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THE ONTO MAPPING OF SIERPINSKI AND NONMEAGER SETS

OSVALDO GUZMÁNGONZÁLEZ

Abstract. The principle (∗) of Sierpinski is the assertion that there is a family of functions
{ϕn : �1 −→ �1 | n ∈ �} such that for every I ∈ [�1]�1 there is n ∈ � such that ϕn [I ] = �1 .We prove
that this principle holds if there is a nonmeager set of size �1, answering question of Arnold W. Miller.
Combining our result with a theorem of Miller it then follows that (∗) is equivalent to non (M) = �1.
Miller also proved that the principle of Sierpinki is equivalent to the existence of a weak version of a Luzin
set, we will construct a model where all of these sets are meager yet non (M) = �1.

§1. Introduction. The principle (∗) of Sierpinski is the following statement: There
is a family of functions {ϕn : �1 −→ �1 | n ∈ �} such that for every I ∈ [�1]�1
there is n ∈ � for which ϕn [I ] = �1. It was introduced by Sierpinski and he proved
that it is a consequence of the Continuum Hypothesis. It was recently studied by
Arnold W. Miller in [6], which was the motivation for this work. This principle is
related to the following type of sets:

Definition 1.1. Let I be a �-ideal on ��.We say X = {fα | α < �1} ⊆ �� is
an I-Luzin set if X ∩ A is at most countable for every A ∈ I.
In this terminology, the Luzin sets areM-Luzin sets (whereM denotes the ideal
of all meager sets) and the Sierpinski sets are the N -Luzin sets (where N denotes
the ideal of all sets with Lebesgue measure zero). Given a �-ideal I, its uniformity
number non (I) is the smallest size of a set that is not an element of I. Clearly
the existence of an I-Luzin set implies non (I) = �1, but the converse is usually
not true. For example, it was shown by Shelah and Judah in [4] that there are
no Luzin or Sierpinski sets in the Miller model while non (M) = non (N ) = �1
holds.

Definition 1.2.

1. Given f ∈ �� we define ED (f) = {g ∈ �� | |f ∩ g| < �} .
2. IE is the �-ideal generated by {ED (f) | f ∈ ��} .
It is easy to see that each ED (f) is a meager set so IE ⊆ M. It is well known
that non (IE) = non (M) (see [3]). In [6], Miller proved the following result:
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Proposition 1.3 (Miller [6]). The following are equivalent:
1. The principle (∗) of Sierpinski.
2. There is a family {gα : � −→ �1 | α < �1} with the property that for every
g : � −→ �1 there is α < �1 such that if � > α then g� ∩ g is infinite.

3. There is an IE-Luzin set.
The implication from 3 to 1 is not explicit in [6] (it is implicitly proved in the
lemma 6 of [6]). The referee found a very elegant and short proof of this result
which we reproduce here. We are grateful with the referee for allowing us to include
his proof.
Proposition 1.4. The existence of an IE-Luzin set implies the principle (∗) of
Sierpinski.
Proof. Let A = {Aα | � ≤ α < �1} be an almost disjoint family. Since there is
an IE-Luzin, for each α, we can find a family Fα =

{
fα� : Aα −→ α | � < �1

}

such that for every g : Aα −→ α there is � such that if � > � then fα� ∩ g is
infinite. Since A is an almost disjoint family, we can then construct a family G ={
g� : � −→ �1 | � ≤ � < �1

}
such that fα� =∗ g� � Aα for every α < � < �1.

By the previous proposition, we need to prove that for every g : � −→ �1 there is
α < �1 such that if � > α then g� ∩g is infinite. First we find � such that g : � −→ �
and then we know there is � such that if � > � then f�� ∩ (g � A�) is infinite. It then
follows that if � > max {�, �} then g� � A� =∗ f�� so

∣
∣g� ∩ g

∣
∣ = �. �

It then follows that the existence of a Luzin set implies the principle (∗) of
Sierpinski while it implies non (M) = �1.Miller then asked if the principle (∗) of
Sierpinski is a consequence of non (M) = �1 andwewill show that this is indeed the
case. In the second part of the paper, we will prove (with the aid of an inaccessible
cardinal) that while non (M) = �1 implies the existence of a IE-Luzin set, it does
not imply the existence of a nonmeager IE-Luzin set.

§2. non (M) = �1 implies the existence of an IE-Luzin set. We will now show
that the principle (∗) of Sierpinski follows by non (M) = �1, answering the question
of Miller. By Partial (��), we shall denote the set of all infinite partial functions
from � to �.We start with the following lemma:
Lemma 2.1. If non (M) = �1 then there is a family X = {fα | α < �1} with the
following properties:
1. Each fα is an infinite partial function from � to �.
2. The set {dom (fα) | α < �1} is an almost disjoint family.
3. For every g : � −→ �, there is α < �1 such that fα ∩ g is infinite.
Proof. Let �<� = {sn | n ∈ �} and we define H : �� −→ Partial (��) where
the domain of H (f) is {n | sn 	 f} and if n ∈ dom (H (f)) then H (f) (n) =
f (|sn|) . It is easy to see that if f 
= g then dom (H (f)) and dom (H (g)) are
almost disjoint.
Given g : � −→ �, we define N (g) = {f ∈ �� | |H (f) ∩ g| < �} . It then
follows that N (g) is a meager set since N (g) =

⋃

k∈�
Nk (g), where Nk (g) =

{f ∈ �� | |H (f) ∩ g| < k}, and it is easy to see that each Nk (g) is a nowhere
dense set. Finally, ifX = {hα | α < �1} is a nonmeager set thenH [X ] is the family
we were looking for. �
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With the previous lemma we can prove the following:

Proposition 2.2. If non (M) = �1 then the principle (∗) of Sierpinski is true.
Proof. Let X = {fα | α < �1} be a family as in the previous lemma. We
will build a IE-Luzin set Y = {hα | α < �1} . For simplicity, we may assume
{dom (fn) | n ∈ �} is a partition of �.
For each n ∈ �, let hn be any constant function. Given α ≥ �, enumerate it
as α = {αn | n ∈ �} and then we recursively define B0 = dom (fα0 ) and Bn+1 =
dom (fαn ) \ (B0 ∪ · · · ∪ Bn). Clearly {Bn | n ∈ �} is a partition of �. Let hα =⋃

n∈�
fαn � Bn, it then follows that Y = {hα | α < �1} is an IE-Luzin set. �

§3. non (M) = �1 does not imply the existence of a nonmeager IE-Luzin set. It
is not hard to see that the IE-Luzin set constructed in the previous proof is meager.
One may then wonder if it is possible to construct a nonmeager IE-Luzin set from
non (M) = �1.Wewill prove that this is not the case. This will be achieved by using
Todorcevic’s method of forcing with models as side conditions (see [8] for more on
this very useful technique).

Definition 3.1. We define the forcing Pcat as the set of all p =
(
sp,Mp, Fp

)
with

the following properties:

1. sp ∈ �<� (this is usually referred as the stem of p).
2. Mp = {M0, . . . ,Mn} is an ∈-chain of countable elementary submodels of

H( (2c)++).
3. Fp :Mp −→ ��.
4. sp ∩ Fp (Mi) = ∅, for every i ≤ n.
5. Fp (Mi) /∈Mi and if i < n then Fp (Mi) ∈Mi+1.
6. Fp (Mi) is a Cohen real over Mi (i.e., if Y ∈ Mi is a meager set then
Fp (Mi) /∈ Y ).

Finally, if p, q ∈ Pcat then p ≤ q if sq ⊆ sp, Mq ⊆Mp and Fq ⊆ Fp.
The following lemma is easy and it is left to the reader:

Lemma 3.2.

1. IfM � H( (2c)+++) is countable and p ∈ M ∩ Pcat then there is f ∈ �� such
that if N = M ∩ H( (2c)++) then p =

(
sp,Mp ∪ {N} , Fp ∪ {(N,f)}

)
is a

condition of Pcat and it extends p.
2. If n ∈ � then Dn = {p ∈ Pcat | n ⊆ dom (sp)} is an open dense subset of Pcat .
We will now prove that Pcat is a proper forcing by applying the usual “side
conditions trick”.

Lemma 3.3. Pcat is a proper forcing.

Proof. Let p ∈ Pcat and M a countable elementary submodel of H( (2c)
+++)

such that p ∈ M . By the previous lemma, we know there is f ∈ �� such that
p =

(
sp,Mp ∪ {N} , Fp ∪ {(N,f)}) ∈ Pcat (where N =M ∩ H( (2c)++)). We will

now prove that p is an (M,Pcat)-generic condition.
Let D ∈ M be an open dense subset of Pcat and q ≤ p (we may even assume
q ∈ D). We must prove that q is compatible with an element of M ∩ D. In order
to achieve this, let qM =

(
sq,Mq ∩M,Fq ∩M

)
it is easy to see it is a condition as
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well as an element ofM . By elementarity, we can find r ∈M ∩D such that r ≤ qM
and sr = sq. It is then easy to see that r and q are compatible (this is easy since r
and q share the same stem). �
The next lemma shows that Pcat destroys all the ground model nonmeager IE-
Luzin families.

Lemma 3.4. If X = {fα | α < �1} ⊆ �� is a nonmeager set then Pcat adds a
function that is almost disjoint with uncountably many elements of X.
Proof. Given a generic filter G ⊆ Pcat , we denote the generic real by fgen i.e.,
fgen is the union of all the stems of the elements in G. We will show that fgen is
forced to be almost disjoint with uncountably many elements of X. Let p ∈ Pcat
with stem sp and α < �1. Choose t ∈ �<� with the same length as sp but disjoint
with it. Let Y =

{
g� | α < � < �1

}
, where g� = t ∪

(
f� � [|t| , �)

)
. It is easy to

see that Y is a nonmeager set and then we can find � > α and q ≤ p such that g� is
in the image of Fq. In this way, fgen is forced by q to be disjoint from g� , so it will
be almost disjoint with f�. �
We say a forcing notion P destroys category if there is p ∈ P such that p � “�� ∩
V ∈ M”. It is a well known fact that a partial order P does not destroy category if
and only if P does not add an eventually different real (under any condition). Given
a polish space X, we denote by NWD (X ) the ideal of all nowhere dense subsets of
X.We will need the following result of Kuratowski and Ulam (see [5]):

Proposition 3.5 (Kuratowski–Ulam). Let X and Y be two polish spaces. If
N ⊆ X × Y is a nowhere dense set, then {x ∈ X | Nx ∈ nwd (Y )} is comeager
(where Nx = {y | (x, y) ∈ N}).
As a consequence of the Kuratowski–Ulam, we get the following result:

Lemma 3.6. Let p ∈ Pcat , Mp = {M0, . . . ,Mn} and i ≤ n. Let gj = Fp (Mi+j)
and m = n − i. If D ∈ Mi and D ⊆ (��)m+1 is a nowhere dense set, then
(g0, . . . , gm) /∈ D.
Proof. We prove it by induction over m. If m = 0, this is true just by the
definition of Pcat . Assume this is true for m and we will show it is also true for
m + 1. Since D ⊆ (��)m+2 is a nowhere dense set, then by the Kuratowski–Ulam
we conclude that A = {h ∈ �� | Dh ∈ nwd ((��)m+1)} is comeager and note it is
an element ofMi. In this way, g0 ∈ A so Dg0 ∈ nwd ((��)m+1) and it is an element
ofMi+1. By the inductive hypothesis, we know (g1, . . . , gm+1) /∈ Dg0 which implies
(g0, . . . , gm) /∈ D. �
We will prove that Pcat does not destroy category and it is a consequence of the
following result:

Lemma 3.7. Let p ∈ Pcat and ġ a Pcat-name for an element of ��. Let
〈Mn | n ∈ �〉 be an ∈-chain of elementary submodels of H( (2c)+++), h : � −→ �
and {An | n ∈ �} ⊆ [�]� a family of pairwise infinite disjoint sets with the following
properties:
1. p, ġ ∈M0.
2. h � An ∈Mn+1.
3. If f ∈Mn ∩ �� then f ∩ (h � An) is infinite.
Then there is a condition q ≤ p such that q � “ |h ∩ ġ| = �”.
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Proof. Let M =
⋃

n∈�
Mn and define hn = h � An ∈ Mn. We know that there

is some f ∈ �� such that p = (
sp,Mp ∪ {N} , Fp ∪ {(N,f)}) ∈ Pcat (where

N = M ∩ H( (2c)++)). We will now prove that p forces that ġ and h will have
infinite intersection. We may assume An ∩ n = ∅ for every n ∈ �.
Pick any q ≤ p and k ∈ �, we must find an extension of q that forces that
ġ and h share a common value bigger than k. We first find n > k such that
q′ =

(
sq,Mq ∩M,Fq ∩M

) ∈ Mn. Let m =
∣
∣Mq\Mq′

∣
∣ and now we define D as

the set of all t ∈ �<� such that there are l ∈ An and r ∈ Pcat with the following
properties:
1. r ≤ q′.
2. r ∈Mn.
3. sq ⊆ t and the stem of r is t.
4. r � “ġ (l) = hn (l) ”.
It is easy to see that D is an element of Mn+1. We now define N (D) ⊆ (��)m
as the set of all (f1, . . . , fm) ∈ (��)m such that (f1 ∪ · · · ∪ fm) ∩ t � sq for every
t ∈ D.We claim thatN (D) is a nowhere dense set.
Let z1, . . . , zm ∈ �<� , and we may assume all of them have the same length and
it is bigger than the length of sq. We know q′ =

(
sq,Mq′ , Fq′

)
and let im (Fq′) =

{f1 , . . . , fk} (where im denotes the image of the function). Let t0 be any extension
of sq such that t0 ∩ (fα1 ∪ · · · ∪ fαk ∪ z1 ∪ · · · zm) ⊆ sq and |t0| = |z1| . In this way,
q0 =

(
t0,Mq′ , Fq′

)
is a condition and is an element of Mn. Inside Mn, we build

a decreasing sequence 〈qi〉i∈� (starting from the q0 we just constructed) in such
a way that qi determines ġ � i. In this way, there is a function u : � −→ � ∈
Mn such that qi � “ġ � i = u � i”. Since u ∈ Mn , we may then find l ∈ An
such that u (l) = hn (l) . Let t = tl+1 and r = ql+1, we may then find z′i ⊇ zi
such that t ∩ (z′1 ∪ · · · ∪ z′m) ⊆ sq and |z′i | = |t| . In this way, we conclude that
〈z′1, . . . , z′m〉 ∩N (D) = ∅ (where 〈z′1, . . . , z′m〉 = {(g1, . . . , gm) | ∀i ≤ m (z′i ⊆ gi)}),
so we conclude N (D) is a nowhere dense set.
Let g1, . . . , gm be the elements of im (Fq) that are not in M. Since D ∈ N
then by the previous lemma, we know that (g1, . . . , gm) /∈ N (D) . This means
there are l ∈ An, t ∈ �<� and r ∈ Mn such that r ≤ q′, whose stem is t and
r � “ġ (l) = hn (l) ” with the property that t ∩ (g1 ∪ · · · ∪ gm) ⊆ sq, but since q is a
condition, it follows that t∩(g1 ∪ · · · ∪ gm) = ∅. In this way, r and q are compatible,
which finishes the proof. �
As a corollary we get the following:
Corollary 3.8. Pcat does not destroy category.
Unfortunately, the iteration of forcings that does not destroy categorymaydestroy
category (this may even occur at a two step iteration, see [1]). Luckily for us, the
iteration of the Pcat forcing does not destroy category as we will prove soon. First
we need a couple of lemmas,
Lemma 3.9. Let P be a proper forcing that does not destroy category and p ∈ P. If
Ṡ is a P-name for a countable set of reals, then there is q ≤ p and h : � −→ � such
that q � “∀f ∈ Ṡ (|f ∩ h| = �) ”.
Proof. First note that if ḟ0, . . . , ḟn are P-names for reals, then there is q ≤ p
and h : � −→ � such that q forces ḟi and h have infinite intersection for every
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i ≤ n. To prove this, we choose a partition {A0,, . . . , An} of � in infinite sets and let
ġi be the P-name of ḟi � Ai . Since P does not destroy category, there are q ≤ p and
hi : Ai −→ � such that q forces that hi and ḟi have infinite intersection. Clearly q
and h =

⋃
hi have the desired properties.

To prove the lemma, let Ṡ = {ġn | n ∈ �} and fix {An | n ∈ �} a partition of
� in infinite sets. By the previous remark, we know there is a P-name Ḟ such that
p � “Ḟ : � −→ Partial (��) ∩V ” such that every Ḟ (n) is forced to be a function
with domain An and intersects infinitely ġ0 � A0, . . . , ġn � An. Since P is a proper
forcing, we can find q ≤ p andM ∈ V a countable subset ofPartial (��) such that
q � “Ḟ : � −→M”.Weknow thatP does not destroy category andM is countable,
so there must be r ≤ q and H : � −→ M such that r � “∃∞n(Ḟ (n) = H (n))”.
We may assume that the domain of H (n) is An for every n ∈ �. Finally, we define
h =

⋃

n∈�
H (n) and it is easy to see that r forces that h has infinite intersection with

every element of Ṡ. �
We will also need the following lemma,
Lemma 3.10. Let P be a proper forcing that does not destroy category, G ⊆

P a generic filter and X any set. Then there are M = {Mn | n ∈ �} ⊆ V, P =
{An | n ∈ �} ⊆ V and h : � −→ � ∈ V with the following properties:
1. Each Mn is a countable elementary submodel of H (κ) for some big enough κ
(in V ).

2. X ∈M0 andMn ∈Mn+1, for every n ∈ �.
3. P is a family of pairwise infinite disjoint sets of �.
4. P,M ∈ V [G ] (whileM is a subset of V, in general it will not be a ground model
set, the same is true for P).

5. G ∩Mn is a (Mn,P)-generic filter, for every n ∈ �.
6. h � An ∈Mn+1 and if f ∈Mn [G ] then h � An ∩ f is infinite.
Proof. Let r be any condition of P, we will prove that there is an extension of
r that forces the existence of the desired objects. Let {Bn | n ∈ �} be any definable
partition of � into infinite sets.
Claim 3.11. IfG ⊆ P is a generic filter with r ∈ G then (inV [G ]) there a sequence

〈(Ni, pi , hi) | i ∈ �〉 such that for every i ∈ � the following holds:
1. Ni ∈ V is a countable elementary submodel of H (κ) (the H (κ) of the ground
model ).

2. r, X ∈ N0 andNi ∈ Ni+1.
3. p0 ≤ r and 〈pk〉k∈� is a decreasing sequence contained in G.
4. pi is (Ni,P)-generic.
5. hi : Bi −→ � ∈ Ni+1.
6. pi � “∀f ∈ Ni [Ġ ] ∩ �� (|f ∩ hi | = �) ”.
Assume the claim is false, so we can find n ∈ � and a sequence R =

〈(Ni, pi , hi) | i ≤ n〉 that is maximal with the previous properties (the point 5 is
only demanded for i < n). Let p ∈ G be a condition forcing R has all this features
(including the maximality). Back in V, letM be a countable elementary submodel
such that P, p,R ∈M. By the previous lemma, there is an (M,P)-generic condition
q ≤ p and g : Bn+1 −→ � such that g is forced by q to intersect infinitely every
real of M [G ] . In this way, q forces that R could be extended by adding (M,q, g)
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but this is a contradiction since q ≤ p so it forces R was maximal. This finishes the
proof of the claim.
Fix 〈(Ṅi , ṗi , ḣi) | i ∈ �〉 to be the name of a sequence as in the claim. We
can now define a name for a function Ḟ from � to Partial (��) ∩ V such that
r � “∀n(Ḟ (n) = ḣn)”. As in the previous lemma, we can find a condition p ≤ r
and H : � −→ Partial (��) such that p � “∃∞n(Ḟ (n) = H (n))”. We may
assume the domain of H (n) is Bn and let h =

⋃

n∈�
H (n) . Let Ż = {żn | n ∈ �}

be a name for a subset of � such that p � “∀n (F (żn) = H (żn)) ”. If G ⊆ P is a
generic filter such that p ∈ G then we define Mn = Nżn [G ] and An = Bżn [G ], it is
clear that this sets have the desired properties. �
From this we can conclude the following,

Corollary 3.12. If P is a proper forcing that does not destroy category then
P ∗ Pcat does not destroy category.
Proof. Let ṗ be a P-name for a condition of Pcat and ḟ a P-name for a Pcat-
name for a real. Let G ⊆ P be a generic filter. By the previous lemma, there are h :
� −→ � ∈ V, an∈-chain of elementary submodels {Mn [G ] | n ∈ �} and a pairwise
disjoint family {An | n ∈ �} of infinite subsets of� such that ṗ [G ] , ḟ [G ] ∈M0 [G ]
and h � An ∈Mn+1 [G ] has infinite intersection with every real inMn [G ] . Then by
lemma 13, we can extend ṗ [G ] to a condition forcing that ḟ [G ] and h will have
infinite intersection. �
As commented before, the iteration of forcings that does not destroy categorymay
destroy category, but the following preservation result of Dilip Raghavan shows this
can only happen at the successor steps of the iteration:

Proposition 3.13 (Raghavan [7]). Let � be a limit ordinal and 〈Pα, Q̇α | α < �〉
a countable support iteration of proper forcings. If Pα does not destroy category for
every α < � then P� does not destroy category.

With the aid of the previous preservation theorem, we conclude the following:

Corollary 3.14. The countable support iteration of Pcat does not destroy category.

Putting all the pieces together, we can finally prove our theorem:

Proposition 3.15. If the existence of an inaccessible cardinal is consistent, then so
it is the following statement: non (M) = �1 and every IE-Luzin set is meager.
Proof. Let 
 be an inaccessible cardinal, we perform a countable support itera-
tion {Pα, Q̇α | α < 
} in which Q̇α is forced by Pα to be the Pcat forcing. It is easy
to see that if α < 
 then Pα has size less than 
 so it has the 
-chain condition and
then P
 has the 
-chain condition (see [2]). The result then follows by the previous
results. �
We would like to finish with some questions:

Problem 3.16. Does Pcat preserve 	Cohen? (see [1] chapter 6).
Problem 3.17. Does Pcat preserve every nonmeager set as a nonmeager set? (we
only know that it preserves the ground model as a nonmeager set).

Problem 3.18. Is the inaccessible cardinal really needed for the last result?
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