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Abstract. A function U : [ω1]
2 −→ ω is called (1, ω1)-weakly uni-

versal if for every function F : [ω1]
2 −→ ω there is an injective func-

tion h : ω1 −→ ω1 and a function e : ω −→ ω such that F (α, β) =
e (U (h (α) , h (β))) for every α, β ∈ ω1. We will prove that it is consis-
tent that there are no (1, ω1)-weakly universal functions, this answers
a question of Shelah and Steprāns. In fact, we will prove that there
are no (1, ω1)-weakly universal functions in the Cohen model and af-
ter adding ω2 Sacks reals side-by-side. However, we show that there are
(1, ω1)-weakly universal functions in the Sacks model. In particular, the
existence of such graphs is consistent with ♣ and the negation of the
Continuum Hypothesis.

Introduction and Preliminaries. A graph U : [ω1]
2 −→ 2 is called uni-

versal if for every graph F : [ω1]
2 −→ 2 there is an injective function

h : ω1 −→ ω1 such that F (α, β) = U (h (α) , h (β)) for each α, β ∈ ω1. It is

easy to see that universal graphs exist assuming the Continuum Hypothesis,

and in [14] and [15] Shelah showed that the existence of universal functions

is consistent with the failure of CH. In [10] Mekler showed that the existence

of universal functions U : [ω1]
2 −→ ω is also consistent with the failure of

the Continuum Hypothesis. Universal graphs and functions were recently

studied by Shelah and Steprāns in [13], where they showed that the exis-

tence of universal graphs is consistent with several values of b and d. They

also considered several variations of universal functions, in particular, the

following notion was studied:

Definition 1. A function U : [ω1]
2 −→ ω is (1, ω1)-weakly universal if for

every F : [ω1]
2 −→ ω there is an injective function h : ω1 −→ ω1 and

a function e : ω −→ ω such that F (α, β) = e (U (h (α) , h (β))) for every

α, β ∈ ω1.

Evidently, every universal function is (1, ω1)-weakly universal. In [13] it

was proved that a function U : [ω1]
2 −→ ω is (1, ω1)-weakly universal if and

only if for every F : [ω1]
2 −→ ω there is an injective function h : ω1 −→ ω1
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such that if F (α, β) 6= F (α1, β1) then U (h (α) , h (β)) 6= U (h (α1) , h (β1))

for every α, β, α1, β1 ∈ ω1.

In an unpublished note of Tanmay Inamdar, it was proved that (1, ω1)-

weakly universal functions exist assuming Martin’s axiom for Knaster forc-

ings (see [13]). In [13] Shelah and Steprāns asked the following:

Problem 2 ([13]). Is there (in ZFC) a (1, ω1)-weakly universal function?

In this note, we answer the previous question in the negative. For more

on universal graphs and functions, the reader may consult [9] and [13].

Recall that ♣ is the following statement:

♣): There is a family {Sα | α ∈ LIM (ω1)} such that each Sα is an

unbounded subset of α and for everyX ∈ [ω1]
ω1 the set {α | Sα ⊆ X}

is stationary.

The principle ♣ is a weakening of the ♦ principle. It is well known that

♣ is consistent with the failure of the Continuum Hypothesis (see [16], [5],

[8] or [1]). The stick principle (introduced in [2]) is a weakening of ♣ :

•
| ): There is a family {Sα | α ∈ ω1} ⊆ [ω1]

ω such that for every X ∈
[ω1]

ω1 there is an α ∈ ω1 such that Sα ⊆ X.

It is easy to see that the stick principle is a consequence of both ♣ and

CH. For more on ♣ and •| the reader may consult [1], [5], [7] and [4].

We say that a tree p ⊆ 2<ω is a Sacks tree if for every s ∈ p there is t ∈ p
extending s such that t_0, t_1 ⊆ p. The set of all Sacks trees is denoted by

S and we order it by extension. Given an ordinal α, by Sα we will denote the

countable support product of α copies of Sacks forcing and by Sα we denote

α-iteration of S with countable support. By the Sacks model we mean the

model obtained after forcing with Sω2 and by the side-by-side Sacks model

we mean the model obtained after forcing with Sω2 to a model of GCH.

Although the partial orders Sω2 and Sω2 are not forcing equivalent, they

share very similar features. It is then interesting to point out differences

between this two forcing notions. Some of the main differences between

them are the following:
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(1) In the Sacks model every subset of reals of size ω2 can be mapped

continuously onto the reals, while in the side-by-side Sacks model

this is not the case (see [12]).

(2) The cardinal invariant hm1 is evaluated differently on the Sacks

model and in the side-by-side Sacks model (see [6]).

(3) The CPA axioms hold in the Sacks model but not in the side-by-side

Sacks model (see [3]).

In this note, we will point out another difference: There are (1, ω1)-weakly

universal functions in the Sacks model, while there are no such graphs in the

side-by-side Sacks model. In [9] it was proved that •| + c > ω1 implies that

there is no universal function U : [ω1]
2 −→ 2. However, our results show

that the existence of (1, ω1)-weakly universal functions is even consistent

with ♣+ c > ω1.

The countable support product of Sacks forcing. The Sacks side-

by-side model is the model obtained by forcing with Sω2 over a model of

the Generalized Continuum Hypothesis. We will prove that there are no

(1, ω1)-weakly universal graphs in the Sacks side-by-side model.

We will need the following lemma:

Lemma 3. There is a function π : 2ω −→ ωω such that for every r ∈ 2ω,

if f is an infinite partial function such that f ⊆ π (r) , then r is definable

from f.

Proof. Let h : ω −→ 2<ω be a definable bijection. We define π : 2ω −→ ωω

as follows: if r ∈ 2ω and n ∈ ω then π (r) (n) = m if m is the least natural

number such that h (m) is an initial segment of r and h (m) has length at

least n. It is easy to see that π has the desired property. �

Note that if M is a transitive model of ZFC and r /∈ M then π (r) does

not contain infinite partial functions from M. We will use the following

unpublished result of Baumgartner (the reader may consult [8] for a proof):

Proposition 4 (Baumgartner). The principle ♣ holds in the Sacks side-

by-side model.

1The cardinal invariant hm is the smallest size of a family of cmin-monochromatic sets
required to cover the Cantor space (where cmin (x, y) is the parity of the largest initial
segment common to both x and y). It is known that c−, cof (N ) ≤ hm (see [6]). It is
an open question of Geschke if the inequality hm < r is consistent. In a yet unpublished
work, the author proved that the inequality hm < u is consistent.
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In fact, we will only use that every uncountable subset of ω1 in the Sacks

side-by-side model contains a countable ground model set. Given a function

F : [ω1]
2 −→ ω and U : [ω1]

2 −→ ω, we say that (h, e) is an (1, ω1)-weakly

universal embedding from F to U if h : ω1 −→ ω1 is an injective function,

e : ω −→ ω and F (α, β) = e (U (h (α) , h (β))) for every α, β ∈ ω1. We

can now prove the following result, answering the problem of Shelah and

Steprāns:

Proposition 5. There are no (1, ω1)-weakly universal graphs in the Sacks

side-by-side model.

Proof. Let p0 ∈ Sω2 and U̇ such that p0  “U̇ : [ω1]
2 −→ ω”. Since the

product of Sacks forcing has the ω2-chain condition, we may find ω1 ≤ β <

ω2 such that p0 ∈ Sβ and U̇ is a Sβ-name. Given α < ω1, let ḋα be name

for π (ṙβ+α) where ṙβ+α is the name for the (β + α)-generic real. For every

infinite α < ω1, we fix an enumeration α = {αn | n ∈ ω} .

If G ⊆ Sω2 is a generic filter, in V [G] we define a function F : [ω1]
2 −→ ω

as follows: given ω ≤ α < ω1 we define F (αn, α) = dα (n) . Let Ḟ be a name

for F and let ḣ be a Sω2-name for an injective function from ω1 to ω1 and ė

be a Sω2-name for a function from ω to ω. We will see that we can find an

extension q of p0 that forces that (ḣ, ė) is not a (1, ω1)-embedding of Ḟ in

U̇ .

We can first find p1 ≤ p0 and a ground model injective function g : S −→
ω1 such that p1  “g ⊆ ḣ” where S ∈ [ω1]

ω (this is possible since the stick

principle holds in the Sacks side-by-side model, witnessed by the ground

model countable sets). Let M be a countable elementary submodel such

that p1, U̇ , β, Ḟ , g, ḣ, ė ∈ M. Let q ≤ p1 be a (M,Sω2)-generic condition.

We claim that q forces that (ḣ, ė) is not an (1, ω1)-embedding of Ḟ in U̇ .

Assume this is not the case, so there is q1 ≤ q that forces that (ḣ, ė) is an

(1, ω1)-embedding of Ḟ in U̇ .

Let G ⊆ Sω2 be a generic filter such that q1 ∈ G. Let X = β ∪ (M ∩ ω2)

and define GX to be the restriction of G to SX . Since q1 is a (M,Sω2)-generic

condition, it follows that U̇ [G] , ė [G] ∈ V [GX ] . Fix δ ∈ ω1 such that S ⊆ δ

and β + δ /∈ X, let A = {n ∈ ω | δn ∈ S} . For every α ∈ ω1, we define

fα : A −→ ω the function given by fα (n) = ė [G]
(
U̇ [G] (g (δn) , α)

)
and

note that fα ∈ V [GX ] for every α ∈ ω1. Let α ∈ ω1 such that ḣ [G] (δ) = α.
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Since (ḣ [G] , ė [G]) is forced to be an (1, ω1)-embedding, if n ∈ A then we

have the following:

dδ (n) = Ḟ [G] (δn, δ)

= ė [G]
(
U̇ [G]

(
ḣ (δn) , ḣ (δ)

))
= ė [G]

(
U̇ [G] (g (δn) , α)

)
= fα (n)

Hence fα ⊆ dδ, but this is a contradiction since rβ+δ /∈ V [GX ] . �

The Cohen model. The Cohen model is the model obtained after adding

ω2-Cohen reals with finite support to a model of the Generalized Continuum

Hypothesis. We will show that there are no (1, ω1)-weakly universal graphs

in the Cohen model.

Lemma 6. If U : [ω1]
2 −→ ω then U is not (1, ω1)-weakly universal after

adding ω2 Cohen reals.

Proof. Let U : [ω1]
2 −→ ω. We define the function H : [ωω]2 −→ ω given

by H (x, y) = |x ∧ y| (where x∧ y denotes the largest initial segment which

both x and y have in common). Let ċα be the name for the α-Cohen real.

Let Ḟ be a name of a function from [ω1]
2 to ω such that Cω2  “Ḟ (α, β) =

H (ċα, ċβ) ”.

Let p ∈ Cω2 , ḣ a name for an injective function from ω1 to ω1 and ė a

name for a function from ω to ω. We must find q ≤ p and α, β ∈ ω1 such

that q  “Ḟ (α, β) 6= ėU(ḣ (α) , ḣ (β))”. For every α < ω1 we find pα ≤ p

and δα such that pα  “ḣ (α) = δα” and α ∈ dom (pα) . By the usual pruning

arguments, we may find X ∈ [ω1]
ω1 , R ∈ [ω2]

<ω , p ∈ Cω2 and s ∈ ω<ω such

that the following holds:

(1) {dom (pα) | α ∈ X} forms a ∆-system with root R.

(2) pα � R = p for every α ∈ X.
(3) α /∈ R for every α ∈ X.
(4) p (α) = s for every α ∈ X.

It is clear that {pα | α ∈ ω1} is a centered set (any finite set of conditions

are compatible). Let M be a countable elementary submodel such that

p, {pα | α ∈ ω1} , ė, R ∈ M. Since M ∩ ω2 is countable, we may find α, β ∈
X \ M such that α 6= β and dom (pα) ∩ M = dom (pβ) ∩ M = R. Let
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m = U (δα, δβ) . We may now find q and i such that the following conditions

hold:

(1) q ∈M and q ≤ p.

(2) q  “ė (m) = i”.

This is possible since p, ė ∈ M . Let t ∈ ω<ω be such that |t| > i and

s ⊆ t. We now define a condition q as follows:

q (ξ) =

〈 q (ξ) if ξ ∈ dom (q)
pα (ξ) if ξ ∈ dom (pα) \ dom (q) and ξ 6= α
pβ (ξ) if ξ ∈ dom (pβ) \ dom (q) and ξ 6= β
t if ξ = α or ξ = β

Note that this is possible since dom (q) ⊆M. Clearly q  “Ḟ (α, β) > i”

and q  “ė(U(ḣ (α) , ḣ (β))) = i” so q  “Ḟ (α, β) 6= ė(U(ḣ (α) , ḣ (β)))”.

�

Since Cohen forcing has the countable chain condition, we conclude the

following:

Proposition 7. There are no (1, ω1)-weakly universal graphs in the Cohen

model.

The Sacks model. The proof that there are no (1, ω1)-weakly universal

graph in the Side by Side Sacks model uses that the stick principle holds in

such model. It is then natural to wonder if the stick principle is enough to

get the non-existence of such graphs (under the failure of the Continuum

Hypothesis). Moreover, the stick principle already forbids the existence of

some universal graphs, as the following result of Shelah and Steprāns shows:

Proposition 8 ([13]). •| + c > ω1 implies that there is no universal function

U : [ω1]
2 −→ 2.

By the Sacks model we mean a model obtained by forcing with Sω2 over

a model of the Generalized Continuum Hypothesis. In this section, we will

prove that there is a (1, ω1)-weakly universal graph in the Sacks model. The

following is a result of Mildenberger:

Proposition 9 ([11]). ♣ holds in the Sacks model.
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In particular, we will be able to conclude that the existence of a (1, ω1)-

weakly universal graph is consistent with ♣. As usual, if T ⊆ 2<ω is a tree,

we denote by [T ] the set of all branches (i.e. maximal linearly order sets)

through T. Given f ∈ 2ω and T ⊆ 2<ω a finite tree, we say that f ∈∗ [T ] if

there is n ∈ ω such that f � n ∈ [T ] . If f ∈∗ [T ] , we define by f � T to be

the unique t ∈ 2<ω such that there is n for which t = f � n ∈ [T ] . For this

section, we fix W as the set of all (T, f) such that T ⊆ 2<ω is a finite tree

and f : [T ] −→ ω. It is easy to see that W is a countable set.

We will need some definition and lemmas regarding iterated Sacks forc-

ing. The following is based on [12] and [8]. If p ∈ S and s ∈ 2<ω we define

ps = {t ∈ p | t ⊆ s ∨ s ⊆ t} . Note that ps is a Sacks tree if and only if s ∈ p.
By supp (p) we will denote the support of p.

Definition 10. Let p ∈ Sα, F ∈ [supp (p)]<ω and σ : F −→ 2n. We define

pσ as follows:

(1) supp (pσ) = supp (p) .

(2) Letting β < α the following holds:

(a) pσ (β) = p (β) if β /∈ F.
(b) pσ (β) = p (β)σ(β) if β ∈ F.

Similar to previous situation, pσ is not necessarily a condition of Sα. We

will say that σ : F −→ 2n is consistent with p if pσ ∈ Sα. A condition p

is (F, n)-determined if for every σ : F −→ 2n either σ is consistent with

p or there is β ∈ F such that σ � (F ∩ β) is consistent with p and (p �

β)σ�(F∩β)  “σ (β) /∈ p (β) ”.

We say that p ∈ Sα is determined if for every F ∈ [supp (p)]<ω and for

every n ∈ ω there are G and m such that the following holds:

(1) G ∈ [supp (p)]<ω .

(2) F ⊆ G.

(3) n < m.

(4) p is (G,m)-determined.

The following result is well known:

Lemma 11 ([12]). For every p ∈ Sα there is a determined q ≤ p.
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Let p be a determined condition. We say that 〈(Fi, ni,Σi) | i ∈ ω〉 is a

representation of p if the following holds:

(1) Fi ∈ [supp (p)]<ω , ni ∈ ω.
(2) Fi ⊆ Fi+1 and ni < ni+1.

(3) supp (p) =
⋃
i∈ω
Fi.

(4) p is (Fi, ni)-determined for every i ∈ ω.
(5) Σi is the set of all σ : Fi −→ 2ni such that σ is consistent with p.

We will also need the following definition:

Definition 12. Let p ∈ Sα be a determined condition and ṙ an Sα-name

for an element of 2ω. We say that p is ṙ-canonical if there are two sequences

〈(Fi, ni,Σi) | i ∈ ω〉 and 〈Ci | i ∈ ω〉 with the following properties:

(1) {(Fi, ni,Σi) | i ∈ ω} is a representation of p.

(2) Ci = {Cσ | σ ∈ Σi} is a collection of disjoint clopen subsets of 2ω.

(3) For every σ ∈ Σi there is sσ ∈ 2ni such that Cσ ⊆ 〈sσ〉 .2

(4) If i ∈ ω and σ ∈ Σi, then pσ  “ṙ ∈ Cσ” (in particular, pσ determines

ṙ � ni).

In the above situation, we say that 〈(Fi, ni,Σi, Ci) | i ∈ ω〉 is an ṙ-canonical

representation for p. The following is lemma 6 of [12]:

Lemma 13 ([12]). Let α ≤ ω2 , p ∈ Sα and ṙ an Sα-name for an element of

2ω such that p  “ṙ /∈
⋃
β<α

V [Gβ] ”. There is q ≤ p such that q is ṙ-canonical.

With the same proof of the previous lemma, it is possible to prove the

following:

Lemma 14. Let α ≤ ω2 , p ∈ Sα, ṙ an Sα-name for an element of 2ω

such that p  “ṙ /∈
⋃
β<α

V [Gβ] ” and ġ an Sα-name for an element of ωω.

There is q ≤ p such that q is ṙ-canonical with ṙ-canonical representation

〈(Fi, ni,Σi, Ci) | i ∈ ω〉 and there is 〈hi | i ∈ ω〉 such that the following con-

ditions:

(1) hi : Σi −→ ω for every i ∈ ω.
(2) If i ∈ ω and σ ∈ Σi then qσ  “ġ (i) = hi (σ) ”.

2If t ∈ 2<ω we define 〈t〉 = {x ∈ 2ω | t ⊆ x} .
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The lemma 6 of [12] is proved using a fusion argument. To prove the pre-

vious lemma we use the same fusion argument, with the extra step of decid-

ing the respective value of ġ at each step. We leave the details for the reader.

As before, in the above situation we say that 〈(Fi, ni,Σi, Ci, hi) | i ∈ ω〉 is

an (ṙ, ġ)-canonical representation for q.

We can now prove the following:

Proposition 15. Let η < ω2, ġ and p ∈ Sη+1 such that p  “ġ : ω −→ ω”.

There is a determined q ∈ Sη+1 and {(n, Tn, fn) | n ∈ ω} with the property

that {(Tn, fn) | n ∈ ω} ⊆ W such that the following holds:

(1) q ≤ p.

(2) q  “ṙη ∈∗ [Tn] ” for each n ∈ ω.
(3) q  “ġ (n) = fn (ṙη � Tn) ” for every n ∈ ω.

Proof. By the previous lemma, we can find p1 ≤ p that has an (ṙη, ġ)-

canonical representation {(Fi, ni,Σi, Ci, hi) | i ∈ ω}. We now have the fol-

lowing interesting property: If G ⊆ Sη+1 is a generic filter with p1 ∈ G and

〈rα〉α≤η is the generic sequence, then the following holds in V [G] :

*): For every i ∈ ω and σ ∈ Σi, if rη ∈ Cσ then σ (β) ⊆ rβ for every

β ∈ Fi.

This property holds because Ci = {Cσ | σ ∈ Σi} is a collection of disjoint

sets. In this way, rη is able to “code” each of the previews generic reals.

Let Y be the set of all maximal z ∈ 2<ω with the property that 〈z〉 ⊆
⋃
Ci.

Note that since Ci is a finite set of clopen sets, Y is a finite set. Let Ti be

the smallest finite tree such that Y ⊆ Ti. Note that Ti has the following

properties:

(1)
⋃

s∈[Ti]
〈s〉 =

⋃
Ci.

(2) For every s ∈ [Ti] there is exactly one σ ∈ Σi for which 〈s〉 ⊆ Cσ

(where Ci = {Cσ | σ ∈ Σi}).

For every i we have the following properties:

(1) p1  “ṙη ∈ [Ti] ”.

(2) Let G ⊆ Sη+1 be a generic filter with p1 ∈ G and σ ∈ Σi. If rη ∈ Cσ
then (p1)σ ∈ G.

We now have the following claim:
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Claim 16. If i ∈ ω, s ∈ [Ti] and q0, q1 are two conditions extending p1

such that qi  “s ⊆ ṙη” for j ∈ {0, 1} then there is k ∈ ω such that

q0  “ġ (i) = k” and q1  “ġ (i) = k”.

We will prove the claim. Let σ ∈ Σi such that 〈s〉 ⊆ Cσ and let j < 2.

Note that since qj ≤ p1 and qj  “ṙη ∈ Cσ”, it follows that qj  “ (p1)σ ∈ Ġ”

(where Ġ is a name for the generic filter), hence qj  “ġ (i) = hi (σ) ”, the

claim follows.

For every n ∈ ω, we define a function fn : [Tn] −→ ω as follows: for

every s ∈ [Tn] , let fn (s) such that for every q ≤ p1 if q  “s ⊆ ṙη” then

q  “ġ (n) = fn (s) ”. Note that fn is well defined by the previous claim. It

is easy to see that {(n, Tn, fn) | n ∈ ω} has the desired properties. �

We will say that a graph U : [ω1]
2 −→ W is (1, ω1)-weakly universal if

for every F : [ω1]
2 −→ ω there is an injective h : ω1 −→ ω1 and a function

e : W −→ ω such that F (α, β) = e (U (h (α) , h (β))) . As expected, we have

the following result:

Lemma 17. If there is a U : [ω1]
2 −→ W which is (1, ω1)-weakly universal,

then there is U1 : [ω1]
2 −→ ω that is (1, ω1)-weakly universal.

Proof. Let U : [ω1]
2 −→ W be a (1, ω1)-weakly universal graph. Fix g :

W −→ ω a bijective function. We define U1 : [ω1]
2 −→ ω where U1 (α, β) =

g (U (α, β)) . It is easy to see that U1 is (1, ω1)-weakly universal. �

For the rest of this section, we will assume the Continuum Hypothesis.

Fix a large enough regular cardinal θ > (2ω2)+ . We will now fix M =

{(Mα,∈,Sηα+1 , pα, ηα, ξα, ġα) | α ∈ ω1} with the following properties:

(1) Mα is a countable elementary submodel of H (θ) with the property

that pα, ηα, ξα, ġα ∈Mα.

(2) ηα < ω2 and pα ∈ Sηα+1.

(3) ξα < ω1 and pα  “ġα : ξα −→ ω”.

(4) For every (N,∈,Sη+1 , p, η, ξ, ġ) if the following properties hold:

(a) N is a countable elementary submodel of H (θ) with the prop-

erty that p, η, ξ, ġ ∈ N.
(b) η < ω2 and p ∈ Sη+1 .

(c) ξ < ω1 and p  “ġ : ξ −→ ω”.
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Then, there is α < ω1 such that (Mα,∈,Sηα+1 , pα, ηα, ξα, ġα)

and (N,∈,Sη+1 , p, η, ξ, ġ) are isomorphic.

This is possible since Sη+1 is proper and we are assuming the Contin-

uum Hypothesis. For every α < ω1, let δα = Mα ∩ ω1. We now choose

{βα | α ∈ ω1} ⊆ ω1 such that δα < βα and if α1 6= α2 then βα1 6= βα2 . For

every α < ω1, we also fix an enumeration ξα = {ξα (n) | n ∈ ω} . By the

previous lemmas, for every α < ω1, we can find qα, {(n, Tαn , fαn ) | n ∈ ω}
such that the following holds:

(1) qα ∈ Sηα+1 ∩Mα and qα ≤ pα.

(2) {(Tαn , fαn ) | n ∈ ω} ⊆ W.

(3) qα  “ṙηα ∈∗ [Tαn ] ” for each n ∈ ω.
(4) qα  “ġα (ξα (n)) = fαn (ṙηα � Tαn ) ” for every n ∈ ω.

We now define the graph U : [ω1]
2 −→ W as follows: given α < ω1 and

n ∈ ω we define U (ξα (n) , βα) = (Tαn , f
α
n ) (the value of U is not important

in any other case, so if a pair (ν1, ν2) is not of the form (ξα (n) , βα) , we can

let U (ν1, ν2) be any element of W otherwise). We will show that U is forced

to be (1, ω1)-weakly universal. Given η < ω2, in the forcing extension, we

define the function eη : W −→ ω given by eη (T, f) = f (ṙη � T ) if ṙη ∈∗ [T ]

and eη (T, f) = 0 in other case. We need the following lemma:

Lemma 18. Let G ⊆ Sω2 be a generic filter. Let η < ω2, ξ < ω1 and

g : ξ −→ ω such that g ∈ V [Gη+1] . There is α ∈ ω1 such that the following

holds:

(1) ξα = ξ.

(2) g (ξα (n)) = eη(U (ξα (n) , βα)) for every n ∈ ω.

Proof. It is enough to show that the conditions that force the above proper-

ties are dense, in this way, there will be such condition in the generic filter.

Let p ∈ Sη+1, we will see we can extend p to get the desired conclusion. LetN

be a countable elementary submodel such that p, η, ξ, ġ ∈ N. We first find

α < ω1 such that (Mα,∈,Sηα+1 , pα, ηα, ξα, ġα) and (N,∈,Sη+1 , p, η, ξ, ġ)

are isomorphic. Let π : Mα −→ N be the isomorphism and let q = π (qα) .

Note that the isomorphism fixes every ordinal smaller than δα (in particular

each ξα (n)) as well as each element in W. By the isomorphism, the following

conditions hold:

(1) q ∈ Sη+1 ∩N and q ≤ p.

(2) q  “ṙη ∈∗ [Tαn ] ” for each n ∈ ω.
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(3) q  “ġ (ξα (n)) = fαn (ṙη � Tαn ) ” for every n ∈ ω.

By the last clause, it follows that q  “ġ (ξα (n)) = eη(U (ξα (n) , βα))”.

�

We can then prove the following:

Proposition 19. There is a (1, ω1)-weakly universal graph in the Sacks

model.

Proof. We will show that U is forced to be a (1, ω1)-weakly universal graph

(note that this is enough by lemma 17). Let p ∈ Sω2 and Ḟ such that

p  “Ḟ : [ω1]
2 −→ ω”. Since Sacks forcing has the ω2-chain condition, we

may assume that there is η < ω2 such that p ∈ Sη and Ḟ is an Sη-name.

Given γ ≤ ω1, we will say that an injective function h : γ −→ ω1 is a

partial eη-embedding if F (α, β) = eη(U (h (α) , h (β))) for every α, β < γ.

Let G be a generic filter such that p ∈ G. We claim that in V [Gη+1] the

following holds:

*): If h : γ −→ ω1 is a partial eη-embedding with γ < ω1, then there

is a partial eη-embedding h : γ + 1 −→ ω1 extending h.

We argue in V [Gη+1] . Let ξ =
⋃
h [γ] + 1 and note we can find g ∈

V [Gη+1] such that g : ξ −→ ω and g (h (δ)) = F (δ, γ) for all δ < γ. By

the previous lemma, there is α ∈ ω1 such that ξα = ξ and g (ξα (n)) =

eη(U (ξα (n) , βα)). We now define h = h ∪ {(γ, βα)} . Note that βα /∈ h [γ]

since h [γ] ⊆ ξ = ξα < δα < βα. We only need to prove that h is a partial

eη-embedding. Let δ < γ, we can find n ∈ ω such that h (δ) = ξα (n) . It

then follows that:

eη(U
(
h (δ) , h (γ)

)
) = eη(U (ξα (n) , βα))

= g (ξα (n))
= g (h (δ))
= F (δ, γ)

This finishes the claim. It is clear that any maximal eη-embedding will

embed F into U. �

Open questions. In general, a function U : [ω1]
2 −→ ω is (1, κ)-weakly

universal if for every F : [ω1]
2 −→ ω there is an injective function h :
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ω1 −→ ω1 and a function e : ω −→ ω such that |e−1 (n)| < κ for every

n ∈ ω and F (α, β) = e (U (h (α) , h (β))) for every α, β ∈ ω1. It would be

interesting to know the answer of the following question:

Problem 20. Are there (1, ω)-weakly universal functions (or even (1, 2)-

weakly universal functions) in the Sacks model?

In fact, we conjecture that •| + c > ω1 implies that there are no (1, ω)-

weakly universal functions.

We would like to mention that there are no (1, ω1)-weakly universal func-

tions after performing a pseudo-iteration of Cohen forcing, as described in

[5]. It would be interesting to know what kind of universal graphs exist on

the “canonical models” of set theory.

Problem 21. Are there (1, ω1)-weakly universal functions in the random,

Hechler, Laver, Miller and Mathias models?

The purpose of the CPA axioms introduced in [3] is to provide an axiom-

atization of the Sacks model. In light of this work, it is then natural to ask

the following:

Problem 22. Does the existence of (1, ω1)-weakly universal functions follow

from one of the CPA axioms?
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