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Abstract. We analyze conditions to preserve with forcing multiple gaps, de-

fined conditions to ensure their existence and study the minimal size of specific

type of gaps.

1. Introduction

This work is divided mainly in two parts. However, before discussing them,
we start establishing some notation: ℘(X) denotes the power set of X. We write
X ⊆∗ Y and X =∗ Y to express that X \Y is finite and X△Y is finite respectively.
Also we denote by ℘(ω)/fin the quotient of ℘(ω) with the finite subsets of natural
numbers. It forms a boolean algebra with ⊆∗ as order.

A pregap g is a pair of families (A,B) where both A and B are orthogonal families
of infinite subsets of ω. This means that for each A ∈ A and B ∈ B, A ∩ B =∗ ∅.
Furthermore, a pregap g is called a gap if there is no set of natural numbers C such
that for all A ∈ A and all B ∈ B, A ⊆∗ C and B ∩ C =∗ ∅. When there exists a
C with such properties (i.e., g is not a gap), we say that C fills or separates g. If
g = (A,B) is a gap and both A and B can be well-ordered by ⊆∗, g is called a (κ, λ)-
gap where (A ⊆∗) is isomorphic to κ and (B ⊆∗) is isomorphic to λ. Thus, when we
write A as {Aα : α < κ} and B as {Bα : α < λ}, we assume that α < β < κ implies
Aα ⊆∗ Aβ and α < β < λ implies Bα ⊆∗ Bβ . Notice that if X and Y are cofinal
subsets of κ and λ respectively, then the pregap ({Aα : α ∈ X}, {Bα : α ∈ Y }) is
also a gap. Hausdorff showed that there exist an (ω1, ω1)-gap and Rothenberger
showed that there is an (ω, b)-gaps, where b is the bounding number (see [13]).
However, there are no (ω, ω)-gaps.

Gaps appear frequently in infinite combinatorics. In general, the problem of
extending homomorphisms between two Boolean algebras is deeply connected to
the type of gaps present in each of them (see [8], Theorem 5). We are particularly
interested in gaps in ℘(ω)/fin. Typically, if one wishes to carry out any recursive
construction in ℘(ω)/fin, gaps represent potential obstructions to the construction.
This is why every linear order of size ω1 can be embedded into ℘(ω)/fin, while it
is consistent that this fails for 2ω (see [11] and [14]).

The analysis of gaps plays a crucial role in Todorčević’s proof that OGA implies
b = ω2 (see [14]). There are also fascinating analogies and similarities between
Aronszajn (Suslin) trees and gaps (specifically destructible gaps), see [1]. It is
impossible to summarize all the applications of gaps in infinite combinatorics here.
However, we emphasize that their importance cannot be overstated. The reader is
encouraged to consult [16], [14], and [13] to learn more about this topic.
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2 GUZMÁN AND NIETO-DE LA ROSA

This is also why the multidimensional gaps introduced by Avilés and Todorčević
(which generalize the usual gaps) are of particular interest. The reader can see
[3] and [2] for further details. No prior knowledge of [3] is required to follow this
paper, as we will recall the necessary definitions and results as needed. However,
we recommend consulting the aforementioned references for those interested in a
deeper exploration of this subject.

Now we present the concept of multiple gap introduced by Avilés and Todorčević
in [3], which will be the main focus of our papaer.

Definition 1.1. Let n a natural number.

(1) A family {Ai : i < n} ⊆ ℘([ω]ω) is called an n-pregap if for all i, j < n with
i ̸= j Ai and Aj are orthogonal, meaning for every I ∈ Ai and J ∈ Aj we
have I ∩ J =∗ ∅.

(2) A n-pregap {Ai : i < n} is an n-gap if for all {Ci : i < n} ⊆ [ω]ω such that
for each i < n and each A ∈ Ai A ⊆∗ Ci, then

⋂
i<n Ci ̸= ∅.

(3) If {κi : i < n} is a set of cardinals, an n-gap (pregap) {Ai : i < n} is a
(κi : i < n)-gap (pregap) when it satisfies that for every i < n there is an
enumeration {Ai

α : α < κi} of Ai such that if α < β < κi, then Ai
α ⊂∗ Ai

β .

We fix n ∈ ω for the rest of our study. Also if {Ai : i < n} is an n-gap (or
pregap) it will always be enumerated as in Definition 1.1. If g is an n-pregap and
{Ci : i < n} ⊆ [ω]ω witnesses that g is not an n-gap, we say that {Ci : i < n} fills
or separates g.

It is easy to see that a (κi : i < n)-pregap {Ai : i < n} is a gap if and only if any
pregap defined by any cofinal subset of each κi cannot be filled. That means, if for
each i < n Xi is a cofinal subset of κi and Bi := {Ai

α : α ∈ Xi}, then {Bi : i < n}
is a gap if and only if {Ai : i < n} is a gap. The following is easy:

Proposition 1.2. There are no (ω : i < n)−gaps.

Another relevant result for this work (though counter intuitive because for n = 2
the statement is not true) is the following theorem, which is a consequence of
Corollary 21 proved in [3].

Theorem 1.3 (Avilés, Todorčević). MA implies there are no n-gaps of size ω1 for
n ≥ 3.

The paper is organized as follows: in the first section, we present some preserva-
tion results. We show that σ-n-links forcing notions do not destroy (κi : i < n)-gaps,
in particular σ-centered forcing notions. Additionally, we prove Sacks forcing and
Miller forcing are minimal in some sense of indestructibility (see Theorem 2.9 and
Theorem 2.14). We also generalize an equivalence of (κi : i < n)-gaps using a
colouring. However, the method for freezing a 2-gap does not remain valid.

In the second section, we explore methods for constructing multiple gaps. The
first construction is based on [3], where we establish a cardinal condition to ensure
their existence. In [9] the authors used a variant of ♢ to construct a 2-Hausdorff
gap and we generalize these construction to (ω1 : i < n)-gaps. Finally, we use
Capturing Axioms to build (ω1 : i < n)-gaps based on the construction done in [5]
of a Hausdorff gap.

2. Preservation of multiple gaps.

Start with forcing preservation theorems.
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2.1. Forcing preservation.

Definition 2.1. Let P be a forcing notion:

(1) Given g an n-gap we say P preserves g if for each G ⊆ P generic filter it
holds that V [G] ⊨ g is an n-gap.

(2) Let k ∈ ω. We say P is σ − k−linked if there are {Pi : i < ω} ⊆ ℘(P) such
that P =

⋃
i<ω Pi and for all i < ω and p0, ..., pk−1 ∈ Pi there is q ∈ P a

common extension, that is q ≤ p0, ..., pk−1.
(3) P is σ-centered if there is {Pi : i ∈ ω} ⊆ ℘(P) such that P =

⋃
i<ω Pi and

each Pi is centered, that means, for each finite subset of conditions of Pi

there is q ∈ P a common extension.

Lemma 2.2. Let κ0 ≥ ... ≥ κn−1 > ω be regular cardinals, c : κ0 × ...× κn−1 → ω
a coloring. There exist W ∈ [κ0× ...×κn−1]

κ0 a monochromatic set which is cofinal
in each κi, that means for each i < n and β ∈ κi there is (α0, ..., αn−1) ∈ W such
that β < αi.

Proof. Recursively, for each 0 < i < n and α ∈
∏

j<i κj we will define

(1) cα : κi → ω,
(2) Wi(α) ∈ [κi]

κi and
(3) di :

∏
j<i κj → ω

such that Wi(α) is a cα-homogeneous set of color di(α).
We start by defining for each α ∈

∏
j<n−1 κj the function cα as cα(β) = c(α, β).

Assume for all α ∈
∏

j<i+1 κj we have Wi+1, cα and di+1 are already defined. Given

α ∈
∏

j<i κj we define cα(β) = di+1(α, β). For i = 0 we define c∅ : κ0 → ω given

by c∅(β) = d1(β), W0 ∈ [κ0]
κ0 a c∅-homogeneous set and d0 < ω the image of W0

under c∅. Let

W = {(α0, ..., αn−1) ∈
∏
i<n

κi : α0 ∈ W0, α1 ∈ W1(α0), ..., αn−1 ∈ Wn−1(α0, ..., αn−2)}.

By construction W is cofinal in each κi and c(W ) = d0. □

Theorem 2.3. If P is a σ − n-linked forcing notion and g a (κi : i < n)-gap for
some κ0, ..., κn−1 uncountable regular cardinals, then P preserves g.

Proof. Take g = {Ai : i < n} as in the hypothesis where Ai = {Ai
α : α < κi} and

{Pi : i < ω} ⊆ ℘(P) witnesses that P is σ− k-linked. By contradiction assume that
g is not preserved by P. Let ȧi a P−name for each i < n such that P ⊩ “(ȧi : i < n)
fills g”. For each (α0, ..., αn−1) ∈ κ0 × ... × κn−1 we can find an m(α0,...,αn−1) < ω
and a p(α0,...,αn−1) ∈ P such that

p(α0,...,αn−1) ⊩ “∀i < n (Ai
αi

\m(α0,...,αn−1) ⊆ ȧi)”.

Fix ℓ(α0,...,αn−1) that p(α0,...,αn−1) ∈ Pℓ(α0,...,αn−1)
. Without lost of generality we

can assume κ0 ≥ κ1 ≥ ... ≥ κn−1 > ω. Also, there is a natural coloring c :
κ0 × ... × κn−1 → ω × ω given by c(α0, ..., αn−1) = (ℓ(α0,...,αn−1),m(α0,...,αn−1)).
Thus, there is W ∈ [κ0 × ... × κn−1]

κ0 as in Lemma 2.2 of color (m, ℓ) for some
ℓ,m < ω.

For i < n define Di =
⋃

(α0,...,αn−1)∈W Ai
αi

\ m. We claim that {Di : i < n}
fills g in V . Clearly, for i < n and β < κi, A

i
β ⊆∗ Di. In order to prove that
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i<n Di is empty we proceed by contradiction. Let x ∈

⋂
i<n Di, there exist

(α0
0, ..., α

0
n−1), ..., (α

n−1
0 , ..., αn−1

n−1) ∈ W such that for all j < n

p(αj
0,...,α

j
n−1)

⊩ “∀i < n (x ∈ ȧi)”.

Then we can find q ≤ p(α0
0,...,α

0
n−1)

, ..., p(αn−1
0 ,...,αn−1

n−1)
. Thus, q ⊩ “x ∈

⋂
i<n ȧi”, a

contradiction. □

Corollary 2.4. Let g be a (κi : i < n)-gap for κi uncountable regular cardinals
for each i < n.

(1) Any σ-centered forcing preserves g.
(2) Cohen forcing preserves g.

Now we need to introduce notation for trees.

Definition 2.5. (1) (T,<T ) is a tree if T has minimum and for all s ∈ T the
set predT (s) := {t ∈ T : t <T s} is well ordered,

(2) [T ] denotes the sets of cofinal branches of T ,
(3) for all n < ω Tn = {s ∈ T : |predT (s)| = n},
(4) T≤n =

⋃
i≤n Ti

(5) for all s ∈ T succT (s) is the set of immediate successors of s in T.
(6) For a family B of subsets of ω, we say that a subset T is a B-tree if for each

s ∈ T the set succT (s) is included in a element of B

The next two theorems deal with Sacks forcing and Miller forcing. Given a tree
p, x ∈ p is a splitting node of p if it has at least two immediate successors in p.
Sacks forcing, denoted by S, is the poset of subtrees of 2ω such that below each
node there is a splitting node, this trees are called perfect trees. Miller forcing,
denoted by PT, is the poset of subtrees of ωω such that below each node there is a
splitting node, and the size of the set of immediate successors of a node is either 1
or ω. This trees are called super perfect trees.

Proposition 2.6. Both S and PT have continuous reading of names. This means:
If P ∈ {S,PT}, q ∈ P and ẋ is a P-name such that q ⊩ “ẋ ∈ ωω”, then there is
p ≤ q and F : [p] → 2ω a continuous ground model function such that

p ⊩ “F (ṙgen) = ẋ”

where ṙgen is the name of the generic real.

To learn more about the continuous reading of names property, see [20].
In [19] Yorioka proved the result following which inspires our next theorem.

Proposition 2.7 (Yorioka). Sacks forcing does not fill 2-gaps.

Theorem 2.8. Let g = {Ai : i < n} be an n-gap. The next sentences are equiva-
lent:

(1) S ⊩ “g is not a gap”
(2) Any forcing P that adds new reals forces that g is not a gap.
(3) If W ⊇ V is a ZFC model such that (2ω ∩W ) \ V ̸= ∅, then W ⊨ g is not

a gap.
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Proof. Clearly (2) implies (1) and (3) implies (2). So, we will prove (1) implies (3).
Assume S ⊩ “g is not a gap”. By the continuous reading of names there are p ∈ S
and a Fi : [p] → 2ω with i < n continuous functions in the ground model such that

p ⊩ “{Fi(ṙgen) : i < n} fills g”

where ṙgen is a name for the generic real. Assume without lost of generality that
for each x ∈ [p] we have

⋂
i<n Fi(x) = ∅ extending p if is necessary. For each i < n

and A ∈ Ai we define

YA = {x ∈ [p] : A ̸⊆∗ Fi(x)}.(2.1)

We claim that all YA are countable. First, note that YA can be expressed as

YA ={x ∈ [p] : ∀k ∈ ω ∃m > k (m ∈ A ∧m /∈ Fi(x))}

=
⋂
k∈ω

⋃
m>k

⋃
m∈A

{x ∈ [p] : m /∈ Fi(x)}

Since Fi is a continuous function and {y : m /∈ y} is a close set for all m,
{x ∈ [p] : m /∈ Fi(x)} = F−1

i ({y : m /∈ y}) is close. Thus, YA is Borel. If YA

is not countable, by the perfect set property there is a perfect set included in YA

(see Theorem 13.6 of [10]). Also, it is well known that all perfect set in 2ω are the
branches of a Sacks tree. Then we can find q ∈ S such that [q] ⊆ YA (and q ≤ p).
Thus

q ⊩ “A ̸⊆∗ Fi(ṙgen)”.

We get a contradiction.
Now, let W be a model of ZFC which extends V and has a new real. In W

we take x ∈ [p] such that x /∈ V . Since YA is countable, YA = Y V
A for each A.

Therefore, for each i < n and A ∈ Ai x /∈ YA. That proves {Fi(x) : i < n} fills
g. □

Corollary 2.9. An n-gap is S-indestructible if and only if it is indestructible for
some forcing that adds reals.

Join Corollary 2.4 and Corollary 2.9 we have next result.

Corollary 2.10. Sacks forcing preserves any (κi : i < n)-gap when each κi is
uncountable.

We can also state a theorem similar to the one above for Miller forcing. However,
we need to recall some previous results first.

Denote by Kσ the σ-ideal generated by σ-compact sets over ωω.
Next lemma can be found in [10] as Corollary 21.23.

Lemma 2.11. [Kechris, Saint Raymond] Let A ⊆ ωω be an analytic set. Either
A ∈ Kσ or there is q a super prefect tree such that [q] ⊆ A.

Now we will fix some notation to work with PT. If m < ω, splitm(p) is the set
of splitting nodes of p that have exactly m splitting nodes below and we call stem
to the unique element of split0(p), it will be denoted by stem(p). Recursively we
can define a map πp between ω<ω and the splitting nodes of any Miller tree p as
follows:

(1) πp(∅) = stem(p)
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(2) Assume πp is defined on ω≤m and σ ∈ ωm. We consider the increasing
enumeration of succp(πp(σ)) and define πp(σ

⌢i) as the first splitting node
bellow the i-th element of succp(πp(σ)).

Note that π can be extended in an unique way to a homeomorphism πp : ωω → [p].

Lemma 2.12. Let W be a ZFC model which extends V and has an unbounded real
over V , call it x. If we fix p ∈ PT∩V , then there is y ∈ [p]∩W which is unbounded
over V .

Proof. Let y = πp(x). To see that y is unbounded over V , we take K a σ-compact
set coded in V . Without lost of generality we can assume there is g ∈ V such that
K = {f : f ≤∗ g}. If we assume y ∈ K, then x ∈ {f : f ≤ π−1

p (g)}. Since πp is
defined in V , we have that x is bounded by a function in V . Thus, we conclude
that y is unbounded over V . □

Theorem 2.13. Let g = {Ai : i < n} an n-gap. The next sentences are equivalent:

(1) PT ⊩ “g is not a gap”
(2) Any forcing P that adds unbounded reals force g is not a gap.
(3) If W ⊇ V is a ZFC model such that W has a unbounded real over V , then

W ⊨ g is not a gap.

Proof. Clearly (2) implies (1) and (3) implies (2). So, we will prove (1) implies
(3). Employ the continuous reading of names to fix p ∈ PT and for each i < n
Fi : [p] → 2ω continuous functions such that

p ⊩ “{Fi(ṙgen) : i < n} fills g”

where ṙgen is a name for the generic real. Assume without lost of generality that
for each x ∈ [p] we have

⋂
i<n Fi(x) = ∅ extending p if is necessary.

Given i < n and A ∈ Ai define YA as in 2.1, we know that is a Borel set. Note
that YA is σ-compact: if not, by Lemma 2.11 there is q ∈ PT such that [q] ⊆ YA

and

q ⊩ “A ̸⊆∗ Fi(ṙgen)”.

But p forces the opposite.
Take W as in (3). By Lemma 2.12 there is x an unbounded real over V in [p].

For each i < n and A ∈ Ai, we have that x /∈ YA because every compact set in ωω

is a finite-branching tree. Therefore, σ-compact sets are bounded by any function
that dominates the countable family from the ground model, which bounds each
finite-branching tree covering σ-compact set. Consequently , for each i < n and
A ∈ Ai x /∈ YA. That proves (Fi(x))i<n fills g. □

Corollary 2.14. An n-gap is PT-indestructible if and only if it is indestructible
for some forcing that adds unbounded reals.

Corollary 2.15. Miller forcing preserves any (κi : i < n)-gap for κi a uncountable
cardinal for each i < n.

With these results we finish the forcing preservation section.
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2.2. Combinatoric preservation. The next definition was inspired in a partition
defined in [15] (Definition 9.4). Also can be seen [16] and [19] .

Definition 2.16. Let g = {Ai : i < n} be an (ω1 : i < n)-pregap such that
for all i, j < n and α < ω1 Ai

α ∩ Aj
α = ∅. We define cg : [ω1]

n → 2 such that
cg(α0, ..., αn−1) = 0 if and only if ∀i < n∃ji < n({ji : i < n} = n ∧

⋂
i<n A

ji
αi

̸= ∅).
This type of pregaps will be called normal pregaps.

Theorem 2.17. Let g = {Ai : i < n} be a normal (ω1 : i < n)- pregap, the next
sentences are equivalent:

(1) g is a not gap.
(2) There is an uncountable set X that is cg-homogeneous of color 1.

Proof. We start by proving that (2) implies (1). Let be X ⊆ ω1 be homogeneous
of size ω1 and color 1. For each i < n define the set ai =

⋃
{Ai

α : α ∈ X}. Thus,
{ai : i < n} fills g. Clearly for A ∈ Ai we have A ⊆∗ ai. If m ∈

⋂
i<n ai, for

each i < n, there is αi ∈ X such that m ∈ Ai
αi
, then

⋂
i<n A

i
αi

̸= ∅. But X is
homogeneous of color 1.

To prove that (1) implies (2). Take a0, ..., an−1 witnesses that g is not a gap.
We can find m ∈ ω and W ∈ [ω1]

ω1 such that for all α ∈ W and i < n Ai
α \m ⊆ ai.

Since Ai
α ∩ Aj

α = ∅ when i ̸= j, we can assume there are M0, ...,Mn−1 ∈ ℘(m)
disjoint such that for all i < n and α ∈ W Ai

α ∩ m = Mi. Now we prove W is
homogeneous of color 1 by contradiction. Take as hypothesis that α0, ..., αn−1 ∈ W
have color 0 with cg. Then find k ∈

⋂
i<n A

i
αi

̸= ∅. If k < m, k ∈
⋂

i<n Mi = ∅. If

k ≥ m, then k ∈
⋂

i<n(A
i
αi

\m) ⊆
⋂

i<n ai. An absurd.
□

Corollary 2.18. Let g = {Ai : i < n} be a normal (ω1 : i < n)- pregap. The next
sentences are equivalents:

(1) g is a gap.
(2) There is no uncountable set X that is cg-homogeneous of color 1.

Definition 2.19. Given g an (ω1 : i < n)-gap we define the forcing ordered by ⊇
F(g) = {p ∈ [ω1]

<ω : p is cg − homogeneous of color 0}.

For n = 2 the previous corollary holds. Even more, both conditions of the
corollary are equivalent to the sentence:

F(g) is ccc.
However, by Theorem 1.3, we know that:

Corollary 2.20. For any g normal n−gap, for n > 2, F(g) is not ccc.

3. Existence of multiple gaps

In this section we start by building some variants of the gap constructed in [3]
[section 3, Theorem 6]. Given two finite sequences of natural numbers s and t, we
denote the concatenation of s followed by t as s⌢t. If t is a sequences of just one
number, for example i, we write s⌢i instead of s⌢(i). Also, if s ∈ n<ω, ⟨s⟩ is the
set of all x ∈ nω which extends s. In the product topology of nω, ⟨s⟩ is a basic
clopen set.

We denote by M the σ-idea of meager set of 2ω. Thus, non(M) is the least size
of a set A ⊆ 2ω such that A /∈ M. Is well known that ω < non(M) ≤ c, see [4].
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Proposition 3.1. If non(M) = κ, there is an n-gap {Ai : i < n} such that each
Ai has size κ.

Proof. Fix B ⊆ nω a non meager dense set of size κ (this is possible because nω

has a countable dense set). Let T = {x ↾ k : k < ω ∧ x ∈ B}. We define for i < n
and x ∈ nω

aix = {s ∈ T : s⌢i ∈ x}
Let Ai = {aix : x ∈ B} and g = {Ai : i < n}. We will prove that g is an n-gap. In
the sake of contradiction assume that there are c0, ..., cn−1 sets that fill g. For each
m < ω let

A(m) = {x ∈ nω : ∀i < n (aix \ n≤m ⊆ ci)}
Notice that A(m) is close: Take y /∈ A(m), then there is i < n and t ⊆ y with
|t| > m such that t ∈ aix \ ci. Thus, y ∈ ⟨t⌢i⟩ and ⟨t⌢i⟩ ∩A(m) = ∅.

Since B ⊆
⋃

m<ω A(m) and B is not meager, there exists m0 such that the
interior of A(m0) is not empty. Choose t ∈ n<ω with ⟨t⟩ ⊆ A(m0). With out
lost of generality we can ask |t| > m0. As B is dense for each i < n we can find
xi ∈ ⟨t⌢i⟩ ∩ B. Thus, t ∈ aixi

⊆ ci. Therefore t ∈
⋂

i<n ci is the contradiction we
wanted to get. □

With this result it is natural to define the next cardinal invariant. First, given
B ⊆ nω and i < n, let AB

i := {aix : x ∈ B}. Define

µn−gap = min{|B| : {AB
i : i < n} is an n-gap}

Thus, we have already proved that µn−gap ≤ non(M).
In [17] Todorčević introduces the concept of a countably separated gap. A 2-gap

(A0,A1) is said to be countably separated if there is a family {ck : k ∈ ω} ⊆ [ω]ω

such that for all A0 ∈ A0 and A1 ⊆ A1 there is k < ω such that A0 ⊆∗ ck and
A1 ∩ ck =∗ ∅. In [3] Avilés and Todorčević mention different ways to generalize
countably separated gaps to multiple gaps. The next definition is one of them.

Definition 3.2. Given g = {Ai : i < n} an n-pregap we say that g is countably
separated if there exists {cki : i < n , k ∈ ω} ⊆ ℘(ω) such that:

(1) for all k < ω
⋂

i<n c
k
i = ∅ and

(2) for all x0 ∈ A0, ..., xn−1 ∈ An−1 there is k < ω such that for all i < n
xi ⊆ cki .

Also, we call g strong gap if g is not countably separated.

Then, we can define next cardinal.

µstong−n−gap = min{|B| : (Ai := {aix : x ∈ B})i<n is a strong n-gap}

Proposition 3.3. The gap defined in Proposition 3.1 is actually a strong gap.

Proof. By contradiction. Let g be the gap defined in Proposition 3.1 and {cki : i <
n , k ∈ ω} be the witness that g is countably separated. Thus, for each m, k < ω let

A(m, k) = {x : ∀i < n (aix \ n≤m ⊆ cki }
Now we prove that for all m, k A(m, k) is close. Let y /∈ A(m, k), then there

is i < n and t ⊆ y with |t| > m such that t ∈ aiy \ cki . Thus, y ∈ ⟨t⌢i⟩ and

⟨t⌢i⟩ ∩A(m, k) = ∅ because t ∈ aix \ cki for all x ∈ ⟨t⌢i⟩.
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Using the fact of B ⊆
⋃

m,k<ω A(m, k), B is not meager and dense there are

m0, k0 < ω, t ∈ n<ω with |t| > m0 and x0 ∈ ⟨t⌢0⟩ ∩ B, ..., xn−1 ∈ ⟨t⌢n − 1⟩ ∩ B.

Thus, t ∈
⋂

i<n c
k0
i , a contradiction. □

By the last proposition we have µstrog−n−gap ≤ non(M).
Given a tree T , we say that T is k-branching if for each t ∈ T , |succT (t)| = k.

For n > 2, let In the σ-ideal on ωn generated by {[T ] : T is a (n-1)-branching tree}.
Notice that if T ∈ In, [T ] is nowhere dense because for each t ∈ succT (t) has size
n. Thus, In is a proper ideal.

Theorem 3.4. Let B ⊆ ωn. B /∈ In if and only if g = (Ai := {aix : x ∈ B})i<n is
a strong n-gap.

Proof. First take B ∈ In. Let {Tk : k < ω} be (n-1)-branching trees such that
B ⊆

⋃
k<ω[Tk]. For each i < n recursively we build a family {cki : k < ω} such that

cki =
⋃

{aix \ (
⋃
m<k

cmi ) : x ∈ B ∩ ([Tk] \
⋃
m<k

[Tm])}.

Claim 3.5. For all m < k, i < n and x ∈ B ∩ ([Tk] \ [Tm]), the set aix ∩ cmi is finite.

Proof of the claim. By contradiction. Take {tj : j < ω} ⊆ aix ∩ cmi . So,
tj

⌢i ⊆ x and there are {yj : j < ω} ⊆ B ∩ [Tk] such that tk ⊆ yk. Then (yk)
converges to x but [Tk] is close, then x ∈ [Tk], an absurd.

Thus, if we take ci =
⋃

k<ω cki for each i < n, they show that g is not a gap (then
is not strong gap).

Now fix B that can not be covered by countable many (n-1)-branching trees and
assume, to get an absurd, that g is not a strong n-gap. Let {cmi : i < n ,m ∈ ω} be
a family witness. We define for each m < ω,

A(m) = {x ∈ B : ∀i < n (aix ⊆ cmi )}.
As in Proposition 3.1, B is covered by

⋃
m<ω A(m). Then there is m < ω such

that A(m) is not in In. There exists T ⊆ n<ω such that [T ] ⊆ A(m) and there are
infinite many t ∈ T such that |succT (t)| = n. Fix t as in previous sentences such
that |t| > m. Then, for all i < n there is xi ∈ [T ] such that t⌢i ⊆ xi. Thus, the
contradiction we were looking for is given by t ∈

⋂
i<n c

m
i . □

Corollary 3.6. For all n > 2 µn−gap = µstrong−n−gap = non(In) ≤ non(M).

Now we will focus on building gaps with non ZFC axioms.

Definition 3.7. Suppose that A is a Borel subset of some Polish space. A map
F : 2<ω1 → A is Borel if for every δ the restriction of F to 2δ is a Borel map.

The following statement is known as ♢(n,=).

For every Borel map F : 2<ω1 → n there is d : ω1 → n such that for all f : ω1 → n

it satisfies that {α < ω1 : F (f ↾ α) = d(α)} is a stationary set of ω1

(3.1)

It is a parametrized diamond principle introduced by Džamonjain, Hrušák and
Moore in [12]. In [9] the authors used ♢(2,=) to build a non metrizable Fréchet
group. There are many models where ♢(n,=) holds, in particular after forcing with
a Suslin tree. In particular ♢(n,=) is consistent with the continuum being arbitrary
large.
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Theorem 3.8. ♢(n,=) implies that there exists an (ω1 : i < n)-gap.

Proof. We associate the tree 2<ω1 with

{(a0, ..., an−1,A0
α, ...,An−1

α ) :α < ω1 ,∀i < n(ai ⊆ ω∧
∧ Ai

α = {Ai
β ∈ ℘(ω) : β < α})}.

Call T this encoding of 2<ω1 . Fix t = (a0, ..., an−1,A0
α, ...,An−1

α ) ∈ T for some
α < ω1. If (A0

α, ...,An−1
α ) constituted a pregap, it is countable, then, by making a

slight variation to the proof of Proposition 1.2, we can obtain a partition of ω in
n+1 many infinite B0(t), ..., Bn(t) such that for each i < n for all A ∈ Ai

α holds
A ⊆∗ Bi(t).

We define a function F for each t as follows:

F (t) = i if i is the minimum such that Bn(t) ̸⊆∗ ai

if there is an i as above. In case there is no such i or (A0
α, ...,An−1

α ) is not a gap
F (t) = 0.

We can verify that F is Borel because if 0 < i < n, then F−1(i) = {t ∈ T :
∀j < iBn(t) ⊆∗ aj ∧ Bn(t) ̸⊆∗ ai}. As we showed in Theorem 2.8 the condition
Bn(t) ̸⊆∗ ai is Borel and an analogous argument shows that Bn(t) ⊆∗ aj also is
a Borel condition. For i = 0 is enough notice that F−1(0) is the complement of⋃

0<i<n F
−1(i) which is a finite union of Borel sets. We fix d as in 3.1. Now, we fix

an (ω : i < n)-pregap (A0
ω, ...,An−1

ω ) where for all i < n Ai
ω = {Ai

m : m < ω}. We
need to define Ai

α for all α < ω1 \ ω and i < n :
By recursion on α. Fix α < ω1 \ ω and assume (A0

α, ...,An−1
α ) is already defined

where Ai
α = {Ai

β : β < α} for all i < n. Fix a tα ∈ T such that (A0
α, ...,An−1

α ) is

the second half of t. If d(α) = i, for j ̸= i, let Aj
α ⊆∗ Bj(tα) co-infinite in Bj(tα)

such that Ai
β ⊆∗ Ai

α and take Ai
α = Bi(tα) ∪Bn(tα).

Let Ai = {Ai
α : α < ω1}. We will prove that g = {Ai : i < n} is an (ω1 : i < n)-

gap.
Take a0, ...an−1 ⊆ ω. We will prove they do not fill g. Define

f = {(a0, ..., an−1,A0
α, ...,An−1

α ) : α < ω1}.
Choose α < ω1 such that F (f ↾ α) = d(α). Assume that d(α) = i. If there
is no i < n such that Bn(f ↾ α) ̸⊆∗ ai. Then Bn(f ↾ α) ⊆∗ ⋂

j<n aj . In this
case a0, ...an−1 do not fill our pregap. So assume there is an i < n such that
Bn(f ↾ α) ̸⊆∗ ai. Since F (f ↾ α) = g(α), Bi(f ↾ α) ∪ Bn(f ↾ α) = Ai

α ̸⊆∗ ai. We
conclude a0, ...an−1 do not fill g. □

Our last construction of an n-gap is going hand in hand with Construction
Schemes which we define below.

Definition 3.9. We call a sequence τ = (mk, nk+1, rk+1)k∈ω ⊆ ω3 a type if:

(1) m0 = 1,
(2) ∀k ∈ ω\1

(
nk ≥ 2

)
,

(3) ∀k ∈ ω
(
mk > rk+1

)
,

(4) ∀k ∈ ω\1
(
mk+1 = rk+1 + (mk − rk+1)nk+1

)
.

(5) ∀ℓ ∈ ω the set {k : rk = ℓ} is infinite.

Constructions schemes were introduced in [18] by Todorčev́ıc. The intuition of
these construction schemes is to amalgamate many finite isomorphic structures to
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obtain a structure of size ω1. Similar to the forcing method, construction schemes
allow you to take care of more than ω1 ”tasks” in ”few steps” unlike recursion
constructions. In [18] and [5] there are many examples of objects obtained with
constructions schemes.

Given F ⊆ [ω1]
≤ω, (F ,⊆) is a well-founded partial order. That means we can

define a rank function rank : F → ω given by rank(x) = sup{rank(y)+1 : y ⊂ x},
that induce a partition of F as Fk = rank−1{k}.

Definition 3.10. Let τ = ⟨mk, nk+1, rk+1⟩k∈ω be a type. We say that F ⊆ [ω1]
<ω

is a construction scheme of type τ if:

(1) F is cofinal in [ω1]
<ω,

(2) ∀k ∈ ω ∀F ∈ Fk

(
|F | = mk

)
,

(3) ∀k ∈ ω ∀F,E ∈ Fk

(
E ∩ F ⊑ E,F

)
(that means if α ∈ E ∩ F and β ∈ (E ∪ F ) \ (E ∩ F ), then α < β),

(4) ∀k ∈ ω ∀F ∈ Fk+1 ∃!F0, . . . , Fnk+1−1 ∈ Fk such that F =
⋃

i<nk+1

Fi.

Moreover, ⟨Fi⟩i<nk+1
forms a ∆-system with root R(F ) such that |R(F )| =

rk+1 and

R(F ) < F0\R(F ) < · · · < Fnk+1−1\R(F ).

The decomposition viewed in the last point is known as the canonical decomposi-
tion of F . For the rest of the paper, when we write first F in a construction scheme
and F0, ..., Fnk+1−1 we always are talking about the canonical decomposition of F.
Also R(F ) is the root of the ∆-system.

Definition 3.11. Let F be a construction scheme of type τ . We define ρF : ω2
1 −→

ω as:

ρF (α, β) = min{k ∈ ω : ∃F ∈ Fk( {α, β} ⊆ F )}.
If F is clear from context, we will write ρF simply as ρ.

Definition 3.12. Let α ∈ ω1. Σα : ω −→ ω ∪ {−1} is the function defined as
follows: Σα(0) = 0 and if k ∈ ω\1 and F ∈ Fk is such that α ∈ F then:

Σα(k) =

{
−1 if α ∈ R(F )

i if α ∈ Fi\R(F )

And

We need next result.

Proposition 3.13. Let α < β ∈ ω1 and k ∈ ω\1. Then:

(1) If k = ρ(α, β), then 0 ≤ Σα(k) < Σβ(k).
(2) If k > ρ(α, β), then either Σα(k) = −1 or Σα(k) = Σβ(k).

The proof of this fact can be found in [5].
Now, we will talk about capturing axioms. Given F ∈ F we let

ρF = max{ρ(α, β) : α, β ∈ F}.

Definition 3.14. Let F be a construction scheme and C = {c0, ..., ck−1} ⊆ [ω1]
<ω.

For each F ∈ F , we say that F captures C if:

(1) nρF ≥ k,
(2) for all i < k ci ⊆ Fi and ci \R(F ),
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(3) for all i < k ϕi(c0) = ci where ϕi is the increasing bijection from F0 to Fi.

Definition 3.15. Let F be a construction scheme, and k ∈ ω \ 1. We say that F
is k-capturing if for each uncountable S ⊆ [ω1]

<ω and m ∈ ω there are C ∈ [S]k

and F ∈ Fm which captures C.

This notions were introduced by Todorčev́ıc in [18], and in [5] it was proved that
♢ implies the existence of a k-capturing construction scheme for arbitrary k < ω.

Finally, for each k < ω CAk represents next sentence.

There is an k-capturing construction scheme of every possible good type satisfying
that k ≤ nj for each j ∈ ω\1.

Theorem 3.16. CAn implies there exists an (ω1 : i < n)-gap for n > 1.

Proof. Let F be an n-capturing construction scheme of type (mk, n, rk)k<ω. For
each k ∈ ω let Xk = {nk, nk + 1, ..., nk + n− 1}. Notice that for all k < ω Xk has
size n and for k ̸= m Xk ∩ Xm = ∅. For all α < ω1, i < n and k < ω we define
Ai

α(k) as follows:
If Σα(k) = −1, then for all i < n, Ai

α(k) = ∅. If Σα(k) = j, then Ai
α(k) =

{nk + b : b ≡ i+ j(modn) ∧ b < n}.
Now, let Ai

α =
⋃

k∈ω Ai
α(k) and Ai = {Ai

α : α < ω}. We need to prove that
g = {Ai : i < n} is an (ω1 : i < n)-gap.

We start noting that for α < ω1 and i < n, Ai
α is infinite because by definition of

construction schemes Σα(k) ̸= −1 for infinite many k. Also, for i ̸= j and α < ω1

Ai
α ∩Aj

α = ∅ because {Xk : k ∈ ω} is a partition ω. Furthermore, for all i < n and
α < β notice that

Ai
α \Ai

β ⊆ {nk + b : k ≤ ρ(α, β) ∧ Σα(k) ≥ 0 ∧ b < n ∧ b ≡ i+Σα(k)(modn)}.

Notice that last set is finite. Therefore, g consists of orthogonal families, that means,
g is an (ω1 : i < n)-pregap. Now we will prove g is a gap. Fix S ∈ [ω1]

ω1 . Since F is
an n-capturing construction scheme, we can find D ∈ [S]n, k < n and F ∈ Fk such
that F captures D. Thus, if D = {αi : i < n}, for all i < n αi ∈ Fi \ R(F ). Then
Ai

αi
(k) = {nk}. Consider c the coloring defined in Definition 2.16, then c(D) = 0

by definition. That proves S is not homogeneous of color 1 under c. By Corollary
2.18, we finish the proof. □
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