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We study preservation properties of Namba forcing on κ. We prove that if I is 
an ideal with a Borel base on ωω and κ > ω1 is a regular cardinal less than the 
uniformity number or bigger than the covering number of I, then the κ-Namba 
forcing preserves the covering of I. The situation at κ = ω1, also treated here, is 
more complex.
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1. Introduction

Namba forcing was introduced in [12] in order to show that it is possible to change the cofinality of ω2
to ω while preserving ω1. It also adds a new countable sequence of ordinals, yet it may not add new reals. 
In this paper, we prove additional preservation properties for Namba forcing. Their status may be different 
in different models of set theory; for example, it is consistent that Namba forcing adds Cohen reals, while 
it is also consistent that it has the Sacks property. We consider Namba forcing on various cardinals. The 
symbol Nκ will denote the Namba forcing on κ.

We consider preservation properties of the following sort: given an ideal I with a Borel base on a Polish 
space X, and a forcing notion P , we say that P preserves the covering of I if P � ∀x ∈ X ∃B ∈ I∩V x ∈ B. 
For example, if M denotes the ideal of meager sets and N the ideal of null sets on ωω, then preserving the 
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covering of M means not adding Cohen reals and preserving the covering of N is not adding random reals. 
The following is an example of the results we will prove in this note:

Theorem 1. Let κ > ω1 be a regular cardinal.

(1) If κ < non(M) or cov(M) < κ then Nκ does not add Cohen reals.
(2) If κ < non(N ) or cov(N ) < κ then Nκ does not add random reals.
(3) If add(N ) < κ or κ < cof(N ) then Nκ has the Sacks property.

The case κ = ω1 is more nuanced. We can prove theorems of this type with some additional assumptions, 
but in general, the following question remains open even for the σ-ideals of meager and null sets:

Problem 2. Suppose that I is a σ-ideal of Borel sets on a Polish space and ω1 < non(I). Does Nω1 preserve 
the covering of I?

The methods of this paper do not seem to help to answer interesting questions of the following type.

Problem 3. Can Nκ add Sacks, Laver, Mathias or Miller reals?

In [7] Simon, Hrušák and Zindulka, in effect, asked if b is the first regular, uncountable cardinal κ such 
that Nκ adds an unbounded real. We answer this question positively. The relationship between Namba 
forcing and weak partition properties will be further studied in [6].

Our notation is mostly standard. If X is a set, by ℘ (X) we denote the power set of X. An ideal I ⊆ ℘ (X)
on X is a collection of subsets of X closed under taking subsets and unions; for convenience, all our ideals 
will be proper (i.e. X /∈ I). A σ-ideal is an ideal closed under countable unions. If X is a topological space, 
we say I has a Borel base if every element of I is contained in a Borel set in I. In this paper, the expression 
“for almost all” means for all except finitely many. Given a topological space X, we denote by Borel(X)
the collection of all Borel subsets of X. Given a Borel set B ⊆ κω and W a model of ZFC extending V , we 
may wish to reinterpret B in W . It is well known how to reinterpret Borel sets in the case where κ = ω, 
but the general case presents some new difficulties. In [14] the third author developed a general framework 
for reinterpreting spaces and Borel sets on interpretable spaces, which are the open continuous images of a 
Čech complete space. In this paper, all interpretable spaces are in fact completely metrizable. The reader 
can consult [3] for the definition of the cardinal invariants used in this paper, and [5], [10] or [9] for more 
on Namba forcing.

2. Basic properties of Namba forcing and absoluteness results

We start the treatment of Namba forcing with a couple of basic definitions.

Definition 4. Let κ be an infinite cardinal.

(1) A tree T ⊆ κ<ω is called a κ-Namba tree if there is s ∈ T (called the stem of T ) such that every t ∈ T

is comparable with s; furthermore if t � s then t has just one immediate successor and if s � t then t
has κ many immediate successors.

(2) The Namba forcing Nκ is the set of all κ-Namba trees ordered by inclusion.

Note that Nω is the Laver forcing. If G ⊂ Nκ is a generic filter, then 
⋃⋂

G is an element of κω, the 
name for which we denote ẋgen.
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Definition 5. Let κ be an infinite cardinal.

(1) If F : κ<ω −→ [κ]<κ is a function then C(F ) is the set {f ∈ κω | ∃∞n f(n) ∈ F (f � n)}.
(2) The κ-Namba ideal Lκ is the ideal on κω generated by the sets C(F ) as F varies over all functions from 

κ<ω to [κ]<κ.

In this way, Lω is the usual Laver ideal in ωω (see [13] page 44). Our first theorem establishes the basic 
relationship between Nκ and Lκ with a slight generalization of [13, Example 2.1.13]:

Theorem 6. (Quotient presentation) Let κ be an infinite cardinal. For every Borel set B ⊂ κω, exactly one 
of the following occurs:

(1) B ∈ Lκ;
(2) there is a Namba tree T ∈ Nκ such that [T ] ⊂ B.

As an immediate corollary, Nκ is naturally isomorphic to a dense subset of the quotient poset of Borel 
subsets of κω modulo Lκ.

Proof. Given a set B ⊆ κω consider the following game.

I X0 X1 X2 X3 · · ·
II α0, i0 α1, i1 α2, i2 · · ·

where, Xn ∈ [κ]<κ, αn ∈ κ and in ∈ 2 for all n ∈ ω. Player II wins if and only if the following conditions 
hold:

(1) 〈αn〉n∈ω ∈ B,
(2) there is n ∈ ω such that in = 1, and
(3) if in = 1 and m ≥ n then αm /∈ Xm.

Note that if in = 1 and m ≥ n then im is irrelevant, so we may ignore it. Now, suppose that the set B is 
Borel. By Borel determinacy [8, Section 20] one of the players has a winning strategy. Thus, we can consider 
two complementary cases.
Case 1. Player I has a winning strategy σ. Note that for every t ∈ κ<ω there are at most |t| possible ways 
in which player II can reach t and player I was following σ; let F (t) ∈ [κ]<κ be the union of all possible 
answers by the strategy σ. It is then easy to see that A ⊆ C (F ).
Case 2. Player II has a winning strategy σ. We can then find n ∈ ω and t ∈ κn such that in is the first such 
that in = 1 and player II reached t during a partial play with the strategy σ. It is now easy to see that there 
is T ∈ Nκ with stem t such that [T ] ⊆ A.

The theorem follows. �
Theorem 7. (Continuous reading of names) Let κ be an infinite cardinal, let T ∈ Nκ be a condition, let Y
be a completely metrizable space, and let ẏ be an Nκ-name for an element of Y . There is S ∈ Nκ below T
and a continuous function f : [S] → Y such that S � F (ẋgen) = ẏ.

Proof. The proof is based on a claim with a game-theoretic proof.

Claim 8. Suppose a tree T ∈ Nκ is a condition and let D ⊆ Nκ be an open dense set below T . Then there 
is a condition S ≤ T with the same trunk as T and a front F ⊂ S (i.e. F is an antichain and every branch 
of S extends an element of F ) such that for every u ∈ F , S � u ∈ D.
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Proof. Let t be the trunk of T . Consider the following game:

I X0 X1 X2 X3 · · ·
II α0 α1 α2 · · ·

in which Xn ∈ [κ]<κ, αn ∈ κ \Xn, and Player II wins if there is a number n ∈ ω such that the sequence 
s = t�〈αi : i ∈ n〉 is in T and there is a tree U ⊂ T � s such that U has trunk s and U ∈ D.

We claim that Player I has no winning strategy. Indeed, if σ was such a strategy, the tree T ′ of all nodes 
s ∈ T which can be reached in a counterplay against σ is a Namba tree. Let U ⊂ T ′ be a condition in D
with trunk u longer than t. Then, Player II can beat the strategy σ by playing so that u is reached.

Therefore, Player II has a winning strategy σ. It is not difficult to build a Namba tree T ′ ⊂ T with trunk 
t and a function p whose domain is the set of all nodes in T ′ extending the trunk of T ′, so that p(u) is a 
play according to the strategy σ in which Player II played exactly the ordinals on the sequence u \ t, and 
such that u ⊂ v implies p(u) ⊂ p(v). Since σ is a winning strategy for Player II, the set

F = {u ∈ T ′ : there is some Uu ≤ T such that the trunk of Uu is u and Uu ∈ D}

is a front of T ′. Let S be the tree obtained from T ′ by replacing T ′ � u with Uu for each u ∈ F and note 
that the tree S works. �

We can now prove the theorem. Let d be a complete compatible metric for the space Y . For each n ∈ ω

let Dn be the set of all conditions U ≤ T such that there is a basic open set O ⊂ Y of d-radius ≤ 2−n such 
that U � ẏ ∈ Ō. Using the claim repeatedly, we can find a Namba tree S ⊂ T and fronts Fn in the tree S
such that for each s ∈ Fn, S � s ∈ Dn. Let f : [S] → Y be the function defined by letting f(x) equal the 
unique element of 

⋂
Ōn where On ⊂ Y is the basic open set of radius ≤ 2−n such that S � sn � ẏ ∈ Ōn, 

where sn is the unique initial segment of x belonging to Fn. It is immediate that the tree S and the function 
f are as required. �

Theorem 10 below uses a standard tool of descriptive set theory generalized to the setting of arbitrary 
completely metrizable spaces. We record the main properties of this tool in a separate proposition:

Proposition 9. Let μ be an infinite cardinal. Let Y be a completely metrizable space of weight ≤ μ, and let 
B ⊂ Y be a Borel set. Then there is a continuous function f : μω → Y such that in all forcing extensions, 
the interpretation of B is equal to the range of the interpretation of f .

Proof. We first argue that there is such a function in the case B = Y . To see this, fix a complete metric 
d on the space Y and use the weight assumption to construct basic open sets Ot ⊂ Y for all t ∈ μ<ω such 
that Ot = Y , the closure of Ot�α ⊂ Ot, Ot =

⋃
α∈μ Ot�α, and the d-diameter of Ot is smaller than 2−|t|

whenever t �= 0. In the end, let f(x) be the unique element of 
⋂

n Ox�n for every point x ∈ μω. Note that 
the function f is well-defined by the completeness of the metric d. The function f is continuous, and the 
range of its interpretation will be the whole interpretation of Y , since interpretations of open sets preserve 
unions.

To prove the proposition, consider the collection of all Borel subsets B ⊂ Y for which the conclusion of 
the theorem holds. We will show that this collection contains all open sets and all closed sets, and is closed 
under countable union and intersection. Since every Borel subset of a topological space can be built from 
the open sets and closed sets by repetition of the operations of countable unions and intersections, this will 
conclude the proof of the proposition.

Suppose first that B ⊂ Y is either a closed or an open set. Then B is a completely metrizable space 
in the inherited topology, and its weight is still ≤ μ. Thus, we can use the first paragraph of the present 
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proof with Y replaced by B to produce the desired function f . Suppose that B =
⋃

n Bn and the conclusion 
of the proposition is known for each Bn and exemplified by functions fn : μω → Y . Consider the space 
X = ω × μω, which is homeomorphic to μω, and the function f : X → Y given by f(n, x) = fn(x). This 
function exemplifies the conclusion of the proposition for B as interpretations respect countable unions and 
homeomorphisms.

Finally, suppose that B =
⋂

n Bn and the conclusion of the proposition is known for each Bn and 
exemplified by fn : X → Y . Let X = (μω)ω, and let X ′ = {〈xn : n ∈ ω〉 ∈ X : ∀n ∀m fn(xn) = fm(xm)}. 
It is not difficult to see that X ′ ⊂ X is a closed set. Use the first paragraph of the present proof to find a 
continuous function g : μω → X ′ such that in all forcing extensions the image of the interpretation of g is 
X ′. Let f : μω → Y be the function f0 ◦ h ◦ g where h : X ′ → μω is the projection function into the first 
coordinate. The function f exemplifies the conclusion of the proposition for B as interpretations respect all 
operations used in the construction of f . �
Theorem 10. (σ-ideal preservation) Let κ be an uncountable cardinal and Y be a completely metrizable space 
of weight < cof(κ). Let I be a family of Borel subsets of Y such that no countable subcollection of I covers 
Y . Then Nκ forces that no countable subcollection of I covers Y .

Proof. Fix μ < cof(κ) and assume that Y = μω. Let T ∈ Nκ and for each n ∈ ω let Ṡn a Nκ-name for 
a Borel set such that T forces that Ṡn ∈ I. We must find T ′ ≤ T and a continuous function g : [T ′] → Y

such that T ′ � ġ(ẋgen) /∈
⋃

n Ṡn. For every n ∈ ω let ḟn be the name of a continuous surjective function 
in the ground model, from μω to Y , such that T � ḟn : μω −→ μω�Ṡn; such a function has to exist by 
Proposition 9. By the continuous reading of names, we may assume that there is a sequence 〈Fn〉n∈ω with 
the following properties:

(1) Each Fn is a front of T .
(2) Every element of Fn+1 properly extends an element of Fn.
(3) If t ∈ Fn then there is a continuous function f t

n : μω → Y such that Tt � ḟn = f t
n.

For simplicity we assume that T has empty stem. Consider the following game:

I X0 X1 X2 X3 · · ·
II β0 β1 β2 · · ·

where Xn ∈ [κ]<κ and βn ∈ κ. Furthermore, through the game, Player II is required to build sequences 
(one element at a time) Ln =

{
sin | i ∈ ω

}
⊆ μ<ω (she is allowed to wait any number of finite steps before 

playing an sin). Player II wins the game if the following condition holds, writing x = 〈βn〉n∈ω:

(1) βn /∈ Xn for every n ∈ ω,
(2) x ∈ [T ],
(3)

∣∣sin
∣∣ = i for every n, i ∈ ω,

(4) sin ⊆ si+1
n for every n, i ∈ ω, and

(5) the value of f t
n(
⋃

i s
i
n) ∈ Y , where t is the unique initial segment of x in Fn, does not depend on n.

The game has Borel payoff. We claim that Player I does not have a winning strategy. Assume Player I has a 
winning strategy, since μ < cof(κ) it is easy to see that she has a winning strategy σ that ignores the Ln. Let 
M be a countable elementary submodel of a large enough structure such that T, {(Ṡn, ḟn) | n ∈ ω}, σ ∈ M . 
Since M is countable then there is some point y ∈ Y \

⋃
(I ∩M). Let x = 〈βn〉n∈ω ∈ [T ] be any sequence 

in the model M resulting from a play against the strategy σ respecting item (1) above. For every n ∈ ω

let tn ∈ Fn be such that tn ⊆ x. Since tn ∈ M then f tn
n ∈ M so we conclude that y ∈

⋂
rng (Ztn). For 
n∈ω
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every n ∈ ω, let xn ∈ μω be such that f tn
n (xn) = y. Then if Player II plays x and Ln = {xn � i | i ∈ ω}

(which is possible since the strategy σ ignores the Ln) she will win the game, which is a contradiction.
By Borel Determinacy, we conclude that Player II has a winning strategy. We can then build a tree T ′ ≤ T

and a continuous function h : [T ′] → μω which records the sequence 
⋃

i s
0
i ∈ μω as Player II builds a branch 

in the tree T ′ and the auxiliary objects s0
i for i ∈ ω. Let g : [T ′] → Y be the continuous function given by 

g(x) = f t
0(h(x)) where t is the unique initial segment of x in the front Fn. Clearly, T ′ � ġ(ẋgen) /∈

⋃
n Ṡn as 

desired. �
To conclude this section, we record an absoluteness result which will come handy in several places in the 

paper.

Theorem 11. (Absoluteness) Let κ be an infinite cardinal, M ⊆ V be a transitive model of (a large portion 
of) ZFC such that κ ∈ M and every countable subset of κ is a subset of a set countable in M . Then the 
membership of Borel sets in Lκ is absolute between M and V .

In particular, if M is a transitive model of a large portion of ZFC which computes ω1 correctly, then the 
membership of Borel sets in Lω1 is absolute between M and V .

Proof. We first argue that for any Borel sets B, C ⊂ κω, coded in M , if M |= B ⊆ C then in fact B ⊆ C

holds in V . Note that in ZFC, B ⊆ C is equivalent to “for cofinally many a ∈ [κ]ℵ0 , B ∩ aω ⊆ C ∩ aω”. 
Now, for a given set a ⊂ κ which is in M and countable in M , the inclusion B ∩ aω ⊆ C ∩ aω is calculated 
correctly by M by the Mostowski absoluteness between M and V . Moreover, the quantification over the 
sets a is also calculated correctly by M by the covering assumption on M .

Suppose that B ⊂ κω is a Borel set coded in M . Suppose first that M |= B ∈ Lκ. By the definitions, 
there is a function F : κ<ω → [κ]<κ in the model M such that M |= B ⊂ C(F ). But then B ⊂ C(F ) holds 
also in V by the first paragraph, and so B ∈ Lκ holds. Suppose now that M |= B /∈ Lκ. Then by Theorem 6
there is a Namba tree T such that M |= [T ] ⊂ B. By the first paragraph again, [T ] ⊂ B holds in V as well, 
and so B /∈ Lκ holds. �
3. The case of κ > ω1 regular

It turns out that the treatment of preservation properties of Namba forcing Nκ is easiest in the case of 
κ > ω1 regular.

Theorem 12. Let κ > ω1 be a regular cardinal. Let Y be a completely metrizable space and let I be a σ-ideal 
of Borel subsets of Y containing all singletons. Suppose that one of the following holds:

(1) cov(I) < κ;
(2) non(I) > κ.

Then Nκ preserves covering by I.

Proof. The proof in the case of (1) is easier. Let J ⊂ I be a set of size < κ such that 
⋃
J = Y ; we will 

show that the equality 
⋃
J = Y persists to the Namba extension. Suppose that T ∈ Nκ is a condition 

and τ is a Namba name for an element of the (interpretation of the) space y. Using the continuous reading 
of names–Theorem 7, thin out the tree T if necessary to find a continuous function f : [T ] → Y such that 
T � τ = ḟ(ẋgen). For each set B ∈ J consider the preimage f−1B. It is impossible for all of these sets to 
belong to the ideal Lκ, since their union is the Lκ-positive set [T ] and the ideal Lκ is < κ-additive. Thus, 
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there must be a set B ∈ J such that the set f−1B is Lκ-positive. By the quotient presentation theorem, 
there is a Namba tree S ⊂ T such that [S] ⊂ f−1B. Then S � τ = ḟ(ẋgen) ∈ B as desired.

The proof in the case of (2) makes use of the following key claim.

Claim 13. non(Lκ) = κ.

Proof. Let S ⊂ κ be the set of all limit ordinals of cofinality ω. By a result of Shelah (see e.g. [1, Theorem 
2.17]), there is a set {cα : α ∈ S} such that for every ordinal α ∈ S, the set cα is a cofinal subset of α of 
ordertype ω, and for every closed unbounded set C ⊂ κ there is α ∈ S such that cα ⊂ C. Let D ⊂ κω be 
the set of all increasing enumerations of the sets cα for α ∈ S. Clearly, |D| = κ, and it will be enough to 
show that D /∈ Lκ.

To this end, suppose f : κ<ω → κ be a function; we must produce a sequence d ∈ D such that for every 
number n ∈ ω, d(n) > f(d � n). Let C ⊂ κ be the closed unbounded set of all ordinals closed under the 
function f . Let α ∈ S be an ordinal such that cα ⊂ C. It is immediate that d =the increasing enumeration 
of the set cα works as required. �

Now, suppose that T ∈ Nκ is a condition and τ is a name for an element of the (interpretation of 
the) space Y . Using the continuous reading of names, thinning out the tree T if necessary we may find a 
continuous function f : [T ] → Y such that T � τ = ḟ(ẋgen). Since there is a Lκ-preserving injection from 
κω to [T ], the claim shows that there is a Lκ-positive set D ⊂ [T ] of size κ. Since f ′′D ⊂ Y is a set of size 
≤ κ, the initial assumptions show that there is a Borel set B ∈ I such that f ′′D ⊂ B. Then f−1B ⊂ [T ]
is a Borel Lκ-positive set, and by Theorem 6, it contains all branches of some Namba tree S ⊂ T . Then 
S � τ = ḟ(ẋgen) ∈ Ḃ as required. �

Let κ > ω1 be a regular cardinal. Applying Theorem 12 to certain standard ideals one can conclude the 
following (see [12] for the first and second item).

(1) Nκ does not collapse ω1;
(2) If c < κ then Nκ does not add new reals;
(3) If cov(M) < κ or κ < non(M) then Nκ does not add Cohen reals;
(4) If cov(N ) < κ or κ < non(N ) then Nκ does not add random reals;
(5) If d < κ or κ < b then Nκ does not add unbounded reals;
(6) Nκ adds a dominating real if and only if b = d = κ;
(7) If r < κ or κ < s then Nκ does not add splitting reals;
(8) If non(M) < κ or κ < cov(M) then Nκ preserves category;
(9) If add(N ) < κ or κ < cof(N ) then Nκ has the Sacks property.

The proofs of the above items use the standard characterizations of the cardinal invariants involved; we only 
point out the proof of (1) and (2). For (1), consider the space Y = ωω

1 and the σ-ideal I generated by the 
closed sets Bα = {y ∈ Y : rng(y) ⊂ α} ⊂ Y for α ∈ ω1. Clearly cov(I) = ω1 < κ and so (1) of Theorem 12
applies. For the second item, let I be the collection of countable sets of reals and apply (1) of Theorem 12
to prove the left-to-right direction. For the right-to-left direction, if c ≥ κ then fix an injection h : κ → 2ω
and consider the function f : κω → (2ω)ω given by f(x) = h ◦ x. It is immediate that f is a continuous 
injection, and so Nκ � ḟ(ẋgen) /∈ V .

We now give a condition under which Nκ does not preserve the covering of an ideal:

Proposition 14. Let κ be a cardinal, let Y be a completely metrizable space of weight < κ, and let I be a 
σ-ideal of Borel sets in Y . If add(I) = cof(I) = κ then Nκ adds an element of Y which belongs to no 
elements of I coded in the ground model.
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Proof. The cardinal assumptions show that there is an inclusion-increasing sequence 〈Bα : α ∈ κ〉 of Borel 
sets in I such that every set in I is a subset of some set on the sequence. By Theorem 10, I still generates 
a proper σ-ideal in the Nκ-extension on the (interpretation of the) space Y . In particular, if x ∈ κω is the 
Nκ-generic sequence, then in the model V [x] there is a point y ∈ Y which belongs to none of the sets Bx(n)
for any n ∈ ω. Since rng(x) ⊂ κ is a cofinal set, this means that this point y belongs to no ground model 
coded elements of the σ-ideal I. �
4. The case κ > ω1 singular

It may appear that in the case of a singular cardinal κ of uncountable cofinality, the poset Nκ is very 
close to Ncof(κ). Indeed, in the case of preservation properties considered in this paper, there is a close 
relationship:

Theorem 15. Suppose that κ is an uncountable cardinal, Y is a completely metrizable space, and I is an 
ideal on Y with a Borel base. If Nκ preserves covering of I then Ncof(κ) preserves covering of I.

Proof. Argue in contrapositive. Write μ = cof(κ). Suppose that Nμ does not preserve covering of I. By 
the continuous reading of names there must be a continuous function H : μω → Y such that H-preimage of 
any Borel set in I belongs to Lμ. Express κ =

⋃
α∈μ bα as a union of pairwise disjoint pieces of cardinality 

less than κ. Consider the function G : κω → μω defined by G(x)(n) = α if x(n) ∈ bα and the continuous 
function H ◦G : κω → Y . It is not difficult to check that H ◦G-preimages of Borel sets in I belong to Lκ. 
Therefore, the Nκ-name given by the function G ◦H shows that Nκ destroys covering by I. �

Yet, the forcings Nκ and Ncof(κ) may be quite different as the following theorem shows1:

Theorem 16. The following statement is consistent with ZFC. There is a cardinal κ of uncountable cofinality 
such that Nκ does not add generic sequences for Ncof(κ).

Proof. We start with a model of GCH and let κ = ωω1 . Let P be a ccc forcing notion that forces κ+ < p

and let G ⊂ P be a generic filter. We claim that in the resulting model V [G], the poset Nκ does not add 
generic sequences for Nω1 .

To see this, first note that by the c.c.c. of the poset P , cof[κ]<κ = κ+ < p. In this context, by a result 
of Miller [11], Nω1 and Nκ both have minimal real degree of constructibility, and also the generic extension 
for both of them is given by a real. In such a situation, to show that Nκ does not add a generic sequence 
for Nω1 is equivalent to showing that Nω1 does not add a generic sequence for Nκ.

To prove the latter statement, it is enough to show that Nω1 � every countable set of ordinals is covered 
by a set of size ℵ1 in the ground model. To prove this, suppose that T ∈ Nκ � ȧ is a countable set of 
ordinals. By the continuous reading of names, thinning out the tree if necessary, we may find a continuous 
function f : [T ] → μω for a suitable ordinal μ such that T � ȧ = rng(f(ẋgen)). Let {Oβ : β ∈ ω1} be an 
enumeration of a basis of the topology of [T ] and for each natural number n ∈ ω and each ordinal β ∈ ω1

let g(β, n) =the unique α ∈ μ if it exists such that for all x ∈ Oβ , f(x)(n) = α. By the continuity of the 
function f , the set rng(f(x)) is a subset of rng(g) for every point x ∈ [T ]. Thus, T � ȧ ⊂ rng(g); at the 
same time |rng(g)| ≤ ℵ1 and the proof is complete. �
1 Recall that a forcing notion P has minimal real degree of constructibility if for every generic filter G ⊆ P if x ∈ V [G] ∩ 2ω

then either x ∈ V or G ∈ V [x].
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5. The case κ = ω1

The case κ = ω1 is more challenging than the case of a regular cardinal κ > ω1. The main reason is that 
the equality non(Lκ) = κ instrumental in the proof of Theorem 12 can fail at κ = ω1, and the failure is in 
fact implied by (a very small portion of) the Proper Forcing Axiom.

Theorem 17.
(1) non(Lω1) ≤ d.
(2) The Proper Forcing Axiom implies non(Lω1) > ω1.

Proof. For (1), let Part denote the set of all interval partitions (partitions in finite sets) of ω. We may 
define an order in Part as follows, given P, Q ∈ Part we say P ≤ Q if for all Q ∈ Q there is P ∈ P such 
that P ⊆ Q. In [3] it is proved that the smallest size of a dominating family of interval partitions is precisely 
d.

Let P = {Pγ | γ ∈ d} be a dominating family of interval partitions where Pγ = {[Pγ (n) , Pγ (n + 1)) |
n ∈ ω}. For every limit ordinal α < ω1, choose Cα = 〈αn〉n∈ω an increasing sequence cofinal in α. For every 
α < ω1 and γ < d we define gγα : ω −→ ω1 given by gγα (n) = αPγ(n+1). We claim that the set X = {gγα | α is 
a countable limit ordinal and γ ∈ d} does not belong to Lω1 .

Let F : ω<ω
1 −→ ω1 and as before, let D ⊆ ω1 be a club such that if α ∈ D and s ∈ α<ω then 

F (s) < α. Choose any α ∈ D which is also a limit point of D. Now we define an interval partition 
Q = {[Q (n) , Q (n + 1)) | n ∈ ω} such that [αQ(n), αQ(n+1)) ∩D �= ∅ for every n ∈ ω. Since P is a dominating 
family of interval partitions, then there is γ < d such that Q ≤ Pγ . It is then easy to see that gγα /∈ C (F ).

For (2), let P denote Baumgartner’s forcing for adding a club with finite conditions. A condition p ∈ P

is a pair 〈ap, bp〉 where a ⊂ ω1 is a finite set and bp is a finite set of closed intervals in ω1 disjoint from the 
set ap. The ordering is that of coordinatewise reverse inclusion. It is well known that P is a proper forcing 
and the union of the first coordinates of conditions in the generic filter is a closed unbounded subset of ω1
consisting of indecomposable ordinals only. Let Ḟ : ω<ω

1 → ω1 be a P -name for the function which assigns 
to each sequence t the first element of this generic club larger than all ordinals listed by t. By a standard 
genericity argument, it will be enough to show that P � x̌ ∈ C(Ḟ ) for every sequence x ∈ ωω

1 .
To this end, let p ∈ P and n ∈ ω be given; we must find q ≤ p and m > n such that q � x̌(m) ∈ Ḟ (x̌ � m). 

If there is m > n such that x(m) ≤ x(m −1) then p � x̌(m) ∈ Ḟ (x̌ � m) as required. Otherwise, the sequence 
x is increasing beyond n and so there must be a number m > n such that the interval [x(m), x(m + 1)]
contains no elements of ap. Then, q = 〈ap, bp ∪ {[x(m), x(m + 1)]}〉 is a condition in P stronger than p and 
q � x̌(m) ∈ Ḟ (x̌ � m) as required. �

The upshot is that we cannot answer the central preservation question for Nω1 in general:

Problem 18. If I is an ideal generated by Borel sets in ωω and ω1 < non(I), is it true that Nω1 preserves 
covering of I?

Nevertheless, for certain specific ideals the question does have a positive answer. This section contains 
the partial results of this kind that we were able to prove.

Theorem 19. If ω1 < cov(M) then Nω1 does not destroy category.

Proof. We need to prove that for every continuous function H : ωω
1 −→ ωω there is h ∈ ωω such that the 

preimage of the set {f ∈ ωω | |f ∩ h| = ω} is not in Lω1 .
Let M be an elementary submodel of a large structure such that H ∈ M , ω1 ⊆ M and |M | = ω1. Since 

ω1 < cov(M), there is c : ω −→ ω which is Cohen over M . Let B = {f ∈ ωω | |f ∩ c| = ω}, clearly B
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is a Borel set and B ∈ M [c]. Let A = H−1 (B) we now claim M [c] |= A /∈ Lω1 . We argue in M [c], let 
F : ω<ω

1 −→ ω1 ∈ M [c]. Since M [c] is a ccc extension of M there is g ∈ (ωω
1 ∩M) \C (F ). In this way, 

H (g) ∈ M and since c is Cohen over M , then H (g) ∩ c �= ∅ so g ∈ A \C (F ). So, M [c] |= A /∈ Lω1 , hence 
A /∈ Lω1 by Theorem 11. �
Theorem 20. If ω1 < b then Nω1 does not add unbounded reals.

Proof. We need to prove that for every continuous function H : ωω
1 → ωω there is a function f ∈ ωω such 

that the set H−1{h ∈ ωω : h ≤∗ f} does not belong to Lω1 Let M be an elementary submodel of a large 
structure containing the function H, containing ω1 as a subset, and of size ℵ1. By the cardinal invariant 
assumption, there is an increasing function f which modulo finite dominates every function in M . We claim 
that the function f works.

To that end, we consider the Hechler forcing H: elements of H are pairs of the form (s, g) where s ∈ ω<ω

and g ∈ ωω, and the order is given by (s, g) ≤ (z, h) if z ⊆ s, h ≤ g and if i ∈ dom (s) \ dom (z) then 
s (i) ≥ h (i).

Claim 21. There is a c.c.c. partial order Q ∈ V that adds a g : ω −→ ω such that g ≤ f and g is Hechler 
over M .

Proof. Write h <n g to mean that h (m) < g (m) for every m ≥ n. Let Q be the suborder of H consisting 
of all pairs (s, h) ∈ H ∩M such that s ≤ f and h ≤|s| f . Clearly Q adds a function g : ω −→ ω and g ≤ f . 
We will show that g is Hechler over M (note that Q is not in M). It is enough to show that if D ∈ M and 
D ⊆ H is open dense then D ∩Q is dense for Q.

Pick any (s, h) ∈ Q with |s| = n0, for every i > n0 let si = s�h � [n0, i]. Note that 
(
si, h

)
∈ Q and it 

extends (s, h). Inside M , we recursively construct two sequences {(si, hi) | i ∈ ω} ⊆ H and {ni | i ∈ ω} ⊆ ω

so that (s0, h0) = (s, h), and for every i ∈ ω, (si+1, hi+1) ∈ D, |si| = ni, (si+1, hi+1) ≤ (sni , h), and 
hi ≤ni+1 hi+1.

We then define l = s� (s1 + h1) � [n0, n1)� (s2 + h1 + h2) � [n2, n3)�... and note that l ∈ M , therefore, 
there is i ∈ ω such that l <ni

f . This entails that (si+1, hi) ∈ Q. �
Let g ∈ ωω be a function generic for the poset Q. Let B = {h ∈ ωω | h ≤∗ g}, and let A = H−1 (B)

which is a Borel set in M [g]. We will prove that M [g] |= A /∈ Lω1 . Let F : ω<ω
1 −→ ω1 ∈ M [g] and since 

M [g] is a ccc extension of M then (ωω
1 ∩M) \C (F ) �= ∅. Let x ∈ (ωω

1 ∩M) \C (F ) then H (x) ∈ M and 
since g is Hechler over M we conclude that H (x) ≤∗ g so x ∈ A \C (F ).

Thus, M [g] |= A /∈ Lω1 . By Theorem 11, we conclude that V [g] |= A /∈ Lω1 . Since g ≤ f , it must be the 
case that V [g] |= H−1{h ∈ ωω : h ≤∗ f} /∈ Lω1 . By Theorem 11 again, V |= H−1{h ∈ ωω : h ≤∗ f} /∈ Lω1

as desired. �
As a consequence, we can answer a question of [7]:

Corollary 22. b is the first uncountable regular cardinal κ such that Nκ adds an unbounded real.

Using a similar method, we can prove the following:

Theorem 23. If ω1 < d then Nω1 does not add dominating reals. Thus, Nω1 adds a dominating real if and 
only if d = ω1.

Proof. We need to prove that for every continuous function H : ωω
1 −→ ωω there is f ∈ ωω such that the 

preimage of {h ∈ ωω | f �∗ h} is not in Lω1 . Let M be an elementary submodel of size ω1 such that ω1 ⊆ M

and H ∈ M . Since ω1 < d there is a function f ∈ ωω that is unbounded over M .
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Claim 24. There is a c.c.c. partial order Q ∈ V that adds a function g : ω −→ ω such that g ≤ f and g is 
Cohen over M .

Proof. Let Q be the suborder of ω<ω given by Q = {s ∈ ω<ω|s ≤ f}, clearly Q adds a function g : ω −→ ω

and g ≤ f . We will show that g is Cohen over M and it is enough to show that if D ∈ M and D ⊆ ω<ω is 
open dense then D ∩Q is dense for Q.

Let s ∈ Q with |s| = n0 and for every i > n0 define si = s�0 � [n0, i] where 0 is the constant 0 function. 
Note that si ∈ Q and it extends s. Inside M , we recursively construct two sequences {si | i ∈ ω} ⊆ C and 
{ni | i ∈ ω} ⊆ ω so that s0 = s, and for every i ∈ ω, si+1 ∈ D, |si| = ni, ni < ni+1, and si+1 ≤ sni .

We now define l : ω −→ ω where l (i) is the largest value in the range of si+1, and note that l ∈ M , 
therefore, there is i ∈ ω such that l (i) < c (i), and since i ≤ ni there is a condition si ∈ D extending s. �

Let g ∈ ωω be a function generic over the poset Q. Let B = {h ∈ ωω | g �∗ h} and A = H−1(B) which 
is a Borel set in M [g]. We will prove that M [g] |= A /∈ L. Let F : ω<ω

1 −→ ω1 ∈ M [g]. We know that M [g]
is a ccc extension of M , so (ωω

1 ∩M) \C(F ) �= ∅. Let h ∈ (ωω
1 ∩M) \C (F ). Clearly H(h) ∈ M , and since g

is Cohen over M then g �∗ H(h) so h ∈ A \C(F ). The last part of the argument is similar to the previous 
theorem. �
Theorem 25. If ω1 < add(N ) then Nω1 has the Sacks property.

Proof. We need to prove that for every continuous function F : ωω
1 −→ ωω there is a slalom S, i.e.

S : ω → [ω]<ω such that 
∑

n ∈ ω S(n)
2n < ∞, such that the preimage of {f ∈ ωω | f �∗ S} is not in Lω1 . 

Here, f �∗ S means that ∀∞n ∈ ω f(n) ∈ S(n).
To that end we consider the n-Amoeba forcing An defined as the set of all open subsets of 2ω with 

Lebesgue measure less than 1
n . If U1, U2 ∈ A then U1 ≤ U2 if U1 ⊆ U2. It can be proved that An and Am

are forcing equivalent for every n, m ∈ ω–see [2, Lemma 3.1.11]. In this way, forcing with A2 adds a null 
set containing every ground model null set. It is well known that A2 is ccc and Judah and Repický proved 
that the Martin number of A2 is add(N )–see [2, Theorem 3.4.17].

Let M be an elementary submodel of size ω1 such that F ∈ M and ω1 ⊆ M . Since ω1 < add(N ) then 
there is a filter G ⊆ A2 that is (M,A2)-generic. In this way, in M [G] there is a null set containing every null 
set from M so then there is a slalom S such that f �∗ S for every f ∈ M . Let B = {f ∈ ωω | f �∗ S} and 
A = F−1 (B) which is a Borel set. We claim that M [G] |= A /∈ Lω1 , let H : ω1 −→ ω1 ∈ M and since M [G]
is a ccc extension of M , then there is x ∈ M ∩ (ωω

1 \ CH). But then F (x) ∈ M so F (x) �∗ S hence x ∈ A

which implies that A is not contained in CH so M [G] |= A /∈ Lω1 and then A /∈ Lω1 by Theorem 11. �
We remark that neither Nadd(N ) nor Ncof(N ) have the Sacks property. This will be proved in [6] (which 

answers another question of [7]).

6. Bukovský forcing

In this section we will briefly consider a forcing very similar to Nκ introduced in [4].

Definition 26. Let κ be a regular cardinal.

(1) A tree T ⊆ κ<ω is a κ-Bukovský tree if the following conditions hold:
(a) if s ∈ T then either |sucT (s)| = 1 or |sucT (s)| = κ;
(b) for every s ∈ T there is t ∈ T extending s such that |sucT (t)| = κ.

(2) Mκ denotes the set of all κ-Bukovský trees ordered by inclusion.
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In this way, Mω is the usual Miller forcing. For every F : κ<ω −→ κ define DF = {x ∈ κω | ∀∞n ∈
ω (x (n) < F (x � n))} and let Kκ be the ideal generated by {DF | F : κ<ω −→ κ}. It is easy to see that if 
κ > ω is a regular cardinal then K (κ) is a σ-ideal. For a set B ⊆ κω consider the following game G (B):

I s0 s1 s2 s3 · · ·
⋃
sn ∈ B

II α0 α1 α2 · · ·

such that sn ∈ κ<ω, sn ⊆ sn+1, αn ∈ κ and αn < sn+1 (|sn|) for every n ∈ ω. Player I wins the game if ⋃
sn ∈ B. The following proposition is easy and left to the reader:

Proposition 27. Let κ > ω be a regular cardinal and B ⊆ κω.

(1) Player I has a winning strategy in G (B) if and only if there is T ∈ Mκ such that [T ] ⊆ B.
(2) Player II has a winning strategy in G (B) if and only if B ∈ Kκ.
(3) Every Borel set of κω either contains the branches of a κ-Bukovský tree or belongs to Kκ.
(4) Mκ is forcing equivalent to Borel (κω) modulo Kκ.

We have the following result, the proof of which is left to the reader:

Proposition 28. Let κ, μ be cardinals such that κ > ω is a regular cardinal. Let I ⊆ μω be an ideal with a 
Borel base. If Nκ preserves covering of I then Mκ preserves covering of I.
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