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ABSTRACT

We prove that after adding a Silver real no ultrafilter from the ground

model can be extended to a P-point, and this remains to be the case in

any further extension which has the Sacks property. We conclude that

there are no P-points in the Silver model. In particular, it is possible

to construct a model without P-points by iterating Borel partial orders.

This answers a question of Michael Hrušák. We also show that the same

argument can be used for the side-by-side product of Silver forcing. This

provides a model without P-points with the continuum arbitrary large,

answering a question of Wolfgang Wohofsky.
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Introduction

Ultrafilters on countable sets have become of great importance in infinite com-

binatorics. A non-principal ultrafilter U is called a P-point if every countable

subset of U has a pseudointersection in U . Recall that a set X ⊆ ω is called a

pseudointersection of a family B ⊆ [ω]ω if X \ B is finite for every B ∈ B.
Ultrafilters of this special type have been extensively studied in set theory and

topology. Walter Rudin in 1956 (see [Rud56]) proved that the topological space

ω∗ = βω \ ω

is not homogeneous assuming the continuum hypothesis CH. It is well known

that the non-principal ultrafilters correspond in a natural way to points of ω∗

and P-points are exactly points with neighborhoods closed under countable

intersections. Rudin proved the non-homogeneity of ω∗ using the following

argument: CH implies that P-points exist, ultrafilters that are not P-points

always exist, and a P-point and a non-P-point have different topological types.

Froĺık established in 1967 (see [Fro67]) that ω∗ is not homogeneous without the

need of the continuum hypothesis. Although Froĺık’s proof does not provide any

specific types of ultrafilters, various distinct topological types of ultrafilters were

later identified even without using any additional set-theoretic assumptions;

see [Kun80, vM82, Ver13].

Nevertheless, P-points remain one of the central objects of research of set

theorists and topologists. P-points are fundamental in forcing theory; most of

the methods of preserving an ultrafilter in generic extensions require preserving

some kind of a P-point; the reader may consult e.g., [BJ95, Zap09] for more

details. They also appear in the study of the Tukey order [Dob15], partition

calculus [BT78], model theory [Bla73], and other topics. The study of P-points

is still a rich and active area of study; the reader may consult e.g., [Boo71,

BHV13, RS17] for some more results and applications of P-points.

A well known result of Ketonen states that it is possible to construct a P-point

if the dominating number is equal to the size of the continuum; d = c [Ket76].1 It

is also possible to construct P-points if the parametrized diamond principle ♦(r)

1 The dominating number d is the least cardinality of a set of functions in ωω such that

every function is eventually dominated by a member of that set; c is the cardinality of

the continuum.
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holds;2 see [MHD04] for more information on parametrized diamond principles.

On the other hand a remarkable theorem of Shelah states that the existence of

P-points cannot be proved using just the axioms of ZFC alone. This result was

proved in 1977 and first published in [Wim82]. The reader may find the proof

in [She98]. The model of Shelah is obtained by iterating the Grigorieff forcing

with parameters ranging over non-meager P-filters.

Independence results are often demonstrated in models obtained by employ-

ing forcing iterations of definable posets. One possible formalization of such

canonical models is treated in [MHD04]. We say that a partial order (P,≤) is

Borel if there is a Polish space X such that P is a Borel subset of X , and ≤ is a

Borel subset of X×X . A canonical model is a model obtained by performing

a countable support forcing iteration of Borel proper partial orders of length ω2.

At the Forcing and its applications retrospective workshop held at the Fields

Institute in 2015 Michael Hrušák posed the following problem.

Problem: Do P-points exist in every canonical model?

A canonical model will contain a P-point if the steps of the iteration add

unbounded reals or if no splitting reals are added—in the resulting model either

d = c or ♦(r) does hold. Consequently, one only needs to consider Borel ωω-

bounding forcing notions which do add splitting reals. The best known examples

of this type of forcing are the random poset and the Silver poset. We answer the

question of Hrušák in the negative; Theorem 6 states that there are no P-points

in the Silver model.

In [Coh79] it was claimed that there is a P-point in the random model. Un-

fortunately, the presented proof is incorrect and the existence of P-points in

the random model is presumably unknown. We will address this issue in the

Appendix section.

Problem: Are there P-points in the random model?

The existence of a model without P-points with the continuum larger than ω2

was an open question [Woh08]. Theorem 7 states that forcing with the side-by-

side product of Silver forcing produces such a model.

2 The reaping number r is the smallest size of a family R ⊆ [ω]ω such that for every

X ∈ [ω]ω there is R ∈ R such that either R ⊆ X or R ⊆ ω \ X. For more information

on the reaping number and cardinal characteristics of the continuum in general, the

reader may consult [Bla10]. The formulation of the associated diamond principle ♦(r) is

somewhat involved and since it is not used in the present paper, it is omitted.
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Our notation and terminology is mostly standard, including some folklore

abuse of notation. When p is a partial function from ω to 2, we denote this by

p;ω → 2 and we write p−1(1) instead of p−1[{1}]. We say that I = {In | n ∈ ω}
is an interval partition if there is an increasing sequence of natural numbers

〈mn〉n∈ω such that m0 = 0 and In = [mn,mn+1).

We say that a forcing notion P has the Sacks property if for every p ∈ P

and for every f such that p � ḟ ∈ ωω there is q ≤ p and {Xn | n ∈ ω} such

that Xn ∈ [ω]
n+1

for every n ∈ ω, and q � ḟ(n) ∈ Xn for each n ∈ ω. It

is a common practise to require in the definition of the Sacks property that

Xn ∈ [ω]
2n
, instead of Xn ∈ [ω]

n+1
as we demanded. Nevertheless, both

resulting notions are equivalent; see, e.g., [GQ04, section 3].

If p;ω → 2 is a partial function we denote by [p] the set of all total function

extending p, i.e., [p] = {f ∈ 2ω | p ⊆ f}.

Destroying P-points with Silver reals

For a partial function p;ω → 2 we denote dom p the domain of p and

cod p = ω \ dom p. We denote the Silver forcing (after Jack Howard Sil-

ver, see [Mat79]) by PS. Some authors also call this poset the Prikry–Silver

forcing. It consists of all partial functions p;ω → 2 such that cod p is infinite,

and relation p ≤ q is defined as q ⊆ p. We will always assume that p−1(1) is

infinite for each p ∈ PS; such conditions form a dense subset of the poset. If G

is a generic filter for the Silver forcing, the Silver generic real is defined as

r =
⋂{[p] | p ∈ G}. It is well known and easy to see that G and r can be defined

from each other. A typical application of the Silver forcing is to demonstrate

that the inequality cofN < r is consistent.3 The reader may consult [Hal17]

for an introduction and more information regarding the Silver forcing. It is well

known that the Silver forcing is proper and has the Sacks property.

For a partial (or total) function p;ω → 2 define an interval partition of ω by

letting In(p) = {k ∈ ω | |k∩p−1(1)| = n} for n ∈ ω and I(p) = {In(p) | n ∈ ω}.
Note that if q extends p, then I(q) refines I(p), i.e., every interval of I(p) is

the union of intervals of I(q). Moreover, if r is the generic real, then I(r)
refines I(p) for every p in the generic filter. The proofs of the following simple

observations are left for the reader.

3 N is the ideal of Lebesgue null subsets of the real line.
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Lemma 1: Let p ∈ PS and k ∈ ω be such that Ik(p) ⊆ dom p.

(1) If q ≤ p, then Ik(p) ∈ I(q).
(2) p � Ik(p) ∈ I(ṙ) (where ṙ is the name for the generic real).

Lemma 2: Assume that p, q ∈ PS and k, n ∈ ω are such that

(1) q ≤ p,

(2) Ik(p) ∈ I(q), and
(3) |q−1(1) ∩min Ik(p)| = |p−1(1) ∩min Ik(p)|+ n.

Then Ik(p) = Ik+n(q).

As a consequence of these observations we conclude the following.

Corollary 3: If p ∈ PS and k ∈ ω are such that Ik(p) ⊆ dom p, then p forces

that: There is n ∈ ω, n ≤ | cod p∩min Ik(p)| such that Ik(p) = Ik+n(ṙ) (where ṙ

is the name for the generic real).

By −n and =n we denote the subtraction operation and congruence relation

modulo n. The notation k ∈n X is interpreted as ‘there is x ∈ X such that

k =n x.’ For X,Y ⊂ n we write X −n Y = {x−n y | x ∈ X, y ∈ Y }.
Lemma 4: For each n ∈ ω there exists k(n) ∈ ω such that for each set

C ∈ [k(n)]n there exists s ∈ k(n) such that C ∩ (C −k(n) {s}) = ∅.
Proof. If s does not satisfy the conclusion of the lemma, then s ∈ C −k(n) C.

As |C −k(n) C| ≤ n2, any choice of k(n) > n2 works as desired.

The following proposition contains the main technical argument central for

the results of this paper.

Proposition 5: Let U be a non-principal ultrafilter and Q̇ be a PS-name for

a forcing such that PS ∗ Q̇ has the Sacks property. If G ⊂ PS ∗ Q̇ is a generic

filter over V , then U cannot be extended to a P-point in V [G].

Before giving the formal proof of the Proposition, let us sketch the core idea

of the argument. The basic approach is the same as in the no-P-points proof of

Shelah from [She98]. We will show that in order to extend U to an ultrafilter in

the generic extension, one would need to add to U a particular countable set D
of newly introduced subsets of ω, and at the same time there is no way to add

to U also the pseudointersection of D; for each pseudointersection Z of D there

is U ∈ U such that Z ∩ U = ∅.
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The sets in D will be chosen as the typical independent reals added by the

Silver forcing. Let r be the generic real; define dni as the union of intervals Ij(r)

such that j =n i. Although it is easy to see that each such dni is an independent

real, this fact will not be explicitly needed in our argument and is therefore left

for the interested reader to observe. For a fixed n the sets dni form a partition

of ω into n pieces, and consequently each ultrafilter extending U needs to contain

one element of this partition; denote this set dny(n). We will show that the set

D = {dny(n) | n ∈ ω} works as desired.

The argument for non-existence of pseudointersections will go along the lines

of the following simple claim.

Claim: Suppose D = {dn | n ∈ ω} is a subset of an ultrafilter U with the

following property. For every function f : ω → ω there is an interval partition

{an | n ∈ ω} such that

• f(n) < min an+1 for each n ∈ ω, and

• ⋃{an ∩ dn | n ∈ ω} /∈ U .
Then D does not have a pseudointersection in U , and consequently U is not a

P-point.

Although the details of the sketched idea will be for technical reasons some-

what adjusted, e.g., we will use only a subset of the above defined set D, the

formal proof of Proposition 5 will roughly follow the described argument.

Proof. First we use the function k from Lemma 4 to inductively construct two

increasing sequences of integers. Put v(0) = 0 and m(0) = k(2). Assume

v(n− 1), m(n− 1) are defined, put

v(n) =
∑

{m(i) | i ∈ n} and m(n) = k((n+ 1)(v(n) + 2)).

Let r be the PS generic real in V [G] added by the first stage of the iteration.

For n ∈ ω and i ∈ m(n) let

Dn
i =

⋃
{Ij(r) | j ∈ ω, j =m(n) i}.

For a fixed n the set {Dn
i | i < m(n)} is a finite partition of ω. We will show

that in V [G], for every function y : ω → ω which satisfies y(n) < m(n) for every

n ∈ ω, and every pseudointersection Z of {Dn
y(n) | n ∈ ω} there is a set U ∈ U

such that U ∩ Z = ∅. This implies that U cannot be extended to a P-point

in V [G].
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Let (p, q̇) be any condition in PS ∗ Q̇, and let Ż, ẏ be the corresponding

names for Z and y. Utilizing the Sacks property we can assume that there are

f : ω → ω and {Xn ∈ [m(n)]
n+1 | n ∈ ω} in V such that

(p, q̇) � (Ż \ f(n)) ⊆ Dn
ẏ(n) and ẏ(n) ∈ Xn.

Choose an interval partition A = {An | n ∈ {−1} ∪ ω} of ω ordered in the

natural way such that

(1) f(n) < minA2n for each n ∈ ω,

(2) m(n) < |A2n+j ∩ cod p| for each n ∈ ω, j ∈ 2, and

(3) I(p) refines A.

We will assume that U0 =
⋃{A2n+1 | n ∈ ω} ∈ U , otherwise take the interval

partition A′ = 〈A−1 ∪ A0, A1, A2, . . .〉 instead.4 The plan is to use the trace of

extensions of p on the interval A2n to control the possible behavior of the set

Dn
y(n) ∩ A2n+1 for all n ∈ ω simultaneously.

Let p1 ∈ PS be any extension of p such that A2n−1 ⊆ dom p1 and

| cod p1∩A2n| = m(n) for each n ∈ ω. Note that for any j ∈ ω if Ij(p1) ⊆ A2n−1,

then p1 � Ij(p1) ∈ I(ṙ). Also note that | cod p1 ∩ minA2n| = v(n) for each

n ∈ ω. Let

Cn = Xn −m(n) {i | i ∈ v(n) + 2}
and notice that |Cn| ≤ (n+ 1)(v(n) + 2). For n ∈ ω put

Hn = A2n+1 ∩
⋃

{Ij(p1) | j ∈ ω, j ∈m(n) Cn}.
We will now distinguish two cases.

Case 1;
⋃{Hn | n ∈ ω} /∈ U , hence U =

⋃{A2n+1 \ Hn | n ∈ ω} ∈ U . Pick

any p2 < p1, p2 ∈ PS such that p−1
2 (1) = p−1

1 (1) and | cod p2 ∩ A2n| = 1 for

each n ∈ ω. Notice that I(p1) = I(p2), | cod p2 ∩ min(A2n+1)| = n + 1, and

if j ∈ ω is such that Ij(p2) ⊆ A2n+1, then Ij(p2) ⊆ dom p2. For each n ∈ ω

Corollary 3 states that p2 forces: There is i ≤ n+ 1 such that for each j ∈ ω if

Ij(p1) ⊆ A2n+1, then

Ij(p1) = Ij+i(ṙ).

4 In the following proof, we will use the second assumption on the interval partition A only

for j = 0. Notice, however, that assuming it only for j = 0 at the moment of choosing A
would not have been sufficient as if it were the case that U0 /∈ U , we would be working

with the partition A′ instead, and A′ would not be fulfilling the necessary requirement.

The observant reader may also notice that the last assumption on A will in fact not be

necessary in the proof.
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As (p2, q̇) forces ẏ(n) ∈ Xn, it follows that if Ij(p1) = Ij+i(r) ⊆ Dn
y(n) ∩ A2n+1,

then j ∈m(n) (Xn −m(n) {i | i ∈ n+ 2}) ⊆ Cn. We can conclude that

(p2, q̇) � Dn
ẏ(n) ∩ A2n+1 ⊂ Hn.

This together with

(p, q̇) � (Ż \minA2n) ⊆ Dn
ẏ(n)

implies that (p2, q̇) � Ż ∩ U = ∅.
Case 2; U =

⋃{Hn | n ∈ ω} ∈ U . Applying Lemma 4, for each n ∈ ω there

exists sn ∈ m(n) such that Cn ∩ (Cn −m(n) {sn}) = ∅. Put
t(n) =

∑
{si | i ∈ n} ≤ v(n) − n.

Pick a condition p2 < p1, p2 ∈ PS such that | cod p2 ∩A2n| = 1 and

|p−1
2 (1) ∩ A2n| = |p−1

1 (1) ∩ A2n|+ sn

for each n ∈ ω. Such p2 exists as | cod p1 ∩A2n| = m(n). Note that in this case

| cod p2 ∩min(A2n+1)| = n+ 1, and if j ∈ ω is such that Ij(p2) ⊆ A2n+1, then

Ij(p2) ⊆ dom p2 and Ij(p2) = Ij−t(n+1)(p1). For each n ∈ ω Corollary 3 implies

that p2 forces: There is i ≤ n + 1 such that for each j ∈ ω if Ij(p1) ⊆ A2n+1,

then Ij(p1) = Ij+t(n+1)+i(ṙ). As (p2, q̇) forces ẏ(n) ∈ Xn, it follows that if

Ij(p1) = Ij+t(n+1)+i(r) ⊆ Dn
y(n) ∩ A2n+1,

then

j ∈m(n) (Xn −m(n) {t(n+ 1)})−m(n) {i | i ∈ n+ 2}
=((Xn −m(n) {t(n)})−m(n) {i | i ∈ n+ 2})−m(n) {sn}
⊆(Xn −m(n) {i | i ∈ v(n) + 2})−m(n) {sn} = Cn −m(n) {sn}.

For n ∈ ω put

H̄n = A2n+1 ∩
⋃

{Ij(p1) | j ∈ ω, j ∈m(n) (Cn −m(n) {sn})};
Hn ∩ H̄n = ∅, because if j ∈m(n) Cn, then j /∈m(n) Cn −m(n) {sn}.
Now

(p2, q̇) � Dn
ẏ(n) ∩ A2n+1 ⊂ H̄n.

Again, together with

(p, q̇) � (Ż \minA2n) ⊆ Dn
ẏ(n)

we get (p2, q̇) � Ż ∩ U = ∅.



Vol. 232, 2019 NO P-POINTS IN SILVER EXTENSIONS 767

The Silver model is the result of a countable support iteration of Silver forcing

of length ω2.

Theorem 6: There are no P-points in the Silver model.

Proof. Denote by PSα the countable support iteration of Silver forcing of

length α for α ≤ ω2. Assume V is a model of CH and let G ⊂ PSω2 be a

generic filter. Let U ∈ V [G] be a non-principal ultrafilter. For α < ω2 let

Uα = U ∩ V [Gα],

where Gα is the restriction of G to PSα. By the standard reflection argument,

there is α < ω2 such that Uα ∈ V [Gα] and it is an ultrafilter in that model.

Since the next step of the iteration adds a Silver real and the tail of the iteration

has the Sacks property, Proposition 5 states that Uα cannot be extended to a

P-point in V [G], in particular, U is not a P-point.

We show that forcing with the side-by-side product of Silver forcing also

produces a model without P-points.

Theorem 7: Assume GCH, let κ > ω1 be a cardinal with uncountable cofinal-

ity. If
⊗

κ PS is the countable support product of κ many Silver posets and

G ⊂ ⊗
κPS is a generic filter, then

V [G] |= there are no P-points and c = κ.

Proof. It is well known that under GCH the poset
⊗

κ PS is an ω2-c.c. proper

forcing notion, has the Sacks property (see, e.g., [Kos92]), and V [G] |= c = κ.

Assume U is an ultrafilter in V [G]. Since
⊗

κ PS is ω2-c.c., there is J ⊂ κ of

size ω1 such for every A ∈ P(ω) ∩ V and q ∈ ⊗
κ PS the statement A ∈ U

is decided by a condition with support contained in J and compatible with q.

Choose α ∈ κ\J and let r be the PS generic real added by the α-th coordinate

of the product.

The theorem is now proved in the same way as Proposition 5; as the proof

follows most parts of the proof of Proposition 5 in verbatim, we will focus in

detail only on the points where adjustments are necessary.

Start with defining the functions v and m, consider sets Dn
i defined from the

generic real r, and pick any
⊗

κ PS names Ż, ẏ. Let (p, q) be any condition in

PS×
⊗

κ\{α}
PS =

⊗

κ

PS
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which forces that U is a non-principal ultrafilter; we interpret p ∈ PS as the

α-th coordinate and q as the other coordinates of a condition in the full product

poset. We invoke the Sacks property of
⊗

κ PS to assume the existence of an

appropriate function f and a sequence {Xn | n ∈ ω}. Choose the interval

partition A satisfying properties (1)–(3) with respect to p and consider

U0 =
⋃

{A2n+1 | n ∈ ω}.

As U0 ∈ V , there is a condition (p, q1) < (p, q) deciding whether U0 is an

element of U , because of the choice of coordinate α. We will assume that

(p, q1) � U0 ∈ U , otherwise take the interval partition A′ instead. Follow with

choosing the condition p1 extending p, define the sets Cn and Hn for n ∈ ω.

Now consider the set

H =
⋃

{Hn | n ∈ ω}.
As H ∈ V , there is (p1, q2) < (p1, q1) deciding whether H ∈ U .
Case 1; (p1, q2) � H /∈ U . Now proceed again in verbatim as in case 1

of the proof of Proposition 5; define U , choose p2 < p1, and conclude that

(p2, q2) � Ż ∩ U = ∅.
Case 2; (p1, q2) � H ∈ U . Proceed again as in case 2 of the proof of Propo-

sition 5; define U , find sn for each n ∈ ω, and choose p2 < p1. And finally

conclude (p2, q2) � Ż ∩ U = ∅.

Concluding remarks

Theorem 6 can be stated in an axiomatic manner. Recall that N denotes the

ideal of Lebesgue null sets and let v0 be the ideal associated with the Silver

forcing;

v0 = {A ⊂ 2ω | ∀p ∈ PS ∃q ∈ PS, q < p, [q] ∩A = ∅}.
This ideal was introduced in [CRSW93] and studied in [Bre95, DPH00]. The

proof of Proposition 5 can be reformulated to yield the following theorem, while

the detailed proof is provided in [Guz17].

Theorem 8: The inequality cofN < cov v0 implies that there are no P-points.

An alternative version of results of this paper was suggested by Jonathan

Verner. The side-by-side product
⊗

ω PS adds a Silver generic real rα for each
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coordinate α ∈ ω. Consider the pair of complementary splitting reals

X i
α =

⋃
{I2n+i(rα) | n ∈ ω}, i ∈ 2;

an argument similar to (and less technical than) the proof of Proposition 5

demonstrates the following.

Claim: Let U be a non-principal ultrafilter. The product
⊗

ω PS forces that

no pseudo-intersection of {X i(α)
α | α ∈ ω} is U-positive, and this remains to be

the case in each further Sacks property extension.

Furthermore, it is possible to reason along the lines of the proof of Theorem 7

to obtain a stronger version of the theorem. These results are to be included in

forthcoming publications.

Announcement 9: Assume GCH; let κ > ω1 be a cardinal with uncountable

cofinality. If
⊗

κ PS is the countable support product of κ many Silver posets

and G ⊂ ⊗
κ PS is a generic filter, then

V [G] |= For every non-principal ultrafilter U there exists

{Xα | α ∈ c} ⊂ U such that for each y ∈ [c]
ω ∩ V

no pseudointersection of {Xα | α ∈ y} is an element of U .
The motivation for stating this theorem comes from the problem of Isbell

[Isb65] which asks for the existence of two Tukey non-equivalent ultrafilters

on ω. The problem can be equivalently formulated as a statement resembling

the conclusion of Announcement 9; see [DT11].

Problem (Isbell): Is it consistent that for each non-principal ultrafilter U on ω

there exists X ∈ [U ]c such that for each Y ∈ [X ]
ω
is
⋂Y /∈ U?

Appendix

At the request of the referee, we address here the situation concerning the

random model. We point out the issue in the argument in [Coh79] used to

reason for the existence of P-points in the random model. The reader may

consult [FBH17, FB] for more information.

It is an unpublished result of K. Kunen that if ω1 many Cohen reals are

added to the ground model followed by adding ω2 many random reals, the

resulting random model will contain a P-point. Recently A. Dow proved that
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P-points exist in the random model provided CH and �ω1 does hold in the

ground model [Dow18].

The construction in [Coh79] uses the notion of a pathway. For a recent

development and general treatment of pathways see [FB].

Definition 10: A sequence {Aα | α ∈ κ} is a pathway if the following conditions

hold.

(1) ωω =
⋃{Aα | α ∈ κ},

(2) Aα ⊆ Aβ for α < β,

(3) Aα does not dominate Aα+1,
5

(4) if f, g ∈ Aα, then (f join g) ∈ Aα (where (f0 join f1) ∈ ωω is defined by

(f0 join f1)(2n+ i) = fi(n)),

(5) if g is Turing reducible to f and f ∈ Aα, then g ∈ Aα.

The following is [Coh79, Theorem 1.1].

Theorem 11: The existence of a pathway implies the existence of a P -point.

This result is a useful tool for proving the existence of P-points in certain

models. In order to prove that there is a P-point in the random model (i.e.,

the model obtained by adding ω2 random reals to a model of CH), the author

of [Coh79] aims to construct a pathway in the generic extension. We do not

know whether there are pathways in this model. The construction from [Coh79]

does not work, as we will demonstrate.

We denote B the random forcing and B(ω2) the poset for adding ω2 many

random reals. It is well known that if M is a countable elementary submodel

of H(θ) (for some sufficiently large cardinal θ), r : ω2 → 2 is a B(ω2)-generic

function over V , and π : ω → ω2 is an injective function in V (but not neces-

sarily M), then M [r ◦ π] is a B-generic extension of M (see [Coh79] for more

details).

We outline the construction in [Coh79]. Using CH in the ground model V find

{Mα | α ∈ ω1}, an increasing chain of countable elementary submodels of H(θ)

such that

ωω ⊂
⋃

{Mα | α ∈ ω1}.

5 I.e., there is a function in Aα+1 not eventually dominated by any element of Aα.
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Let r : ω2 → 2 be a B(ω2)-generic function over V . Work in V [r]; let Π be the

set of all injective functions from ω to ω2 in V . For every α < ω1 define

Aα =
⋃

{ωω ∩Mα[r ◦ π] | π ∈ Π}.
The argument in [Coh79] relies on {Aα | α ∈ ω1} being a pathway. We show

that this is not the case.

Fix P = {Pn | n ∈ ω} ⊆ [ω]
ω
a partition of ω and let Q = {qn | n ∈ ω} be

an enumeration of the rational numbers. Furthermore, we take both P and the

enumeration of Q to be definable. For f, g : ω → 2 we define f � g : Q → 2 by

declaring

f � g(qn) = 1

if and only if f � Pn = g� Pn. The following proposition implies that no Aα is

closed under the join operation.

Proposition 12: Let r : ω2 → 2 be a B(ω2)-generic function over V , and let M

be a countable elementary submodel of H(θ). There are π0, π1 ∈ Π such that

there is no σ ∈ Π for which M [r ◦ π0] ∪M [r ◦ π1] ⊆ M [r ◦ σ].
Proof. Let δ = M ∩ ω1. Since δ is countable ordinal, there is S ⊆ Q order

isomorphic to δ. Now choose the functions π0, π1 ∈ Π such that the following

holds:

• If qn ∈ S, then π0� Pn = π1� Pn.

• If qn /∈ S, then π0[Pn] ∩ π1[Pn] = ∅.
Recall that both M [r ◦ π0] and M [r ◦ π1] are B-generic extensions of M .

Assume that {r ◦ π0, r ◦ π1} ⊂ M [r ◦ σ] for some σ ∈ Π. Then also

(r ◦ π0) � (r ◦ π1) ∈ M [r ◦ σ],
and a simple genericity argument implies

((r ◦ π0) � (r ◦ π1))
−1

(1) = S ∈ M [r ◦ σ].
Now δ ∈ M [r ◦ σ] is a contradiction with M [r ◦ σ] being a generic extension

of M .
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Čech-compactification of N, Master’s thesis, Vienna University of Technology,

2008.

[Zap09] J. Zapletal, Preserving P -points in definable forcing, Fundamenta Mathematicae

204 (2009), 145–154.


