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Abstract: In this work we study cardinal invariants of the ideal SP of strongly
porous sets on ω2. We prove that add(SP) = ω1 , cof(SP) = c and that it is
consistent that non(SP) < add(N ), answering questions of Hrušák and Zindulka.
We also find a connection between strongly porous sets on ω2 and the Martin
number for σ -linked partial orders, and we use this connection to construct a model
where all the Martin numbers for σ -k-linked forcings are mutually different.
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1 Introduction

In 1967, Dolženko [5] began the study of σ -porous sets1 and since then, many
applications have been found. One of these appears in [10], where Preiss and Zajı́ček
proved that, given a Banach space X with a separable dual and a continuous convex
function f on X , the set of points in which f is not Fréchet differentiable is σ -porous.
Other applications can be found in Belna, Evans and Humke [2], Lindenstrauss and
Preiss [7], Lindenstrauss, Preiss and Tišer [8], Reich and Zaslavski [11], Renfro [12]
and Zaslavski [19].

We shall study the notion of strong porosity: given a metric space 〈X, d〉, a subset
A ⊆ X is strongly porous if there is a p > 0 such that for any x ∈ X and any 0 < r < 1,
there is y ∈ X such that Bp·r(y) ⊆ Br(x) \ A. In this paper we will refer to strongly
porous sets as porous sets. We shall work mostly with porous sets in ω2: we say that a
set A ⊆ ω2 is n-porous if for every s ∈ <ω2 there is a t ∈ n2 such that 〈sat〉 ∩ A = ∅.
By sat we denote the concatenation of s followed by t , and by 〈s〉 we denote the cone
of s, that is 〈s〉 = {f ∈ ω2 : s ⊆ f}. It is easy to see (see Hrušák and Zindulka [6]) that

1A σ -(upper/lower) porous set is the countable union of (upper/lower) porous sets
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a set A ⊆ ω2 is porous if and only if there is an n ∈ ω such that A is n-porous. Zajı́ček
[17] proved that a set A in a metric space 〈X, d〉 is σ -porous if and only if it is σ -lower
porous, where A is lower porous if for every x ∈ X there exist ρx > 0 and rx > 0 such
that for any 0 ≤ r ≤ rx there is y ∈ X such that Bρx·r(y) ⊆ Br(x) \ A. Another classical
notion of porosity is upper porosity: a set A in a metric space 〈X, d〉 is upper porous if
for every x ∈ X there is ρx > 0 and a sequence rn → 0 such that for every n ∈ ω there
is yn ∈ X such that Bρx·rn(yn) ⊆ Brn(x) \ A. It is easy to see that lower porosity implies
upper porosity.

We will denote the σ -ideal2 generated by porous sets on ω2 by SP , the σ -ideal
generated by n-porous sets by SPn , and the σ -ideal generated by upper porous sets
by UP. Observe that SP1 is the ideal of countable sets of ω2. Further research about
different types of porosity can be found in Rojas-Rebolledo [16], Zajı́ček [17], Zapletal
[18], Zelený [20] and Zelený and Zajı́ček [21].

Cardinal invariants of these σ -ideals have been studied in Brendle [3], Hrušák and
Zindulka [6] and Repický [13, 14, 15]. Recall that, given a σ -ideal I over a set X , the
following are the standard cardinal invariants of I :

add(I) = min{|A| : A ⊆ I ∧
⋃
A /∈ I}

cov(I) = min{|A| : A ⊆ I ∧
⋃
A 6= X}

non(I) = min{|Y| : Y ⊆ X ∧ Y /∈ I}
cof(I) = min{|A| : A ⊆ I ∧ ∀B ∈ I (∃A ∈ A (B ⊆ A))}

In [6], Hrušák and Zindulka proved that the cardinal invariants of the σ -ideal of lower
porous sets in the real line are the same as the cardinal invariants of SP . They proved
that non(SP) < mσ-centered is consistent, that cov(SP) > cof(N ) is consistent, and that
cov(SP) < c is consistent, where mσ-centered is the smallest cardinal where the Martin’s
axiom for σ -centered forcings fails and N is the ideal of sets of Lebesgue measure
zero.

There are some analogous inequalities that hold for UP. In [15], M. Repický proved
that non(UP) ≥ mσ-centered and cov(UP) ≤ cof(N ) holds. He proved in [13] that
non(UP) ≥ add(N ) and in [3], J. Brendle proved that add(UP) = ω1 and cof(UP) = c

hold. In [6], Hrušák and Zindulka asked if the last three inequalities hold also for the SP
ideal. In this work we show that add(SP) = ω1 , cof(SP) = c and that it is consistent
that non(SP) < add(N ).

Given k ∈ ω and a forcing notion P a subset A ⊆ P is k-linked if for every collection
{ai : i ∈ k} of k elements of A, there is an a ∈ P such that for every i ∈ k , a ≤ ai . P

2σ -ideals are ideals closed under countable unions of their elements.
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is σ -k-linked if P is the countable union of k-linked subsets of P. We will denote by
mk the Martin number for σ -k-linked forcings, that is, the smallest cardinal κ such
that there is a σ -k-linked forcing P and κ many P-dense subsets of P such that no
filter of P intersects them all. In [4], Brendle and Shelah constructed a model where all
the Martin numbers of the form m2i are distinct. We will show a connection between
σ -k-linked forcings and porous sets and we will use this connection to construct a
model where all the Martin numbers mi are different all at once.

If X,Y are sets, then YX is the set of all functions from Y to X and <ωX =
⋃

n∈ω
nX .

If σ, s ∈ <ωX , then we will denote that σ is an initial segment of s by σ v s. A set
T ⊆ <ωX is a tree if it is closed under restrictions to initial segments. If T ⊆ <ωX is a
tree, then by [T] we denote the set of branches of T , that is, [T] = {f ∈ ωX : ∀n ∈
ω ( f�n ∈ T)}. With end(T) we will denote the end nodes of T , that is the nodes of T
without extensions. In our forcing notation, the stronger conditions are the smaller ones.
In general, our notation follows Bartoszyński and Judah [1].

2 Additivity and cofinality

The main goal of this section is to prove that add(SP) = ω1 and cof(SP) = c. We will
use the following notion.

Definition 2.1 Let k ∈ ω . A tree T ⊆ <ω2 is a k-porous tree if for every s ∈ <ω2
there is t ∈ k2 such that sat /∈ T .

Note that A ⊆ ω2 is k-porous if and only if there is a k-porous tree T such that [T]
contains A.

Theorem 2.2 There is a family {Tf : f ∈ ω2} of 2-porous trees such that for every
X ∈ SP , the set {f ∈ ω2 : [Tf ] ⊆ X} is countable.

Proof We will construct the family {Tf : f ∈ ω2} as follows: For every a ⊆ <ω2
such that |a| = 2n , let ϕa : a→ n2 be a bijective function. For every i ∈ ω , let
ψi : {a ⊆ i2 : ∃k ∈ ω (|a| = 2k)} → ω \ {0} be an injective function. If a ⊆ i2 and
|a| = 2k , define

σa = 〈0, 1, . . . , 1︸ ︷︷ ︸
2ψi(a) times

, 0〉.
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For each σ ∈ <ω2, we will recursively define a finite tree Tσ as follows: T∅ = {∅},
and if Tσ is defined then

Tσai ={s ∈ <ω2 : ∃t ∈ end(Tσ) (∃j ∈ ω (∃a ⊆ |σ|+12

(|a| = 2j ∧ σai ∈ a ∧ s v taσaa ϕa(σai))))}
∪ {s ∈ <ω2 : ∃t ∈ end(Tσ) (s v ta〈1, 1〉)}.

It is easy to see that, for each σ ∈ <ω2, Tσ is a finite 2-porous tree and that if σ v τ ,
then Tσ ⊆ Tτ . For each f ∈ ω2, define Tf =

⋃
n∈ω Tf�n . It follows easily that each Tf

is a 2-porous tree.

We will show that the family {Tf : f ∈ω 2} is the family we were looking for: Let
X ∈ SP . Without loss of generality we will assume that X =

⋃
i∈ω[Ti], where Ti

is an i + 1-porous tree. We must show that the set B = {f ∈ ω2 : [Tf ] ⊆ X} is
countable: For each s, t ∈ <ω2 and each n ∈ ω , define Bs,t,n = {f ∈ ω2 : t v f , s ∈
Tt ∧ [Tf ] ∩ 〈s〉 ⊆ [Tn]}. We will see that B ⊆

⋃
s,t∈<ω2,n∈ω Bs,t,n : If f is such that

f ∈ B, then [Tf ] ⊆
⋃

n∈ω[Tn]. Using the Baire Category Theorem we can find s ∈ Tf

and n ∈ ω such that [Tf ] ∩ 〈s〉 ⊆ [Tn]. Find k ∈ ω such that s ∈ Tf�k . It follows that
f ∈ Bs,f�k,n . To finish the proof we will see that each Bs,t,n has at most 2n+1−1 elements:
Suppose this is not the case and let s, t ∈ <ω2, n ∈ ω and {fi}i<2n+1 ⊆ Bs,t,n . Extend s
to σ such that σ ∈ end(Tt). Let j ∈ ω be such that the set a = {fi� j : i < 2n+1} has
2n+1 elements and let

s0 = σa〈1, . . . , 1︸ ︷︷ ︸
2·(j−|t|−1) times

〉aσa.

The tree Tn is n + 1-porous, so there is a τ ∈ 2n+1 such that sa0 τ /∈ Tn . Find k < 2n+1

such that ϕa( fk� j) = τ and observe that sa0 τ = sa0 ϕa( fk� j) ∈ Tfk . As a consequence,
[Tfk ] ∩ 〈s〉 * [Tn], but this contradicts the fact that fk ∈ Bs,t,n . This implies that each
Bs,t,n is finite, and therefore B is countable.

We can now prove the main result of this section.

Corollary 2.3 add(SP) = ω1, cof(SP) = c.

Proof Let {Tf : f ∈ ω2} be the family given by the theorem above. If H ⊆ ω2 is an
uncountable set, then

⋃
{[Tf ] : f ∈ H} /∈ SP . As a consequence, add(SP) = ω1 . On

the other hand, if κ < c and if {Xα : α < κ} ⊆ SP , then there is an f ∈ ω2 such that,
for every α < κ, [Tf ] * Xα and therefore cof(SP) = c.
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Observe that this last proof can be used to show that add(SPn) = ω1 = add(SP) and
cof(SPn) = c = cof(SP).

3 Uniformity number

In this section we will study some properties concerning the uniformity number of
porosity ideals. We will prove the consistency of non(SP) < add(N ). We will also
develop some tools that we will use later in the paper. We will need the following
concept, inspired by the concept of a k-Sacks tree in <ωk .

Definition 3.1 Let k > 1. A tree T ⊆ <ωk is a k-anti-Sacks tree if for every s ∈ T
there is i < k such that sa〈i〉 /∈ T . We will denote by ASk the σ -ideal generated by
the branches of k-anti-Sacks trees.

This notion is the analogue of the notion of 1-porous tree in <ωk and it is closely related
to the k-Sacks forcing. Recall that a k-Sacks tree T is a tree on <ωk such that for every
s ∈ T , there is a t ∈ T such that, for every i < k , tai ∈ T . The k-Sacks forcing Sk is
the collection of all k-Sacks trees ordered by reverse inclusion. It is well-known that the
k-Sacks forcing is equivalent to Borel(ωk)/ASk (see Newelski and Rosłanowski [9]).

Using a similar argument to the one we gave in the last section, it is possible to show
that add(ASk) = ω1 and that cof(ASk) = c. Alternatively, a proof of this fact can be
found in [9].

The ideals SPk and AS2k share many properties. Many of the results in this work will
concern properties of the ideals ASk that are also valid for the ideals SPk , and the
proofs for both ideals are almost the same. Whenever we state a property about one of
these ideals that is also valid for the other one, we will only give the proof for the ideal
ASk .

We shall introduce a notion that we will use to keep the uniformity number small in a
forcing extension.

Definition 3.2 Let P be a forcing notion and let A ⊆ ωk (A ⊆ ω2) be such that
A /∈ ASk (A /∈ SPk ). We say that P strongly preserves non(ASk) in A (P strongly
preserves non(SPk) in A) if for every P-name

.
X of a k-anti-Sacks tree (k-porous tree)

there is a Y ∈ ASk (Y ∈ SPk ) such that, for every x ∈ A, if x /∈ Y then P  “x /∈ [
.
X]”.

We will say that P strongly preserves non(ASk) (P strongly preserves non(SPk)) if P
strongly preserves non(ASk) in ωk (P strongly preserves non(SPk) in ω2).

Journal of Logic & Analysis 9:6 (2017)
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It is easy to see that, if P strongly preserves non(ASk) in A, then P  “A /∈ ASk” and
if P strongly preserves non(ASk), then P strongly preserves non(ASk) in A for every
A ⊆ ωk . The following lemma is easy to prove.

Lemma 3.3 Suppose that a forcing notion P strongly preserves non(SPk) for every
k ∈ ω , then P  “ω2 ∩ V /∈ SP”.

Proof The proof is straightforward from the definitions.

The next lemma shows that there is a connection between anti-Sacks trees and σ -k-linked
forcings.

Lemma 3.4 Let P be a forcing notion. If P is σ -k-linked, then P strongly preserves
non(ASk).

Proof Let {Pi : i ∈ ω} be a sequence of k-linked subsets such that P =
⋃

i∈ω Pi . Let
.
A be a P-name of a k-anti-Sacks tree. Define Tn ⊆ ωk as follows:

Tn = {s ∈ <ωk : ∃p ∈ Pn(p  “s ∈
.
A”)}

We claim that, for each n ∈ ω , Tn is a k-anti-Sacks tree. Suppose this is not the case,
so there is an s ∈ Tn such that, for every i ∈ k , sai ∈ Tn . For every i ∈ k , we can pick
a condition pi ∈ Pn such that pi  “sai ∈

.
A”. Let p ∈ P be such that, for every i ∈ k ,

p ≤ pi . Then p  “∀i ∈ k(sai ∈
.
A)”. This contradicts the fact that

.
A is a P-name of a

k-anti-Sacks tree.

To conclude the proof, note that for every x ∈ ωk , if p  “x ∈ [
.
A]”, then x ∈ [Tn],

where n is such that p ∈ Pn .

The lemma above is optimal in the sense that, for each k , there is a σ -(k − 1)-linked
forcing Pk such that Pk  “ωk∩V ∈ ASk” and therefore Pk does not strongly preserve
ASk . This will be proved in the next section. There is also a relation between porous
sets in ω2 and σ -k-linked forcings.

Lemma 3.5 Let P be a forcing notion. If P is σ -2k -linked, then P strongly preserves
non(SPk).

Proof The proof is similar to the previous lemma.

Journal of Logic & Analysis 9:6 (2017)
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We shall show that strong preservation of non(ASk) and non(SPk) is preserved by finite
support iterations.

Lemma 3.6 Let A ⊆ ωk and I ∈ {SPn,ASk : n > 0, k > 1}.

(1) If P is a forcing notion such that P strongly preserves non(I) in A and
.
Q is

a P-name for a forcing such that P  “
.
Q strongly preserves non(I) in A”, then

P ∗
.
Q strongly preserves non(I) in A.

(2) If 〈Pα,
.
Qα : α ≤ γ〉 is a finite support iteration of c.c.c. forcings such that

Pα  “
.
Qα strongly preserves non(I) in A” for each α ∈ γ , then Pγ strongly

preserves non(I) in A.

Proof We will only show the case when I = ASk as the other cases are similar. The
part (1) is easy, we will proceed with part (2) by induction on γ . It is easy to see that
the lemma holds for successor ordinals, and if γ has uncountable cofinality we can
use a standard reflection argument to show that Pγ strongly preserves non(ASk) in A,
so it is enough to show that the lemma holds for γ = ω . Let

.
T be a Pω -name of a

k-anti-Sacks tree. For each n ∈ ω , let
.

Tn be a Pn -name for the following set:
.

Tn = {s ∈ <ωk : P(n,ω)  “s ∈
.
T”}

It is easy to see that each
.

Tn is a Pn name for a k-anti-Sacks tree. Now we use that
each Pn strongly preserves non(ASk) to find a family {T j

i : i, j ∈ ω} such that, for each
n ∈ ω , if x ∈ A and x /∈

⋃
i∈ω[Tn

i ], then Pn  “x /∈ [
.

Tn]”. It is easy to see that the set
Y =

⋃
{[T j

i ] : i, j ∈ ω} is the set we are looking for.

We will now prove the consistency of non(SP) < add(N ). For constructing the model
we are looking for, we will use the amoeba forcing A in the following presentation:

A = {B ∈ Borel(ω2) : µ(B) >
1
2
}

Here Borel(ω2) represents the collection of Borel subsets of the Cantor space and µ is
the standard Lebesgue measure over ω2. The order is given by A ≤ B if and only if
A ⊆ B. The following lemma is well-known (see eg Bartoszyński and Judah[1]). We
include the simple proof for the sake of completeness.

Lemma 3.7 The amoeba forcing is σ -n-linked for every n ∈ ω .

Journal of Logic & Analysis 9:6 (2017)
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Proof Let n ∈ ω . For every clopen C in ω2, define

AC = {A ∈ A : µ(C\A) <
1
n
· (µ(C)− 1

2
)}.

We will show that A =
⋃
{AC : C is a clopen in ω2}. Let A ∈ A and let ε > 0 such

that µ(A) = 1
2 + ε. Find an open set U ⊆ ω2 such that A ⊆ U and µ(U\A) < ε

n . Now
find a clopen set C ⊆ U such that µ(C) > 1

2 + ε. Then

µ(C\A) < µ(U\A) <
ε

n
=

1
n
· (1

2
+ ε− 1

2
) <

1
n
· (µ(C)− 1

2
).

Therefore A ∈ AC . Now we must show that, for every clopen set C ⊆ ω2, the
intersection K of an arbitrary family {Aj : j ∈ n} ⊆ AC is an element of A. This is a
consequence of the following calculations:

µ(C) ≤ µ(K) +
∑
j∈n

µ(C\Aj) < µ(K) +
1
n
· (
∑
j∈n

µ(C)− 1
2

) = µ(K) + µ(C)− 1
2
.

As a consequence, 1
2 < µ(K). Therefore K ∈ A.

We are ready to prove the main result of this section. The method of the proof was
suggested to us by J. Brendle.

Theorem 3.8 If ZFC is consistent, then ZFC + non(SP) < add(N ) is consistent.

Proof Start with a model V such that V |= CH . Let P = {Pα,
.

Qα : α < ω2} be a
finite support iteration of the amoeba forcing. It follows from the lemmas above that P
strongly preserves non(SPk) for every k ∈ ω and therefore P  “ω2 ∩ V /∈ SP”. As a
consequence, we have that V[G] |= non(SP) = ω1 . It is a known fact (see [1]) that
V[G] |= add(N ) = ω2 , hence V[G] |= non(SP) < add(N ).

4 Martin numbers of σ-k-linked forcings

It is easy to see that m2 ≤ m3 ≤ . . . and, for each k > 1, it is possible to get the
consistency of mk < mk+1 by forcing with a finite support iteration of σ -(k + 1)-linked
forcings over a model of CH. In [4], Brendle and Shelah constructed a model where all
the cardinals of the form m2k are different. In this section we will construct a model
where all the Martin numbers mi are different at the same time. In this model, the
cardinals non(ASi) will be different all at once (so will be the cardinals non(SPi)). We
will use the following forcing notions. Given k > 2 let
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Pk = {〈s,F〉 : (a) s is a finite k-anti-Sacks tree of height ht(s),

(b) F ∈ [ωk]<ω, and dF�∆Fe is a finite k-anti-Sacks tree, and

(c) s ⊆ dF�∆F + 1e},

where F�k = {f�k : f ∈ F}, dFe = {σ ∈ <ωk : ∃f ∈ F (σ ⊆ f )} and ∆F = min{n ∈
ω : |F�n| = |F|}. The order is defined by 〈s′,F′〉 ≤ 〈s,F〉 if and only if s ⊆ s′ and
F ⊆ F′ . This forcing notion will be used to work with the ideal ASk . For the ideal SPk ,
we will be using a similar forcing notion. Given k > 1 let

Pk = {〈s,F〉 : (a) s is a finite k-porous tree, and

(b) F ∈ [ω2]<ω, and dF�∆Fe is a finite k-anti-Sacks tree, and

(c) s ⊆ dF�∆F + 1e}.

The order is defined by 〈s′,F′〉 ≤ 〈s,F〉 if and only if s ⊆ s′ and F ⊆ F′ . We will be
using the following proposition.

Proposition 4.1 Given a k > 2 and an i > 1, Pk  “ωk ∩ V ∈ ASk” and
Pi  “ω2 ∩ V ∈ SPi”.

Proof We will only check that Pk  “ωk ∩ V ∈ ASk” as the other part is similar. It is
easy to see that, for every f ∈ ωk and n ∈ ω , the following sets are dense in P:

Df = {〈s,F〉 ∈ Pk : ∃σ ∈ <ωk (σaf� (ω \ |σ|) ∈ F)}
En = {〈s,F〉 ∈ Pk : ∆F > n ∧ s = dF�∆F + 1e}

If G ⊆ Pk is a filter meeting all these dense sets, then, using that the sets En are dense,
it follows that T =

⋃
{s : ∃F(〈s,F〉 ∈ G)} is a k-anti-Sacks tree. If σ ∈ <ωk and if

C[σ] = {σax� (ω \ |σ|) : x ∈ [T]}, then, using that the Df are dense, it follows that
ωk ∩ V ⊆

⋃
{C[σ] : σ ∈ <ωk} ∈ ASk .

The last proposition together with the Lemma 3.4 implies that Pk is not σ -k-linked. In
contrast with this last observation, we have the following proposition.

Proposition 4.2 For each k > 1, Pk+1 is σ -k-linked and Pk is σ -(2k − 1)-linked.

Journal of Logic & Analysis 9:6 (2017)
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Proof Again, we will only check that Pk+1 is σ -k-linked, the other part is done in
a similar way: For any two finite (k + 1)-anti-Sacks trees s, t of height ht(s), ht(t)
respectively, define

P(s, t) = {〈s,F〉 ∈ Pk+1 : ht(t) > ∆F ∧ F�ht(t) = t}.

It is easy to see that Pk+1 =
⋃
{P(s, t) : s, t are finite (k + 1)-anti-Sacks trees}. We will

show that every P(s, t) is k-linked. Let {〈s,Fi〉 : i < k} ⊆ P(s, t) and let F =
⋃

i<k Fi .
We must show that 〈s,F〉 ∈ Pk+1. The properties (a) and (c) are easily verified, so
the only thing left to do is to show that dF�∆Fe is a (k + 1)-anti-Sacks tree. Let
σ ∈ dF�∆Fe. If |σ| < ht(t), then, because F�ht(t) = t , it is possible to find an i ∈ k
such that σa〈i〉 /∈ dF�∆F + 1e. If |σ| ≥ ht(t), then, for every i < k , σ only has
(at most) one immediate successor in Fi and therefore it is always possible to find a
j ∈ k + 1 such that σa〈j〉 /∈ dF�∆F + 1e.

From these last two propositions we get the following result.

Corollary 4.3 For each k > 1, mk ≤ non(ASk+1) and m2k−1 ≤ non(SPk).

Proof This follows easily from the proof of the Proposition 4.1 and the last
proposition.

For the proof of the main theorem we will need the following notion.

Definition 4.4 Given a regular cardinal κ and I ∈ {SPn,ASk : n > 0, k > 1}, we
will say that a set L is 〈κ, I〉-Luzin if |L| = κ and I�L = [L]<κ .

Observe that the existence of a 〈κ, I〉-Luzin set implies that non(I ) ≤ κ. Recall that
Cohen reals are added at every limit step of countable cofinality of a finite support
iteration of arbitrary length. One common application of Cohen reals is that they are
used to construct Luzin sets with special properties. The following lemma is one of
those applications.

Lemma 4.5 Let κ be a regular cardinal, let i > 2, k > 1 and let L = 〈Lα,
.

Qα : α ∈ κ〉
be a finite support iteration of length κ such that Lα  “

.
Qα = Pi ∗ Pk”, then

L  “There is a 〈κ,ASi〉-Luzin set and there is a 〈κ,SPk〉-Luzin set”.
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Proof Working in V[G], let L = {fα : α ∈ κ∧α has countable cofinality} be a family
of Cohen reals such that each fα is added at the α-th stage of the iteration. Using
the Proposition 4.1, it is easy to show that V[G] |= [L]<κ ⊆ ASi� L. On the other
hand, if T ∈ V[G] is such that V[G] |= T is an i-anti-Sacks tree, then, by a standard
reflection argument, there is an intermediate model such that T ∈ V[G(β)]. As a
consequence, V[G] |= ∀γ > β( fγ /∈ [T]). This implies that V[G] |= ASi�L ⊆ [L]<κ .
The 〈κ,SPk〉-Luzin set is found in a similar way.

In the lemma above, it is clear that if we replace Lα  “
.

Qα = Pi ∗ Pk” by
Lα  “

.
Qα = Pi”, then, in the extension, we still have a 〈κ,ASi〉-Luzin set. The

following theorem is the main tool we will use to prove the main result of this section.

Theorem 4.6 If ZFC is consistent, then ZFC + ∀i > 2 (∃Li (Li is 〈ℵi,ASi〉-Luzin)) +

∀k > 1 (∃L′k (L′k is 〈ℵ2k ,SPk〉-Luzin)) is consistent.

Proof Let L = 〈Lα,
.
Qα : α ∈ ωω〉 be a finite support iteration of length ωω such

that, for each i > 1 and each α ∈ [ωi, ωi+1), Lα  “
.
Qα = Pi+1 ∗Qi+1”, where

Qi+1 = Pi+1 when i + 1 is a number of the form 2k + 1 and Qi+1 = {∅} in all the
other cases (for α < ω2 , Lα  “

.
Qα = {∅}”). We will show that the extension is the

model we are looking for. As usual in this work, we will only show that there are
〈ℵi,ASi〉-Luzin sets for every i > 2 (the rest can be done in a similar way). Using
the lemma above, for each i > 2, in V[Gωi] there is a 〈ℵi,ASi〉-Luzin set Li . The
only thing left to do is to show that Li remains 〈ℵi,ASi〉-Luzin in V[G]. Using that
L is c.c.c. it is easy to see that, in V[G], [Li]<ωi ⊆ ASi � Li , so we only need to
show that ASi�Li ⊆ [Li]<ωi holds in V[G]. First, using Lemma 3.4, Lemma 3.6 and
Proposition 4.2, we observe that L[ωi,ωω] strongly preserves non(ASi) in Li , so if

.
T is

a L[ωi,ωω] -name of a i-anti-Sacks tree, then, in V[Gωi], there is a X ∈ ASi�Li such that
L[ωi,ωω]  “[

.
T] ∩ Li ⊆ X”. It follows that ASi�Li ⊆ [Li]<ωi holds in V[G].

The actual value of c in the model above may depend on V . For example, if V |= GCH,
then it is easy to see that V[G] |= c = ℵω+1 .

Lemma 4.7 Let κ be a regular cardinal, let I ∈ {SPn,ASk : n > 0, k > 1} and let
L be a 〈κ, I〉-Luzin set. If P is a forcing notion such that |P| < κ, then P strongly
preserves non(I ) in L .

Proof We will do the case when I ∈ {ASi : i > 1}; the other cases are similar. Let
.
A be a P-name of an i-anti-Sacks tree and let P = {pα : α ∈ µ}. For each α ∈ µ
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define Tα = {s ∈ <ωk : pα  “s ∈
.
A”}. It follows that each Tα defines an i-anti-Sacks

tree. If Y =
⋃
{[Tα] ∩ L : α ∈ µ} then Y ∈ ASk . If x ∈ L and pα  “x ∈ [

.
A]”, then

x ∈ [Tα] ∩ L ⊆ Y .

We are ready to prove the main result of this section.

Theorem 4.8 If ZFC is consistent, then ZFC+∀k > 1 (mk = non(ASk+1) = ℵk+1) +

∀i > 1 (m2i−1 = non(SPi) = ℵ2i) + non(SP) = ℵω+1 is consistent.

Proof Start with a model V like the one constructed in Theorem 4.6 and V |= c = ℵω+1 .
Using a standard bookkeeping argument, it is possible to construct a finite support
iteration P of length ωω+1 of σ -k-linked forcings of size smaller than ℵk+1 (for every
k > 1), such that any partial order which appears in an intermediate model is listed
cofinally along the iteration. Now, using Lemmas 3.4, 3.6 and 4.7, it is possible to show
that, for every k > 2, P strongly preserves non(ASk) in Lk . If G ⊆ P is a generic
filter over V , then V[G] |= non(ASk) ≤ ℵk . We note that, as each small σ -k-linked
forcing appears in an intermediate model in the iteration, we have V[G] |= ℵk+1 ≤ mk .
As a consequence V[G] |= ℵk+1 = mk = non(ASk+1). Using a similar argument, it is
possible to show that, for each i > 1, V[G] |= ℵ2i = m2i−1 = non(SPi). To finish the
proof, use the fact that non(SP) does not have countable cofinality and that, for every
n ∈ ω , non(SPn) ≤ non(SP) to show that V[G] |= non(SP) = c = ℵω+1.

It follows from SP1 ⊆ SP2 ⊆ SP3 ⊆ . . . that ω1 = non(SP1) ≤ non(SP2) ≤
non(SP3) ≤ . . . ≤ non(SP) and we proved in the theorem above that each inequality
can be consistently strict. It is important to remark that none of these numbers
is comparable with mσ-centered . An argument for this can be found in Hrušák and
Zindulka [6].

5 The covering number

It follows from the fact that AS2 ⊆ AS3 ⊆ . . . that c = cov(AS2) ≥ cov(AS3) ≥ . . ..
We can show that every pair of these numbers can be consistently different.

Proposition 5.1 Let k > 1, if ZFC is consistent, then ZFC+ cov(ASk+1) < cov(ASk)
is consistent.3

3A similar theorem for the ideals SPk can be proved using the same argument.
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Proof Let V be a model such that V |= cov(ASk) = c = ω2 . Let P be a finite
support iteration of length ω1 of the Pk+1 forcing defined above and let G ⊆ P
be a generic filter over V . It follows that P is an iteration of σ -k-linked forcing
notions and therefore P strongly preserves non(ASk). In V[G], consider the family
C = {V[Gα] ∩ ω(k + 1) : α < ω1}. Using Proposition 4.1, it is easy to show that
V[G] |= C ⊆ ASk+1 and V[G] |=

⋃
C = ω(k + 1). As a consequence we have that

V[G] |= cov(ASk+1) = ω1 . On the other hand, if {
.

Tα : α ∈ ω1} is a collection of
P-names for k-anti-Sacks trees, then we can use the fact that P strongly preserves
non(ASk) to show that there is a collection {Cα : α ∈ ω1} ⊆ ASk such that if
x ∈ ωk and x /∈

⋃
{Cα : α ∈ ω1}, then P  “x /∈

⋃
α∈ω1

[
.

Tα]”. This, together with
V |= cov(ASk) > ω1 , implies that V[G] |= cov(ASk+1) < cov(ASk).

An alternative proof of this proposition follows from the results proven in Newelski
and Rosłanowski [9]. If k > 1 then a tree T ⊆ <ωω is a k-tree if every s ∈ T has
at most k immediate successors. A forcing notion P has the k-localization property
if P  “∀f ∈ ωω (∃T ∈ V (T is a k-tree and f ∈ [T]))”. It is easy to see that if
P has the k-localization property, then P  “

⋃
(ASk+1 ∩ V) = ω(k + 1)”. Let

Sk = {T ⊆ <ωk : ∀s ∈ T(∃t ∈ T(∀i ∈ k(s v t ∧ tai ∈ T)))} be the k-Sacks forcing
ordered by inclusion. It turns out that Sk is forcing equivalent to Borel(ωk)/ASk and
that if P is the countable support iteration or the countable support product of length ω2

of the forcing Sk , then P has the k-localization property (see [9]). As a consequence,
in the extension cov(ASk+1) = ω1 and cov(ASk) = ω2 .

Obviously it is impossible to separate infinitely many of the cov(SPn) at the same time.
This suggests the following:

Question 5.2 How many of the cov(SPn) can be separated at the same time?

We do not even know how to separate three of them. Another question we have is the
following:

Question 5.3 Is it possible to get the consistency of ZFC +

∀k ∈ ω (cov(SP) < cov(SPk))?

We are also interested in the relationship between non(SP) and cov(SP). It follows
from the fact that the Cohen forcing is σ -centered that, in the Cohen model, non(SP) <
cov(SP). However, we do not know if it is possible to construct a model where
non(SP) > cov(SP).

Question 5.4 Is non(SP) ≤ cov(SP)?
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A related question, as to whether non(ASn) ≤ cov(ASn) was asked in [9]. Finally, we
would like to discuss about the relation of the cardinal numbers of the ideals SPk and
AS2k . In this work we showed that these ideals share a lot of properties, however we do
not know if they share the same cardinal invariants. There is a connection between 2k -
anti-Sacks trees and k-porous sets given by the following argument. Let ϕk : 2k → k2 be
a bijective function. Let ψk : ω(2k)→ ω2 defined by ψk(x) = ϕk(x(0))aϕk(x(1))a . . . .
Clearly, if ψn(A) ∈ SPn , then A ∈ AS2n . We do not know if this can be used to show a
relation between the cardinal invariants of the ideals SPk and AS2k .

Question 5.5 Is non(SPk) = non(AS2k )? Is cov(SPk) = cov(AS2k )?
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Centro de Ciencas Matemáticas, UNAM, A.P. 61-3, Xangari, Morelia, Michoacán, 58089,
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