real. Given X and r ⊂ ω, we denote Gr (X ) =
{ (s, A) ∈ M(X ) � s � r, r ⊆ A }. It is easy to see that r is an M(X ) generic real iff
Gr (X ) is a generic filter on M(X ). Properties of M(F) when F is an ultrafilter were
studied in [4] and for F a general filter in [5,12]. Since M(F) is σ -centered, it always
adds an unbounded real. On the other hand, it was shown that M(F) can be weakly
ωω-bounding and even almost ωω-bounding. Filters for which M(F) is weakly ωω-
bounding are called Canjar, and these are exactly those filters for which F<ω is a
P+-filter.

The Laver type forcing associated with X is denoted by L(X ). Conditions in this
forcing is trees T ⊆ ω<ω with stem t such that every node s ∈ T , t ≤ s, is X -
branching. The ordering of L(X ) is inclusion. Given a generic filter on L(X ), the
generic real is the union of stems of conditions in the generic filter. The generic real
is a function dominating ωω ∩ V , unless X ∩ fin 
= ∅. Properties of L(F) for F filter
were studied in [1,12].

For an ideal I on ω, the forcing (P (ω) /I,⊂) adds a generic V -ultrafilter on ω

containing I∗, which will be denoted GI
gen. The superscript will be omitted when I is

apparent from the context.
A family X is ω-hitting (also called ω-tall) if for each countable sequence

{ An ∈ [ω]ω � n ∈ ω } exists X ∈ X such that An ∩ X is infinite for each n ∈ ω.
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496 D. Chodounský et al.

A family X is ω-splitting if for each countable sequence { An ∈ [ω]ω � n ∈ ω } exists
X ∈ X such that both An ∩ X and An\X are infinite for each n ∈ ω.

To conclude the preliminaries let us recall a useful characterization of Fσ ideals.
A lower semicontinuous submeasure is a function ϕ : P (ω) → [0,∞] such that
ϕ (∅) = 0; if A ⊆ B, then ϕ (A) ≤ ϕ (B) (monotonicity); ϕ (A ∪ B) ≤ ϕ (A) +
ϕ (B) (subadditivity); and ϕ (A) = sup { ϕ (A ∩ n) � n ∈ ω } for every A ⊆ ω (lower
semicontinuity).

Proposition 2 (Mazur) Let I be an Fσ ideal on ω. There is a lower semicontinuous
submeasure ϕ such that ϕ ({ n }) = 1 for every n ∈ ω, and I = fin(ϕ).

2 Mathias like reals and summable ideals

The original motivation for this section comes from a question of Ilijas Farah about the
number of ZFC-provably distinct Boolean algebras of the form P (ω) /I where I is a
‘definable’ ideal [8]. Note that CH implies that all such Boolean algebras are isomor-
phic for Fσ ideals I [15]. The interpretation of ‘definability’ interesting in this context
might be ‘Fσδ ,’ ‘Borel,’ or ‘analytic.’ The basic question was answered by Oliver [18]
by showing that there are 2ω many Fσδ ideals for which the Boolean algebrasP (ω) /I
are provably nonisomorphic. However, these constructions are not interesting from the
forcing point of view, the constructed examples are locally isomorphic to P (ω) /fin.
On the other hand, Steprāns [21] showed that there are continuum many coanalytic
ideals whose quotients are pairwise forcing not equivalent.

We are interested in (anti-)classification results about forcings of this form. The
first result in this direction is due to Farah ad Solecki. They showed that the Boolean
algebras P (Q) /nwdQ and P (Q) /nullQ are nonisomorphic and homogeneous, see
[9]. A systematic study of such forcing notions was done by Hrušák and Zapletal
[14]. They provided several examples of forcings of this form. Their results imply
that for each tall summable ideal I there is an Fσδ ideal denoted here trI such that
P (ω) / trI = M(I∗) ∗ Q for some Q, a name for a proper ω-distributive forcing
notion. Therefore showing that the Mathias forcings M(I∗) are different for various
choices of summable ideals I seems to be a viable attempt to provide a spectrum
of different forcings P (ω) / trI . However, the results of this section show that this
approach is likely to fail, the Mathias forcings for tall summable ideals all mutually
bi-embeddable.

Let us start with a general combinatorial characterization of Mathias generic reals.

Definition 3 Let V ⊆ U be models of the set theory, F ⊂ P (ω) be a filter in V , and
x ∈ P (ω) ∩ U . We say that x is a Mathias like real for F over V if the following two
conditions hold;

(1) x ⊂∗ F for each F ∈ F ∩ V ,
(2) [x]<ω ∩ H 
= ∅ for each H ∈ F<ω+ ∩ V .

Notice that an M(F) generic real is a Mathias like for F . It was implicitly shown
in [12] that Mathias like reals are already almost Mathias generic—it is sufficient to
add a Cohen real to get the genericity. This explains why most results concerning the
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Mathias–Prikry and Laver type forcing 497

Mathias forcing rely just on the fact that the generic reals are Mathias like. We provide
the proof of this fact for reader’s convenience.

Proposition 4 Let V ⊆ U be models of the set theory, F ⊂ P (ω) be a filter in V ,
and x ∈ P (ω) ∩ U be a Mathias like real for F over V . Let c be a Cx generic real
over U. Then c is an M(F) generic real over V .

Proof We need to prove that Gc(F)∩D 
= ∅ for each dense subsetD ∈ V of M(F),
i.e. to show that the set of conditions forcing this fact is dense in Cx . Choose any
condition s ∈ Cx . Denote

H = { t\s � (∃F ∈ F � (t, F) ∈ D), s � t } .

Note that H ∈ F<ω+, otherwise there exists F ∈ F such that [F]<ω ∩ H = ∅,
and the condition (s, F) has no extension in D . Condition (2) of Definition 3 now
implies that there exists (t, Ft ) ∈ D such that s � t , and t\s ⊂ x . Since x ⊂∗ Ft ,
there is k ∈ x , t < k such that x\k ⊂ Ft . Hence t ∪ { k } ∈ Cx , t ∪ { k } < s, and
t ∪ { k } � (t, Ft ) ∈ Gc(F) ∩ D . ��

For a poset P we denote by RO (P) the unique (up to isomorphism) complete
Boolean algebra in which P densely embeds (while preserving incompatibility), and
RO (P)+ denotes the set of non-zero elements of RO (P). The relation � denotes
complete embedding of Boolean algebras.

Corollary 5 Let P be a forcing adding a Mathias like real for a filter F .

(1) RO (M(F)) � RO (P × C).
(2) If Q is a forcing adding a Cohen real, then RO (M(F)) � RO (P × Q).

Proof Proposition 4 implies that every generic extension via P ∗ Ċ contains a generic
filter on M(F) over V . Hence there is a ∈ RO (M(F))+ such that

RO (M(F))� a � RO
(
P ∗ Ċ

) = RO (P × C) , �

see e.g. [22]. For each p ∈ M(F), the poset M(F)� p is isomorphic to M(F � F) for
some F ∈ F . If x is a Mathias like real for F , then it is also Mathias like for F � F
for each F ∈ F , and we can deduce from Proposition 4 that the set of elements of
RO (M(F))+ satisfying � is dense. Since M(F) is c.c.c. we can find A, a countable
maximal antichain of such elements. Now

RO (M(F)) �
∏

a∈A

RO (M(F))� a �

∏

ω

RO (P × C)

� RO

(

P ×
∑

ω

C

)

� RO (P × C) .

To justify the second last isomorphism, we construct a dense embedding e of the poset
P × ∑

ω C into the complete Boolean algebra
∏

ω RO (P × C): If t is an element of
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498 D. Chodounský et al.

the n-th copy of C in
∑

ω C, define e(p, t)(i) = (p, t) if i = n, and e(p, t)(i) = 0
otherwise.

If Q adds a Cohen generic real, then there exists some a ∈ RO (C)+ such that
RO (C)� a �RO (Q). Since RO (C)� a is isomorphic to RO (C), the second statement
follows from the first one. ��

The next lemma states thatMathias like reals behavewell with respect to the Rudin–
Keisler ordering on filters.

Lemma 6 Let E,F be filters on ω, let f : ω → ω be a function witnessing F ≤RK E ,
and x be a Mathias like real for E . Then f [x] is a Mathias like real for F .

Proof It is obvious that f [x] ⊂∗ F for each F ∈ F , so we need to check only
condition (2) of Definition 3. Define f ∗ : fin → fin by

f ∗(h) = { a ∈ fin � f [a] = h } .

Claim If H ∈ F<ω+, then
⋃

f ∗[H ] ∈ E<ω+.

For E ∈ E is f [E] ∈ F , and there is h ∈ H such that h ⊂ f [E]. Thus f ∗(h) ∩
[E]<ω 
= ∅. ��

Choose any H ∈ F<ω+. Since x is Mathias like for E , there exists a ∈ ⋃
f ∗[H ]

such that a ⊂ x . Now f [a] ⊂ f [x] and f [a] ∈ H . ��
We focus now on summable ideals. The following simple observation appears in

[7].

Lemma 7 Let I, J be tall summable ideals. There exists A ∈ P (ω) \J ∗ such that
I ≤RB J � A.

We are now equipped to prove the bi-embeddability result.

Theorem 8 Let I, J be tall summable ideals. Then RO (M(I)) is completely embed-
ded in RO (M(J )).

Proof Find A as in Lemma 7 and consider the decomposition

M(J ∗) = M(J ∗� A) × M(J ∗� (ω\A)).

The forcing M(J ∗� A) adds a Mathias real for J ∗� A. Lemma 6 implies that it also
adds a Mathias like real for I∗. Since J ∗ � (ω\A) is not an ultrafilter, the forcing
M(J ∗� (ω\A)) adds a Cohen real. The conclusion now follows from Corollary 5. ��

This shows that the original plan of creating many essentially different forcings
by using different summable ideals is likely to fail. However, we still do not know
whether the Mathias forcing is the same for every tall summable ideal.

Question 9 Are M(J ∗) and M(I∗) equivalent forcing notions if I and J are tall
summable ideals?

To conclude this section let us mention a related result of Farah [7, Proposition
3.7.1].

Proposition 10 Assume OCA + MA. If I is a summable ideal, then P (ω) /I is
weakly homogeneous iff I = fin.
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3 Mathias forcing with coideals

This section deals with the forcingM(F+) forF a filter onω.We aremainly interested
in the following question.

Question 11 When does M

(F+)
add dominating reals?

The following fact is well known.

Fact 12 Let I be an ideal on ω. Then M

(I+) = P (ω) /I ∗ M( ˙GI
gen).

Proposition 13 If I is a Borel ideal and P (ω) /I does not add reals, then M

(I+)

adds a dominating real.

Proof First assume that I is an Fσ ideal. Let ϕ be a submeasure as in Proposition 2.
Let r be a M

(I+)
generic real and notice that r /∈ fin(ϕ). In V [r ] define an

increasing function g : ω → ω by letting

g(n) = min
{

k ∈ ω � 2n ≤ ϕ(r ∩ k)
}
.

Wewill show g is a dominating real. Let (s, A) ∈ M

(I+)
be a condition and f : ω →

ω a function in V . We will extend (s, A) to a condition that forces that g dominates
f . Pick m ∈ ω such that ϕ(s) < 2m and for every i > m choose ti ⊆ A\ f (i) such
that max(ti ) < min (ti+1) and 2i ≤ ϕ(ti ) < 2i+1. This is possible since ϕ(A) = ∞
and the ϕ-mass of singletons is 1. Put B = ⋃

m<i ti , thus ϕ(B) = ∞ and (s, B) ∈
M

(I+)
. Moreover (s, B) ≤ (s, A), and since (s, B) � ṙ ⊂ s ∪ B we have that

(s, B) � f (i) < g(i) for i > m.
For the general case let I be an analytic ideal such that P (ω) /I does not add

reals. If GI
gen is not a P-point, then it is not a Canjar filter (see e.g. [4]), and M

(I+) =
P (ω) /I ∗M

(
GI
gen

)
will add a dominating real. In case GI

gen is a P-point, then by [13,

Theorem 2.5] I is locally Fσ and M

(I+)
adds a dominating real as demonstrated in

the first part of the proof. ��
Question 14 Is there a Borel ideal I such that M

(I+)
does not add a dominating

real?

It is easy to see that in every generic extension by M(F+) the ground model set
of reals is meager, and thus M(F+) always adds an eventually different real. In [13]
Michael Hrušák and Jonathan Verner asked the following question.

Question 15 Is there a Borel ideal I onω such thatP (ω) /I adds a Canjar ultrafilter?

We answer this question in negative.

Lemma 16 If I is an ideal on ω such that GI
gen is a P-point, then P (ω) /I does not

add reals.

Proof Let A ∈ I+ and r a name such that A � ṙ ∈ ωω. Let Ggen be aP (ω) /I generic
filter such that A ∈ Ggen and for every n ∈ ω we can find An ∈ Ggen such that An ≤ A
and An decides ṙ (n). Since Ggen is a P-point, there is B ∈ Ggen such that B ⊆∗ An for
every n ∈ ω (note that we can assume B is a ground model set since Ggen is generated
by ground model sets). Clearly B ≤ A and forces ṙ to be a ground model real. ��
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Corollary 17 If I is an analytic ideal then GI
gen is not a Canjar ultrafilter.

Proof By the previous proposition if P (ω) /I adds new reals then the generic filter
is not a Canjar ultrafilter. Assume no new reals are added. By Proposition 13, M

(I+)

adds a dominating real and Ggen is not Canjar. ��

4 Mathias–Prikry forcing and eventually different reals

We turn our attention towards the forcing M(F) for a filter F . Our goal is the charac-
terization of filters for which this forcing does not add eventually different reals.

A filter F is +-Ramsey [16] if for each F+-tree T there is a branch b ∈ [T ] such
that b[ω] ∈ F+.

Definition 18 LetF be a filter onω.We say thatF is+-selective if for every sequence
{ Xn � n ∈ ω } ⊆ F+ there is a selector

S = { an ∈ Xn � n ∈ ω } ∈ F+.

Every +-Ramsey filter is +-selective and every +-selective filter is a P+-filter.
Let M be an extension of the universe of sets V . We say that r ∈ ωω ∩ M is an

eventually different real over V if the set { n ∈ ω � r(n) = f (n) } is finite for each
f ∈ ωω ∩ V . We say that a forcing P does not add an eventually different real iff there
is no eventually different real over V in any generic extension by forcing P.

Theorem 19 Let F be a filter. The following are equivalent;

(1) Forcing M (F) does not add an eventually different real,
(2) F<ω is +-selective,
(3) F<ω is +-Ramsey.

Proof The implication (3) ⇒ (2) is clear. We start with (2) ⇒ (1).
Let F<ω be +-selective and x be an M(F) name for a function in ωω. Enumerate

fin = 〈 si � i ∈ ω 〉 such that max si ≤ i for each i ∈ ω. Let { ai � i ∈ ω } be a partition
of ω into infinite sets, and denote by ai (k) the k-th element of ai . For k ∈ ω let

Xk = {
t ∈ fin � k < min t and ∀i < k : ∃ht

i (k) ∈ ω : ∃F

∈ F : (si ∪ t, F) � ẋ(ai (k)) = ht
i (k)

}
.

Claim Xk ∈ F<ω+ for each k ∈ ω.

Let k ∈ ω. We need to show that for each G ∈ F there exists t ∈ Xk such that t ⊂ G.
Put t0 = ∅, F0 = G\(k + 1), and for i < k proceed with an inductive construction as
follows.

Suppose ti , Fi were defined, we will define ti+1, Fi+1, ht
i (k). Find a condition

p = (si ∪ ti+1, Fi+1) < (si ∪ ti , Fi ) and ht
i (k) ∈ ω such that p � ẋ(ai (k)) = ht

i (k).
Finally put t = tk , and notice that t ∈ Xk , t ⊂ G.
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Mathias–Prikry and Laver type forcing 501

Let S ∈ F<ω+ be a selector for 〈 Xk � k ∈ ω 〉 guaranteed by the +selectivity of
F<ω. Define g; ω → ω by g(ai (k)) = ht

i (k) if t ∈ S and i < k. We claim that
� |{ g(n) = ẋ(n) � n ∈ ω }| = ω.

Let (si , G) be a condition and n be an integer. There exists k > n, i and t ∈ Xk ∩ S
such that t ⊂ G. Thus there is F ∈ F such that

(si ∪ t, F) � ẋ(ai (k)) = ht
i (k) = g(ai (k)).

Put p = (si ∪ t, F ∩ G) < (si , G). Now n < k ≤ ai (k) and p � ẋ(ai (k)) = g(ai (k)).
To prove (1) ⇒ (3) assume M (F) does not add an eventually different real.

Let T be an F<ω+-tree and r be an M(F) generic real. For n ∈ ω let On =
{ a ∈ [T ] � ∃m > n : a(m) ⊂ r\n }. Note that each such On is an open dense sub-
set of [T ]. Now G = ⋂ { On � n ∈ ω } is a dense Gδ set, and Proposition 1 implies
that there exists some b ∈ G ∩ V . We claim that b is the desired branch for which
b[ω] ∈ F<ω+. Otherwise there is F ∈ F such that b[ω]∩F<ω = ∅, which contradicts
r ⊂∗ F and |[r ]<ω ∩ b[ω]| = ω. ��

The last part of the proof in fact demonstrated the following.

Theorem 20 Let V ⊆ U be models of the set theory, F ⊂ P (ω) be a filter in V . If
U contains a Mathias like real for F but no eventually different real over V , then F
is +-Ramsey.

The implication (2) ⇒ (3) of Theorem 19 can be proved directly with the same
proof as is used in [19, Lemma 2]. Although this implication holds true for filters of
the form F<ω, this is not the case for filters in general. The filter on 2<ω generated
by complements of ⊆-chains and ⊆-antichains is an Fσ +-selective filter which is not
+-Ramsey.

The following proposition is a direct consequence of [16, Theorem 2.9].

Proposition 21 Let F be a Borel filter. F is +-Ramsey if and only if F is countably
generated.

Corollary 22 IfF is a Borel filter on ω and M(F) does not add an eventually different
real, then M(F) is forcing equivalent to the Cohen forcing.

Proof IfM(F) does not add an eventually different, then the BorelF<ω is+-Ramsey
and hence countably generated. Thus F is also countably generated and M(F) has a
countable dense subset. ��

It is not hard to see that any forcing of size less than cov(M ) can not add an
eventually different real, so we have another proof of the following well known result,

Corollary 23 If I is a Borel ideal which is not countably generated then cov(M ) ≤
cof(I).

Corollary 22 can be derived directly from [20, Conclusion 9.16], which says that if
a Suslin c.c.c. forcing adds a non-Cohen real, then it makes the set of ground model
reals meager. See also [23, Corollary 3.5.7].

123



502 D. Chodounský et al.

5 Laver type forcing

We will address the question of preserving hitting families with Laver type forcing.
Since every forcing adding a real destroys somemaximal almost disjoint family, it only
makes sense to ask for survival of hitting families with some additional properties.
Preservation of ω-hitting and ω-splitting families with Laver forcing L was studied
in [6]. A characterization of the strong preservation of these properties with forcing
L(F) for a filter F was given in [1]. Preservation of spliting familes with L(F) was
also studied in [3]. We utilize methods used in [6] to characterize ω-hitting and ω-
splitting families for which the Laver forcing L(F+) preserves the ω-hitting and the
ω-splitting property.

Definition 24 Let X ⊂ P (ω) be a family of sets and let F be a filter on ω. We say
that X is F+-ω-hitting if for every countable set of functions { fn : ω → ω � n ∈ ω }
such that fn[ω] ∈ F+ for each n ∈ ω, there exists X ∈ X such that fn[X ] ∈ F+ for
each n ∈ ω.

Obviously, every F+-ω-hitting family must be ω-hitting.

Proposition 25 Let F be a filter on ω and let X ⊂ P (ω). The following are equiva-
lent;

(1) X is F+-ω-hitting,
(2) L(F+) preserves “X̌ is ω-hitting.”

Proof Start with (1) implies (2). For conditions S, T ∈ L(F+), where the stem of T
is r ∈ ωk , we write S <n T if S < T and S ∩ ωk+n = T ∩ ωk+n .

Let θ be a large enough cardinal and let M ≺ Hθ be a countable elementary
submodel containing F . Let X ∈ X be such that f [X ] ∈ F+ for each f : ω → ω,
f ∈ M such that f [ω] ∈ F+.

Claim A Let A ∈ M be an L(F+)-name, and S ∈ L(F+) ∩ M be a condition such
that S � Ȧ ∈ [ω]ω. There exists S′ <0 S such that for each T ′ < S′ there is t ∈ T ′
such that S′[t] ∈ M and S′[t] � X̌ ∩ Ȧ 
= ∅.

Since S is countable and A is a name for an infinite set, we can inductively build a
sequence { 〈 tn, kn, Rn 〉 � n ∈ ω } ∈ M such that

• tn ∈ S, kn ∈ ω, Rn ∈ L(F+),
• Rn <0 S[tn],
• Rn � kn ∈ Ȧ,
• kn 
= km for n 
= m,
• I = {tn � n ∈ ω} is a maximal antichain in S.

Put S′ = ⋃ { Rn � kn ∈ X }. Let r be the stem of S. We only need to show that for each
s ∈ S such that r ≤ s < t for some t ∈ I , the set

{
i ∈ ω � s�i ∈ S′ } is inF+. Define

a function f : ω → ω in M by f : kn �→ i if tn ≥ s�i for n ∈ ω, and f : k �→ 0
otherwise. Note that

{
i ∈ ω � s�i ∈ S

} ⊆ f [ω] ∈ F+ since I is maximal bellow s.
Thus f [X ] = {

i ∈ ω � s�i ∈ S′ } ∈ F+. ��
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Let T ∈ L(F+) ∩ M be a condition with stem r . Enumerate { An � n ∈ ω } all
L(F+)-names belonging to M such that � Ȧn ∈ [ω]ω for each n ∈ ω. We will
inductively construct a fusion sequence of conditions { Tn � n ∈ ω } starting with T0 =
T such that

• Tn+1 <n Tn for each n ∈ ω,
• for each T ′ < Tn there is t ∈ T ′ such that Tn[t] ∈ M and Tn[t] � Ȧn ∩ X̌ 
= ∅.
Suppose that Tn is constructed and use the inductive hypothesis to find a maximal

antichain J ⊂ { t ∈ Tn � n + |r | < |t | , Tn[t] ∈ M } in Tn . For each t ∈ J use Claim A
for S = Tn[t] and A = An+1 to get T ′

n[t] <0 Tn[t] as in the statement of the claim.
Now Tn+1 = ⋃ {

T ′
n[t] � t ∈ J

}
is as required.

Once this sequence is constructed put R = ⋂ { Tn � n ∈ ω } ∈ L(F+). Now R �
Ȧn ∩ X̌ 
= ∅ for each n ∈ ω, and the implication is proved.

For the other direction, assume there are functions { fn : ω → ω � n ∈ n } such that
fn[ω] ∈ F+, and for each X ∈ X there is n ∈ ω such that fn[X ] ∈ F∗. Fix
{ bn ∈ [ω]ω � n ∈ ω }, a partition of ω into infinite sets. Let �̇ be a name for the L(F+)

generic real, and define a name for Ȧk
n ⊂ ω by declaring Ȧk

n = f −1
n

[
�̇[bn\k]] for

each k, n ∈ ω. Inductively define T ∈ L(F+) such that t�i ∈ T iff i ∈ fn[ω] for
t ∈ T [bn ]. Notice that T forces that Ȧk

n is infinite for each k, n ∈ ω.
Take any X ∈ X and let S < T be a condition with stem r . There is n ∈ ω such

that fn[X ] ∈ F∗. Put

S′ = S\
{

s ∈ T � ∃t ∈ T [bn ], r < t : ∃i ∈ f [X ] : t�i ⊆ s ∈ S
}

.

Note that S′ ∈ L(F+) since we removed onlyF∗ many immediate successors of each
splitting node of S. Also notice that S′ � X ∩ Ȧ|r |

n = ∅. Thus for each X ∈ X the
condition T forces that X does not have infinite intersection with all sets Ȧk

n , and X
is not ω-hitting in the extension. ��

We can formulate the “splitting” version of the previous result. A similar result for
L(F), where F is a filter, is contained in [3, Section 6].

Definition 26 LetX ⊂ P (ω) be a family of sets and letF be a filter onω. We say that
X isF+-ω-splitting if for every countable set of functions { fn : ω → ω � n ∈ ω } such
that fn[ω] ∈ F+ for each n ∈ ω, there exists X ∈ X such that fn[X ], fn[ω\X ] ∈ F+
for each n ∈ ω.

Again, every F+-ω-splitting family is ω-splitting. The same proof as before with
the obvious adjustments gives us the following.

Proposition 27 Let F be a filter on ω and let X ⊂ P (ω). The following are equiva-
lent;

(1) X is F+-ω-splitting,
(2) L(F+) preserves “X̌ is ω-splitting.”
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