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Abstract

We prove that P-points (even strong P-points) and Gruff ultrafilters
exist in any forcing extension obtained by adding fewer than ℵω-many
random reals to a model of CH. These results improve and correct previous
theorems that can be found in the literature.

1 Introduction

Ultrafilters1 play a fundamental role in infinite combinatorics, set-theoretic
topology and model theory. From constructing compactifications of topological
spaces and analyzing convergence, to proving Ramsey theorems, finding non-
trivial elementary embeddings of the universe or building nonstandard models
of a theory, applications of ultrafilters are ubiquitous across these areas of math-
ematics. Several important classes of ultrafilters on countable sets have been
introduced and studied over the years. A particularly notable example are the
P-points, which were introduced by Walter Rudin in [45], to prove that under
the Continuum Hypothesis (CH), the space ω∗ = βω \ ω is not homogeneous
(the same conclusion was later established without assuming CH by Froĺık in
[24] and further refined by Kunen in [34] who explicitly constructed ultrafilters
with distinct topological types). Since then, special classes of ultrafilters on
countable sets became a central topic of study and research.

Although it is a straightforward theorem of ZFC that there are (non-principal)
ultrafilters on the natural numbers, the existence of ultrafilters with interesting
topological or combinatorial properties is far more subtle. Moreover, their ex-
istence is often independent. The first major result of this kind was obtained
by Kunen in [35] where he proved that Ramsey ultrafilters consistently do not
exist. It was later proved by Miller in [41] (see also [42]) that Q-points may also
not exist. After that, Shelah constructed a model without P-points (see [55] and
[47]). More recently, it was proved by Cancino and Zapletal (see [11]) that it
is consistent that every (non-principal) ultrafilter on ω is Tukey top. For more
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results regarding the existence or non existence of special ultrafilters, the reader
may consult [54], [48], [6], [20], [23], [12], [9] or [27] among many others. As
these results illustrate, the existence of special classes of ultrafilters is a major
concern for set theorists and topologists.

Random forcing was introduced by Solovay in [49] and models obtained
by adding more than ω1 many random reals to a model of CH are often called
random models (or random real models). Since random forcing is one of the most
well-known and studied forcing notions, one might expect that the structure of
ultrafilters in the random models is very well understood. However, this is
far from the case. The previously mentioned Theorem of Kunen in [35] actually
shows that there are no Ramsey ultrafilters in the random models. On the other
hand, there are Q-points in those models since the dominating number is equal
to ω1 (see [3]). Now, the important question is: What about P-points? This is
where the story gets complicated. In an unpublished note, Kunen proved that if
you add ω1 Cohen reals to a model of CH and then any number of random reals,
you will get a P-point. In particular, P-points exists in some random models.
The general case (without the preliminary Cohen reals) was later addressed by
Cohen2 [15]. He defined a combinatorial object called pathway, (which is very
similar to Roitman´s Model Hypothesis (MH), see [44] and [1]) proved that the
existence of a pathway entails that there is a P-point and that pathways exist
after adding any number of random reals to a model of CH. Unfortunately,
it was later discovered that the proof of the existence of pathways is flawed3

(see [21] and [12]). No further progress was made on this problem until the
publication of [19], where the first author proved that there is a P-point if ω2-
many random reals are added to a model of CH + �ω1

(see [44] for further
results). In the present work, we improve this result by showing that there
are P-points (and more) if less than ℵω random reals are added to a model of
the Continuum Hypothesis (the principle �ω1 is no longer needed). The proof
follows closely the argument from [19], but through a careful analysis of the
interaction of countable subsets within countable elementary submodels, we are
able to avoid the use of �ω1

and extend the result beyond ω2. We introduce
a new type of combinatorial object, which we call a multiple d-pathway. This
notion has some resemblance to Cohen’s pathways, the hypothesis MH and to
the generalized pathways introduced by Fernández-Bretón in [22]. We will prove
that the existence of a multiple d-pathway entails the existence of P-points (even
strong P-points) and Gruff ultrafilters. Finally, it will be proved that multiple
d-pathways exist if less than ℵω random or Cohen reals are added to a model
of CH.

The structure of the paper is as follows: after reviewing some notation and
preliminaries, in Section 4, multiple d-pathways will be introduced and we will

2It is worth pointing out that this is not the same Cohen who intoduced forcing and after
whom the Cohen reals are named.

3Despite of the mistake, the paper [15] is very valuable. The introduction of pathways is
very important and the construction of a P-point from a pathway is correct.
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prove some of their most elemental properties. In Section 5 a P-point is con-
structed from a multiple d-pathway. This construction will be furthered refined
in Section 6 to get a strong P-point. Although in theory, the reader can skip
Section 5 and jump to Section 6, we do not recommend it, since the construc-
tion on Section 5 is the best example to understand how to perform transfinite
recursions using a multiple d-pathway. Section 7 contains our last application
of multiple d-pathways, the construction of a Gruff ultrafilter. In Section 8 we
develop some combinatorial results regarding countable elementary submodels
that will be needed later. In Section 9 we prove that there are multiple d-
pathways in the models obtained from adding less than ℵω many random or
Cohen reals. Although we are mainly interested in the random reals, the proof
for Cohen reals is exactly the same.

2 Notation

For a set X, we denote by P (X) its power set. We say that F ⊆ P (X) is a
filter on X if X ∈ F and ∅ /∈ F , for every A,B ⊆ X, if A ∈ F and A ⊆ B
then B ∈ F and if A,B ∈ F then A ∩ B ∈ F . A family I ⊆ P (X) is an ideal
on X if ∅ ∈ I and X /∈ I, for every A,B ⊆ X, if A ∈ I and B ⊆ A then
B ∈ I and if A,B ∈ I then A ∪B ∈ I. If B is a family of subsets of X, denote
B∗ = {X \B | B ∈ B} . It is easy to see that if F is a filter then F∗ is an ideal
(called the dual ideal of F) and if I an ideal then I∗ is a filter (called the dual
filter of I). If I is an ideal on X, define I+ = P (X) r I, which is called the
family of I-positive sets. The Fréchet filter is the filter of cofinite subsets. An
ultrafilter is a maximal filter that extends the Fréchet filter (so in this work, all
ultrafilters are non-principal). If U is an ultrafilter, we say that B ⊆ U is a base
of U if every element of U contains one of B. We say that a family P ⊆ P (X)
is centered if the intersection of any finite collection of its elements is infinite.

By c we denote the cardinality of the set of real numbers. For any two sets
A and B, we say A ⊆∗ B (A is an almost subset of B) if A \ B is finite. For
P ⊆ [ω]

ω
and A ⊆ P (ω) , we say that A is a pseudointersection of P if it is

almost contained in all elements of P. For f, g ∈ ωω, define f ≤ g if and only
if f (n) ≤ g (n) for every n ∈ ω and f ≤∗ g if and only if f (n) ≤ g (n) holds
for all n ∈ ω except finitely many. A family B ⊆ ωω is unbounded if B is not
bounded with respect to ≤∗ .A family D ⊆ ωω is a dominating family if for
every f ∈ ωω, there is g ∈ D such that f ≤∗ g. The bounding number b is
the size of the smallest unbounded family and the dominating number d is the
smallest size of a dominating family. We say S = {fα | α ∈ b} ⊆ ωω is a scale
if S is dominating and fα ≤∗ fβ whenever α < β. It is easy to see that b = d is
equivalent to the existence of a scale. A function f ∈ ωω is unbounded over a
model M if f �∗ g for every g ∈ M and is dominating over M if it dominates
very element of M ∩ ωω.

P (ω) will have its natural topology, which is homeomorphic to 2ω. In
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this way, the topology of P (ω) has for a subbase the sets of the form 〈n〉0 =
{A ⊆ ω | n /∈ A} and 〈n〉1 = {A ⊆ ω | n ∈ A}, for n ∈ ω.

A Polish space is a separable and completely metrizable space. The Baire
space (ωω) and the Cantor space (2ω) are examples of Polish spaces. We will
need the concepts of Fσ, Gδ, Borel, analytic, coanalytic and projective subsets
of a Polish space, which can be consulted in [33] or [50]. We say that T ⊆ 2<ω

is a tree if it is closed under taking initial segments and f ∈ 2ω is a branch of T
if f � n ∈ T for every n ∈ ω. The set of all branches of T is denoted by [T ]. It is
well known that the compact subsets of 2ω correspond to branches of subtrees
of 2<ω (see [33]). The n-level of the tree T is denoted by Tn.

Let X be a topological space. We say that C ⊆ X is crowded if it does not
have an isolated point. A perfect subset of X is a closed, non-empty crowded
subset of X. On the other hand, S ⊆ X is scattered if it does not contain a
crowded subset.

We will work extensively with elementary submodels. The reader is invited
to consult [17] for their most important properties and to learn how to apply
them in topology and set theory. For κ a cardinal, by H(κ) we denote the
collection of all subsets whose transitive closure has size less than κ. For M
a countable elementary submodel of H(κ) (and κ > ω1), the height of M is
δM = M ∩ω1. It is easy to see that it is always a countable ordinal. We will fix
E a well order of H(κ) and by Sub(κ) we denote the set of all countable M ⊆
H(κ) such that (M,∈,E) is an elementary submodel of (H(κ) ,∈,E). The well
ordering will play a key role in some of our arguments.

For A a set of the ordinal numbers, we will denote by OT(A) its order type.
If f is a function, by dom(f) we denote its domain and im(f) is its image.

3 Forcing preliminaries

We review some preliminaries on forcing that will be needed in Section 9. Nat-
urally, we assume the reader is already familiar with the method of forcing as
presented in [36].

Let P and Q be partial orders. By V P we denote the class of all P-names as
defined in [36]. An automorphism F : P −→ Q can be extended recursively to a
bijection between V P and V Q (which we will also denote as F ) by letting F (ȧ) =
{(F (ḃ), F (p)) | (ḃ, p) ∈ ȧ}. The proof of the following result can essentially be
found in [30] or [31] and is easy to prove by induction on the rank of names.

Proposition 1 Let P and Q be partial orders an F : P −→ Q an automorphism.
For every p ∈ P, ϕ a formula ȧ0, ..., ȧn ∈ V P and sets b0, ..., bm, the following
are equivalent:
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1. p “ϕ(ȧ0, ..., ȧn, b0, ..., bm)”.

2. F (p) “ϕ(F (ȧ0) , ..., F (ȧn) , b0, ..., bm)”.

We now review the standard method for adding many random or Cohen
reals using finite support. Proofs of the results mentioned below can be found
in [37]. For a set I, we will always equip 2I with its usual Tychonoff topology
(where 2 = {0, 1} is a discrete space).

Definition 2 Let I, J be two infinite sets and 4 : I −→ J an injective function.

1. Define 4′ : 2J −→ 2I given by 4′ (f) = f4 for f ∈ 2J .

2. Define 4∗ : P
(
2I
)
−→ P

(
2J
)

where 4∗ (B) =
{
f ∈ 2J | f4 ∈ B

}
(in

other words, 4∗ (B) = (4′)−1 (B)).

It is easy to see that if 4 : I −→ J is a bijection, then 4′ is an homeo-
morphism. The following proposition follows fro, standard computations and
diagram chasing arguments:

Proposition 3 Let I, J,K be three infinite sets and 4 : I −→ J , σ : J −→ K
bijective functions.

1. (IdI)∗ = Id2I (where IdX denotes the identity mapping of a set X).

2. (σ4)∗ = σ∗4∗.

3.
(
4−1

)
∗ = (4∗)−1 .

4. 4∗ is a bijection.

We say B ⊆ I is Baire if it belongs to the smallest σ-algebra that contains
all clopen sets. Denote by Baire

(
2I
)

the collection of all the Baire subsets of I.
If I is countable, then the notion of Borel and Baire coincide, but they are not
the same if I is uncountable. If 4 : I −→ I is bijective, then 4∗ � Baire

(
2I
)

is

a bijection between Baire
(
2I
)

and Baire
(
2J
)
.

Definition 4 Let I be an infinite set.

1. MI denotes the σ-ideal of meager sets in 2I .

2. NI denotes the σ-ideal of null sets in 2I (where 2I has the standard product
measure).

3. Cohen forcing on I (denoted by C (I)) is the quotient Baire
(
2I
)
�MI .

4. Random forcing on I (denoted by B (I)) is the quotient Baire
(
2I
)
�NI .
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If4 : I −→ I is bijective, then4∗ : C (I) −→ C (J) and4∗ : B (I) −→ B (J)
are isomorphism of partial orders. If K ⊆ I, then B (K) (C (K)) is isomorphic
to a regular suborder of B (I) (C (K)), and for convenience we will regard them
as actual suborders. Furthermore, if ȧ is a B (I)-name for a subset of ω, we can
find a countable K ⊆ I such that ȧ is a B (K)-name (and the same for Cohen
forcing). We will be using all these facts implicitly.

4 Multiple d-pathways

Multiple d-pathways will be introduced in this section and we will prove some
of their most elemental properties. Before proceeding, we introduce some defi-
nitions.

Definition 5 Let X be a set and n ∈ ω. A relation R ⊆ Xn×ωω is ≤∗-adequate
if for every x1, ..., xn ∈ X, there is f ∈ ωω such that for every increasing g ∈ ωω,
if g �∗ f, then the relation R (x1, ..., xn, g) holds.

A function f as above will be called an R-control for (x1, ..., xn) . It is not
hard to find ≤∗-adequate relations and several examples will be provided in the
text.

Definition 6 Let M0, ...,Mn be countable elementary submodels of some H(κ) .
We will say that the sequence 〈M0, ...,Mn〉 is δ-increasing if δMi

≤ δMi+1
for

each i < n.

It is worth pointing out that in our work, the sequence 〈M0, ...,Mn〉 is typi-
cally not an ∈-chain (which is often the case when working with models as side
conditions, see [51] and [52]) and it will often be the case that δMi = δMi+1 for
some i < n. When discussing a specific δ-increasing sequence 〈M0, ...,Mn〉 , we
will write δi instead of δMi

in case there is no risk of confusion.

We can finally introduce the main definition of this section:

Definition 7 Let κ > c be a regular cardinal and B = {fα | α < ω1} ⊆ ωω a
family of increasing functions and S ⊆ Sub(κ) stationary such that every model
in S has B as an element. We say that (B,S) is a multiple d-pathway if for
every δ-increasing sequence 〈M0, ...,Mn〉 of models from S, for every projective

and ≤∗-adequate relation R ⊆ (ωω)
n+2

with R ∈Mn and xi ∈Mi for i ≤ n, we
have that R (x0, ..., xn, fδn) holds.

Several comments regarding the definition are in order:
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1. The term “multiple” indicates that there are typically several models that
share the same height, which is not the case in the Model Hypothesis of
Roitman.

2. For our applications, the stationarity of S is only used to ensure that every
real (and hence every countable ordinal) appears in some model of S.

3. The relation R is required to be projective. The key feature of this re-
quirement is that it can be coded by a real, so several strenghtenings or
weakenings are possible. For the applications of P-points and strong P-
points, Borel relations are enough, but it appears that more is needed for
Gruff ultrafilters.

4. Following the approach of Fernández-Bretón in [22], it is possible to de-
fine a notion of a multiple pathway for more cardinal invariants of the
continuum. We do not pursue this approach here, since we do not have
applications for other cardinal invariants. However, the study of multi-
ple pathways parametrized by cardinal invariants of the continuum might
result fruitful in the future.

To avoid constant repetition, when working with a multiple d-pathway (B,S) ,
we will always write B = {fα | α < ω1} . We have the following simple result
regarding multiple pathways:

Proposition 8 Let (B,S) be a multiple d-pathway. For every M ∈ S, the
function fδM is unbounded over M. In particular, the existence of a multiple
d-pathway implies that b = ω1.

Proof. Let M ∈ S, define the relation R ⊆ (ωω)
2

where R (g, f) if f �∗ g.
Clearly R ∈ M , is a Gδ relation and is ≤∗-adequate. Since obviously 〈M〉 is
δ-increasing, it follows that every real in M is R related to fδM . Finally, since
the models in a multiple d-pathway cover ωω, we conclude that B is unbounded,
hence b = ω1.

The definition of multiple d-pathway only mentions relations on the Baire
space, however, we can extend it to any Polish space, as the next lemma shows:

Lemma 9 Let (B,S) be a multiple d-pathway and 〈M0, ...,Mn〉 a δ-increasing
sequence of models of S. For every Polish space X ∈ M0 ∩ ... ∩ Mn, R ⊆
Xn+1 × ωω projective and ≤∗-adequate relation in Mn and xi ∈ X ∩Mi for
i ≤ n, the relation R (x0, ..., xn, fδn) holds.

Proof. We first find a continuous surjection H : ωω −→ X with H ∈ M0 ∩
... ∩Mn (since X is a Polish space, there is a continuous surjection from ωω

to X, we now use the well order of H(κ) to find one that is in all our mod-

els). Define the relation P ⊆ (ωω)
n+2

where P (g0, ..., gn, f) holds just in case
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R (H (g0) , ...,H (gn) , f) is true. Note that P ∈Mn and is ≤∗-adequate. More-
over, it is easy to see that P is a continuous preimage of R, so P is projective as
well. H is surjective and it is in every Mi, so we can find gi ∈Mi∩ωω such that
H (gi) = xi. Since (B,S) is a multiple d-pathway, we know that P (g0, ..., gn, fδn)
is true, which means that R (x0, ..., xn, fδn) is true as well.

This covers the basics of multiple d-pathways and we are ready to move on
to applications.

5 A P-point from a multiple d-pathway

An ultrafilter U on ω is a P-point if every countable subfamily of U has a
pseudointersection in U . Without a doubt, the class of P-points is among the
most important and studied families of ultrafilters on countable sets. Note that
ultrafilters that are not P-points are very easy to construct (for example, every
ultrafilter extending the dual filter of the density zero ideal). In this way, the
challenge is in constructing P-points. Shelah was the first to show that it is
consistent that there are no P-points (see [55] and [47]). On the other hand,
several set theoretic axioms imply the existence of a P-point, for example the
equality d = c, the inequality u < d (see [3]) or the parametrized diamond ♦ (r)
from [43]. None of this principles hold in the random real models, which makes
the construction of P-points in such models very interesting. We will now build
a P-point from a multiple d-pathway. Our approach is similar and inspired by
Theorem 5.7 of [19] from the first author.

Definition 10 Let F : ω −→ P (ω) and g ∈ ωω. Define F g =
⋃
n∈ω

F (n)∩ g (n) .

It is clear that if F is ⊆-decreasing, then F g is a pseudointersection of im(F ) .
Note that if f ≤ g, then F f ⊆ F g. It is trivial to see that if there is F is the
constant function with value A ⊆ ω and g ∈ ωω is increasing, then F g = A. The
following results are easy and we leave them to the reader.

Lemma 11 Let F : ω −→ [ω]
ω

be ⊆-decreasing. There is f ∈ ωω such that for
every increasing g ∈ ωω, if g �∗ f, then F g is infinite.

Lemma 12

1. Let n ∈ ω. The set Rn ⊆ P (ω)
n

consisting of all (A0, ..., An) such that
A0 ∩ ... ∩An is infinite, is Gδ.

2. The set R ⊆ P (ω)
ω

consisting of all functions F such that im(F ) is cen-
tered, is Gδ.

We will need the following:
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Lemma 13 Let (B,S) be a multiple d-pathway and 〈M0, ...,Mn〉 a δ-increasing
sequence of models of S and m ≤ n be the least such that δm = δn. For every
i ≤ n, choose Fi : ω −→ [ω]

ω ∈Mi that is ⊆-decreasing.

If
{
F
fδ0
0 , ..., F

fδm−1

m−1

}
∪ im(Fm) ∪ ...∪ im(Fn) is centered, then

⋂
i≤n

F
fδi
i is

infinite.

Proof. Define the relation R ⊆ (P (ω)
ω

)
n+1 × ωω where R(G0, ..., Gn, f) holds

in case one of the following conditions is true:

1.
{
G
fδ0
0 , ..., G

fδm−1

m−1

}
∪ im(Gm) ∪ ...∪ im(Gn) is not centered.

2. G
fδ0
0 ∩ ... ∩G

fδm−1

m−1 ∩Gfm ∩ ... ∩Gfn is infinite.

Since fδ0 , ..., fδm−1 ∈ Mn, we get that R ∈ Mn. By Lemma 12 (or rather
by its proof), the first clause is an Fσ condition and the second one is Gδ, so
R is both Fσδ and Gδσ, although we only care that it is Borel. Moreover, it is
≤∗-adequate by Lemma 11. The conclusion follows since (B,S) is a multiple
d-pathway.

We can now prove:

Theorem 14 If there is a multiple d-pathway, then there is a P-point.

Proof. Fix (B,S) a multiple d-pathway. Define D = {δM |M ∈ S} and for
every δ ∈ D, let Wδ = ∪{P (ω) ∩M |M ∈ S ∧ δM ≤ δ} . By recursion over
δ ∈ D, we will define families Uδ, Aδ and Pδ with the following properties:

1. Uδ, Pδ and Aδ are subsets of [ω]
ω
.

2. Uγ ⊆ Uδ and Aγ ⊆ Aδ for γ ∈ D ∩ δ.

3. Aδ ⊆Wδ.

4. Pδ is the collection of all F fδ for which there is M ∈ S with δM = δ,
F : ω −→ A<δ is ⊆-decreasing and belongs to M (where A<δ =

⋃
ξ∈D∩δ

Aξ).

5. Uδ =
⋃
{Pγ | γ ∈ D ∩ (δ + 1)}.

6. Uδ ∪ Aδ is centered.

7. Aδ is maximal with respect to points 3 and 6.

Assume we are at step δ ∈ D and Uγ , Aγ and Pγ have been defined for
all γ ∈ D ∩ δ. In case δ is the minimum of D, we have Uδ = Pδ = ∅. Choose
Aδ ⊆ Wδ any maximal centered set extending the Fréchet filter. Now consider

9



the case where δ is not the least member of D. Note that Uδ and Pδ are defined
from A<δ, so we only need to find Aδ. Define U<δ =

⋃
ξ∈D∩δ

Uξ and note that

U<δ ∪ A<δ is centered, since (by the recursion hypothesis) it is an increasing
union of centered sets. We now prove the following:

Claim 15 Uδ ∪ A<δ is centered.

Let B0, ..., Bn ∈ Uδ ∪ A<δ, for every i ≤ n, we find Mi ∈ S and Fi ∈ Mi in
the following way:

1. In case Bi ∈ A<δ, choose Mi for which δi = δMi
< δ and Bi ∈ Mi. Let

Fi : ω −→ [ω]
ω

be the constant function with value Bi.

2. If Bi ∈ Uδ, choose Mi with δi = δMi
≤ δ and Fi : ω −→ A<δi ∈ Mi that

is ⊆-decreasing and Bi = F
fδi
i .

It might be possible that for some i ≤ n both clauses apply (in other words,
Bi ∈ Uδ ∩A<δ). If that is the case, we can choose to follow either one of them.
For each i ≤ n, we have the following:

1. Bi = F
fδi
i .

2. Fi ∈Mi, is ⊆-decreasing and im(Fi) ⊆ A<δ.

By taking a reenumeration and possibly picking more elements of Uδ ∪A<δ,
we may assume that 〈M0, ...,Mn〉 is δ-increasing and δn = δ. Let m ≤ n be the

least such that δm = δ. We claim that H =
{
F
fδ0
0 , ..., F

fδm−1

m−1

}
∪ im(Fm) ∪ ...∪

im(Fn) is contained in U<δ ∪ A<δ. Pick i ≤ n. We have the following cases:

1. If Bi ∈ A<δ, then F δii = Bi so there is nothing to do.

2. If Bi ∈ Uδ and i < m, then Fi : ω −→ A<δi which implies that F
fδi
i ∈

Uδi ⊆ Uδ.

3. If Bi ∈ Uδ and m ≤ i, there is nothing to do since we already noted that
im(Fi) ⊆ A<δ.

We already pointed out that U<δ ∪ A<δ is centered, so H is centered as

well. We are now in position to invoke Lemma 13 and conclude that
⋂
i≤n

F
fδi
i is

infinite. Since Bi = F
fδi
i , this finishes the proof of the claim. We can now apply

Zorn’s Lemma and find Aδ ⊆Wδ extending A<δ, such that its union with Uδ is
centered and it is maximal with these properties.
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After completing the recursion, define U =
⋃
δ∈D
Uδ and A =

⋃
δ∈D
Aδ. We will

now prove the following:

Claim 16

1. U ∪ A is centered.

2. U = A.

3. U is an ultrafilter.

4. U is a P-point.

To see the first point, simply note that U ∪ A is the increasing union of the
sets Uδ ∪Aδ and since we already knew those are centered, it follows that U ∪ A
is centered as well. We will now prove U ⊆ A. Let B ∈ U , find δ ∈ D such that
B ∈ Wδ (recall that S is stationary). Since B ∈ U , clearly Uδ ∪ {B} ∪ Aδ is
centered. By the maximality of Aδ that B ∈ Aδ. We will now show that A ⊆ U .
Let A ∈ A and δ ∈ D such that A ∈ Aδ. Since S is stationary, we can find
γ ∈ D and M ∈ S such that δM = γ and δ, A ∈ M (so δ < γ). Let F be the
constant sequence with value A. We get that A = F fγ ∈ Pγ , so B ∈ U .

It is time to prove that U is an ultrafilter. Let A,B,C,E ⊆ ω such that
A,B ∈ U and A ⊆ C. Find δ ∈ D and M ∈ S such that δM = δ and A,B,C,E ∈
M. In this way, A ∩ B,C,E and ω \ E are in Wδ. Since U = A is centered, it
follows that Uδ ∪ {A ∩B,C} ∪Aδ is centered. By the maximality of Aδ, we get
that A∩B,C ∈ Aδ.Moreover, either Uδ∪Aδ∪{E} is centered or Uδ∪Aδ∪{ω \ E}
is centered, so the maximality of Aδ entails that E ∈ Aδ or ω \E ∈ Aδ. Finally,
recall that in the first step of the recursion we made sure that U contains the
Fréchet filter.

It remains to prove that U is a P-point. Pick F : ω −→ U that is ⊆-
decreasing. For every n ∈ ω, choose δn ∈ D such that F (n) ∈ Aδn . We now
find δ ∈ D and M ∈ S such that δM = δ and F, {δn | n ∈ ω} ∈M. In this way,
F ∈M and it is a decreasing sequence of elements of A<δ, so F fδ ∈ Pδ ⊆ U .

6 A strong P-point from a multiple d-pathway

A P-point is an ultrafilter for which we can diagonalize against countably many
of its elements, while a strong P-point is an ultrafilter for which we can diag-
onalize against countably many of its compact subsets. Since every singleton
is compact, it follows that strong P-points are P-points. It is not difficult to
show that Ramsey ultrafilters are never strong P-points. The mere existence of
a P-point is not enough to imply neither the existence of a strong P-point, nor
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of a P-point that is not strong4. In the Miller model every P-point is strong,
while in Shelah’s model of only one Ramsey ultrafilter (see [47]), every P-point
is Ramsey, and therefore not strong. Naturally, both types of P-points exist
under CH (cov(M) = c is enough). In [4], Blass, Hrušák and Verner proved that
strong P-points are precisely the ultrafilters whose Mathias forcing does not add
dominating reals. This makes them very useful for constructing models where
the bounding number is small, while other invariants like the splitting number
or variants of the almost disjointness number are large (see [8], [46], [47], [18],
[7], [5], [26], [25] or [28]). Strong P-points were introduced by Laflamme in [39]
with the purpose of studying the collection of all Fσ filters as a forcing notion.
We will obtain a strong P-point from a multiple d-pathway.

Definition 17 An ultrafilter U on ω is a strong P-point if for every sequence
〈Cn〉n∈ω of compact subsets of U , there is a partition P = {Pn | n ∈ ω} of ω into
intervals such that the set {A ⊆ ω | ∀n ∈ ω∃Xn ∈ Cn (A ∩ Pn = Xn ∩ Pn)} is
contained in U .

For convenience, we will denote fin = [ω]
<ω \ {∅} . Given an ultrafilter F on

ω, we define the filter F<ω on fin that is generated by {[A]
<ω \ {∅} | A ∈ F}. It

is not hard to see for X ⊆ fin, we have that X ∈ (F<ω)
+

if and only if for every
A ∈ F , there is s ∈ X such that s ⊆ X. The following theorem combines results
from Blass, Chodounský, Hrušák, Minami, Repovš, Verner and Zdomskyy (see
[4], [29] and [13]). We will only need the equivalence between 1) and 3).

Theorem 18 Let U be an ultrafilter on ω. The following are equivalent:

1. U is a strong P-point.

2. The Mathias forcing of U does not add dominating reals.

3. U<ω is a P+ filter, this means that every ⊆-decreasing sequence of (U<ω)
+

has a pseudointersection in (U<ω)
+
.

4. U is a Menger subset of P (ω) .

We now need to prove some results regarding compact sets that will be used
later.

Definition 19 Let X ⊆ fin. Define:

1. C (X) = {A ⊆ ω | ∀s ∈ X (A ∩ s 6= ∅)}.

2. TX ⊆ 2<ω is the set consisting of all s ∈ 2<ω such that for every u ∈ X,
if u ⊆ dom(s) , then u ∩ s−1 ({1}) 6= ∅.

4Note that a weak P-point is not the same as a P-point that is not strong.
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It is easy to see that C (X) is a compact subset of P (ω) , TX is a tree and
C (X) = [TX ] (we are identifying a set with its characteristic function). The
relevance of this notions is the following lemma, which can be found in [28] or
[25]:

Lemma 20 Let U be an ultrafilter on ω and X ⊆ fin. X ∈ (U<ω)
+

if and only
if C (X) ⊆ U .

We now prove the following:

Lemma 21 Let X,Y ⊆ fin. The following are equivalent:

1. C (X) ∪ C (Y ) is centered.

2. For every n,m ∈ ω and every s1, ..., sn ∈ (TX)m, z1, ..., zn ∈ (TY )m there
is k > m such that for every s1, ..., sn ∈ (TX)k+1, z1, ..., zn ∈ (TY )k+1

for which si ⊆ si and ti ⊆ ti for every i ≤ n, it is the case that si (k) =
ti (k) = 1 for every i ≤ n.

Proof. It is easy to see that 2) implies 1). For the other implication, assume
that 2) fails. Let n,m ∈ ω and s1, ..., sn ∈ (TX)m, z1, ..., zn ∈ (TY )m that
witness the failure of 2). Let S be the set of (s1, ..., sn, z1, ..., zn) such that there
is k > m for which s1, ..., sn ∈ (TX)k+1, z1, ..., zn ∈ (TY )k+1 , si ⊆ si and ti ⊆ ti
for every i ≤ n, but it is not true that si (k) = ti (k) = 1 for every i ≤ n. S has
a natural tree ordering, it is finitely branching and by our assumption, it has
infinite height. By invoking König’s Lemma (see [38], [32]), we know that S has
a cofinal branch. We can now find a finite subset of C (X) ∪ C (Y ) with finite
intersection.

With the lemma (or rather its generalization), we get:

Corollary 22 Let n ∈ ω and define R ⊆ P
(
[ω]

<ω)n
as the set of all (X1, ..., Xn)

such that
⋃
i≤n
C (Xi) is centered. R is a Gδ relation.

We now introduce the following notion:

Definition 23 For F : ω −→ P(fin) and g ∈ ωω, we define the set F g =⋃
n∈ω

F (n) ∩ P (g (n)) .

If F is ⊆-decreasing, then F g is a pseudointersection of im(F ) . Note that if
f ≤ g, then F f ⊆ F g. It is trivial to see that if F is the constant function with
value A ⊆ fin and f is increasing, then F f = A. Lastly, if B ⊆ ω, then C( [B]

1
)

consists of all supersets of B. The following lemma can be consulted in [28] or
[25]:
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Lemma 24 Let F be a filter, D ⊆ F compact and X1, ..., Xn ⊆ P(fin) with
C (X1) , ..., C (Xn) ⊆ F . For every i ≤ n, there is Yi ∈ [Xi]

<ω
such that for every

F ∈ D and A1
i , ...., A

n
i ∈ C (Yi) , we have that F ∩

⋂
i,j≤n

Aji 6= ∅.

If A is a family of compact subsets of P (ω) , we say that A is centered if⋃
A is centered.

Lemma 25 Let D ⊆ P (ω) be a compact set, n ∈ ω and Fi : ω −→ P(fin) for
each i ≤ n such that {D}∪{C (Fi (k)) | i ≤ n ∧ k ∈ ω} is centered. There is h ∈
ωω such that for every increasing g ∈ ωω, if g �∗ h, then D ∪ C (F g0 )∪...∪C (F gn)
is centered.

Proof. We may assume that Fi (k) ⊆ [ω \ k]
<ω

for every k ∈ ω and i ≤ n. With
the aid of Lemma 25, we can find an increasing h ∈ ωω such that for every m ∈ ω
the following holds: For every F0, ..., Fm ∈ D and A1

i , ..., A
m
i ∈ Fm (i)∩P (h (m))

for every i ≤ n, we have that F0 ∩ ...∩Fm ∩
⋂

i≤n, j≤m
Aji is non-empty. It is easy

to see that h has the desired property.

We only need one more preliminary result:

Lemma 26 Let (B,S) be a multiple d-pathway, 〈M0, ...,Mn〉 a δ-increasing se-
quence of models in S andm ≤ n the least such that δm = δn. For every i ≤ n,
let Fi : ω −→ P(fin) ∈Mi that is ⊆-decreasing.

If {C(F fδ00 ), ..., C(F
fδm−1

m−1 )}∪{C (Fi (k)) | m ≤ i ≤ n ∧ k ∈ ω} is centered, then⋃
i≤n
C(F fδii ) is centered.

Proof. Define the relation R ⊆ (P(fin)ω)n+1×ωω where R (G0, ..., Gn, f) holds
just in case one of the following conditions is met:

1. {C(Gfδ00 ), ..., C(G
fδm−1

m−1 )}∪{C(Gi (k)) | m ≤ i ≤ n ∧ k ∈ ω} is not centered.

2. C(Gfδ00 ) ∪ ... ∪ C(G
fδm−1

m−1 ) ∪ C(Gfm) ∪ ... ∪ C(Gfn) is centered.

Since fδ0 , ..., fδm−1
∈ Mn, we conclude that R ∈ Mn. By Corollary 22 (or

rather by its proof), the first clause is an Fσ condition and the second one is
Gδ, so R is both Fσδ and Gδσ, hence it is Borel. Moreover, it is ≤∗-adequate
by Lemma 25. The conclusion of the lemma follows since (B,S) is a multiple
d-pathway.

We now prove the main result of the section:

Theorem 27 If there is a multiple d-pathway, then there is a strong P-point.
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Proof. Let (B,S) be a multiple d-pathway. Define D = {δM |M ∈ S} and for
every δ ∈ D, define Wδ as the set of all C (X) such that X ⊆ fin and there is
M ∈ S such that δM ≤ δ and X ∈ M. By recursion over δ ∈ D, we will define
Uδ, Aδ and Pδ such that:

1. Uδ ⊆ [ω]
ω

while Pδ and Aδ are families of compact subsets of P (ω) .

2. Uγ ⊆ Uδ and Aγ ⊆ Aδ for every γ ∈ D ∩ δ.

3. Aδ ⊆Wδ.

4. Pδ is the collection of all C(F fδ) such that F : ω −→ P(fin) and there is
M ∈ S with the property that δM = δ, F ∈ M and C(F (n)) ∈ A<δ for
every n ∈ ω (where A<δ =

⋃
γ∈D∩δ

Aξ).

5. Uδ =
⋃
{Pγ | γ ∈ D ∩ (δ + 1)} .

6. Uδ ∪
⋃
Aδ is centered.

7. Aδ is maximal with respect to points 3 and 6.

Assume we are at step δ ∈ D and Uγ , Aγ and Pγ have been defined for
all γ ∈ D ∩ δ. In case δ is the minimum of D, we have Uδ = Pδ = ∅. Choose
Aδ ⊆ Wδ any maximal centered set such that

⋃
Aδ extends the Fréchet filter.

Now consider the case where δ is not the least member of D. Note that Uδ and
Pδ are defined from A<δ, so we only need to find Aδ. Define U<δ =

⋃
ξ∈D∩δ

Uξ

and note that U<δ ∪
⋃
A<δ is centered, since (by the recursion hypothesis) it is

an increasing union of centered sets. We now prove the following:

Claim 28 Uδ ∪
⋃
A<δ is centered.

Let B0, ..., Bn ∈ Uδ ∪
⋃
A<δ, for every i ≤ n, we find Mi ∈ S and Fi ∈ Mi

in the following way:

1. If Bi ∈
⋃
A<δ, let Mi such that δi = δMi

< δ and there is Xi ∈ Mi such
that Bi ∈ C (Xi) and C (Xi) ∈ Aδi . Let Fi : ω −→ P(fin) be the constant
sequence with value Xi.

2. If Bi ∈ Uδ, let Mi such that δi = δMi ≤ δ and Fi : ω −→ P(fin) ∈Mi such

that Bi ∈ C(F
fδi
i ) and each C (Fi (k)) is in A<δi .

It might be possible that for some i ≤ n both clauses apply. If that is the
case, we can choose to follow either one of them. For each i ≤ n, we have the
following:

15



1. Bi ∈ C(F
fδi
i ).

2. Fi : ω −→ P(fin) ∈Mi and is ⊆-decreasing.

3. C (Fi (k)) ∈ A<δ for all k ∈ ω.

By taking a reenumeration and possibly picking more elements of Uδ∪
⋃
A<δ,

we may assume that 〈M0, ...,Mn〉 is δ-increasing and δn = δ. Let m ≤ n be

the least such that δm = δ. We claim that H = C(F fδ00 ) ∪ ... ∪ C(F
fδm−1

m−1 ) ∪⋃
{C (Fi (k)) | m ≤ i ≤ n ∧ k ∈ ω} is contained in U<δ ∪

⋃
A<δ. Pick i ≤ n. We

have the following cases:

1. If Bi ∈
⋃
A<δ, we have that C (Xi) ∈ A<δ and F δii = Xi.

2. If Bi ∈ Uδ and i < m, then Fi : ω −→ A<δi which implies that F
fδi
i ∈

Uδi ⊆ Uδ.

3. If Bi ∈ Uδ and m ≤ i, there is nothing to do since we already noted that
C (Fi (k)) ∈ A<δ for all k ∈ ω.

Recall that U<δ ∪
⋃
A<δ is centered, so H is centered as well. We are now in

position to invoke Lemma 26 and conclude that
⋃
i≤n
C(F fδii ) is centered. Since

Bi ∈ C(F
fδi
i ), this finishes the proof of the claim. We use Zorn’s Lemma and

find Aδ ⊆Wδ extending A<δ such that Uδ ∪
⋃
Aδ is centered and it is maximal

with these properties.

After completing the recursion, define U =
⋃
δ∈D
Uδ and A =

⋃
δ∈D
Aδ. We will

now prove the following:

Claim 29

1. U∪
⋃
A is centered.

2. U =
⋃
A.

3. U is an ultrafilter.

4. If X ∈ (U<ω)
+
, then C (X) ∈ A.

5. U is a strong P-point.

Since U∪
⋃
A is equal to the union of Uδ∪

⋃
Aδ and this are increasing and

centered, it follows that U∪
⋃
A is centered. We prove that U ⊆

⋃
A. Let B ∈ U ,

δ ∈ D and M ∈ S such that δM = δ and B ∈M. Let X = [B]
1

and recall that
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C (X) = {A ⊆ ω | B ⊆ A} and C (X) ∈Wδ. Clearly Uδ ∪Aδ ∪C (X) is centered,
so by the maximality of Aδ, we get that C (X) ∈ Aδ, hence B ∈

⋃
A. Now, take

A ∈
⋃
A. Find δ ∈ D and Y ∈ Wδ such that A ∈ C (Y ) . Let F be the constant

sequence with value Y. We now find γ ∈ D and M ∈ S such that δM = γ and
δ, F ∈M. We have that C (Y ) = C

(
F fγ

)
⊆ Uγ .

We now prove that U is an ultrafilter. Let A,B,C,E ⊆ ω such that A,B ∈ U
and A ⊆ C. Find δ ∈ D and M ∈ S such that δM = δ and A,B,C,E ∈ M.
Let X = [A ∩B]

1
, which is in Wδ. Since U =

⋃
A is centered, it follows that

Uδ∪C (X)∪
⋃
Aδ is centered. By the maximality of Aδ, we get that C (X) ∈ Aδ.

Since A ∩B, C ∈ C (X) , it follows that A ∩B,C ∈ U . Moreover, we know that

either Uδ ∪
⋃
Aδ ∪ C([E]

1
) is centered or Uδ ∪

⋃
Aδ ∪ C( [ω \ E]

1
) is centered, so

by the maximality of Aδ, we obtain that C
(

[E]
1
)
∈ Aδ or C

(
[ω \ E]

1
)
∈ Aδ.

Finally, recall that in the first step of the recursion we made sure that U contains
the Fréchet filter.

Let X ∈ (U<ω)
+

. Since U is an ultrafilter, we know that C (X) ⊆ U by
Lemma 20. Find δ ∈ D and M ∈ S such that δM = δ and X ∈ M. Clearly
Uδ ∪ C (X) ∪

⋃
Aδ is centered, so by the maximality of Aδ we conclude that

C (X) ∈ Aδ.

It only remains to prove that U is a strong P-point. We use Theorem 18. Let
F : ω −→ (U<ω)

+
be ⊆-decreasing. By the previous point of the claim, for every

n ∈ ω, we can find δn ∈ D such that C (F (n)) ∈ Aδn . We now choose δ ∈ D and
M ∈ S with δM = δ such that F ∈M and δn < δ for every n ∈ ω. In this way,
C(F fδ) ∈ Pδ and then it is contained in U . We conclude that F fδ ∈ (U<ω)

+
by

applying Lemma 20 once again.

7 A Gruff ultrafilter from a multiple d-pathway

We now turn our attention to ultrafilters on the rational numbers5. A partic-
ularly nice combinatorial feature of Q (which is no longer true for the the real
numbers), is that it has no Bernstein subsets. In other words, if we split the
rational numbers into two pieces, then at least one of them contains a perfect
subset6. This property motivates the following definition:

Definition 30 Let U be an ultrafilter on Q. We say that U is a Gruff ultrafilter
if it has a base of perfect sets.

Gruff ultrafilters were introduced by van Douwen in [53] while studying βQ
(the Čech-Stone compactification of Q) and asked if there are such ultrafilters.

5When discussing the rational numbers, we always assume it is equipped with its usual
topology.

6Recall that perfect sets are non-empty.
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He was able to to prove they exist in case that cov(M) = c and later Copláková
and Hart in [16] obtained the same conclusion under b = c. Both of these results
were improved by Fernández-Bretón and Hrušák in [23] where a Gruff ultrafil-
ter is obtained from d = c. They were also interested in the existence of Gruff
ultrafilters in the random model and constructed one using a pathway (see also
[22]). Unfortunately, as discussed before, it is not known if pathways exist in the
random model. We will now build a Gruff ultrafilter from a multiple d-pathway.
Our approach takes inspiration from [23] ([22]) and [19]. Apart from the papers
already mentioned, the reader may consult [14] and [40] to learn more about
Gruff ultrafilters and [10] for more on combinatorics of scattered subsets of the
rationals.

Denote by scatt the ideal of scattered subsets of Q and by bscatt the ideal
generated by both the scattered sets and the bounded subsets of Q. When
constructing a Gruff ultrafilter, it is sometime more convenient to build one
which has a base of perfect unbounded subsets (see [23]). Given A ⊆ Q, the
crowded kernel of A (denoted by K (A)) is the union of all the crowded subsets
of A. The following are simple remarks regarding this notion:

Lemma 31 Let A ⊆ Q.

1. If A ∈ scatt+, then K (A) is crowded.

2. K (A) is the largest crowded subset contained in A.

3. If A ∈ bscatt+, then K (A) is crowded and unbounded.

4. The symmetric difference between A and K (A) is in scatt.

5. If F is a filter in Q such that scatt∗ ⊆ F and A ∈ F , then K (A) ∈ F .

We will now recall a very useful notion from [23]. From now on, fix an enu-
meration Q = {qn | n ∈ ω}. For q ∈ Q and r > 0, we denote by B (q, r) the open
ball of q with radius r. Given a function f ∈ ωω and n ∈ ω, denote Jf (n) =

B(qn,
√
2
k ), where k is the least natural number such that qm /∈ B(qn,

√
2
k ) for

every m ≤ f (n) such that m 6= n (the purpose of
√

2 is only to ensure that
Jf (n) is a clopen subset of Q, evidently we can use any other positive irra-
tional number). Intuitively, we are making Jf (n) as large as possible with the
restriction that it can not include any qm for which m ≤ f (n) and m 6= n.

Definition 32 Let X ⊆ Q and f ∈ ωω. Define X (f) = Q\
⋃
n/∈X

Jf (n) .

The following two results can be found in [23]:

Lemma 33 Let X,Y ⊆ Q and f, g ∈ ωω.

1. X (f) is a closed subset of X.
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2. If X ⊆ Y, then X (f) ⊆ X (g) .

3. X (f) ∩ Y (f) = (X ∩ Y ) (f) .

4. If f ≤ g, then X (f) ⊆ X (g) .

Proposition 34 Let X ⊆ Q be crowded and unbounded. There is h ∈ ωω such
that for every increasing g ∈ ωω, if g �∗ h, then X (g) is perfect and unbounded.

For X ⊆ Q crowded and unbounded, we fix a function hX ∈ ωω with the
property above. The following lemma is well-known:

Lemma 35

1. The collection of all crowded unbounded subsets of Q is Gδ.

2. The ideal bscatt is coanalytic.

We now prove the following:

Lemma 36 Let (B,S) be a multiple d-pathway and 〈M0, ...,Mn〉 a δ-increasing
sequence of models from S. Let m ≤ n be the first one such that δm = δn. For
every i ≤ n, pick Xi ∈Mi∩ bscatt+.

If X0 (fδ0)∩ ...∩Xm−1
(
fδm−1

)
∩Xm∩ ...∩Xn ∈ bscatt+, then

⋂
i≤n

Xi (fδi) ∈

bscatt+.

Proof. Define the relation R ⊆ P (Q)
n+1 × ωω where R (Y0, ..., Yn, f) holds in

case one of the following conditions is met:

1. Y0 (fδ0) ∩ ... ∩ Ym−1
(
fδm−1

)
∩ Ym ∩ ... ∩ Yn ∈ bscatt.

2. Y0 (fδ0) ∩ ... ∩ Ym−1
(
fδm−1

)
∩ Ym (f) ∩ ... ∩ Yn (f) ∈ bscatt+.

Since fδ0 , ..., fδm−1
∈ Mn, we conclude that R ∈ Mn. By Corollary 35 (or

rather by its proof), the first clause is coanalytic and the second one is analytic,
so R is projective. We now prove that it is ≤∗-adequate. Let Y0, ..., Yn ⊆ Q, if
Z = Y0 (fδ0) ∩ ... ∩ Ym−1

(
fδm−1

)
∩ Ym ∩ ... ∩ Yn ∈ bscatt, there is nothing to

do, so assume otherwise. We claim that hK(Z) is an R-control for (Y0, ..., Yn) .
To see this, pick g ∈ ωω increasing such that g �∗ hK(Z). We now have the
following:

K (Z) (g) ⊆ Z (g)
=

⋂
i<m

(Yi (fδi)) (g) ∩
⋂

m≤i≤n
Yi (g)

⊆
⋂
i<m

(Yi (fδi)) ∩
⋂

m≤i≤n
Yi (g)
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By Proposition 34, we know that K (Z) (g) is perfect and unbounded, so⋂
i<m

(Yi (fδi))∩
⋂

m≤i≤n
Yi (g) is not in bscatt. The conclusion of the lemma follows

since (B,S) is a multiple d-pathway.

We now proceed to prove the main result of the section.

Theorem 37 If there is a multiple d-pathway, then there is a Gruff ultrafilter.

Proof. Let (B,S) be a multiple d-pathway. Define D = {δM |M ∈ S} and for
δ ∈ D, denote Wδ =

⋃
δM≤δ

M ∩ P (Q) . By recursion over δ ∈ D, we shall find

Uδ,Aδ and Pδ with the following properties:

1. Uδ and Pδ are families of perfect and unbounded sets.

2. Aδ ⊆Wδ∩ bscatt+.

3. If γ ∈ D ∩ δ, then Aξ ⊆ Aδ and Uξ ⊆ Uδ.

4. Pδ is the family of all X (fδ) for which there is M ∈ S for which δM = δ
and X ∈M ∩ A<δ is crowded (where A<δ =

⋃
γ∈D∩δ

Aγ).

5. Uδ =
⋃
{Pξ | ξ ∈ D ∩ (δ + 1)} .

6. Uδ ∪ Aδ generates a filter contained in bscatt+.

7. Aδ is maximal with respect to points 2 and 6.

Before starting the construction, note that Aδ will have the following prop-
erty: If B ∈ Aδ, then K (B) ∈ Aδ. To see this, let M ∈ S such that B ∈ M
and δM ≤ δ. Since B ∈ M, we get that K (B) ∈ M, hence K (B) ∈ Wδ. Call
F the filter generated by Uδ ∪ Aδ∪ bscatt∗. Since B ∈ F , then K (B) ∈ F (see
Lemma 31) which implies that Uδ ∪ Aδ ∪ {K (B)} generates a filter contained
in bscatt+. By the maximality of Aδ, we conclude that K (B) ∈ Aδ.

Assume we are at step δ ∈ D and Uγ , Aγ and Pγ have been defined for
all γ ∈ D ∩ δ. In case δ is the minimum of D, we have Uδ = Pδ = ∅. Choose
Aδ ⊆ Wδ∩ scatt+ any maximal centered set extending the filter of cobounded
subsets of Q. Now consider the case where δ is not the least member of D. Note
that Uδ and Pδ are defined from A<δ, so we only need to find Aδ, but first
we need to prove that both Uδ and Pδ consist of perfect and unbounded sets.
It is enough to prove it for Pδ. Let M ∈ S with δM = δ and X ∈ M ∩ A<δ
is crowded. Moreover, X is also unbounded since A<δ extends the filter of
cobounded sets. We need to prove that X (fδ) is perfect and unbounded. Since
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X ∈ M, it follows that hK is also in M. Since fδ is unbounded over M, we get
that X (fδ) is perfect and unbounded by Proposition 34.

Define U<δ =
⋃

ξ∈D∩δ
Uξ and note that U<δ ∪A<δ generates a filter contained

in bscatt+ by the recursion hypothesis. We now prove the following:

Claim 38 Uδ ∪ A<δ generates a filter contained in bscatt+.

Let B0, ..., Bn ∈ Uδ ∪ A<δ, for each i ≤ n, we find Mi ∈ S and Xi ∈ Mi in
the following way:

1. In case Bi ∈ A<δ, choose Mi for which δi = δMi
< δ and Bi ∈ Mi. Let

Xi = K (Bi) .

2. If Bi ∈ Uδ, choose Mi with δi = δMi
≤ δ and Xi ∈ Mi ∩ A<δi crowded

such that Bi = Xi (fδi) .

It might be possible that for some i ≤ n both clauses apply. If that is the
case, we use either of them. For each i ≤ n, we have the following:

1. Xi ∈Mi ∩ A<δ and is both perfect and unbounded.

2. Xi (fδi) ⊆ Bi.

By taking a reenumeration and possibly picking more elements of Uδ ∪A<δ,
we may assume that 〈M0, ...,Mn〉 is δ-increasing and δn = δ. Let m ≤ n be the
least such that δm = δ. We claim that X0 (fδ0) , ..., Xm−1

(
fδm−1

)
, Xm, ..., Xn ∈

U<δ ∪ A<δ. Pick i ≤ n. We have the following cases:

1. If Bi ∈ A<δ, then Xi = K (Bi) ∈ Aδi , so Xi (fδi) ∈ Uδi .

2. If Bi ∈ Uδ and i < m, then Xi ∈ Aδi , so Xi (fδi) ∈ Uδi .

3. If Bi ∈ Uδ and m ≤ i, we already knew that Xi ∈ A<δ.

Recall that U<δ ∪ A<δ generates a filter contained in bscatt+, so X0 (fδ0) ∩
... ∩ Xm−1

(
fδm−1

)
∩ Xm ∩ ... ∩ Xn ∈ bscatt+. We are now in position to call

Lemma 13 and conclude that
⋂
i≤n

Xi (fδi) ∈ bscatt+. Since Xi (fδi) ⊆ Bi, this

finishes the proof of the claim. We now invoke Zorn’s Lemma and find Aδ ⊆Wδ

extending A<δ as desired.

After completing the recursion, define A =
⋃
δ∈D
Aδ and U as the set of all

B ⊆ Q for which there is U ∈
⋃
δ∈D
Uδ for which B ⊆ U. We will now prove the

following:
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Claim 39

1. U ∪ A generates a filter contained in bscatt+.

2. U = A.

3. U is an ultrafilter.

4. U is a Gruff ultrafilter.

The first point is easy, we now prove that U = A. We will first see that
U ⊆ A. Let U ∈ U , find δ ∈ D and M ∈ S such that there is B ∈ Uδ for which
B ⊆ U and B,U ∈M. It is clear that Uδ ∪Aδ ∪{U} generates a filter contained
in bscatt+. Since U ∈ Wδ, it follows by the maximality of Aδ that U ∈ Aδ. We
now prove that A ⊆ U . Let A ∈ Aδ for some δ ∈ D. We now choose γ ∈ D and
M ∈ S such that A, δ ∈ M. Since A ∈ A<γ , it follows that K = K (A) is also
in A<γ . In this way, K (fγ) ∈ Uγ and then A ∈ U .

The proof that U is an ultrafilter is similar to arguments used in the proof
of Theorems 14 and 27. Finally, it is Gruff since

⋃
δ∈D
Uδ is a base of U consisting

of perfect sets.

8 Combinatorics of elementary submodels

Our current goal now is to prove that multiple d-pathways may consistently
exist. We will derive several combinatorial results concerning countable elemen-
tary submodels which are the new insight for the main theorems of the paper.
The results in this section do not directly refer to pathways and may be of
independent interest.

Fix a regular cardinal κ > c and E a well order of H(κ) . The following result
is well-known, we prove it for completeness.

Lemma 40 (CH) Assume that M,N ∈ Sub(κ) and δM ≤ δN . H(ω1) ∩M ⊆
H(ω1) ∩N.

Proof. Let g : ω1 −→ H(ω1) be the E-minimal bijection, so it is in both M and
N. Since H(ω1) ∩M = g [δM ] and H(ω1) ∩N = g [δN ] , the result follows.

We now extend the previous lemma:

Lemma 41 (CH) Let M,N ∈ Sub(κ) with δM ≤ δN . If A ∈ M ∩ N and is a
countable subset of the ordinals, then P (A) ∩M ⊆ N.
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Proof. Let B ∈ P (A) ∩M and γ = OT(A) < ω1. Denote e : A −→ γ the
(unique) order isomorphism. Since A ∈ M ∩ N, it follows that e ∈ M ∩ N.
Clearly e [B] ∈ H(ω1) ∩M , so e [B] ∈ N by Lemma 40. Since e−1 is also in N,
it follows that B ∈ N.

If A is a set of ordinals, we denote by A its closure in the usual order
topology. It is easy to see that the closure of a countable set is also countable.
In particular, it M ∈ Sub(κ) and A ∈ M is a countable set of ordinals, then
A ⊆ M. For us, a partition P is simply a collection of pairwise disjoint sets
(∅ ∈ P is allowed) and a partition for a set A is a partition whose union is A.

Lemma 42 (CH) Let M,N ∈Sub(κ) with δM ≤ δN , n ∈ ω and A,B ∈ [ωn]
≤ω

such that A ∈M and B ∈ N.

1. There is a partition P = {A0, A1} ∈ M of A such that A0 ∈ N and
A1 ∩B = ∅.

2. A ∩B = ∅.

Proof. Note that the second point is a trivial consequence of the first. We
prove the first point by induction over n. For n ≤ 1, we have that A ∈ N by
Lemma 40, so we simply let A0 = A∩B and A1 = A \B. Assume the lemma is
true for n, we prove that it is true for n+1 as well. Denote β =

⋃
A ∩B+1 and

note that β ∈M ∩N. Fix h : β −→ ωn be the E-least injective function, clearly
h ∈ M ∩ N. Define C = h [A ∩ β] and D = h [B ∩ β] , we have that C ∈ M
and D ∈ N. We can now apply the inductive hypothesis and find a partition
{C0, C1} ∈ M of C such that C0 ∈ N and C1 ∩D = ∅. Letting A0 = h−1 (C0)
and A1 = A \h−1 (C0) , we have that {A0, A1} ∈M and A0 ∈ N. We only need
to prove that A1∩B = ∅. Assume that there is α ∈ A1∩B, it follows that α < β
and h (α) ∈ C \C0 = C1. In this way, h (α) ∈ C1∩D, but this is a contradiction
since C1 ∩D = ∅.

The following definition plays a similar role to the finite partitions used in
[19].

Definition 43 Let 〈M0, ...,Mn〉 be a δ-increasing sequence of models from Sub(κ).
We say that P = 〈Pi | i ≤ n〉 is a coherent sequence of partitions for 〈M0, ...,Mn〉
if for every i ≤ n, the following conditions hold:

1. Pi ∈Mi and is a finite partition of countable subsets of the ordinals.

2. If i < j, then Pi ∩Mj ⊆ Pj .

3.
⋃
j≤n

Pj is a partition.

The next lemma illustrates how to construct non-trivial coherent sequences
of partitions.
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Lemma 44 (CH) Let 〈M0, ...,Mn〉 be a δ-increasing sequence of models from

Sub(κ), l ∈ ω and Ai ∈ Mi ∩ [ωl]
≤ω

for every i ≤ n. There is P = 〈Pi | i ≤ n〉
a coherent sequence of partitions for 〈M0, ...,Mn〉 such that Ai ⊆ ∪Pi for every
i ≤ n.

Proof. We proceed by induction over n. For n = 0 we simple take P0 = {A0}
and we are done. Assume the lemma is true for n, we will see it is true for n+ 1
as well. Find 〈Pi | i ≤ n〉 a coherent sequence of partitions for 〈M0, ...,Mn〉 such
that Ai ⊆ ∪Pi for every i ≤ n.

Claim 45 There is 〈Ri | i ≤ n〉 a coherent sequence of partitions for 〈M0, ...,Mn〉
with the following properties:

1. ∪Pj ⊆ ∪Rj for every j ≤ n.

2. For every B ∈
⋃
i≤n

Ri, we have that B ∩An+1 ∈Mn+1.

Denote P =
⋃
i≤n

Pi. Pick C ∈ P and i ≤ n the first one for which C ∈ Pi.

We can apply Lemma 42 and find a partition {C0, C1} ∈ Mi of C such that
C0 ∈ Mn and An+1 ∩ C1 = ∅. Define R = {Cu | C ∈ P ∧ u ∈ 2} and for every
i ≤ n, denote Ri = R ∩Mi. We claim that 〈Ri | i ≤ n〉 is as desired. Clearly R
is a partition, if B ∈ R then B ∩ An+1 ∈ Mn+1 and if i < j, then Ri ∩Mj =
R ∩Mi ∩Mj = Rj ∩Mi ⊆ Rj . It remains to prove that ∪Pj ⊆ ∪Rj for every
j ≤ n. Let C ∈ Pj and find i ≤ j the first one for which C ∈ Pi. Note that
C ∈ Mi ∩Mj and δi ≤ δj , so by Lemma 41, we know that P (C) ∩Mi ⊆ Mj ,
which entails that C0, C1 ∈ Mj , hence C0, C1 ∈ Rj . This finishes the proof of
the claim.

Fix 〈Ri | i ≤ n〉 as above. Define Rn+1 = (Mn ∩
⋃
i≤n

Ri) ∪ {An+1 \
⋃
i≤n

Ri}.

It is easy to see that 〈Ri | i ≤ n+ 1〉 is as desired.

We now prove the final result of this section, which will enable us to transfer
certain names across elementary submodels.

Proposition 46 (CH) Let 〈M0, ...,Mn〉 be a δ-increasing sequence of models
from Sub(κ), l ∈ ω and P = 〈Pi | i ≤ n〉 a coherent sequence of partitions for

〈M0, ...,Mn〉 where Pi ⊆ [ωl]
≤ω

. There is a bijection 4 : ωl −→ ωl with the
following properties:

1. If A ∈
⋃
i≤n

Pi, then 4 [A] ∈Mn and 4 � A is order preserving.

2. If A ∈ Pn, then 4 � A is the identity mapping.
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Proof. Take an enumeration {A0, ..., Am} of all elements of
⋃
i<n

Pi that are not in

Pn and denote Y =
⋃ ⋃
i≤n

Pi. Choose β < δn such that OT(Y ) < β and Y ∩ω1 ⊆

β. For each k ≤ m, denote γk = OT(Ak) and ek : Ak −→ γk the (unique)
order isomorphism. Define 4k : Ak −→ ω1 where 4k (α) = β (k + 1) + ek (α)
and note that im(4k) = [β (k + 1) , β (k + 1) + γk), which belongs to Mn since
β, γk ∈ Mn. Moreover, note that if k 6= r, then im(4k)∩ im(4r) = ∅ and if
A ∈ Pn, then A ∩ ω1 ⊆ β, while im(4k) ∩ β = ∅ for every k ≤ m, so im(4k)
and A are disjoint. In this way, we can extend

⋃
k≤m
4k to a permutation of ωl

that fixes every element of Pn.

9 Forcing multiple d-pathways

We now apply the results from the previous section to establish the existence
of multiple d-pathways in certain random and Cohen models. Having that goal
in mind, we find it convenient to introduce the following notion:

Definition 47 Let P be a partial order. We say that P has the transformation
property if for every large enough regular κ, 〈M0, ...,Mn〉 a δ-increasing sequence
of models in Sub(κ) where P ∈ Mi for every i ≤ n, ȧ0 ∈ M0, ..., ȧn ∈ Mn that
are P-names for subsets of ω, there is an automorphism H : P −→ P such that
H (ȧi) ∈Mn for every i ≤ n and H (ȧn) = ȧn.

Note that the automorphism H is not require to be in Mn. We recommend
that the reader consult Section 3 as we will be using the notation and results
from there.

Theorem 48 (CH) Let P be a ccc forcing that does not add dominating reals
and has the transformation property. P forces that there is a multiple d-pathway.

Proof. Choose B = {fα | α ∈ ω1} ⊆ ωω a scale of increasing functions, κ a
large enough regular cardinal such that P ∈ H(κ) . Define S0 = {M | M ∈
Sub(κ) ∧ B,P ∈ M}, which is stationary. We claim that if G ⊆ P is a generic
filter, then in V [G] we will have that (B,S) is a multiple d-pathway, where
S = {M [G] |M ∈ S}. Since P is ccc, S is forced to be stationary, M [G]∩V = M
and δM [G] = δM for every M ∈ S0 (see [47] and [52]).

Let p ∈ P, 〈M0, ...,Mn〉 a δ-increasing sequence of models in S0, ẋ0 ∈
M0, ..., ẋn ∈ Mn that are P-names for elements of ωω and Ṙ ∈ Mn a name
for a projective and ≤∗-adequate relation. Since a projective relation can be
coded by a subset of ω (as well any element of ωω), by the transformation prop-
erty, we can find an automorphism H : P −→ P such that H (ẋi) ∈Mn for every
i ≤ n, H (ẋn) = ẋn and H(Ṙ) = Ṙ. Since Ṙ is forced to be ≤∗-adequate, there is
ġ ∈Mn a P-name that is forced to be an Ṙ-control for (H (ẋ0) , ...,H (ẋn)) . Since
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P does not add dominating reals and is ccc, we know that H (p) “fδn �∗ ġ”.

Therefore, we know that H (p) “H(Ṙ) (H (ẋ0) , ...,H (ẋn) , fδn)” and since H is
an isomorphism, with the aid of Proposition 1, we conclude that p “Ṙ (ẋ0, ..., ẋn, fδn)”.

Both Cohen and random forcings are ccc and do not add dominating reals
(random forcing does not even add unbounded reals, see [2]). Our next goal is
to show that they have the transformation property. For the remainder of the
section, P will denote either Cohen or random forcing, l a natural number and
κ a large enough regular cardinal.

Proposition 49 (CH) Let M,N ∈ Sub(κ) with δM ≤ δN , I ∈ M ∩ [ωl]
ω

and
ȧ ∈M a P (I)-name for a subset of ω. If 4 : ωl −→ ωl a permutation for which
there is P ∈ M a finite partition of I such that for every A ∈ I we have that
4 � I is order preserving and 4 [A] ∈ N, then 4∗ (ȧ) ∈ N.

Proof. Take an enumeration P = {Pi | i ≤ n} and choose β < δM a limit
ordinal larger than OT(I) . For each i ≤ n, denote γi = OT(Pi) and ei : Pi −→
γi the only isomorphism. Since4 is order preserving in each Pi, we know that γi
is isomorphic to 4 [Pi] as well. Let êi : 4 [Pi] −→ γi be the only isomorphism.
Note that ei ∈M and êi ∈ N. We now define the function:

h : I −→ ω1 g : 4 [I] −→ ω1

Such that for every α ∈ Pi :

h (α) = βi+ ei (α) g (4 (α)) = βi+ êi (4 (α))
= βi+ ei (α)
= h (α)

Clearly h = g4 and im(h) = im(g) . We have the isomorphisms h∗ : P (I) −→
P (h [I]) and g∗ : P (4 [I]) −→ P (h [I]). Note that h, h∗ ∈ M and g, g∗ ∈ N.
Denote ḃ = h∗ (ȧ) , which is a P (h [I])-name. Since h [I] is a countable subset
of ω1, since P (h [I]) is ccc, we can code ḃ as an element of M∩H(ω1) and by
Lemma 40, we conclude that ḃ ∈ N. In this way, we know that ċ = g−1∗ (ḃ) is a
P (4 [I])-name that is in N. In this way, in order to prove that 4∗ (ȧ) is in N,
it is enough to show that it is equal to ċ. Let p ∈ P (4 [I]) and n ∈ ω. Using
Propositions 1 and 3, we obtain the following:

p “n ∈ ċ” ←→ p “n ∈ g−1∗ (ḃ)”

←→ g∗ (p) “n ∈ ḃ”
←→ g∗ (p) “n ∈ h∗ (ȧ)”
←→ h−1∗ g∗ (p) “n ∈ ȧ”
←→

(
h−1g

)
∗ (p) “n ∈ ȧ”

←→ 4−1∗ (p) “n ∈ ȧ”
←→ p “n ∈ 4∗ (ȧ)”

We conclude that 4∗ (ȧ) = ċ ∈ N and finish the proof.
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We can finally prove:

Proposition 50 (CH) P (ωl) has the transformation property.

Proof. Let κ be a regular large enough cardinal, 〈M0, ...,Mn〉 a δ-increasing
sequence of models from Sub(κ) and ȧ0 ∈ M0, ..., ȧn ∈ Mn be P (ωl) names for
subsets of ω. For every i ≤ n, find Ai ∈ Mi ∩ [ωl]

ω
such that ȧi is a P (Ai)-

name. We now use Lemma 44 to summon P = 〈Pi | i ≤ n〉 a coherent sequence
of partitions for 〈M0, ...,Mn〉 such that Ai ⊆ ∪Pi for every i ≤ n. Denote
Ii = ∪Pi for every i ≤ n. Clearly Ii ∈ Mi and ȧi is a P (Ii) -name. We now
invoke Proposition 46 to find a permutation 4 : ωl −→ ω1 such that is the
identity in every element of Pn and for every B ∈

⋃
Pi it is the case that

4 [B] ∈Mn and 4 � B is order preserving. Finally, by Proposition 49, we know
that 4∗ (ȧi) ∈ Mn for every i ≤ n. Moreover, since 4 � In is the identity, we
get that 4∗ (ȧn) = ȧn.

We can now conclude:

Corollary 51 (CH) Let l < ω. Both C (ωl) and B (ωl) force that there is a
multiple d-pathway.

In particular:

Theorem 52 (CH) Let l < ω. B (ωl) force that there is a strong P-point and a
Gruff ultrafilter.

Of course this is also true for Cohen forcing, but it is not new since the
existence of a Gruff ultrafilter and a strong P-point follow from d = c (see [23]
and [26]).

10 Open Questions

We now list some questions we do not know how to solve. The most important
one is the following:

Problem 53 Are there P-points (Gruff ultrafilters, strong P-points) in every
model obtained by adding any number of random reals to a model of CH?

It would be enough to provide a positive answer to the following:

Problem 54 Does CH imply that C (κ) and B (κ) have the transformation prop-
erty for any cardinal κ?
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In [19] the first author proved that there will be an ultrafilter that does not
contain a nowhere dense P-subfilter (equivalently, ω∗ can not be covered by
nowhere dense P-sets) after adding ω2 Cohen reals to a model of CH+ �ω1

. It
might seem that the ideas in this paper could be adapted to obtain the same
conclusion after adding fewer that ℵω Cohen reals to a model of CH. In fact,
when attempting to adapt the proof from [19] to our setting, the argument
works almost entirely, but fails at the very end of the proof.

Problem 55 Assume CH and let κ be a regular cardinal. Does C (κ) force that
there is an ultrafilter that does not contain a nowhere dense P-subfilter? What
if κ < ℵω?

Acknowledgement 56 We would like to thank Michael Hrušák for several
helpful discussions related to the topic of this paper.
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