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ABSTRACT

We study splitting chains in P(ω), that is, families of subsets of ω which

are linearly ordered by ⊆∗ and which are splitting. We prove that their ex-

istence is independent of axioms of ZFC. We show that they can be used to

construct certain peculiar Banach spaces: twisted sums of C(ω∗) = �∞/c0

and c0(c). Also, we consider splitting chains in a topological setting, where

they give rise to the so called tunnels.

1. Introduction

We say that a compact space K has a tunnel, if there is a continuous mapping

f : K −→ L, where L is a linearly ordered topological space, such that f−1(x)

is nowhere dense in K for each x ∈ L. This notion was introduced by Nyikos

in [Nyi88] (under the name of a complete tunnel). Although it may seem like

the spaces with tunnels should resemble in a sense linearly ordered topological

spaces, in fact the property of possessing a tunnel is quite widespread among

compact spaces without isolated points. Actually, it is not easy to find a com-

pact space without isolated points which does not have a tunnel.

In this article we are going to study the notion of a tunnel and some of its

variations in the context of infinitary combinatorics, topology and homological

Banach space theory.

We will be mostly interested in the question if ω∗ (that is βω \ ω, the re-

mainder of the Čech–Stone compactification of ω) has a tunnel. This question

is interesting in all the settings mentioned above. In particular, it is connected

to the existence of a certain peculiar family of subsets of ω. A family S of

subsets of the set ω of natural numbers is called splitting if for every infinite

set A ⊆ ω there exists S ∈ S such that both A ∩ S and A \ S are infinite.

Splitting families are well studied objects in set theory, especially in connection

with the important cardinal s, the least cardinality of such a family. In this

paper we are interested in splitting families which are moreover chains in the

almost inclusion order, that is, with the extra property that if A,B ∈ S , then

either A \B or B \A is finite. Nyikos proved several results about existence of

splitting chains in various models of set theory: he showed, e.g., that they exist
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under CH whereas PFA implies that there are no splitting chains. In this article

we partially follow Nyikos’ path (although most of the results we proved before

we discovered Nyikos’ work), reproving some of his theorems and proving that

splitting chains do exist in the standard Cohen model (Nyikos announced that

the proof of that result would appear in a later paper that, however, was never

published). Also, we show that the existence of a splitting chain is compatible

with the assumption that p > ω1.

Our initial motivation for the study of tunnels and splitting chains stems from

their uses in the construction and analysis of certain “twisted sums” of Banach

spaces. Let us recall that a short exact sequence of Banach spaces is a diagram

of Banach spaces and (linear, continuous) operators

(1) 0 −−−−→ Y
ı−−−−→ Z

π−−−−→ X −−−−→ 0

in which the kernel of each arrow agrees with the range of the preceding one.

The middle space Z is often called a “twisted sum” of Y and X . . . in that order!

One says that such an exact sequence is trivial (or that it splits, but we prefer

to avoid this terminology in this paper) if the mapping ı admits an inverse (see

Section 3 for the precise definition) in which case the twisted sum space Z is

“well isomorphic” to the direct sum Y ⊕X .

Questions about whether a Banach space Z contains a copy of some classical

Banach space Y (or not) are central in Banach space theory (recall, e.g., the

celebrated Rosenthal’s �1 theorem [Ros74], or the Bessaga–Pe�lczyński theorem

characterizing Banach spaces containing a copy of c0, [BP58]).

We may ask about how a subspace Y is situated in Z considering also the

quotient space X = Z/Y and the exact sequence

(2) 0 −−−−→ Y
ı−−−−→ Z

π−−−−→ Z/Y −−−−→ 0

where ı is the inclusion and π is the natural quotient map. In this context, Y

is complemented in Z if and only if (2) is trivial; if the sequence is not trivial,

then Y lies in Z in a non-trivial way and Z is kind of an alloy of Y and X ,

but not a trivial one. Determining for which Banach spaces Y and X one can

construct a nontrivial sequence (1) is a fundamental question in the homological

theory of Banach spaces (see the monograph [CG97] for a general account; the

approaches of the more recent papers [ACSC+13], [CSCKY03], [MP18] are more

akin to ours).
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As we shall see, each tunnel of K induces an exact sequence of the form

0 −−−−→ C(K) −−−−→ Z −−−−→ c0(κ) −−−−→ 0

which is nontrivial if the tunnel has some additional properties, for instance,

when it is made of regular open sets. Here, and throughout the paper, C(K)

denotes the Banach space of all continuous functions f : K −→ R with the sup

norm. Also, if I is a set, then c0(I) denotes the space of all functions f : I −→ R

such that, for every ε > 0, the set

{i ∈ I : |f(i)| > 0}

is finite, again with the sup norm.

The most interesting case is, by far, when K = ω∗ is the Čech–Stone remain-

der of the natural numbers. Our main result in this line is that if there is a

splitting chain of clopens in ω∗, then a nontrivial exact sequence

(3) 0 −−−−→ C(ω∗) −−−−→ Z −−−−→ c0(c) −−−−→ 0

exists; see Theorem 3.7.

Twisted sums of the form

(4) 0 −−−−→ C(ω∗) −−−−→ Z −−−−→ X −−−−→ 0

were constructed first by Amir [Ami64] and later by Avilés and Todorcevic

[AT11], but not much is specified in these constructions about the structure

of X . Amir’s construction is described in [ACSC+16, Section 2.5, Proposi-

tion 2.43]. More recently, the authors of [ACSC+17] constructed a twisted sum

like (3) under CH. As we have mentioned above, we are able to prove the exis-

tence of splitting chains of clopens in ω∗ under several other assumptions, and

so by Theorem 3.7 we get new examples of twisted sums of the form (3).

The paper is organized as follows: In Section 2 we study the notion of tunnels

and splitting chains in the more general context of topological spaces. Section 3

relates tunnels and splitting chains with twisted sums of Banach spaces, and

finally in Section 4 we prove the consistency results concerning the existence of

splitting chains in P(ω)/fin.
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2. Tunnels and splitting chains of open sets

We assume that all topological spaces are Hausdorff. Let U , V be open in

a topological space X . By U < V we will denote the relation U ⊆ V . The

relation “≤” defined by

U ≤ V if (U < V or U = V )

is a partial order on the topology of X .

Definition 2.1: We say that a family of open subsets of X is a chain (of open

sets) if it is linearly ordered by ≤.

Definition 2.2: A chain of open subsets U of X is a tunnel if the set⋃
{∂U : U ∈ U }

is dense in X .

Clearly, no space with an isolated point can have a tunnel. However, the

property of having a tunnel is quite common among spaces without isolated

points. We will begin with some easy examples.

Example 2.3: The family of all open balls with fixed center forms a tunnel in

Euclidean spaces. More generally, if (X, d) is a metric space with a point x0 ∈ X

such that for each r > 0

B(x0, r) = {x ∈ X : d(x, x0) ≤ r},
then the family {B(x0, r) : r > 0} is a tunnel. Consequently, normed spaces

have tunnels.

Less obvious examples of spaces with tunnels are given by the following propo-

sition.

Proposition 2.4: If X is a separable normal space without isolated points,

then X has a countable tunnel.

Proof. First, notice that if V < U are open subsets of X and x ∈ U \ V , then

there is an open W such that V < W < U and x ∈ ∂W . Indeed, use normality

to find an open neighborhood W0 of x such that W0 < U \ V . Since x is not

an isolated point, x ∈ ∂(W0 \ {x}). Now, again by normality, there is W1 such

that V < W1 < U and x /∈ W1. The set W = W0 \ {x} ∪W1 is as desired.
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Let D = {dn : n ∈ ω} be a dense subset of X . Using the above remark

it is easy to construct inductively a chain of open sets {Un : n ∈ ω} such

that dn ∈ ∂Un. Of course {Un : n ∈ ω} is a tunnel.

Corollary 2.5: Every compact metrizable space without isolated points has

a countable tunnel.

Remark 2.6: A study of tunnels in metric spaces was undertaken by Maciej

Niewczas in [Nie17]. Witold Marciszewski proved that the assumption on com-

pactness is obsolete and in fact every metrizable space without isolated points

has a countable tunnel, using the fact that every metric space has a σ-discrete

base (W. Marciszewski 2018, personal communication).

Proposition 2.7: If X has a tunnel and Y is a topological space, then X × Y

has a tunnel.

Proof. Let U be a tunnel in X . It is easy to verify that {U × Y : U ∈ U } is a

tunnel in X × Y .

Corollary 2.8: The space 2κ has a countable tunnel for each infinite κ.

Proof. 2κ = 2ω × 2κ\ω and 2ω has a tunnel, according to Proposition 2.4.

We say that A splits B if both B ∩A and B \A are nonempty. A family A

of subsets of X is splitting if every nonempty open subset of X is split by some

member of A . It will be convenient to notice that splitting families which form

chains of open sets satisfy a slightly stronger splitting property.

Lemma 2.9: If U is a splitting chain, then for each nonempty open V ⊆ X

there is U ∈ U such that V ∩ U 	= ∅ and V \ U 	= ∅.

Proof. Let V ⊆ X be a nonempty open set. Consider U ′ ∈ U which splits V

and then U ∈ U which splits U ′ ∩ V . We have U < U ′ because U ′ ≤ U is

impossible. Clearly, V ∩ U 	= ∅ and V \ U ⊇ V \ U ′ 	= ∅.

The proof of the following simple fact is left to the reader.

Proposition 2.10: Every tunnel is a splitting chain.

Of course not every splitting chain is a tunnel, but in compact spaces each

splitting chain can be used to produce a tunnel.
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Proposition 2.11: Assume that U is a splitting chain in a compact space K.

Then

V =
{⋃

U ′ : ∅ 	= U ′ ⊆ U and U ′ does not have a ≤ -maximal element
}

forms a tunnel in K. Moreover, V has the following properties:

(1) if V ′ ⊆ V , then
⋃

V ′ ∈ V ;

(2) if V < U ∈ V , then there is W ∈ V such that V < W < U .

Proof. First, we will show that V is a chain. Let V0, V1 be distinct elements

of V and let V0 =
⋃

U0, V1 =
⋃

U1, where U0 and U1 are subfamilies of U

without maximal elements. Without loss of generality, we may assume that

there is U1 ∈ U1 such that U < U1 for each U ∈ U0 and so V0 ⊆ U1. Since U1

is not maximal in U1, there is U1 < U2 ∈ U1. Hence V0 ⊆ U1 < U2 ⊆ V1 and

so V0 < V1. So, V is a chain.

Now let W be a nonempty open subset of K and let W ′ be a nonempty open

set such that W ′ < W (since K admits a splitting chain, it cannot have an

isolated point, so there is such W ′). Using Lemma 2.9 we can recursively find

a sequence (Un) of elements of U such that Un < Un+1 and Un splits W ′ for

every n. Then V =
⋃

n Un ∈ V . By compactness, there is

x ∈ V ∩W ′ \ V.
But this means that x ∈ ∂V ∩W ′ and so x ∈ ∂V ∩W .

It is straightforward to check that V has properties (1) and (2).

A variant of the above proposition in which we take only countable unions

will be important for us later:

Proposition 2.12: Assume that U is a splitting chain in a compact space K.

Then

Vω =
{ ⋃

n∈ω

Wn : Wn ∈ U ,W1 < W2 < · · ·
}

forms a tunnel in K.

Proof. Just the same proof as the previous proposition.

Remark 2.13: Thanks to Proposition 2.11, to show that a compact zero-di-

mensional space has a tunnel it is enough to find a family of clopens C which

is linearly ordered by ⊆ and which is splitting (although the tunnel produced

according to the recipe from Proposition 2.11 does not contain any element
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of C ). It is however unclear for us if the existence of a tunnel in a compact

zero-dimensional space implies the existence of such a chain of clopens.

Theorem 2.14: Let K be a compact space. The following are equivalent:

(a) K has a tunnel.

(b) K has a splitting chain of open sets.

(c) There is a continuous mapping f : K −→ L, where L is a linearly or-

dered space, whose fibers are nowhere dense (i.e., f−1(l) is nowhere

dense for each l ∈ L).

Proof. The equivalence of (a) and (b) follows from Proposition 2.11 and Propo-

sition 2.10.

(b) =⇒ (c). Assume that V is a tunnel in K. We may immediately assume

that it has properties (1) and (2) of Proposition 2.11. Now, equip V with the

order topology with respect to “≤”. Define f : K −→ V by

f(x) =
⋃

{U ∈ V : x /∈ U}.
Assume that V < U ∈ V and f(x0) ∈ (V, U) and notice that x0 ∈ U . In order

to verify the continuity of f we will show that x0 has an open neighborhood

contained in f−1(V, U). First, notice that for each x ∈ K we have x /∈ f(x).

Therefore, if x ∈ U , then f(x) < U . Second, if V < W , W ∈ V and x /∈ W ,

then f(x) > V . Now, let W ∈ V be such that V < W < f(x0) and notice

that x0 /∈ W . Then, using the above remarks, we have

x0 ∈ U \W ⊆ f−1(V, U).

(c) =⇒ (b). Suppose f : K −→ L is a mapping with the desired properties.

For l ∈ L by (−∞, l) we will denote the set {x ∈ L : x < l}, where ≤ is the

linear ordering compatible with the topology of L. We will understand (−∞, l]

in a similar way. For l ∈ L let

Ul = f−1(−∞, l).

We claim that {Ul : l ∈ L} is a splitting chain of open sets. First, we will check

that it is a chain. Let l < l′ ∈ L. Then, by continuity of f ,

Ul = f−1(−∞, l) ⊆ f−1(−∞, l) ⊆ f−1(−∞, l] ⊆ f−1(−∞, l′) = Ul′ .

To show that {Ul : l ∈ L} is splitting, consider a nonempty open set V ⊆ K

and notice that, by the assumption on f , we can find l0 < l1 in f [V ]. Then Ul1

splits V .
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Remark 2.15: In [Nyi88] Nyikos introduced the notion of a complete tunnel. A

chain of open subsets U of X is a complete tunnel if for every U ′ ⊆ U we

have

Int
(⋂

{U ∈ U : U ′ < U for every U ′ ∈ U ′}
)
⊆

⋃
U ′.

Nyikos proved ([Nyi88, Theorem 1.5]) that being a complete tunnel is equivalent

to (c) of Theorem 2.14 and so it is equivalent, at least in the realm of compact

spaces, to being a tunnel in our sense.

Corollary 2.16: Let K be a compact space without an isolated point and

let L be linearly ordered and metrizable. Assume that there is a continuous

mapping f : K −→ L with nowhere dense fibers. Then K has a countable

splitting chain of Fσ-open sets.

Proof. Let D be a countable dense subset of L and let U = {Ud : d ∈ D}, where

Ux = f−1(−∞, x). That U is splitting can be proved in the same way as in

the proof of Theorem 2.14, (c) =⇒ (b).

Recall that an interval algebra is a Boolean algebra generated by a chain.

The Stone space of an interval algebra is linearly ordered (and the Boolean

algebra of clopens of a linearly ordered zero-dimensional compact space forms

an interval algebra).

Corollary 2.17: If A is a Boolean algebra which contains an interval subal-

gebra B which splits nonempty elements of A, then the Stone space of A has a

tunnel.

Proof. Let K, L be the Stone spaces of A, B respectively. Then there is a

canonical continuous surjection f : K −→ L, where L is a linearly ordered

space. If V is a clopen subset of K, then it is split by some B ∈ B. So, if

x ∈ V ∩ B and y ∈ V \ B, then f(x) 	= f(y) and so f has nowhere dense

fibers.

Recall that a measure μ on a compact space K is strictly positive

if μ(U) > 0 for each nonempty open set U ⊆ K. A measure μ is atomless

if μ({x}) = 0 for every x ∈ K. If K is zero-dimensional, then μ is atomless if

and only if for every ε > 0 there is a partition of K into clopen sets of measure

at most ε.
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Proposition 2.18: Every compact zero-dimensional space supporting a

strictly positive atomless probability measure has a tunnel.

Proof. Assume K supports such a measure μ. It is enough to construct a

chain C of clopen subsets of K such that {μ(C) : C ∈ C } is dense in [0, 1].

Indeed, suppose that C has this property and V is a nonempty clopen subset

of K. Then μ(V ) = r > 0. Let

R = sup{μ(C) : C ∈ C and C ∩ V = ∅} ≤ 1 − r

and consider C ∈ C such that μ(C) ∈ (R,R + r). Then C ∩ V 	= ∅ be-

cause μ(C) > R. If V ⊆ C, then C contains V and all the C′ ∈ C such

that C′∩V = ∅, so we would have μ(C) > R+ r. We conclude that C splits V .

Now we can use Theorem 2.14.

One can construct C inductively subsequently using the following remark.

Assume C is the non-empty clopen subsets of K. Then, by non-atomicity of μ,

there is a clopen set D such that D ⊆ C and μ(D) ∈ (μ(C)/4, 3μ(C)/4).

2.1. Spaces without tunnels. After so many examples of spaces having tun-

nels, we have to face the natural question: are there compact spaces without

isolated points and without tunnels?

Recall that a compact space K is Corson compact if it can be embedded

into

Σ(Rα) = {x ∈ Rα : {ξ ∈ α : x(ξ) 	= 0} is countable}
for some α.

Lemma 2.19: If K is Corson compact and K has a splitting chain, then K has

a countable splitting chain of Fσ open sets.

Proof. According to Theorem 2.14, we have a continuous mapping f : K −→ L

with nowhere dense fibers onto a linearly ordered compact space. By [Ark92,

IV.3.15], L is a Corson compact space. But every linearly ordered Corson

compact space is metrizable [Ev78], so we can use Corollary 2.16.

Recall that an Aronszajn tree is an uncountable tree without an uncount-

able level and without an uncountable branch. Notice that Aronszajn trees

are of height ω1. We will say that a Boolean algebra A is Aronszajn if it is

generated by an Aronszajn tree T , in the sense that there is a set of generators

{at : t ∈ T } of A such that at ≤ as when s ≤ t and at ∩ as = 0 when s and t

are incomparable.
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Theorem 2.20: Stone spaces of Aronszajn algebras do not have tunnels.

Proof. Let T be an Aronszajn tree and let A be the Boolean algebra generated

by T . Let K be the Stone space of A. Notice that K is Corson compact.

Indeed, let g : K −→ 2T be given by g(x)(t) = 1 if and only if t ∈ x. It is plain

to check that g is a continuous embedding. Moreover, there is no y ∈ f [K] of

an uncountable support (since then T would contain an uncountable branch).

If K has a tunnel, then according to Lemma 2.19, K has a countable splitting

chain U of Fσ open sets. Since each open set in U is Fσ, it is a countable

union of clopen sets, and there is a countable ordinal α < ω1 such that each

element of U is in the algebra generated by the elements at with t of height

less than α. Consider now s ∈ T of height greater than α. Then as is not

split by any element of height less than α (each at of height less than α either

contains or is disjoint from as). Hence as is not split by any element of U , a

contradiction.

We finish with a remark which indicates that seeking a compact space with-

out tunnels (and isolated points) we should rather focus on spaces with many

disjoint open sets. Recall that a topological space is ccc if it does not contain an

uncountable family of nonempty open subsets. A Suslin tree is an Aronszajn

tree without uncountable antichains and Suslin Hypothesis states that Suslin

trees do not exist. Recall that Suslin Hypothesis is independent of ZFC.

Proposition 2.21: Suslin Hypothesis is equivalent to the assertion that every

ccc compact zero-dimensional space without isolated points has a tunnel.

Proof. ( =⇒ ) Suppose that K is a ccc compact zero-dimensional space without

isolated points. Using Zorn’s lemma, we can find a maximal family of clopen

sets of the form {at : t ∈ T } such that T is a tree, at ≤ as when s ≤ t and

at ∩ as = 0 when s and t are incomparable. The algebra generated by this

tree is countable, and is therefore an interval algebra. By Corollary 2.17, it is

enough to check that the elements {at : t ∈ T } split all clopen subsets of K. So

take b a nonempty clopen set in K that is not split by that family. Since we

have no isolated points, we find two disjoint nonempty clopens c, d ⊆ b. Notice

that c, d 	∈ {at : t ∈ T } because they split b. The family

{at : t ∈ T } ∪ {c, d}
would be a larger tree family, in contradiction with maximality.
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( ⇐= ) Let T be a Suslin tree, and let [T ] be the set of all (maximal) branches

of T . For every t, let at = {x ∈ [T ] : t ∈ x}, and let A be the algebra

of subsets of [T ] generated by the at. Since Suslin trees are Aronszajn, we

can use Theorem 2.20. It remains to show that A is ccc. For this, notice

that every nonempty element of A contains a nonempty element with atomic

formula a =
⋂

t∈R at \
⋃

s∈S as. If we take a high enough node r in a branch

that belongs to a, then ar ⊆ a. All this means that if there is an uncountable

pairwise disjoint family in A , then there is one made of elements of the form ar,

and that would give an uncountable family of pairwise incompatible elements

of T , which contradicts that T is Suslin.

2.2. Ultraproducts of tunnels. We assume some familiarity with the Ba-

nach space ultraproduct construction, as presented in [ACSC+16, Chapter 4],

[Ste78] or [HI02]. Let (Ki)i∈I be a family of compact spaces indexed by I

and let U be a countably incomplete ultrafilter on I. Then the Banach space

ultraproduct [C(Ki)]U is a Banach algebra under the product

[(fi)][(gi)] = [(figi)].

By general representation results, this algebra is isometrically isomorphic to

one of the form C(K) for some compact space K which is called the topological

ultracoproduct of the family (Ki) following U and is denoted by (Ki)
U . If all

the Ki coincide we speak of the ultracopower, instead.

Proposition 2.22: With the preceding notations, if each Ki has a tunnel,

then so does (Ki)
U .

Proof. We need to translate our topological notions from K to the algebra C(K).

The basic idea is that each open subset U of K gives rise to a closed ideal just

taking

JU = C0(U) = {f ∈ C(K) : f |K\U = 0},
and, conversely, all closed ideals of C(K) have this form. On the other hand,

the condition f |K\U = 1 is equivalent to the class of f being the unit of the

quotient algebra C(K)/JU .

Thus, the fact that U and V are open subsets of K with U ⊆ V , which

is obviously equivalent to the existence of f ∈ C(K) such that f |U = 0 and

f |K\V = 1, can be stated as:
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• There is f ∈ C(K) such that fg = 0 for all g ∈ JU and whose class is

the unit of C(K)/JV .

Now assume that each Ki has a tunnel Wi. We construct a family of open

sets W of (Ki)
U as follows. For each i ∈ I we pick Ui ∈ Wi, then we consider

the corresponding ideal JUi ⊆ C(Ki) and form the ultraproduct [JUi ]U . Quite

clearly, [JUi ]U is a closed ideal in [C(Ki)]U and, by the preceding remarks, this

ideal determines a certain open set W of (Ki)
U . Let us check that the family

of open sets of (Ki)
U obtained in this way forms a tunnel.

First, we prove that they form a chain. Take two families (Ui), (Vi),

with Ui, Vi ∈ Wi and let W and V be the corresponding subsets of (Ki)
U .

We partition I into three subsets as follows:

• I� = {i ∈ I : Ui = Vi};

• I� = {i ∈ I : Ui ⊆ Vi};

• I	 = {i ∈ I : Vi ⊆ Ui}.

Then exactly one of these sets belongs to U . If I� belongs to U , then W = V .

Now assume I� belongs to U and let us prove that W ⊆ V . For each i ∈ I�,

take a continuous fi : Ki → [0, 1] such that fi|Ui = 0 and fi|Ki\Vi
= 1. If i /∈ I�,

set fi = 1. Let us take a look at [(fi)]. It is clear that the class of [(fi)] in

[C(Ki)]U /[JVi ]U = [C(Ki)/JVi ]U

is the unit of the quotient algebra. On the other hand, if (gi) is a bounded family

such that gi ∈ JUi for all i ∈ I, then [(fi)][(gi)] = [(figi)] = 0 since figi = 0 at

least for i ∈ I�. This shows that W ⊆ V . Finally, if I	 ∈ U , then V ⊆ W .

To complete the proof we need to manage some points of (Ki)
U , that is,

some “nice” maximal ideals of [C(Ki)]U .

Let (pi)i be a family such that pi ∈ Ki for each i ∈ I. Then we can define a

unital homomorphism [C(Ki)]U → R by the formula

(5) [(fi)] �−→ lim
U (i)

fi(pi).

The definition makes sense and, moreover, two families (pi)i and (qi)i induce

the same homomorphism if and only if they represent the same element in the

set-theoretic ultraproduct 〈Ki〉U , that is, when the set {i ∈ I : pi = qi} belongs

to U . If we agree to denote by 〈(pi)〉 the “point” of (Ki)
U associated to (5)

(as in the Gelfand representation theorem; see, e.g., [AK16, Theorem 4.2.1]),

then we have an injective mapping 〈Ki〉U → (Ki)
U . This mapping is known

to have dense range. We need a slightly stronger fact:
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Claim: If, for each i, the set Di is dense in Ki, then every nonempty zero set

of (Ki)
U meets 〈Di〉U . In particular, 〈Di〉U is dense in (Ki)

U .

Proof of the Claim. The second assertion clearly follows from the first one since,

by the very definition, (Ki)
U is a completely regular space.

So, let us check the first statement. The hypothesis that U is countably in-

complete is used as follows: there is a function δ : I → (0,∞) such that δ(i) −→ 0

along U . Now, take a non-negative, continuous f : (Ki)
U → R with f−1(0) 	=∅.

Write f = [(fi)], with fi ≥ 0 in C(Ki) and put

m(i) = min
x∈Ki

fi(x) = inf
x∈Di

fi(x).

Note that m(i) −→ 0 along U since otherwise f would be invertible. Take δ as

before and, for each i ∈ I, choose xi ∈ Di so that fi(xi) < m(i) + δ(i). Then f

vanishes on the point 〈(xi)〉 and the Claim is proved.

The proof will be complete if we show that if for each index i the set Ui is

open in Ki and pi ∈ ∂Ui, then 〈(pi)〉 ∈ ∂W , where W is the open set of (Ki)
U

attached to the family (Ui)—that is, to the ideal [JUi ]U .

To do this we add two new entries to our basic dictionary: suppose U is an

open set in a compactum K and that p ∈ K. Then:

• p /∈ U is equivalent to the statement “for every f ∈ JU one has

f(p) = 0”.

• p ∈ U is equivalent to the statement “for g ∈ C(K) such that g(p) = 1

there is q ∈ U such that g(q) ≥ 1
2”.

Now, if pi, Ui,W are as before, then pi ∈ Ui \Ui. Since every f ∈ JW can be

written as [(fi)], with fi ∈ JUi , we have

f(〈(pi)〉) = lim
U (i)

fi(pi) = 0,

so, certainly, 〈(pi)〉 /∈ W .

Finally, we check that 〈(pi)〉 ∈ W . We first remark that W contains every

point of the form 〈(qi)〉 with qi ∈ Ui for all i ∈ I (think of functions fi such

that fi(qi) = 1 and fi ∈ JUi). Now, if f is a continuous function on (Ki)
U such

that f(〈(pi)〉) = 1, then writing f = [(fi)] and recalling that pi ∈ Ui we can

pick qi such that fi(qi) ≥ 1
2fi(pi), so f(〈(qi)〉) ≥ 1

2 , so 〈(pi)〉 ∈ W .

We now give the application that motivated our interest in ultracoproducts.

We need some basic facts from model theory in the context of Banach spaces.
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The reader can take a look at [Ste78] or [HI02] for the general background and

at [Ban77] for a more topological approach.

Following the uses in model theory, let us say that two compact spaces K

and L are co-elementarily equivalent if there are ultrafilters U and V such

that KU and LV are homeomorphic, equivalently, the Banach algebras (C(K))U

and (C(L))V are isomorphic. This happens if and only if the underlying Banach

spaces (C(K))U and (C(L))V are (linearly) isometric. This roughly means

that the base Banach spaces C(K) and C(L) “approximately” satisfy the same

positive bounded sentences (in a suitable signature); see [HI02, Chapter 5].

Thus, the following result explains in part why it is so difficult to find com-

pacta (without isolated points) having no tunnel.

Proposition 2.23: Let K be a compact space. The following conditions are

equivalent:

(a) K has no isolated points.

(b) There is an ultrafilter U (on some index set) for which the ultracopower

KU has a tunnel.

(c) K is co-elementarily equivalent to a compactum having a tunnel.

Proof. We first remark that the property of (not) having isolated point is pre-

served under co-elementary equivalence. This is implied by the following two

facts:

• A compact space K has an isolated point if and only if the algebra C(K)

has a “minimal idempotent”: a non-zero f ∈ C(K) such that f2 = f

with the property that if 0 ≤ g ≤ f , then g = cf for some c ∈ R.

• Every idempotent in [C(Ki)]U can be written as [(fi)], where fi is an

idempotent of C(Ki).

We thus have (c) =⇒ (a). Next, we prove (a) =⇒ (b). The key fact is

that every compactum is co-elementarily equivalent to some metrizable com-

pact space. This follows from the Banach space version of the (“downward”)

Löwenheim–Skolem theorem; see [Ste78, Theorem 2.2] or [HI02, 9.13 Proposi-

tion]. Suppose K has no isolated points and let M be a metrizable compactum

such that KU and MV are homeomorphic, where U and V are ultrafilters on

suitably chosen sets of indices. By the preceding remark, neither KU nor M

have isolated points. By Corollary 2.5, M has a tunnel and so MV and KU

have, by Proposition 2.22.
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(b) =⇒ (c). Each compact space is co-elementarily equivalent to its ultra-

copowers, by the Banach space version of the Keisler–Shelah (“ultrapower”)

theorem; see [Ste78, Theorem 2.1] or [HI02, 10.7 Theorem].

3. Twisted sums

Recall that a short exact sequence is a diagram of Banach spaces and (linear,

bounded) operators

(6) 0 −−−−→ Y
ı−−−−→ Z

π−−−−→ X −−−−→ 0

in which the kernel of each arrow agrees with the range of the preceding one.

We say that a short exact sequence is trivial if there is an operator 
 : Z → Y

such that 
 ◦ ı = IY (or, equivalently, there is an operator j : X → Z such

that π ◦ j = IZ). Note that (6) is trivial if and only if ı[Y ] is a complemented

subspace of Z. In this case the space Z is linearly homeomorphic to the direct

sum Y ⊕X . Simple examples show that the converse is not true.

The space C(K) can be viewed as a subspace (or a subalgebra) of �∞(K), the

Banach algebra of all bounded functions f : K → R, again with the supremum

norm.

Given a family A of subsets of K, we define an intermediate space

C(K) ⊆ X(A ) ⊆ �∞(K)

as the Banach space generated by C(K) and by the characteristic functions of

the sets in A. This produces a short exact sequence

(7) 0 −−−−→ C(K)
ı−−−−→ X(A )

π−−−−→ X(A )/C(K) −−−−→ 0,

in which ı is the inclusion map and π is the natural quotient map. This was

the approach followed by Amir [Ami64]. For this sequence to provide a relevant

example, we must ensure that it is not trivial, and we must identify what the

quotient X(A )/C(K) is. Lemmas 3.1 and 3.3 will deal with these issues.

Recall that the oscillation of a function f : K −→ R at a point x ∈ K is

defined by

osc f(x) = inf
V

sup
y,z∈V

(f(y) − f(z)),

where V runs over the neighborhoods of x in K. The oscillation of an arbitrary

function f on K is the number

oscf = sup
x∈K

oscf(x).
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Lemma 3.1: Let A be a family of subsets of K. If the boundaries of sets in A

are all nonempty and pairwise disjoint, then the quotient space X(A )/C(K) is

isometric to c0(A ).

Proof. The equivalence classes of the characteristic functions 1A for A ∈ A

generate the quotient space X(A )/C(K). We check that these vectors are

isometric to the basis of c0(A ) multiplied by 1/2. That is, we want to show

that

(8)

∥∥∥∥
n∑

i=1

λi1Ai + C(K)

∥∥∥∥
X(A )/C(K)

=
1

2
max
1≤i≤n

|λi|

whenever Ai ∈ A and λi ∈ R. The norm of (the class of) a function f in the

quotient space by C(K) is the distance of f to C(K), which by a classical result

in topology (see, e.g., [BL00, Proposition 1.18]) equals half of the oscillation

of f , so

‖f‖X(A )/C(K) = dist(f, C(K)) =
osc f

2
.

A characteristic function 1A has oscillation 1 at every point of ∂A while it is

continuous (oscillation 0) out of ∂A. Since the sets of A have disjoint nonempty

boundaries, a linear combination f =
∑

i λi1Ai has oscillation |λi| on ∂Ai and

oscillation 0 out of these boundaries. From this, equation (8) follows.

We now describe a derivation procedure induced by A that will help in prov-

ing that the short exact sequence (7) is not trivial. This is based on an idea of

Ditor [Dit73]. Suppose again that the subsets of A have disjoint boundaries.

Definition 3.2: Given D ⊆ ⋃
A∈A ∂A, we define D(1) as the set of those a ∈ D

for which the following is true: If a ∈ ∂A and V is a neighborhood of a, then

there are B,C ∈ A , both different from A, such that

∂B ∩ V ∩A ∩D 	= ∅ and ∂C ∩ V ∩Ac ∩D 	= ∅.

For every n ∈ N we recursively define D(n) = (D(n−1))(1), starting from

D(0) = D. Recall that if Y is a subspace of a Banach space Z, then by a linear

lifting of the quotient map π : Z −→ Z/Y we understand a (not necessarily

bounded) linear right-inverse of π. The quotient map π : Z −→ Z/Y admits a

bounded linear lifting j if and only if Y is complemented in Z, the map


(z) = z − j(π(z))

being a bounded projection of Z onto Y .
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Lemma 3.3: Let A be a family of subsets ofK with nonempty pairwise disjoint

boundaries. Let D =
⋃{∂A : A ∈ A }. If D(n) 	= ∅, then the norm of any linear

lifting for the quotient map π : X(A ) −→ X(A )/C(K) is at least n. Therefore,

if D(n) 	= ∅ for every n ∈ N, then C(K) is uncomplemented in X(A ).

Proof. We will first prove the following claim.

Claim: Let (fA) be any family in X(A ) such that gA := fA − 1A ∈ C(K) for

every A ∈ A . Suppose D(n) 	= ∅ and fix any ε > 0. Then there are different

sets A1, . . . , An ∈ A and signs ui = ±1 such that

(9)

∥∥∥∥
n∑

i=1

uifAi

∥∥∥∥
∞

≥ n

2
− nε.

To obtain this we will prove by induction on 1 ≤ k ≤ n that there are different

sets A1, . . . , Ak, signs ui = ±1, and a point

(10) ak ∈ D(n−k)\
( k⋃

i=1

∂Ai

)

such that

(11) (u1fA1 + · · · + u1fAk
)(ak) >

k

2
− kε.

First we deal with the case k = 1. Pick any a ∈ D(n) and let A1 be the set

from A whose boundary contains a. Consider the neighborhood of a,

V = {z ∈ K : |gA1(z) − gA1(a)| < ε}.
Using Definition 3.2, we can find x ∈ V ∩A1 ∩D(n−1) and y ∈ V ∩Ac

1 ∩D(n−1)

that do not belong to ∂A1. We have two cases:

• If gA1(a) ≥ −1/2, then fA1(x) > 1
2 − ε and we take a1 = x and u1 = 1.

• If gA1(a) ≤ −1/2, then fA1(y) < ε− 1
2 and we take a1 = y and u1 = −1.

Let us check the induction step. Suppose one has found Ai, ui for 1 ≤ i ≤ k

and ak satisfying (10) and (11). The point ak does not belong to any bor-

der ∂Ai by (10), each function 1Ai is continuous at ak, and hence also each

function fAi = gAi + 1Ai is continuous at ak. Since u1fA1 + · · · + u1fAk
is

continuous at ak we can find a neighborhood V of ak disjoint from
⋃

1≤i≤k

∂Ai
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and such that the value of u1fA1 + · · · + u1fAk
at any point of V differs

from (u1fA1 + · · · + u1fAk
)(ak) at most by ε/2. Let A be the set of A whose

boundary contains ak. Shrinking V if necessary, we may also assume that

|gA(ak) − gA(x)| < ε/2 for all x ∈ V.

According to Definition 3.2 there are B,C ∈ A different from A such that

∂B ∩ V ∩A ∩D(n−k−1) 	=∅,(12)

∂C ∩ V ∩Ac ∩D(n−k−1) 	=∅.(13)

If gA(ak) ≥ − 1
2 , then we take Ak+1 = A, uk+1 = 1 and ak+1 any element in the

set (12), and we get

(u1fA1 + · · · + ukfAk
+ uk+1fAk+1

)(ak+1)

= (u1fA1 + · · · + u1fAk
)(ak+1) + fA(ak+1)

> (u1fA1 + · · · + u1fAk
)(ak) − ε

2
+ gA(ak+1) + 1

>
k

2
− kε− ε

2
+ gA(ak) − ε

2
+ 1

≥ k

2
− kε− ε

2
− 1

2
− ε

2
+ 1

=
k + 1

2
− (k + 1)ε.

The other case is that gA(ak) < − 1
2 . Then we take Ak+1 = A, uk+1 = −1

and ak+1 in the set (13) and we get

(u1fA1 + · · · + u1fAk
+ uk+1fAk+1

)(ak+1)

= (u1fA1 + · · · + u1fAk
)(ak+1) − fA(ak+1)

> (u1fA1 + · · · + u1fAk
)(ak) − ε

2
− gA(ak+1)

>
k

2
− kε− ε

2
− gA(ak) − ε

2

>
k

2
− kε− ε

2
+

1

2
− ε

2

=
k + 1

2
− (k + 1)ε.

This finishes the proof of the claim.
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If L : X(A )/C(K) −→ X(A ) is a linear lifting for the quotient map

π : X(A ) −→ X(A )/C(K), then the functions fA = L(1A +C(K)) satisfy that

fA − 1A ∈ C(K). Therefore (9) holds for some ui and Ai, and hence

n

2
− nε ≤

∥∥∥∥
n∑

i=1

uifAi

∥∥∥∥
∞

=

∥∥∥∥L
( n∑

i=1

ui(1Ai + C(K))

)∥∥∥∥
∞

≤‖L‖ ·
∥∥∥∥

n∑
i=1

ui(1Ai + C(K))

∥∥∥∥
X(A )/C(K)

=‖L‖ · 1

2
max
1≤i≤n

|ui| =
‖L‖

2
.

Since this holds for arbitrary ε we conclude that ‖L‖ ≥ n.

Corollary 3.4: Let A be a family of subsets of K with nonempty pairwise

disjoint boundaries such that

∂A ⊆ {∂B ∩A : B ∈ A \ {A}} ∩ {∂C \A : C ∈ A \ {A}}
for all A ∈ A . Then the exact sequence

0 −−−−→ C(K) −−−−→ X(A ) −−−−→ c0(A ) −−−−→ 0

is not trivial.

Recall that an open set V is said to be regular if it is the interior of its

closure, or equivalently if ∂V = ∂V .

Definition 3.5: A regular tunnel is one made of regular open sets.

Theorem 3.6: If K has a regular tunnel of cardinality κ, then there exists a

nontrivial exact sequence

(14) 0 −−−−→ C(K) −−−−→ Z −−−−→ c0(κ) −−−−→ 0.

Proof. We can suppose that the tunnel is nontrivial, in the sense that all

borders are nonempty. We have to prove that such a tunnel A satisfies the

hypotheses of Corollary 3.4. Fix A ∈ A , and x ∈ ∂A, and U a neighborhood

of x. Since x ∈ ∂A, we have that U ∩ A is a nonempty open set, so by the

definition of a tunnel there exists B ∈ A such that ∂B ∩ U ∩ A 	= ∅. On the

other hand, since A is a regular tunnel, x ∈ ∂A = ∂A = ∂(K \ A), therefore

U \A 	= ∅, and again there exists C ∈ A such that ∂C ∩ U \A 	= ∅.

Now we are ready to prove the theorem announced in the Introduction.
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Theorem 3.7: If there is a splitting chain of clopen sets in ω∗, then there is a

nontrivial exact sequence

0 −−−−→ C(ω∗) −−−−→ Z −−−−→ c0(c) −−−−→ 0.

Proof. The Čech–Stone remainder ω∗ has the property that every open Fσ-set

is regular (this is a consequence of the fact that every nonempty Gδ closed set

has nonempty interior). Thus, if U is a splitting chain of clopen subsets of ω∗,

the countable increasing unions form a tunnel (by Proposition 2.12) which is

moreover regular. Its cardinality is |U |ω = c.

As we will see in the next section, splitting chains of clopen sets do exist in ω∗

under some assumptions, e.g., under CH or in the classical Cohen model, but

one cannot prove their existence in ZFC. We do not know if twisted sums like

in Theorem 3.7 exist in ZFC.

In [ACSC+17], a twisted sum as above was constructed under CH. It was

used to produce a further nontrivial twisted sum

(15) 0 −−−−→ C(ω∗) −−−−→ Z −−−−→ C(ω∗) −−−−→ 0.

We do not know if such a sequence exists in any axiomatic setting other than CH.

The note [ACSC+17] pointed out that a statement made in [ACSC+13] that all

exact sequences like (15) are trivial was incorrect. It is also unknown if there

are nontrivial sequences

0 −−−−→ C(ω∗) −−−−→ Z −−−−→ X −−−−→ 0,

with X of density less than c. It cannot be taken separable because C(ω∗) is

“separably injective”; see [ACSC+16, Section 2.5] for this issue. We remark

that if the sequence

(16) 0 −−−−→ Y
ı−−−−→ Z

π−−−−→ X −−−−→ 0

is nontrivial, then so is the “expanded” sequence

0 −−−−→ Y
(ı,0)−−−−→ Z ⊕ S

π×IS−−−−→ X ⊕ S −−−−→ 0,

where, as one can guess, (ı, 0)(y) = (ı(y), 0) and (π × IS)(y, s) = (π(y), s),

whichever is the space S. In particular, any reduction of the size of c0(κ) on the

right side of our exact sequences would be an improvement of our statements.

We finish this section with some results relating tunnel-like conditions with

the existence of twisted sums in settings different than that of ω∗.
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Proposition 3.8: Suppose that there exists a continuous surjection f:K−→L,

where L is a linearly ordered space, and a set S ⊆ L such that

f−1(s) ⊆ {x : s < f(x) ∈ S} ∩ {x : s > f(x) ∈ S}
for every s ∈ S. Then there is a nontrivial sequence

0 −−−−→ C(K) −−−−→ Z −−−−→ c0(S) −−−−→ 0.

Proof. For s ∈ S, put As = f−1(−∞, s) and then consider the family

A = {As : s ∈ S}.
Notice that f−1(s) ⊆ ∂As by the assumption and ∂As ⊆ f−1(s) by continuity

of f . Thus, ∂As = f−1(s) and we can apply Corollary 3.4.

Proposition 3.8 unifies a number of earlier constructions of twisted sums

with C(K)-spaces. Indeed, if we take K = L = [0, 1] with the usual

order, f the identity, and S is the set of dyadic rationals, one gets the Foiaş–

Singer sequence in [FS65, Theorems 3 and 4], in which the space Γ[0, 1] corre-

sponds to “our” X(A ). Analogously, taking K = L = {0, 1}N as the Cantor set

with the “lexicographical” order, f the identity, and S is the subset of sequences

with finitely many ones, one obtains the exact sequence used in [ACSC+17].

Finally, a nontrivial sequence of the form

0 −−−−→ C(ωω) −−−−→ Z −−−−→ c0 −−−−→ 0

(see [CSCKY03, Section 4]) can be obtained from Lemma 3.3 as follows. We

need the following representation of ωω. We consider a reversed, signed version

of Schreier family:

L =
{( 1

n1
, . . . ,

1

nk
, 0, 0, 0, , . . .

)
: ni ∈ Z, k ≤ |n1| < |n2| < · · · < |nk|

}

We put on L the lexicographical order, declaring r < s if ri < si, where i is the

first index such that ri 	= si. The line L is compact in the order topology. This

is because the order is complete: every subset has an infimum and a supremum.

Moreover, L is countable, hence scattered. The derivatives can be checked to

be the sets

L(d) =
{( 1

n1
, . . . ,

1

nk
, 0, 0, 0, , . . .

)
∈ L : k ≤ |n1| − d

}
.

Thus, L has height ω and L(ω) is a singleton, so L is homeomorphic to the

ordinal interval [0, ωω].
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Now, for s ∈ L(1), put As = (−∞, s) and define A = {As : s ∈ L(1)}. Then

if D =
⋃

s ∂As we have D = L(1) and by the peculiarities of the ordering we

have

D(n) = L(n+1) 	= ∅

for all n and Lemma 3.3 shows that the sequence

0 −−−−→ C(ωω) −−−−→ X(A ) −−−−→ c0 −−−−→ 0

is not trivial.

4. Splitting chains in P(ω)/fin

A set A ⊆ ω splits B ⊆ ω if

|A ∩B| = |B \A| = ω.

We say that a family A ⊆ [ω]ω is splitting if for each B ∈ [ω]ω there is A ∈ A

splitting B. Clearly, ω∗ has a splitting chain of clopens if and only if there is

a family C ⊆ [ω]ω which is splitting and which forms a ⊆∗-chain. We will call

such C a splitting chain. Consequently, if there is a splitting chain in [ω]ω,

then ω∗ has a tunnel. It is unclear if this implication can be reversed (see

Remark 2.13).

In this section we will consider the question of the existence of splitting chains.

We will begin with the easy observation that the existence of a splitting chain

is consistent with ZFC. Recall that (L ,R) is a pre-gap if both L and R are

linearly ordered by ⊆∗, and L �∗ R for each L ∈ L and R ∈ R. We will

assume that both L and R are nonempty. If C ⊆ ω is such that L ⊆∗ C and

C ⊆∗ R for each L ∈ L and R ∈ R, then we say that C interpolates (L ,R).

If there is no C interpolating (L ,R), then we say that (L ,R) is a gap.

Proposition 4.1 (See [Nyi88, Theorem 2.4]): CH implies that there is a split-

ting chain.

Proof. Enumerate [ω]ω = {Aα : α < ω1}. We will construct the desired chain in-

ductively. Let C0 = ∅ and suppose that we have constructed Cα for each α ≤ γ

in such a way that Cα ⊆ Cβ for each α < β ≤ γ and Aα is split by an element

of Cα+1 for α < γ. If Aγ is split by Cγ , then put Cγ+1 = Cγ . Otherwise, let

C 
 = {C ∈ Cγ : Aγ ⊆∗ C} and C
 = {C ∈ Cγ : Aγ ∩ C =∗ ∅}
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and notice that C = C 
 ∪ C
. Since there are no (ω, ω)-gaps, there is an

infinite N such that C0 ⊆∗ N ⊆∗ C1 for each C0 ∈ C
 and C1 ∈ C 
. Fix any

H ⊆ Aγ splitting Aγ . If N splits Aγ then let Cγ+1 = Cγ∪{N}. If N∩Aγ =∗ ∅,

then let Cγ+1 = Cγ∪{N∪H}. Finally, if Aγ ⊆∗ N , then let Cγ+1 = Cγ∪{N\H}.

If γ is a limit ordinal, then let Cγ =
⋃

α<γ Cα.

We say that (L ,R) is a cut in a ⊆∗-chain C if it is a pre-gap, L ∪ R ⊆ C

and there is no element of C interpolating it. In other words, if C ∈ C , then

either R ⊆∗ C for some R ∈ R or C ⊆∗ L for some L ∈ L .

We call a pre-gap (L ,R) tight if for each infinite A ⊆ ω such that A ⊆∗ R

for each R ∈ R, there is L ∈ L such that L ∩ A 	=∗ ∅. We say that A ⊆ ω

spreads a pre-gap (L ,R) if A ∩ L =∗ ∅ and A ⊆∗ R for each L ∈ L , R ∈ R.

In other words, A spreads a pre-gap G if and only if it witnesses that G is not

tight. We say that a cut in a chain is tight if it is tight as a pre-gap.

Proposition 4.2: A ⊆∗-chain C is splitting if and only if every cut in C is

tight.

Proof. Assume that (L ,R) is a cut in C which is not tight. It means that

there is an infinite A ⊆ ω such that A ⊆∗ R and A ∩ L =∗ ∅ for each L ∈ L ,

R ∈ R. If C ∈ C , then either R ⊆∗ C for some R ∈ R or C ⊆∗ L for some

L ∈ L . In both cases C does not split A.

If an infinite A is not split by C , then let L = {C ∈ C : C ∩ A =∗ ∅} and

R = {C ∈ C : A ⊆∗ C}. It is easy to verify that (L ,R) is a cut in C and A

witnesses that it is not tight.

We say that a pre-gap (L ,R) is of type (κ, λ) if L is of cofinality λ and R

is of coinitiality κ (with respect to the ⊆∗ order).

Theorem 4.3 ([NV83]): There is a (ω1, ω1)-tight pre-gap if and only if p = ω1.

The above result indicates that it is quite difficult to construct a splitting

chain in general. It is not completely trivial to obtain a single tight pre-gap, and

a splitting chain has to look like a tight pre-gap everywhere. Also, Theorem 4.3

suggests a strategy to prove that consistently there are no splitting chains. We

have to find a model in which p = ω2 but for some reasons every chain has to

have a cut being an (ω1, ω1)-gap. As we will see such a reason can be provided

by the Proper Forcing Axiom. The following theorem was proved by Nyikos

in [Nyi88].
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Theorem 4.4: Assume MA(ω1) holds, c = ω2 and there are no (ω1, ω2)-gaps.

Then there is no splitting chain.

Proof. Assume C is a ⊆∗-chain of infinite subsets of ω and assume that ω ∈ C .

If C is splitting, then we can find an increasing sequence (Lα)α<ω1 of elements

of C . MA(ω1) implies that if Lα ⊆∗ B for some B, then there is B′ �∗ B such

that Lα ⊆∗ B′ for each α < ω1. Using this remark one can construct inductively

a ⊆∗-decreasing sequence (Rα)α<κ of elements of C such that (Lα, Rβ)α<ω1,β<κ

forms a gap. Indeed, assume that R0 = ω and suppose that (Lα, Rβ)α<ω1,β<γ

is not a gap. Then there is B ⊆ ω interpolating it. Using the above remark,

we can find B′ �∗ B such that Lα ⊆∗ B′ for each α < ω1. There is C ∈ C

splitting B \ B′. Clearly, C has to interpolate (Lα, Rβ)α<ω1,β<γ and thus we

can proceed with the construction.

Now, by our assumption γ = ω1. By Theorem 4.3, (Lα, Rα)α<ω1 cannot

be tight. Thus, there is A ⊆ ω such that Lα ∩ A =∗ ∅ and A ⊆∗ Rα for

every α < ω1. So, A is not split by C .

Corollary 4.5: PFA implies that there is no splitting chain.

Proof. PFA implies that the assumptions of Theorem 4.4 are satisfied; see, e.g.,

[Tod89, Theorem 8.6].

Remark 4.6: Of course Theorem 4.4 means that there is no splitting chain of

clopens in ω∗. In [Nyi88] Nyikos proved a stronger theorem: under the assump-

tions of Theorem 4.4 the space ω∗ does not have a tunnel (cf. Remark 2.13).

In the light of the above results it is natural to ask if the existence of a

splitting chain implies CH. First, notice that the proof of Proposition 4.1 uses

CH in an essential way. The reason is that, by the classical result of Hausdorff,

there are (ω1, ω1)-gaps in ZFC. So, to construct a splitting chain by a transfinite

induction longer than ω1 we would have to keep control on the cuts appearing

in the construction at steps of cofinality ω1 to avoid a situation in which we

have constructed a non-tight gap in our chain. This seems to be a hopeless

task.

What is worse, the gaps constructed by Hausdorff are indestructible, i.e., we

cannot interpolate them even in ω1-preserving extensions of the universe (see,

e.g., [Sch93, Section 2]). So, even in the forcing constructions we have to be

quite careful.
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We will show two ways to avoid this problem. In the first construction,

showing that splitting chains exist in the standard Cohen model, we will add

generically elements of the chain, ensuring that all uncountable cuts which show

up are tight and that their tightness will not be killed later on. In the second

construction we will have to change our method (as we want to have p > ω1 in

the final model). This time we will keep all the gaps in the constructed chain

destructible. In this way for every cut we will be able to split (generically) sets

spreading it.

4.1. Splitting chains after adding Cohen reals. Let Cκ be the forcing

with κ Cohen reals. We are going to prove the following.

Theorem 4.7: If κ is of uncountable cofinality, then in V Cκ there is a splitting

chain.

This result was mentioned by Nyikos in [Nyi88]. He announced that its proof

would appear in a later paper which however never appeared.

First, we will recall the standard forcing adding a set interpolating a given

gap.

Definition 4.8: Let G = (L ,R) be a pre-gap. Let PG be defined in the following

way: p ∈ PG if p = (Lp, Rp, sp), where

• sp ∈ 2<ω,

• Lp, Rp are finite subsets of L and R, respectively,

• L \ |sp| ⊆ R for each L ∈ Lp and R ∈ Rp.

Denote Fp = {n : sp(n) = 1}. Now, p ≤ q if

• sq ⊆ sp,

• Lq ⊆ Lp, Rq ⊆ Rp,

• ⋃
Lq ∩ |sp| \ |sq| ⊆ Fp \ |sq| ⊆

⋂
Rq.

Say that a gap G is destructible if there is a ccc (or just ω1-preserving)

forcing notion which adds a set interpolating G . Actually, as the following fact

shows, if there is such forcing interpolating the gap, then the above one would

do the job, too.

Fact 4.9 ([Sch93]): A gap G is destructible if and only if the forcing PG is ccc.
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Lemma 4.10: Assume that G = (L ,R) is a pre-gap. Then PG adds generically

a name Ṡ for a set interpolating G . Moreover, Ṡ splits each set spreading G

from the ground model. If G is countable, i.e., |L ∪ R| ≤ ω, then PG is just a

Cohen forcing.

Proof. If G is a PG -generic and Ṡ is a name for
⋃

p∈G Fp, then

�PG “Ṡ interpolates G ”.

Now, assume that A ∈ V spreads G . Since

Dn = {p ∈ PG : ∃m > n m ∈ Fp ∩A and ∃m′ > n m′ ∈ Fp \A}
is dense for each n,

�PG “Ṡ splits A”.

Clearly, if G is countable, then PG is countable and atomless, so it is isomorphic

to the Cohen forcing.

We will need one more fact. It is known that a Cohen forcing does not destroy

towers (see e.g. [Hir00, Theorem 2.5]). The argument can be easily modified to

show the following.

Theorem 4.11: Let G be a tight pre-gap. Adding any number of Cohen reals

cannot add a subset spreading G .

Proof. Denote by C the Cohen forcing. Assume that G = ((Lα)α<κ, (Rα)α<λ)

is a tight pre-gap. We may assume that κ and λ are regular. We will show that

�C “G is tight”.

Translating our task using the standard Cohen names for subsets of ω we have

to show that there is no Borel function f : 2ω −→ [ω]ω such that

{x : f(x) ∩ Lα =∗ ∅} and {x : f(x) ⊆∗ Rα}
are comeager.

Indeed, suppose that such a function f exists and let G ⊆ 2ω be a comeager

set such that f |G is continuous. Fix a countable base U of 2ω. Denote

Ln
α = {x ∈ G : f(x) \ n ∩ Lα = ∅}.

Since f is continuous on G, each Ln
α is closed in G. By the Baire theorem there

is nα and Uα ∈ U such that Uα ∩ G ⊆ Lnα
α . Since G is tight, it has to be

uncountable and so we may assume that λ is uncountable. Hence, we can find

n, U and Γ ⊆ λ cofinal in λ such that n = nα and U = Uα for every α ∈ Γ.
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We have to deal with two cases.

• κ is countable. Let Rn = {x ∈ 2ω : f(x) ⊆∗ Rn}. Let R =
⋂

n∈λ R
n.

Then R is comeager, since Rn is comeager for each n ∈ λ. Pick

x ∈ R ∩ U ∩G and let A = f(x). Then A ⊆∗ Rn for each n and

Lα ∩ A = ∅ for each α ∈ Γ. Thus, Lα ∩ A =∗ ∅ for each α < λ

and so A spreads G , a contradiction.

• κ is uncountable. Then, let

Rk
α = {x ∈ U : f(x) \ k ⊆ Rα}.

Using the same argument as before we can find n′ > n, U ′ ⊆ U and

Γ′ ⊆ κ cofinal in κ, such that U ′ ∩G ⊆ Rn′
α for α ∈ Γ′. Let x ∈ U ′ ∩G

and let A = f(x). Then A\n′∩Lα = ∅ for each α ∈ Γ and A\n′ ⊆ Rα

for each α ∈ Γ′. Therefore, A spreads G , a contradiction.

Since each set added by forcing with many Cohen reals can be added by a

single Cohen real, we are done.

Proof of Theorem 4.7. Let V be a model with CH. We will construct an iter-

ation (Pα)α<κ and a sequence Ċα of names for ⊆∗-chains such that for every

α ≤ κ

(1) Ċα ∈ V Pα ,

(2) Pα+1 = Pα � PĠ , where Ġ is a name for a countable cut in Ċα, if there

are countable cuts in Ċα or Pα+1 = Pα � C otherwise (where C is the

standard Cohen forcing),

(3) Ċα+1 is the name for the chain Ċα ∪ {Ṡ}, where Ṡ is the name for a set

added generically by Pα+1,

(4) if α is limit, then Pα is the finite support iteration of (Pξ)ξ<α and

Ċα =
⋃

ξ<α Ċξ,

(5) �Pα “each uncountable cut in Ċα is tight“,

(6) there are no countable cuts in Ċκ.

Let P0 be the trivial forcing and let C0 = {∅, ω}. Then we can recursively

define Pα and Ċα satisfying (2) and (3), using the standard bookkeeping argu-

ment (and the fact that each countable cut in a ⊆∗-chain can be interpolated

and so there are at most c countable cuts in a ⊆∗-chain) to satisfy also (6).

To show that the condition (5) will be satisfied we prove the following claim.
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Claim: For each α < κ

(�α) �Pα “each uncountable cut in Ċα is tight”.

We will prove it by induction on α. First, notice that C0 does not contain any

uncountable cut, so (�0) is satisfied trivially. Suppose that there is α ≤ κ such

that (�ξ) holds for each ξ < α and that (�α) does not hold. Since Cohen forcing

cannot destroy tightness of a pre-gap (thanks to Theorem 4.11) and it cannot

add any new uncountable pre-gap (since each uncountable set of ordinals in the

Cohen extension contains an uncountable subset from the ground model), α

has to be of uncountable cofinality. Let G be an uncountable cut in Cα which

is not tight and let A ⊆ ω spread it. Since cf(α) > ω, there is ξ < α such

that Ȧ ∈ V Pξ . There is a cut G0 = (L ,R) in Cα such that A spreads it. By

the induction hypothesis G0 has to be countable. Since G is uncountable, there

is ξ ≤ β < α such that Pβ+1 = Pβ � PH , where H is equivalent to G0 (in the

sense that H and G0 have the same family of interpolating sets). But then

using Lemma 4.10 we get that Cβ+1 splits A, a contradiction. The claim is

proved.

Of course the conjunction of (5) and (6) implies that

�Pκ “every cut in Ċκ is tight”.

and so, by Proposition 4.2, we are done.

4.2. Splitting chains with big p. Theorem 4.3 and Theorem 4.4 seem to

suggest that the existence of splitting chains may be connected to the value

of p. Indeed, if p > ω1, then a splitting chain could not have cuts which are

(ω1, ω1)-gaps (as they cannot be tight) and it is not obvious how to avoid them

in the construction. However, we will show that splitting chains can exist even

if p > ω1. The basic idea is to use iteration intertwining forcings destroying

gaps from Definition 4.8 with forcings adding pseudointersections to bases of

filters on ω.

Definition 4.12: Let F be a filter on ω. The Mathias–Prikry forcing MF

is defined in the following way: p ∈ MF iff p = (tp, Fp), where tp ∈ 2<ω,

supp(tp) ∩ Fp = ∅ and Fp ∈ F . p ≤ q if tq ⊆ tp, Fp ⊆ Fq and tp(n) = 0

whenever n ∈ (supp(tp) \ supp(tq)) \ Fq.
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Recall that MF diagonalizes F (i.e., it adds a pseudo-intersection of F ;

see, e.g., [Mat77]).

Let κ be a regular uncountable cardinal. For the rest of this section fix two

subsets Γ, Λ ⊆ κ which form a partition of κ into cofinal subsets. In our

construction, at steps from Γ we will add sets interpolating cuts, and at steps

from Λ we will diagonalize filters. Namely, we start with a model with GCH and

perform a finite support iteration (Qα,Pα)α<κ, where Q0 is the trivial forcing,

Qα+1 = Qα � Pα for every α < κ. Moreover, for each α < κ the forcing Pα is

either trivial or

• for α ∈ Γ it is of the form MḞ , where Ḟ is a Qα-name for a filter

generated by less than κ sets,

• for α ∈ Λ it is of the form PĠ , where Ġ is a Qα-name for a cut in the

chain {Ṡβ : β ∈ Λ ∩ α} ∪ {∅, ω}, where Ṡβ is the Qβ-name for a subset

of ω added generically by Qβ.

Let Qκ be the limit of the iteration.

Note that in this definition we a priori assume that Qα forces {Ṡβ : β ∈ Λ∩α}
to be a chain. That this is the case can be shown by induction using Lemma 4.10:

if α ∈ Λ ∩ κ, S = {Ṡβ : β ∈ Λ ∩ α} forms a chain, and Ġ is a Qα-name for a

cut in S , then Pα = PG adds a set Ṡα interpolating the cut and thus Qα � PG

forces S ∪ {Ṡα} to be a chain.

In what follows we will make a cosmetic change in the definition of PG . At

step α of the iteration, as G ⊆ {Ṡβ : β < α} ∪ {∅, ω} and thus elements of G

are naturally indexed by elements of α, the sets Lp and Rp, for p ∈ Pα, will be

subsets of [α]<ω (instead of [G ]<ω). (To avoid problems with ∅ and ω, we may

assume that 0, 1 ∈ Γ and S0 = ∅, S1 = ω.)

We will prove inductively that regardless of the choice of the names for the

filters and cuts, the forcing Qα is ccc for every α ≤ κ. We will use arguments

from [Lav79]. Although Laver’s construction serves for different purposes and

concerns a different structure, in fact we follow the path of his proof quite

strictly.

Notice that usually to prove that a finite support iteration is ccc, one uses

the preservation theorem for finite support iterations of ccc forcings. This time,

the fact that the iterands are ccc will be rather a conclusion of the fact that the

whole iteration is ccc. Further conclusion is that all the cuts in the generically

added chain which form gaps are destructible (see Fact 4.9).
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Theorem 4.13: Qα is ccc for every α ≤ κ.

To prove the theorem we will need several lemmas.

Definition 4.14: Let Rα be the set of conditions p in Qα satisfying the following

properties:

(1) p|β decides (Lp(β), Rp(β), sp(β)) for β ∈ Λ∩supp(p) and p|β decides tp(β)
for β ∈ Γ ∩ supp(p),

(2) for each β, γ ∈ Λ ∩ supp(p) we have max(sp(γ)) = max(sp(β)) (in such

case denote this maximum by �p),

(3) for each β ∈ Λ ∩ supp(p) we have Lp(β) ∪Rp(β) ⊆ supp(p).

The following simple lemma says that we may work only with conditions

in Rα.

Lemma 4.15: For each α the set Rα is dense in Qα.

Proof. We will prove it inductively on α. Since the iteration is of finite support,

the limits steps are obvious. Let α < κ and consider p ∈ Qα+1. Denote q = p|α.

Find q′ ≤ q so that

• q′ decides p(α),

• Lq′(α) ∪Rq′(α) ⊆ supp(q′),
• max(sq′(β)) > max(sp(α)) for some β ∈ supp(q′).

Use the inductive hypothesis to find r ≤ q′, r ∈ Rα. Now, notice that there

is s such that max(s) = �p and r�(Lp(α), Rp(α), s) ≤ r�(Lp(α), Rp(α), sp(α)).

Indeed, the existence of such s follows from the fact that �p ≥ max(sα) and

Lp(α) ∪Rp(α) ⊆ supp(r)

(and sosα can be appropriately extended). Clearly, r�(Lp(α),Rp(α),s) is inRα.

Lemma 4.16: Let p ∈ Rα. If β, γ ∈ supp(p) ∩ Λ, β < γ and p � Ṡβ ⊆∗ Ṡγ

(p � Ṡγ ⊆∗ Ṡβ), then there is r such that

• supp(r) = supp(p) and sr(δ) = sp(δ) for each δ ∈ supp(p)∩Λ, tr(δ) = tp(δ)
for δ ∈ supp(p) ∩ Γ,

• β ∈ Lr(γ) (β ∈ Rr(γ)).

Proof. Assume that p � Ṡβ ⊆∗ Ṡγ (the other case is clearly symmetric). We

will prove the lemma by induction on α. The limit step is obvious so assume

that α < κ and consider the step α + 1. We may assume that γ = α.
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Notice that p|α � Ṡβ ⊆∗ Ṡα. Hence, for each δ∈Rp(α) we have p|α � Ṡβ⊆∗ Ṡδ.

By inductive hypothesis using Rp(α) many times we may find q ≤ p|α as in the

lemma, such that β ∈ Lq(δ) or δ ∈ Lq(β) for every δ ∈ Rp(α). Finally, let

r = q�(Lp(α) ∪ {β}, Rp(α), sp(α)).

Lemma 4.17: Let p, q ∈ Rα be such that �p = �q and sp(β) = sq(β) for each

β ∈ Λ∩ supp(p)∩ supp(q) and tp(β) = tq(β) for β ∈ Γ∩ supp(p)∩ supp(q). Then

there is r ≤ p, q.

Proof. As before, we will prove it inductively on α. In fact, to make the induc-

tion work, we will prove a stronger statement: we show that under the above

conditions there is r ≤ p, q such that r ∈ Rα and �r = �p.

Again, the limit step is clear, so let α < κ and consider p, q ∈ Qα+1. Define r′

in the following way:

• if supp(p|α) is empty, then let r′ = q|α,

• if supp(q|α) is empty, then let r′ = p|α,

• if both of the supports are nonempty, then let r′ be given by the induc-

tive hypothesis for p|α and q|α.

We may assume that α ∈ supp(p), otherwise r = r′�q(α) will be as desired.

Similarly, we assume that α ∈ supp(q).

Suppose first that α ∈ Γ. Then it is enough to take

r = r′�(tp(α), Fp(α) ∩ Fq(α)).

If α ∈ Λ, then notice that

r′ � Ṡβ ⊆∗ Ṡγ for each β ∈ Lp(α) ∪ Lq(α), γ ∈ Rp(α) ∪Rq(α).

Indeed, if β ∈ Lp(α) (β ∈ Lq(α)) and γ ∈ Rp(α) (γ ∈ Rq(α)), then β, γ∈supp(p|α)

(β, γ ∈ supp(q|α)) and so p|α (q|α) forces that Ṡβ ⊆∗ Ṡγ .

Notice that extending r′ in the obvious way on α would give us a condition

stronger than p and q but not necessarily in Rα. To fulfil condition (3) of

Definition 4.14 we have to apply subsequently Lemma 4.16 to find r′′ ≤ r′ such

that

• for every β ∈ Lp(α)∪Lq(α) and every γ ∈ Rp(α)∪Rq(α) we have β ∈ Lr(γ)

or γ ∈ Rr(β).

• supp(r′′) = supp(r′) and sr′′(β) = sr′(β) for each β ∈ supp(r′).

Take r = r′′�(Lp(α) ∪ Lq(α), Rp(α) ∪Rq(α), sp(α)).
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Now, we are ready to prove Theorem 4.13.

Proof of Theorem 4.13. Suppose that P is an uncountable subset of Qα. We

may assume that P ⊆ Rα, that �p = �q for each p, q ∈ P and, finally, that the

supports of elements in P form a Δ-system with a root R. Again, shrinking P

if needed, we may assume that for each p, q ∈ P we have sp(α) = sq(α) for

α ∈ R ∩ Λ and tp(α) = tq(α) for α ∈ R ∩ Γ. Now, use Lemma 4.17.

Theorem 4.18: The existence of a splitting chain is consistent with p = κ for

each regular uncountable κ.

Proof. Assume that Ȧ is a Qα-name for an infinite subset of ω. If it is not split

by the chain {Ṡβ : β < α}, then let L = {β : Ṡβ∩Ṙ=∗∅} and R = {β : Ṙ⊆∗ Ṡβ}.

Let G = ({Ṡβ : β ∈ L}, {Ṡβ : β ∈ R}). By Theorem 4.13 the forcing PG is ccc

and it adds a generic set Ṡ ⊆ ω interpolating G . Moreover, by Lemma 4.10, Ṡ

splits Ȧ.

Using this remark, we can apply the standard bookkeeping machinery over

all the Qα-names, α ∈ Λ, for infinite subsets of ω to ensure that all of them will

appear as a subset defining a cut as above which will be used to define Pα for

some α ∈ Λ (if at step α the subset is already split by the previously constructed

chain, then let Pα be the trivial forcing).

Simultaneously, we apply the bookkeeping over all the Qα-names, α ∈ Γ, for

filters generated by less than κ sets to ensure that all of them will be diagonalized

in the process of iteration.
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