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1. Introduction

Ultrafilters and independent families occupy one of the central places in Wis Comfort’s research (see 
e.g. [4–8]). We revisit an old construction of B. Pospíšil involving both concepts. In his 1939 paper [17], 
Pospíšil proved that there is an ultrafilter on ω of character c. He did it by defining a certain filter from an 
independent family of size c, and then proved that any ultrafilter extending the filter has character c (see 
[4, 2.6 and 2.7]). It is this filter of his, or the dual ideal, which is the main object of study here.

Recall that a family X = {Xα | α ∈ κ} ⊆ [ω]ω is independent if for any two disjoint F, G ∈ [κ]<ω the set

(
⋂

α∈F

Xα) ∩
⋂

β∈G

(ω \Xβ)
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is infinite. The fact that there are independent families of size c was probably first proved by G. Fichtenholz 
and L. Kantorovitch [9]. In retrospect, their construction provides an independent family which is perfect
as a subspace of the Cantor set.

Given a perfect independent family P define the Pospíšil ideal of P (denoted by Pos(P )) as the ideal 
generated by the finite sets and

{ω \ x | x ∈ P} ∪ {
⋂
C | C ∈ [P ]ω}.

Given an ideal I on a set X, J. Baumgartner [1] introduced the notion of an I-ultrafilter as follows: An 
ultrafilter U on ω is an I-ultrafilter if for every function f : ω → X there is a U ∈ U such that f [U ] ∈ I. 
The notion of an I-ultrafilter is closely tied with the Katětov order1 as an ultrafilter U is an I-ultrafilter if 
and only if I �K U∗. Most of the standard properties of ultrafilters can then be characterized in this way, 
using Borel ideals2 of low complexity:

(1) U is a Ramsey ultrafilter if and only if U is an ED-ultrafilter.
(2) U is a P-point if and only if U is a Fin×Fin-ultrafilter if and only if U is a conv-ultrafilter.
(3) U is a Q-point if and only if EDFin �KB U∗.
(4) U is a nowhere dense ultrafilter if and only if U is a nwd-ultrafilter.
(5) U is rapid if and only if J �KB U∗ for any analytic P -ideal J .

The reader may consult [1,2,11,12] for more information. In other words, the Katětov order naturally strati-
fies ultrafilters by “upward cones” of Borel ideals. Ultrafilters satisfying any of the above properties cannot be 
constructed in ZFC alone, so one has to wonder whether this stratification may consistently be vacuous. On 
the other hand, extending Pospíšil’s argumentation slightly, one can show that Pos(P )-ultrafilters do exist 
in ZFC, in fact, they exist generically, i.e. any filter of character < c can be extended to a Pos(P )-ultrafilter. 
However, Pos(P ) is analytic, and appears not to be Borel. This led the second author to ask:

Problem 1 ([12]). Is there a Borel ideal I such that I-ultrafilters exist in ZFC?

We shall answer this question in the positive by defining a Borel (in fact Fσδσ) version of the Pospíšil 
ideal. Moreover, we will define an Fσδσ ideal J for which J -ultrafilters exist generically. Then we shall show 
that the complexity cannot be lowered, i.e. consistently I-ultrafilters do not exist generically for any Fσδ

ideal I.
We conclude this introduction by fixing some notation. Given A, B ⊆ ω we will say that A is an almost 

subset of B (or B almost covers A) if A \ B is finite, and this will be denoted by A ⊆∗ B. If A ⊆ ω we 
denote by A∗ the complement of A and if X ⊆ ℘ (ω)3 we define X ∗ = {A∗ | A ∈ X}. If I is an ideal, I+

denotes the family of all subsets of ω that are not in I. Given A ∈ I+, the restriction of I to A is defined 
as I ∩ ℘ (A). We say a family B ⊆ I is cofinal in I if for every A ∈ I there is B ∈ B such that A ⊆ B. By

1 Recall that given two ideals I and J on sets X and Y respectively we say that I is Katětov below J and denote by I ≤K J , if 
there is a function f : Y → X such that f−1[I] ∈ J for every I ∈ I (see [14]) We say that I is Katětov-Blass below J and denote 
by I ≤KB J if, moreover, the witnessing function is finite-to-one.
2 For every n ∈ ω we define Cn = {(n,m) | m ∈ ω} and if f : ω −→ ω let D (f) = {(n,m) | m ≤ f (n)}

Recall that:

(1) Fin is the ideal of all finite subsets of ω.
(2) ED is the ideal on ω × ω generated by {Cn | n ∈ ω} and (the graphs of) functions from ω to ω.
(3) EDFin is the restriction of ED to Δ = {(n,m) | m ≤ n}.
(4) Fin×Fin is the ideal on ω × ω generated by {Cn | n ∈ ω} ∪ {D (f) | f ∈ ωω}.
(5) conv is the ideal on [0, 1] ∩ Q generated by all sequences converging to a real number.
(6) nwd is the ideal on Q generated by all nowhere dense sets.

3 If X is a set, we denote its power set by ℘ (X).



244 O. Guzmán, M. Hrušák / Topology and its Applications 259 (2019) 242–250
cof(I) we denote the smallest size of a cofinal family of I. In this note, a tree T will be a subset of ω<ω

closed under taking initial segments. If T is a tree and n ∈ ω, we denote Tn = T ∩ ωn. The set of branches 
of T is defined as [T ] = {f | ∀n (f � n ∈ T )}.

2. Pospíšil ideals

We will say that a perfect tree T ⊆ 2<ω is independent if the set of its branches [T ] is independent.4
Abusing notation a bit, given an independent tree T ⊆ 2<ω we shall denote the Pospíšil ideal Pos([T ])
simply by Pos(T ), i.e. the ideal generated by the finite sets and {x∗ | x ∈ [T ]} ∪ {

⋂
C | C ∈ [[T ]]ω}.

We now present the following mild extension of Pospíšil’s argument crucial for our considerations.

Lemma 2. If T ⊆ 2<ω is an independent tree then Pos(T ) is a proper ideal and cof (J ) = c for every ideal 
J extending Pos(T ).

Proof. First we will show that Pos(T ) is a proper ideal, i.e. that ω /∈ Pos(T ). Let x0, ..., xn ∈ [T ] and 
C0, ..., Cm be countable subsets of [T ]. For each i ≤ m we choose yi ∈ Ci such that yi /∈ {x0, ..., xn}. Clearly 
(
⋂
C0) ∪ ... ∪ (

⋂
Cm) is a subset of y0 ∪ ... ∪ ym. Since T is independent, x∗

0 ∪ ... ∪ x∗
n does not almost cover 

ω \ (y0 ∪ ... ∪ ym), hence ω /∈ Pos(T ).
Now, aiming toward a contradiction assume that there is an ideal J such that Pos(T ) ⊆ J and cof(J ) < c. 

Let B ⊆ J be a cofinal family of size less than c. Since {x∗ | x ∈ [T ]} ⊆ J , there is C ∈ [[T ]]ω and B ∈ B
such that x∗ ⊆ B for every x ∈ C. On one hand 

⋃
x∈C

x∗ ⊆ B and on the other hand

⋂
C =

( ⋃
x∈C

x∗

)∗

belongs to J so ω ∈ J which is a contradiction. �
Recall that an ideal I is P− (see [13]) if for every {Xn | n ∈ ω} ⊆ I∗ there is Y ∈ I+ such that Y ⊆∗ Xn

for every n ∈ ω. We shall need the following proposition in the next section.

Proposition 3. If T is an independent tree then Pos(T ) is not P−.

Proof. Let D ⊆ [T ] be a countable dense set. Clearly D ⊆ I∗, (where I = Pos(T )) and we will show that 
every pseudo-intersection of D is in Pos(T ). Letting A be a pseudo-intersection of D, we must show that 
A ∈ Pos(T ). Let f : D −→ ω such that A \ d ⊆ f (d) for every d ∈ D. We may assume that there are 
two x, y ∈ D such that A ⊆ x ∩ y. Choose two subsets {xn | n ∈ ω}, {yn | n ∈ ω} of D \ {x, y} such that 
x � n = xn � n and y � n = yn � n for every n ∈ ω. We recursively define two increasing sequences of natural 
numbers 〈ni〉i∈ω and 〈mi〉i∈ω as follows:

(1) n0 = 0.
(2) mi > max{f (xni

) , ni}.
(3) ni+1 > max{f (ymi

) ,mi}.

This is very easy to do. Let X = {xni
| i ∈ ω} ∪ {x} and Y = {ymi

| i ∈ ω} ∪ {y}. It is easy to see that 
A ⊆

⋂
X ∪

⋂
Y so A ∈ Pos(T ). �

4 We are identifying a set with its characteristic function.
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Next we shall show that not all Pospíšil ideals are isomorphic. In fact, they can have rather dramatically 
different combinatorial properties. Recall that an ideal I is ω-hitting if for every {Xn | n ∈ ω} ⊆ [ω]ω there 
is B ∈ I such that |B ∩Xn| = ω for every n ∈ ω. We will see that there are examples of Pospíšil ideals that 
are ω-hitting, but there are also some that are not.5 In order to prove this, we need the following definitions: 
Let T ⊆ 2<ω be an independent tree.

(1) We say that T is a hitting tree if whenever s ∈ T , for almost all n ∈ ω there is t ∈ Tn+1 extending s
such that t (n) = 1.

(2) We say that T has the generic property if for every n ∈ ω, X ⊆ Tn and c : X −→ 2 there are infinitely 
many m > n such that for every s ∈ Tm+1 if s � n ∈ X then s (m) = c (s � n).

Note that the above properties are mutually exclusive.

Proposition 4. Let T ⊆ 2<ω be an independent tree.

(1) If T has the generic property then Pos(T ) is not ω-hitting.
(2) If T is a hitting tree then Pos(T ∗) is ω-hitting.

Proof. Let T be an independent tree with the generic property. Let W be the family of all pairs p = (X,Y )
such that there is an n ∈ ω such that X and Y are two disjoint non empty subsets of Tn. Given p = (X,Y ) ∈
W such that X, Y ⊂ Tn, let Wp ∈ [ω]ω such that for every m ∈ Wp and for every s ∈ Tm+1 if s � n ∈ X

then s (m) = 1 and if s � n ∈ Y then s (m) = 0. Since W is a countable family, {Wp | p ∈ W} is a countable 
family of infinite sets.

We claim that no element of Pos(T ) has infinite intersection with each Wp. Letting A ∈ Pos(T ), we may 
assume there are x0, ..., xn ∈ [T ] and C0, ..., Cm countable subsets of T such that A =

⋃
i≤n

x∗
i ∪

⋃
j≤m

(
⋂
Cj). 

For every j ≤ m we choose yj ∈ Cj such that yj /∈ {x0, ..., xn} and yj �= yk if j �= k. We may then find l ∈ ω

such any two different elements of {xi | i ≤ n}∪{yj | j ≤ m} differ before l. We now define p = (X,Y ) where 
X = {xi � l | i ≤ n} and Y = {yj � l | j ≤ m}. Note that if k ∈ Wp then k ∈ x0∩ ... ∩xn and k /∈ y0∪ ... ∪ym
so k /∈ A.

Finally, it is easy to see that if T is a hitting tree then [T ] ⊆ Pos(T ∗) is already ω-hitting. �
It should be noted here that both kinds of trees actually exist:

Proposition 5. There are independent trees T, S ⊆ 2<ω such that T has the generic property and S is a 
hitting tree.

Proof. By T we denote the set of all finite trees p ⊆ 2<ω such that all maximal nodes of p have the same 
height. This common value will be denoted by ht (p). Given p, q ∈ T we define the following:

(1) p ≤0 q if p ∩ 2ht(q) = q (hence q ⊆ p).
(2) p ≤1 q if p ≤0 q and for every n ∈ ω and s ∈ q if ht (q) ≤ n < ht (p) then there is t ∈ p extending s such 

that t (n) = 1.

By max(p) we denote the set of maximal nodes of p. We define the following sets:

5 There is in general no relation between being ω-hitting and P− even for tall Borel ideals. The ideals EDFin, Fin × Fin, nwd and 
Fin × EDFin cover all the possibilities.
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(1) For every n ∈ ω we define D0 (n) as the set of all p ∈ T such that 
∣∣s−1 (0)

∣∣, ∣∣s−1 (1)
∣∣ ≥ n for every s ∈

max(p).
(2) For every n ∈ ω we define D1 (n) as the set of all p ∈ T such that there is k ∈ ω such that n < k < ht (p)

and every node in pk is a splitting node.
(3) Given n ∈ ω, let D2 (n) be the set of all p ∈ T for which there is k such that n < k < ht (p) with the 

property that for every c : pk −→ 2 and for every {st | t ∈ pk} ⊆ max(p) such that t ⊆ st, it is the case 

that 
∣∣∣∣ ⋂
t∈pk

s−1
t (c (st � k))

∣∣∣∣ ≥ n.

(4) For every n, m ∈ ω we define Bn,m as the set of all p ∈ T such that for every X ⊆ pn and c : X −→ 2
there are j0 < ... < jm < ht (p) such that for every i ≤ m and for every s ∈ pji+1 if s � n ∈ X then 
s (ji) = c (s � n).

Let D = {Di (n) | i < 3 ∧ n ∈ ω} and B = D∪{Bn,m | n,m ∈ ω}. We claim that each Di (n) is ≤1-dense 
(i.e. for every p ∈ T there is q ∈ Di (n) such that q ≤1 p) and each Bn,m is ≤0-dense. The only non trivial 
part is that the sets D2 (n) are ≤1-dense, which we will prove now.

Let p ∈ T and k = ht (p), we may assume that k > n. Let A be the set of all functions g: max(p) −→ {0, 1}2

such that if s ∈ pk, then either g0 (s) = 1 or g1 (s) = 0 (where g (s) = (g0 (s) , g1 (s))). Fix an enumeration 
A =

{
gi | i < l

}
for some l ∈ ω. Given s ∈ max(p) we will recursively define {(si (0) , si (1)) | i ≤ l} as 

follows:

(1) s0 (0) = s� 〈0〉 and s0 (1) = s� 〈1〉.
(2) si+1 (0) = si (0)�

〈
gi0 (s)

〉n and si+1 (1) = si (1)�
〈
gi1 (s)

〉n (recall that gi: max(p) −→ {0, 1}2 and 
gi (s) =

(
gi0 (s) , gi1 (s)

)
. If j ∈ {0, 1}, by 〈j〉n we denote the constant sequence of length n with constant 

value j).

Let q be the smallest tree such that sl+1 (0) , sl+1 (1) ∈ q for every s ∈ max(p). It is easy to see that 
q ∈ T and q ≤1 p. We claim that q ∈ D2 (n). To see this, let c : qk −→ 2 (note that qk = max(p)) and 
{zs | s ∈ max(p)} ⊆ max(q) such that s ⊆ zs. Note that for every s ∈ max(p), there is ms ∈ {0, 1} such 
that s0 (ms) ⊆ zs. We can find gi ∈ A such that gims

(s) = c (s) and gi1−ms
(s) = 1. It is easy to see that ∣∣∣∣∣ ⋂

s∈qk

(si+1 (ms))−1 (c (s))

∣∣∣∣∣ ≥ n, since si+1 (ms) ⊆ zs, the result follows.

By the Rasiowa–Sikorski lemma (see [15]) there are G0, G1 ⊆ T with the following properties:

(1) G0 is a filter in (T,≤0).
(2) G0 ∩W �= ∅ for every W ∈ B.
(3) G1 is a filter in (T,≤1).
(4) G1 ∩W �= ∅ for every W ∈ D.

It is then easy to see that T =
⋃
G0 has the generic property and S =

⋃
G1 is a hitting tree. �

3. I-ultrafilters

We will now provide a positive answer to Problem 1 here. Given an ideal I, we say that I-ultrafilters 
exist generically if every filter of character less than c can be extended to an I-ultrafilter. Generic existence 
of I-ultrafilters can be conveniently characterized by the generic existence number or exterior cofinality
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cof∗ (I) defined as the smallest cofinality of an ideal J such that I ⊆ J , introduced and studied by Brendle 
and Flašková in [2] and, independently, by Hong and Zhang in [10]6:

Lemma 6 ([2], [10]). If I is an ideal on ω then I-ultrafilters exist generically if and only if cof∗ (I) = c.

In particular, by Lemma 2 if T is an independent tree, then Pos(T )-ultrafilters exist generically.
The problem is that Pos(T ) does not seem to be Borel. However, we will now prove that every ideal Pos(T )

can be extended to a Borel ideal, and as cof∗ is increasingly monotone, I-ultrafilters exist generically for 
this new, Borel, ideal I as well. Now, the existence of such a Borel ideal can be deduced directly from a 
theorem of H. Sakai [19] who showed that every analytic ideal can be extended to a Borel one. However, 
Sakai’s proof does not give any bound on the complexity. We shall give an explicit definition of an Fσδσ

ideal extending Pos(T ) here.
Given a set A and m ∈ ω we define Zm (A) as the set of all y = (y (i))i<m ∈ Am such that y (i) �= y (j)

whenever i �= j. Let T ⊆ 2<ω be an independent tree.

(1) For every x ∈ [T ]n let C (x) =
⋃
i<n

(
x (i)∗

)
and D (x) =

⋂
i<n

x (i).

(2) For every x ∈ [T ]n and y1, ..., yk ∈ Zm ([T ]) we define H (x, y1, ..., yk) = C (x) ∪
⋃
j≤k

D(yj).

(3) For every n > 0 we define H (n) as the set of all A ⊆ ω such that for every m > n there are k ≥ 1, 
x ∈ [T ]n and y1, ..., yk ∈ Zm ([T ]) such that A ⊆ H (x, y1, ..., yk).

It is easy to see that H (n) ⊆ H (n + 1) for every n ∈ ω. We now introduce the following definition:

Definition 7. If T ⊆ 2<ω is an independent tree, we define PosB (T ) =
⋃

n∈ω
H (n).

We will need the following lemma:

Lemma 8. Let n > 0. If A, B ∈ H (n) then A ∪B ∈ H (2n).

Proof. Let A, B ∈ H (n) and m > 2n. Since A, B ∈ H (n) there are x, a ∈ [T ]n, y1, ..., yk1
∈ Zm ([T ]) and 

b1, ..., bk2 ∈ Zm ([T ]) such that A ⊆ H(x, y1, ..., yk1
) and B ⊆ H

(
a, b1, ..., bk2

)
. It follows that

A ∪B ⊆ H(x�a, y1, ..., yk1
, b1, ..., bk2). �

We now have the following result:

Proposition 9. Let T ⊆ 2<ω be an independent tree.

(1) PosB (T ) is an Fσδσ-ideal extending Pos(T ).
(2) PosB (T ) can not be extended to an Fσδ-ideal.

Proof. We will first prove PosB (T ) is an ideal. It is closed under unions by the previous lemma, so it 
is enough to prove that H (x, y1, ..., yk) �= ω for every x ∈ [T ]n and y1, ..., yk ∈ Zm ([T ]) with n < m. 
Since n < m, there is i < m such that z = y1 (i) �= x (j) for every j < n. Note that if z ∈ im(yj)
(for any j ≤ k) then D(yj) ⊆ z. Since T is independent, we know that z∗ is not almost contained in 
C (x) ∪

⋃
{D(yj) | z /∈ im(yj)} so H (x, y1, ..., ym) does not almost contain z∗.

6 In [2] the cardinal invariant is denoted by ge(I), and in [10] by non∗∗ (I).
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We will now prove that Pos(T ) ⊆ PosB (T ). Let x ∈ [T ] and C = {yi | i ∈ ω} ∈ [[T ]]ω. Since x∗ ∪
⋂
C ⊆

x∗ ∪ (y0 ∩ ... ∩ ym) for every m ∈ ω, x∗ ∪
⋂
C ∈ H (1), hence Pos(T ) ⊆ PosB (T ).

Next we shall prove that PosB (T ) is an Fσδσ ideal. Let am (T ) be the set of finite sequences s =
(s1, ..., sm) ∈ Tm such that si is incompatible with sj whenever i �= j. For every s = (s1, ..., sm) ∈ am (T )
we define 〈s〉 = {(y1, ..., ym) | ∀i ≤ m (yi ∈ [Tsi ])}. For every 0 < n < m, k > 0 and s1, ..., sk ∈ am (T ) we 
define

H (n,m, s1, ..., sk) = {H (x, y1, ..., yk) | x ∈ [T ]n ∧ ∀i ≤ k (yi ∈ 〈si〉)} .

Note that H (n,m, s1, ..., sk) is a closed set since it is a continuous image of [T ]n ×
∏
i≤k

〈si〉. In this way, the 

subset closure of H (n,m, s1, ..., sk) (denoted by H↓ (n,m, s1, ..., sk)) is closed as well.
Let B (n,m) =

⋃
k∈ω

{H↓ (n,m, s1, ..., sk) | s1, ..., sk ∈ am (T )} and note that B (n,m) is an Fσ-set. Clearly 

H (n) =
⋂

m>n
B (n,m) so each H (n) is an Fσδ-set and then PosB (T )=

⋃
n>0

H (n) is an Fσδσ-set. Finally, by 

results of Solecki, Laczkovich and Recław (see [21] and [16]), no Fσδ ideal is Katětov above Fin×Fin. Since
Fin×Fin ≤K PosB (T ) by Proposition 3, and the fact (see [13]) that an ideal I is P− if and only if Fin×Fin�K
I, the result follows. �

We can then conclude the desired result:

Corollary 10. There is an Fσδσ-ideal I for which I-ultrafilters exist generically.

The previous result is optimal in the sense that it is no longer true for Fσδ-ideals, as we will prove now.

Definition 11 (see [3,18,20]). An ideal I is Shelah-Steprāns if for every sequence {sn | n ∈ ω} ⊆ [ω]<ω \ {∅}
one of the following holds:

(1) There is A ∈ I such that A ∩ sn �= ∅ for every n ∈ ω.
(2) There is B ∈ I such that sn ⊆ B for infinitely many n ∈ ω.

Let I be an ideal and X ⊆ [ω]<ω \ {∅}. We say that X witness that I is not Shelah-Steprāns if neither 
of the two possibilities above hold for X.

Lemma 12. Let I be an analytic ideal, and let X = {sn | n ∈ ω} witnesses that I is not Shelah-Steprāns. If 
P is a forcing notion, then X still witnesses that I is not Shelah-Steprāns after forcing with P.

Proof. Let B = {A | ∀n (A ∩ sn �= ∅)} and D = {B | ∃∞n (sn ⊆ B)}. Both B and D are Borel sets, and not 
being Shelah-Steprāns simply means that I∩ (B ∪ D) = ∅. Since this is a coanalytic statement, it holds in 
any forcing extension. �

We say that an ideal I is nowhere Shelah-Steprāns if I � A is not Shelah-Steprāns for every A ∈ I+. We 
now have the following absoluteness result:

Lemma 13. Let W be a forcing extension of V and I ∈ V an analytic ideal. If W |=“I is nowhere Shelah-
Steprāns” then V |=“I is nowhere Shelah-Steprāns”.

Proof. Note that I is nowhere Shelah-Steprāns if the following statement holds:

∀A∃X ⊆ [A]<ω ∀x ((x /∈ BX ∪ DX) ∨ x /∈ I)
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where BX = {x | ∀s ∈ X (x ∩ s �= ∅)} and DX = {x | ∃∞s ∈ X (s ⊆ x)}. This statement is a 
∏3

1 statement 
and therefore it is downward absolute. �

Recall that given an ideal I on ω (or on any countable set), the Mathias forcing M (I) associated with 
I is the set of all pairs (s,A) where s ∈ [ω]<ω and A ∈ I. If (s,A) , (t, B) ∈ M (I) then (s,A) ≤ (t, B) if the 
following conditions hold:

(1) t is an initial segment of s.
(2) B ⊆ A.
(3) (s \ t) ∩B = ∅.

If G ⊆ M (I) is a generic filter, we define the generic real as rgen =
⋃
{s | ∃A ((s,A) ∈ G)}.

Lemma 14. Let I be a nowhere Shelah-Steprāns analytic ideal. If G ⊆ M (I) is a generic filter then the 
following holds in V [G]:

(1) rgen ∈ I+.
(2) If A ∈ V ∩ I+ then rgen ∩A ∈ I+.
(3) If A ∈ V ∩ I then rgen ∩A is finite.

Proof. Note that the first item follows from the second by taking A = ω. Letting A ∈ V ∩I+, we will prove 
that rgen∩A ∈ I+. Since I is nowhere Shelah-Steprāns and A ∈ I+, there is X = {sn | n ∈ ω} ⊆ [A]<ω \{∅}
with the following properties:

(1) For every B ∈ I there is n ∈ ω such that sn ∩B = ∅.
(2) If W ∈ [ω]ω then 

⋃
n∈W

sn ∈ I+.

Furthermore, since I is analytic the two previous properties hold in a forcing extension of V . By a simple 
genericity argument and the first property, we can conclude that there are infinitely many n ∈ ω such that 
sn ⊆ rgen ∩A and then rgen ∩A ∈ I+ by the second property.

The third item is easy and holds for every ideal. �
The following result was proved in [3]:

Proposition 15. If I is a Borel ideal, then I is Shelah-Steprāns if and only if Fin×Fin ≤K I.

As was mentioned earlier, no Fσδ-ideal is Katětov above Fin×Fin, so Fσδ-ideals are nowhere Shelah-
Steprāns. The following result is based on the results of [2].

Proposition 16. It is consistent that I-ultrafilters do not exist generically for every analytic nowhere Shelah-
Steprāns ideal I (in particular for Fσδ-ideals).

Proof. Given a model of set theory W , we define P (W ) as the finite support iteration of the Mathias forcing 
of all analytic nowhere Shelah-Steprāns ideals. Let V be a model where c = ω2. We perform a finite support 
iteration {Pα, Q̇α | α < ω1} where Pα � “Q̇α = Ṗ (Vα)”, where Vα is the model obtained after forcing 
with Pα. We will argue that Vω1 is the desired model. Let I ∈ Vω1 be an analytic nowhere Shelah-Steprāns 
ideal. Since I can be coded with a real, there is α < ω1 such that I ∈ Vα, and by downwards absoluteness, 
we know that Vα |=“I is nowhere Shelah-Steprāns”. Given β > α let rIβ be the M (I) generic real added 
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by Pβ+1. Let xI
β = ω \rIβ and define J as the ideal generated by

{
xI
β | α < β < ω1

}
. By the previous result, 

it follows that J is a proper ideal and I ⊆ J so cof∗ (I) ≤ cof(J ) = ω1. �
In [2] Brendle and Flašková proved that if I is an Fσ-ideal then cof∗ (I) ≤ cof(N ) (where N denotes the 

ideal of all null sets). This can actually be deduced directly using some results that can be currently found 
in the literature: In [19] Sakai proved that there is an analytic P -ideal Pmax such that I ≤KB Pmax where I
is either an Fσ-ideal or an analytic P -ideal. In particular, cof∗ (I) ≤ cof(Pmax) for every Fσ-ideal I. In [22]
Todorcevic showed that the cofinality of every analytic P -ideal is at most cof(N ). Therefore, we conclude 
that if I is an Fσ-ideal then cof∗ (I) ≤ cof(N ). The following questions remain open:

Problem 17. Is there an Fσ-ideal I for which I-ultrafilters exist?

Problem 18. Is there an Fσδ-ideal I for which I-ultrafilters exist? What about the density zero ideal or 
Pmax?

Note that by the aforementioned result of Sakai [19] the non-existence of a Pmax-ultrafilter would imply 
a negative answer to Problem 17, i.e. consistency of I ≤K U∗ for every ultrafilter U and every Fσ ideal I.
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