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On Completely Separable MAD Families 

Osvaldo Guzman 

Abstract 

We survey some constructions of completely separable MAD families. 

1 Introduction 

An infinite family .A<:;;; [wt is called almost disjoint (or AD for short)1 if the 
intersection of any two of its elements is finite. An AD family is called MAD if 
it is maximal with this property. Almost disjoint families and MAD families are 
very important in set theory, topology and functional analysis ( the reader may 
consult [18] and [17] for a survey on AD families and their applications). It is 
easy to prove that the Axiom of Choice implies the existence of MAD families; 
however, constructing MAD families with special combinatorial or topological 
properties is a very difficult task without appealing to an additional hypothesis 
beyond the usual axioms of set theory. The following is a quote of Hrusak and 
Simon (see [19]): 

Special MAD families are notoriously difficult to construct in ZFC 
alone. The reason being the lack of a device ensuring that a recursive 
construction of a MAD family would not prematurely terminate, an 
object that would serve a similar purpose as independent linked 
families do for the construction of special ultrafilters. The notion of 
a completely separable MAD family is a candidate for such a device 
an, moreover, is an interesting notion in its own right. 

Before introducing the definition of a completely separable MAD family, we 
need the following notions: 

Definition 1 If .A is an AD family, we define: 

1. I (.A) is the ideal generated by .A ( and all finite sets). In other words, X E 

I (.A) if and only if there are Ao, ... , An E .A such that X <:;;;* Ao U ... U An. 

2. I (.At is the set of all subsets of w that are not in I(.A). 

1 The definition of the undefined terms will be presented in the next section. 
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3. I (A)++ is the set of all X ~ w for which there is BE [At such that if 
A E B then X n A is infinite. 

4. A_1_ is the set of all X ~ w such that IX n Al < w for every A EA. 

5. We say that A is nowhere MAD if for every XE I(A)+ there is YE [Xt 
such that Y E A_1. 

6. If X E [wt , define A I X = { A n X I A E A I\ IA n XI = w} . 

It is not difficult to prove that an AD family A is MAD if and only if I(A) + = 
I(At+. Completely separable MAD families were introduced by Hechler in [16]. 
We recall the definition: 

Definition 2 Let A be a MAD family. We say that A is completely separable 
if for every X EI (At there is A EA such that A~ X. 

In other words, A is completely separable if every X ~ w satisfies the fol
lowing dichotomy: either X is almost covered by finitely many elements of A, 
or X contains an element of A. The following problem was posed by Erdos and 
Shelah in 1972 (see [10]): 

Problem 3 (Erdos-Shelah) Is there a completely separable MAD family? 

It is easy to prove that consistently the answer is affirmative. Most of the 
early work on Problem 3 was done by Balcar and Simon (see [l]). They proved 
that completely separable MAD families exist assuming one of the following 
axioms: 

n=c 
b = c'l 
() :'S n 
-5 =W1 

A major advance on Problem 3 was done by Shelah himself in [28]. He 
proved that there is a completely separable MAD family in the following cases: 

,s < a 
,s = a + a certain "PCF hypothesis" 
,s > a + a certain "PCF hypothesis" 

In [22] Mildenberger, Raghavan and Steprans (building from results in [24]) 
were able to eliminate extra hypothesis in the second case and provide an uni
form proof for the first and second cases. In this way, it follows that ,s :S: a 
implies that there is a completely separable MAD family. We will talk more 
about the "PCF hypothesis" mentioned above later on, but for now, let us just 
mention that such hypothesis holds in case the continuum is smaller than Nw. 
In this way, we have the following: 
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Theorem 4 (Mildenberger, Raghavan, Shelah, Steprans) There is a com
pletely separable MAD family under the following assumptions: 

1. s :S: a. 

2. C < Nw, 

The purpose of the present survey is to provide a proof of the above Theorem. 
In [18] a uniform proof of the existence of a completely separable MAD family 
was provided in the case that c is less than Nw. 

The technique initially developed by Shelah and further improved and ex
tended in [24] and [22] is very powerful and has more applications beyond the 
construction of completely separable MAD families. We list some examples: 

1. (Raghavan and Steprans [24]) There is a weakly tight MAD family ifs :S: b. 

2. (G. [14]) There is a +-Ramsey MAD family. 

3. (G.) There is no Katetov-top MAD family ifs :S: b. 

4. In his master's thesis, Miroslav Olsak constructed examples of m-tuples 
of topological spaces such that the product of the m-tuple is not Frechet 
but all smaller subproducts are Frechet. 

Moreover, Raghavan has many more applications of this method, unfortu
nately, his results remain unpublished. The impression of the author is that 
although this technique for building MAD families is extremely powerful, it is 
not very well-known. The author chose this topic for the current survey as well 
as for his mini course at the RIMS Set Theory Workshop in the hope to get 
more people interested in it. 

The current survey is heavily based on [24], [22] and [18]. Neither the the
orems, nor the proofs found in here are due to the author. The author only 
claims ownership of the mistakes or inaccuracies found in this paper. 

2 Cardinal Invariants of the Continuum 

The cardinal invariants of the continuum play a fundamental role in the con
struction of completely separable MAD families. The following is a quote from 
Raghavan (see [23]): 

A cardinal invariant of the continuum marks the place where a 
given type of diagonalization argument that works for any countable 
ordinal first fails; a cardinal invariant can be associated with each 
type of diagonalization argument. Moreover, there is always a set of 
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size c for which these diagonalization arguments fail, so that every 
cardinal invariant lies between w1 and c (since the diagonalization 
always works for countable ordinals). 

The reader may find a lot of information on cardinal invariants in [2], [29], 
[30] and [23]. In here, we will just recall the basic notions that will be needed 
in the paper. 

Let f, g E ww, define f :'S g if and only if f (n) :'S g (n) for every n E wand 
f :'S* g if and only if f (n) :'S g (n) holds for all n E w except finitely many. We 
say a family I3 c:;; ww is unbounded if I3 is unbounded with respect to :S:* . We 
say that S splits X if X n Sand X \ S are both infinite. A family Sc:;; [wt 
is a splitting family if for every X E [wt there is S E S such that S splits X. 
If A, B E [wt, by A c:;;* B we mean that A\ B is finite and we say that A 
is an almost subset of B. We will say that A E [wt is a pseudointersection of 
1{ c:;; [wt if A is almost contained in every element of 1{. 

Definition 5 

1. By c we demote the size of the continuum. 

2. The bounding number b is the smallest size of an :'S* -unbounded family 
of functions. 

3. The splitting number -5 is the smallest size of a splitting family. 

4. The almost disjointness number a is the smallest size of a MAD family. 

The following is a very useful notion when working with the bounding num
ber: 

Definition 6 Let I3 c:;; ww. We say that I3 is a b-scale if the following conditions 
hold: 

1. (B, :'S*) is well-ordered of order type b. 

2. I3 is unbounded. 

3. Every element of I3 is an increasing function. 

It is easy to see that there are b-scales. An important features of b-scales 
is that they are not only unbounded with respect to total functions, but with 
infinite partial functions as well: 

Lemma 7 Let I3 c:;; ww be a b-scale, A E [wt and g : A ----+ w. There is 
f E I3 such that f I A i* g (i.e. there are infinitely many n E A such that 
f (n) > g (n)). 
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Proof. Take an increasing enumeration A = { an I n E w}. For every n E w, 
define an interval Pn as follows: Po = [O, ao] and Pn+l = (an, an+1J. We now 
define g: w -----+ w where g(i) = g(an+1) for all i E Pn+l· Since Bis an 
unbounded family, there is f E B such that g does not dominate f. We claim 
that f I A i.* g. Since f is not dominated by g, we know that there are 
infinitely many i E w such that g ( i) < f ( i) . Now, if i E Pn+I, then we get that 
g (an+i) < f (i). Since i :::; an+l and f is increasing, it follows that g (an+i) < 
f(i):::;J(an+1). ■ 

It is not hard to prove that b :::; n. There is no other provable relation between 
n, b and s. Each of the following statements are consistent: 

1. s = b = n (this holds under CH or MA). 

2. (Dow [7]) s < b = n (this holds in the Laver model). 2 

3. (Shelah [27]) s, b < n (a model for this inequality is obtained by iterating 
along a template. See also [4]). 

4. (Shelah [25], see also [26], [6] and [15]) b = n < s (This can be done with 
a countable support iteration of proper forcings. It is also possible to do 
it with matrix iteration, see [5]). 

5. (Shelah [25], see also [6] and [15]) b < s = n (This can be done with a 
countable support iteration of proper forcings. It is also possible to achieve 
it using matrix iteration with the aid of a measurable cardinal, see [5] and 
[3]. See also [8]). 

6. (Fischer and Mejia [12]) w1 < s < b < n (see also [21] and [11]). 

It is worth pointing out that there are still open problems regarding this 
cardinal invariants. The following is a very interesting problem of Brendle and 
Raghavan: 

Problem 8 (Brendle, Raghavan [6]) Does b = s = w1 imply n = w1 ? 

3 Basic results on Completely Separable MAD 
families 

In this section we will prove some basic facts of MAD and completely sepa
rable MAD families. Although not all of the results in this section will be used 
in the paper, we included them because we believe they are useful for getting 
insight on completely separable MAD families. 

2 The hard part of this result is that ,s = w1 holds in the Laver model, which was proved 
by Alan Dow. 
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The following result is fundamental when working with AD families: 

Proposition 9 Let A be an AD family and {Yn I n E w} s;;; I(At a decreasing 
sequence. There is X E I(A)+ that is almost contained in each Yn. 

Proof. Let Y = {Yn I n E w} s;;; I (At be a decreasing family. If there is 
Z E A_i_ such that Z is a pseudointersection of Y we are done. We now assume 
Y does not have a pseudointersection in A_i_. We recursively find a family B = 
{ Bn I n E w} s;;; I (A) such that the following holds: 

1. Each Bn is a pseudointersection of Y and Bn s;;; Yn. 

2. There is An E A such that Bn s;;; An. 

3. If n -/- m then An -/- Am. 

Let X = LJ Bn, it is easy to see that X is the set we were looking for. ■ 
nEw 

We know that if A is a completely separable MAD family, then every element 
of I(At contains an element of A. In fact, it must contain a lot of them: 

Lemma 10 Let A be a completely separable MAD family. If X EI (At, then 
the set { A E A I A s;;; X} has size c. 

Proof. Since X E I (A)++ , we know there is a family { An I n E w} s;;; A such 
that An n X is infinite for every n E w and An -/- Am whenever n -/- m. We 
can now find an almost disjoint family B s;;; [Xt of size c such that B n An is 
infinite for every n E w and B E B. Since A is completely separable, for every 
B EB, there is AB EA such that AB s;;; B. Finally, note that if B, CE Band 
B -/- C, then AB -/- Ac since B and C are almost disjoint. ■ 

The following notion is closely related to the completely separable MAD 
families. 

Definition 11 Let A be a MAD family. We say that A has true cardinality c 
if for every XE I(At, the set {A E I(A) I IA n XI = w} has size c. 

It follows by Lemma 10 that every completely separable MAD family has 
true cardinality c. A MAD family of true cardinality c may not be completely 
separable, nevertheless, we have the following result: 

Lemma 12 The following statements are equivalent: 

1. There is a completely separable MAD family. 

2. There is a MAD family of true cardinality c. 
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Proof. By the remark above, it is enough to prove that we can construct a 
completely separable MAD family from one of true cardinality c. Let A a MAD 
family of true cardinality c. Take an enumeration [wt= {Xa I a E c} such that 
every infinite subset of w appears cofinally many times. We will recursively 
build a family B = { B~ I i < 2 /\ a E c} ~ [wt such that for every a E c, the 
following holds: 

l. Bg n B; = 0. 

2. There is A E A such that A = Bg U B;. 

3. B is almost disjoint. 

4. Let B<a = { Bi I~< a/\ i < 2}. If Xa E I(B<a)++, then Bg ~ Xa or 

B; ~ Xa. 

Assume we are at step a of the construction. If Xa tJ. I(B<at+, we choose 
any A E A that does not contain an element of B<a and we take any two disjoint 
Bg, B; E [At such that A = Bg U B;. Now, assume that Xa E I(B<at+. 
Note that this implies that Xa E I(A)+. Since A has true cardinality c, we can 
find A E A that does not contain any element of B<a and An X is infinite. We 
find disjoint Bg,BJ, E [At such that A= Bg U B; and (at least) one of them 
is contained in X. This finishes the construction. 

It is easy to see that B is a completely separable MAD family. ■ 

It is easy to see that completely separable MAD families may consistently 
exist: 

Proposition 13 a = c implies that there is a completely separable MAD family. 

Proof. By Lemma 12 it is enough to prove that there is a MAD family of true 
cardinality c. In fact, we claim that every MAD family has true cardinality c. 
Let A be a MAD family and XE I(A)+. Note that Ar Xis a MAD family on 
X (since A is maximal), so it must have size c. ■ 

It is worth noting that Problem 3 can be solved (without the need of an 
additional axiom beyond ZFC) if we do not demand maximality. In general, we 
say that an AD family A is completely separable if for every X EI (A)++ there 
is A EA such that A ~ X (recall that if A is maximal, then I(At = I(At+). 
The following is a remarkable theorem of Petr Simon: 

Theorem 14 (Simon [13]) There is a completely separable nowhere MAD fam
ily. 
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Using a completely separable nowhere MAD family, Galvin constructed a 
Cech function (see [13]). 

In this paper we will focus on two constructions of completely separable 
MAD families. To learn more about them as well as applications, the reader 
may consult [1], [19], [13] and [18] among others. 

4 Splittings 

In order to build a completely separable MAD family, we need to be able to 
"split the right sets at the right time". Probably this statement does not make 
any sense to the reader at the moment, but it as we continue with our quest to 
build a completely separable MAD family. 

We say that P = { Pn I n E w} is an interval partition if it is a partition of 
w into consecutive intervals. Given interval partitions P and Q define Q ::; P if 
for every Pn E P there is Qm E Q such that Qm ~ Pn (in other words, every 
interval in P contains at least one interval of Q) and Q :=;*P if for almost all 
Pn E P there is Qm E Q such that Qm ~ Pn (i.e. almost every interval in P 
contains at least one interval of Q). The proof of the following useful lemma 
can be found in [2]. 

Lemma 15 b is the smallest size of an unbounded family of partitions (using 
the order :=; *). 

The following is a stronger notion than of a splitting family: 

Definition 16 

1. Let S E [wt and P = { Pn I n E w} be an interval partition. We say S 
block-splits P if both of the sets {n I Pn ~ S} and {n I Pn n S = 0} are 
infinite. 

2. A family S ~ [wt is called a block-splitting family if every interval par
tition is block-split by some element of S. 

3. By hs we denote the smallest size of a block-splitting family. 

It is easy to see that every block-splitting family is splitting. The reader may 
complain that the notation bs is inconvenient, since it could be confused with 
the (cardinal) product of b ands. Fortunately, this is not an issue by following 
result of Kamburelis and Weglorz: 

Proposition 17 ([20]) bs = max{b,s}. 
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Proof. Obviously ,s :S b,s and now we will prove that b :S b,s. It is enough to 
show that no family of size less than b is a block-splitting family. Let µ < b and 
S = { Sa I a < µ} be a family of infinite subsets of w. For every a < µ define an 
interval partition Pa= {Pn (a) In E w} such that each Pn (a) has non-empty 
intersection with both Sa and w \ Sa. Since µ < b then there is an interval 
partition R = { Rn I n E w} :S* -dominating each Pa i.e. almost all intervals of 
R contains one of Pa. It is easy to see that no element of S can block-split R. 

Now we will construct a block-splitting family of size max{b,,s}. First find 
an unbounded family of interval partitions B = {Pa I a< b} (where Pa = 
{Pa (n) In E w}) and a splitting family S = {Sf, I /3 < ,s}. Given a < band 
/3 < ,s define Da,f, = LJ Pa (n) we will prove that {Da,f, I a< b, /3 < ,s} is a 

nESfJ 

block-splitting family. Let R = { Rn I n E w} be an interval partition. Since B 
is unbounded, there is a < b such that Pa is not dominated by R. We can then 
find an infinite set W = { Wn I n E w} such that for every n < w there is k < w 
for which Rk c:;; Pa (wn) (this is possible since Pa is not dominated by R). Since 
S is a splitting family, there is /3 < ,s such that both SI> n W and (w \ SI>) n W 
are infinite. It is easy to see that Da,f, block-splits R. ■ 

The following is an easy, yet fundamental result. It shows that with a block
splitting family we can split any positive element (with respect to an AD family) 
in two positive sets. 

Proposition 18 ([24]) Let S be a block-splitting family, A an AD family and 
XE I (A)+. There is SES such that X n S, X \SE I (A)+. 

Proof. We first assume that there is YE [Xt such that YE A_1_. This is the 
easy case, we just take any S E S that splits X (recall that S is a splitting 
family). 

We now assume that X does not contain any infinite subset in A_1_. Since X E 
I(At, it follows that X EI (A)++. This means that there is { An I n E w} c:;; A 
such that X n An is infinite for every n E w. Now, define an interval partition 
P = {Pn In E w} such that if i :S n then Pn n (Ai n X) -/- 0. Since Sis a 
block-splitting family, there is SES that block-splits P. It follows that X n S, 
X n (w \ S) EI (A)+. ■ 

It is worth pointing out that for the previous proposition, the full strength 
of a block-splitting family was not needed. It is enough to assume that S is a 
"(w, w)-splitting family", which we define now: 

Definition 19 Let SE [wt and X = {Xn In E w} c:;; [wt. 

1. We say that S (w,w)-splits X if both the sets {n I IXn n SI= w} and 
{n I IXnn(w\S)I =w} are infinite. 
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2. We say that S ~ [wt is an (w,w)-splitting family if every countable col
lection of infinite subsets of w is (w, w )-split by some element of S. 

It is easy to see that a block-splitting family is ( w, w )-splitting. Furthermore, 
Proposition 18 is true for (w,w)-splitting families. In [22], it was proved that 
there is an (w,w)-splitting family of sizes. Hence, there is always a splitting 
family of size s satisfying the conclusion of the above proposition3 • For the 
purpose of this survey, there is no advantage in using (w,w)-splitting instead 
of block-splitting, so we stick with the later notion. However, there could be a 
difference in future applications. 

The following is well-known: 

Lemma 20 s has uncountable cofinality. 

Proof. We argue by contradiction. Let S be a splitting family of sizes. We 
can then find { Sn I n E w} such that S =LJSn and each Sn has size less than 
s (so they are "nowhere splitting"). We can then recursively find a decreasing 
sequence P = { An I n E w} such that no element of Sn splits An, Let B be a 
pseudointersection of P. It is easy to see than no element of S splits B, which 
is a contradiction. ■ 

It was a long open problem ifs was a regular cardinal. This problem was 
finally solved by Dow and Shelah in [9] where they proved thats may be singular. 

It is easy to see that b is a regular cardinal, so we get the following: 

Corollary 21 bs has uncountable cofinality. 

Naturally, when we think of a cardinal invariant that allows to split some 
sets, the splitting number is the one that first comes into mind. However, there 
are some kinds of sets that can be splitted using b. This is the content of the 
following lemma. It will not be needed until the case of n < s. 

Lemma 22 Let B = {En In E w} ~ [wt be a ~-decreasing sequence. There 
is a family .C(B) = { La I o: < b} ~ Bo such that if A is any AD family and 
X E [wt that satisfy the following property: 

* (B, A, X) There are infinitely many n E w for which 
there is An EA such that A~* En\ Bn+l 

and X n An -/- 0. 

Then, there is o: < b such that La n X, X \ La E I(At. 

3 This is a very interesting proof. Since we do not need it, we will not review it here, but 
we recommend the reader to study it at some point. 
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Proof. Define Cn = Bn \ Bn+ 1 and let H = { n I I Cn I = w} . If H is finite, 
there is nothing to do, so we assume H is infinite. Let B = {fa I a < b} be 
a b-scale. For every a < b, define La = LJ Ua (n) n Cn)- We claim that 

nEw 
.C(B) = {La I a< b} has the desired properties. Let A be an AD family and 
X c:;; w such that * (B, A, X) holds. Let K be the infinite subset of all n E w for 
which there is An <:;;;* Bn \ Bn+l such that X n An =/= 0. We may assume that 
X = LJ (X nAn)-

nEK 

First consider the case where there is Y E [Xt such that Y E A_!_. Note 
that Y n An is finite for every n E K. Let W = { n I Y n An =/= 0} and define 
g : W--+ w such that Y n An c:;; g (n) for every n E w. Now, find a < b such 
that fa I W is not dominated by g (see Lemma 7). In this way, Lan Y is 
infinite. It follows that Lan X, X \ La E I(At and we are done. 

We now assume that [XtnAJ_ is empty. In this way, we may find {Dn In E w} 
and { En I n E w} with the following properties: 

1. { Dn I n E w} <:;;; A. 

2. Dn =/= Am for every n, m. 

3. En is an infinite subset of X n Dn. 

As in the previous case, for every n E w we can find an < b such that 
Lan n En is infinite for every n E w. Let a= LJ an and note that a < b since 

nEw 

bis regular. It follows that Lan X, X \ La E I(A)+ and we are done. ■ 

The reader should compare Lemma 22 and Proposition 18. In some way, 
Lemma 22 seems like a more restricted version of Proposition 18. In the case 
of ,s ::::; a, we will use Proposition 18, but in case of a < ,s that is not possible, so 
we need to settle with the more complicated Lemma 22. 

5 A completely separable MAD family from ,s < a 

We are now ready to build a completely separable MAD family assuming that 
the splitting number is at most the almost disjointness number. As mentioned 
in the introduction, Shelah proved that there is a completely separable MAD 
family if ,s < a. He also proved that there is such family assuming ,s = a plus an 
extra hypothesis ([28]). Later, Mildenberger, Raghavan and Steprans eliminated 
the need for the extra hypothesis in the case of ,s = a and provided a uniform 
proof for both cases (see [22] and [24]). The proof we present here is the one 
from [22]. 

For convenience, given X c:;; w we denote x 0 = X and X 1 = w \ X. We can 
now prove the following: 
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Theorem 23 (Mildenberger, Raghavan, Shelah, Steprans) Ifs :s; a, then 
there is a completely separable MAD family. 

Proof. Assume that s :s; a (which obviously implies that bs :s; a). Fix S = 
{ Sa I a < bs} a block-splitting family. By Proposition 18, if A is any AD family 
and X EI (At, then there are a < bs and rf E 2°' such that: 

1. If /3 < a then X n str;t(/3) EI (A) (hence X n s;3t<f3) EI (At). 

2. XnSm X\Sa EI(At. 

Clearly TJ E 2<.s is unique and if Y E [Xt n I (At then T/ extends 
Tf. Let [wt = {Xa I a< c}. We will recursively construct A= {Aa I a< c} 
and {a-a I a< c} ~ 2<b.s such that for every a< c the following holds (where 
A<a = {A!; I~< a}): 

1. A<a is an AD family. 

3. If /3 < a, then O"a <J;. 0-13. 

4. If Xa E I(A<at then Aa ~ Xa. 

5. If~< dom(o-a) then A°'~* s;a(!;)_ 

It is clear that if we manage to satisfy this requirements, then we will have 
build a completely separable MAD family. Assume we already have A<6 = 
{A!; I~< <5}. Let X = X,5 if X,5 EI (A<i5t and in the other case, let X = w (or 
any other element of I (A<,5)+). We recursively find {Xs I s E 2<w} ~ I (A<,5)+ 
,{7/s Is E 2<w} ~ 2<b.s and {as Is E 2<w} as follows: 

1. X0 = X. 

2. 7)s = Tf: and O:s = dom (17s). 

3. Xs-o = Xs n Sas and Xs-1 = Xs n (w \ SaJ. 

Note that if t ~ s then Xs ~ Xt and 7/t ~ 1/s• On the other hand, if s is 
incompatible with t, then 1/s and 7/t are incompatible. For every f E 2w let 
1/J = LJ 1/Jrn· Since bs has uncountable cofinality, each 1/J is an element of 

nEw 

2<b.s_ Furthermore, if f -I g, then 1/J and 179 are incompatible nodes of 2<b.s_ 
Since <5 is smaller than c, me can find f E 2w such that there is no a < o such 
that a-a extends 7) f. Now, { X Jrn I n E w} is a decreasing sequence of elements 
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in I(A<8t, so by Proposition 9 we know there is Y E I(A<8)+ such that 
Y ~* Xnn for every n E w. 

Letting (3 = dom (ru), we claim that if~< (3, then Y n st'IJ(/;) EI (Ad). 
To prove this, let n be the first natural number such that ~ < dom (TJnn). By 

construction, we know that Xnnnst'IJ(/;) E I(A<8) and since Y ~* Xnn the 
claim follows. 

For every~< (3, find F1; E [A<J]<w such that Y n st1JJ(/;) ~* LJ F1; and let 
W = {Ac, I O"a ~ T/J}. Denote V = WU LJ F1; and note that V has size less 

l;</1 
than bs, hence it has size less than a. In this way, Y IV is not a MAD family, 
so there is A 8 E [Yt that is almost disjoint with every element of V. Define 
O"J = T/J· We claim that A8 is almost disjoint with A<8· 

Let o: < <5, we need to argue that Aa n A8 is finite. In case that Aa E W 
we already know it, so assume Aa tj. W. Letting ~ = 6 ( u 8, u a) we know that 
Aa ~* stuo(i;) so Aa n A8 ~* LJ F1; but since F1; ~ V we conclude that A8 is 
almost disjoint with LJ F1; and then Aa n A8 must be finite. ■ 

It is worth noting that in the proof above, each A<8 { A1; I ~ < <5} is 
nowhere MAD. In [14] the previous ideas were used to construct a +-Ramsey 
MAD family under ,s ::; a. 

It is worth pointing out that if we used an (w, w)-splitting family instead of 
a block-splitting family, we could have worked with 2<.s instead of 2<b.s. This 
makes no difference in the present paper, but we point it out because it could 
be important in future applications. 

6 The extra hypothesis 

In the introduction, we just mentioned that the case ,s > a (and a= ,s in the 
original proof of Shelah) required a certain "PCF hypothesis" and provided no 
more details. We will explain what this mysterious assumption is in this chapter. 
By a PCF hypothesis, one usually means a hypothesis on cof([""t)4 for some 
cardinal ""· This hypothesis usually hold in case "" < Nw. Personally, the author 
prefers to think in this hypothesis like some sort of "diamond" or "guessing 
principle" instead of a hypothesis of [ ""t. The content of this section and the 
following one is based on [18]. 

We start with the following well-known fact: 

Lemma 24 cof([wnt) = Wn for every n 2". 1. 

4 cof([i;;t) is the smallest size of a family C <:;; [i;;t such that for every A E [i;;t there is 
CE C such that A<:;; C. Note that if is regular, then is; :S cof([i;;t). 
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Proof. We already know that Wn :S cof([wnt). It remains to prove that for 
every n ~ l there is a cofinal family of size Wn· We proceed by induction on n. 
We start with n = l. In this case, it is clear that { o: I w :S o: < w1} ~ [wit is a 
cofinal family. 

Assume the lemma is true for n, we will prove it is also true for n + l. Let 
A= {o: I Wn :So:< Wn+1}. By the inductive hypothesis, for every o: EA there 
is a cofinal family Ca ~ [o:t of size Wn· Let C = LJ Ca. It is clear that ICI = Wn+i 

aEA 
and since Wn+i has uncountable cofinality, C is a cofinal family. ■ 

If Wis a set of ordinals, by OT(W) we denote the order type of W We now 
introduce the following principle: 

Definition 25 Let K be a cardinal such that b :S K. The principle P(b, K) is 
the following statement: There is a family {U a I w :S o: < K} with the following 
properties: 

1. Ua ~ o: and OT(Ua) = w. 

2. For every X ~ "', if OT(X) 
IUanXl=w. 

b, then there is o: < LJX such that 

We want to convince the reader that P(b, K) is a very mild assumption. We 
start with the following lemma: 

Lemma 26 Let W be a countable set of ordinals. There is a family 1l(W) ~ 
[Wt with the following properties: 

1. IH(W)I = b. 

2. Every element of 1l (W) has order type w. 

3. For every XE [Wt there is HE 1l (W) such that IX n HI= w. 

Proof. We prove the lemma by induction on the order type of W, which we 
call o:. The cases o: = w or o: a successor are trivial. Assume that o: > w 

is a limit ordinal. We first consider the case that there is /3 < o: such that 
o: = f3 + w. Let W0 be the first /3 elements of W and W1 = W \ W1 . Clearly 
1l (W) = 1l (Wo) U 1l (W1 ) has the desired properties. 

We now assume o: > w is a limit but it is not of the form /3 + w for any 
f3 < o:. In here, we can find {Wm Im E w} such that for every n E w, the 
following conditions hold: 

l.W= LJWm. 
mEw 

2. If l E Wn and 'T) E Wn+l, then l < 'TJ· 
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3. Wn is infinite and has order type less than a. 

For every n E w, take an enumeration W n = {,Bn ( i) I i E w} . Let B = 
{h I~< b} <;;; ww be ab-scale. For every~< b, define A~= {,Bn (i) Ii :S: h (n)}. 
Using Lemma 7, it is easy to see that 1{ (W) = {A~ I~< b} U LJ 1{ (Wn) has 

nEw 
the desired properties. ■ 

We conclude the following: 

Corollary 27 Let K be a cardinal such that b :S: K and cof{[Kt) = K. There is 
a family S(K) <;;; [Kt with the following properties: 

1. IS(K)I = K. 

2. Every element of S(K) has order type w. 

3. For every XE [Kt there is HE S(K) such that IX n HI = w. 

We can naturally extend the definition of P(b, K) to any ordinal: 

Definition 28 Let I be an ordinal such that b :S: ,. The principle P(b, 1 ) is 
the following statement: There is a family {Ua I w :S: a < 1 } with the following 
properties: 

1. Ua <;;; a and OT(Ua) = w. 

2. For every X <;;; 1 , if OT(X) 
IUanXl=w. 

b, then there is a < LJX such that 

If this is the case, we will say that {Ua I w :S: a< 1 } is a P(b, 1 )-sequence. 
We can now prove the following: 

Proposition 29 If I is an ordinal such that b :S: 1 < ~w, then P( b, 1) is true. 

Proof. We proceed by induction over 1 . The base case 1 = b holds by Lemma 
24 and Corollary 27. The successor case is trivial. Moreover, if I is not an 
indecomposable ordinal5 , then the result easily follows from the inductive hy
pothesis. We now assume that I is an indecomposable ordinal and let ,8 = cof 
(,). 

Fix C = { 1~ I ~ < ,8} be a club on I with the following properties: 

1. ,o = 0 and 11 = b. 

5 An indecomposable ordinal is an ordinal closed under (ordinal) addition. 
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2. 21~ < r~+l for every ~ < /3. 

Define L~ = [,~, ,~+1) for every~ < /3. Let Ea be the class of even ordinals 
and E1 the class of odd ordinals. Now, by the inductive hypothesis, we can find 
{Ua (,~+1) I w :::; a < 1~+1 /\ a E E1} that is a P(b, ,~+1)-sequence. We now find 
{ U"' (,) I w :::; a < 1 } with the following properties: 

1. If a E E1 and a EL~, then Ua (,) = Ua (,~+1). 

2. {Ua (,) I 1~ :::; a < ,~+1 /\ a E Ea} has the following properties: 

(a) Each Ua (,) has order type w. 

(b) For every YE b~t, there is a E Ea with 1~ :::; o: < ,~+1 such that 
Y n U"' (1 ) is infinite. 

The second point is possible since 21~ < ,~+1 as well as Lemma 24 and 
Corollary 27. We claim that {Ua (,) I w :::; a < 1 } is the family we are looking 
for. 

Let X ~ 1 of order type b. We first consider the case where there is ~ < /3 
such that IL~ n XI = b. In here, since {Ua (,~+1) I w :::; a < ,~+1 /\ a E E1} is a 
P(b, 1~+1 )-sequence, we know that there is a E E1 such that a< LJ (L~ n X):::; 
LJX and Ua (,~+1 ) = Ua (,) has infinite intersection with X. 

We now assume that IL~ n XI < b for all~ < /3. For every n E w, let ~n be 
then ordinal such that L~n n X -/- 0. Define~ = LJ ~n- Note that ~ < 1 and 

nEw 

also cl~+l < LJX. It follows that there is a E Ea with 1~ :::; a < 1~+1 such that 
Y n U"' (1 ) is infinite. ■ 

In particular, it follows that if b:::; ,s < Nw, then P(b,,s) holds. This is the 
hypothesis we need in order to construct a completely separable MAD family. 

7 A Completely Separable MAD family from 
a<s(+c) 

We will now construct a completely separable MAD family from a< ,s (and 
an extra hypothesis). The proof is very similar to the one of Theorem 23, but 
more complicated. We recommend the reader to only proceed if she\he has 
mastered Theorem 23. As with the previous section, the content of this section 
is based on [18].6 

6 In [18] there is an uniform proof (without case subdivisions) that there is a completely 
separable MAD family if c < Nw. 



23

Theorem 30 (Shelah) If a< ,s and P(b,,s) holds, then there is a completely 
separable MAD family. 

Proof. Assume a< ,sand P(b,,s) holds. Fix a family {Ua I w:::; a< ,s} with 
the following properties: 

l. Ua ~ a and OT(Ua) = w. 

2. For every X ~ ,s, if OT(X) 
IUanXl=w. 

b, then there is a < LJX such that 

For each a < ,s, enumerate Ua = { Ua (n) I n E w} in an increasing way. Now, 
choose a partition { Pa I a E ,s} of ,s with the following properties: 

1. IPol =,sand w ~ Po. 

2. If a-/= 0, the following holds: 

(a) IPal = b. 
(b) a:::; min(Pa) < max(Pa) <a+ b. 

Since b,s is the maximum of b and ,s and b :::; a< ,s, we know that there is a 
block-splitting family of size ,s. Fix {Sa I a E P0 } a block-splitting family and 
take an enumeration [wt= {Xa I a E c}. 

Our goal is to recursively define {(Aa,O'a,Ca) I a E c} such that for every 
a < c, the following properties hold: 

1. A<a = {A~ I l <a}~ [wt is an AD family. 

2. O'a E 2<s. 

3. If /3 < a, then O'a % 0"13. 

4. If Xa E I(A<at, then Aa ~ Xa, 

5. Ca : 2<s--+ p (w) and Aa ~* Ca(O'a 1 ~)era(~) for every~< dam (O'a). 

It is clear that if we manage to do this, then we will have achieved in con
structing a completely separable MAD family. The requirements look very simi
lar to the ones in the proof of Theorem 23, but there is an important difference: 
The presence of the function Ca. Note if we had Ca (O') = Sdom(cr), then we 
will have exactly the same requirements as in Theorem 23. However, in this 
case, the function Ca (in general) will not be constant by levels and in usually 
Ca -/= C13 whenever a-/= /3. 

The function Ca can be computed from A<a and { O'~ I ~ < a} in the follow
ing way: Let T E 2<s and let ~ < ,s such that T E 2( The definition of Ca ( T) is 
by cases: 
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Case 31 t E Po. 

In here, we simply define Ca (7) = Sf. (so in this case, Ca is constant by 
levels, but in the other case it may not be like that). 

Case 32 t E Pi with 6-=/ 0 (recall that 6 :St< 6 + b). 

In here, for every n E w we define: 

B:;, (7) = .n ( Cc, (7 r ui (i)r(uo(i)) \ ATruo(i-l)) 
i:<,;n 

Where A 7 ruo(i-l) is defined as follows: 

1. If there is /3 < a such that 7 r ui (i -1) = a13, then ATruo(i-l) = A13 (note 
that at most one (3 can satisfy the requirement). 

2. In the other case, let A7 ru8 (i-l) = 0. 

It follows that B°' (7) = (B:;_ (7))nEw is a decreasing sequence of subsets 
of w. Fix a family .C(B°' (7)) of size b as in Lemma 22. Take an enumeration 
.C(B°' (7)) ={L~ (v) Iv E Pi} (recall that Pi has size b). 

Finally, define Ca (7) = L~ (t) (recall that tis the height of 7). 

A key property of the functions (Ca)a<c is that they are "coherent" in the 
following sense: 

If 'Y < a, then C, (a, 1 t) = Ca (a, 1 t) 
for every t < dam (a,) 

This is the reason why we demanded that if (3 < a, then aa cJ;. a13. In this 
way, C, (a, rt) and Ca (a, rt) are computed in the same way. In particular, 
we get the following: 

If 'Y < a, then A,~* Ca (a, 1 t)""'(f.l 
for every t < dam (a,) 

Before defining Aa and a°' we need to point out the following: For every 
XE I (A<a)+, there are t <.sand 7x E 2f. such that: 

1. If (3 < t then xncc, (7x r (3)1-Tx(/3) EI (A<a) (so xnca (7x r f3rx(/3) E 
I(A<at). 

2. X n Cc, (7x 1 /3), X \ Cc, (7x 1 /3) E I(A<a)+. 
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This is because {Sv Iv E P0 } is a block-splitting family (and by Proposition 
18). Clearly Tx E 2<.s is unique and if Y E [Xt n I (A<a)+ then Ty extends 
TX, 

We are now in position to define Aa and CT a, Let X = Xa if Xa EI (A<a)+ 
and if not, let X = w (or any other element of I(A<at). Using the same 
argument as in Theorem 23, we may find (Xn)nEw, Y, CJ and 'Y such that the 
following holds: 

1. Xo = X. 

2. (Xn)nEw is a decreasing sequence of elements in I(A<at· 

3. CJ= LJTXn· 
nEw 

4. 'Y = dam (CJ). 

5. Xn+l = Xn n Ca (CJ I 'Ynrhn) (where "In= dam (TxJ). 

6. If f3 < a, then CJ(3 does not extend CJ. 

7. Y EI (A<at and is a pseudointersection of (Xn)nEw contained in Xo, 

Now, our goal is to find a subset of Y that is almost disjoint with A<a· With 
this objective in mind, we define W as the set of all l < 'Y such that there is 
f3 < a with the following properties: 

1. 1Af3 n YI = w. 

2. Either CTf3 = CJ I l or l = L. (CJ(3, CJ). 

Now we will prove the following: 

Claim 33 IWI < b. 

Assume this is not the case. Let W0 be the first b-elements of W. By the 
principle P(b,s), we know that there is c5 < UW0 such that Uii n W0 is infinite. 
Note that c5 < c5 + b :S 'Y· Let l be the first element of Pii (so c5 :S l < c5 + b :S 1). 
Since UiinW0 is infinite, it follows that *(Ba (CJ 10, A<m Y) holds (see Lemma 
22). In this way, there is v E Pii (so c5 :S v < c5 + b :S 1) for which: 
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By definition, we know that Ca (a Iv)= L~r~ (v), hence: 

But this is a contradiction! since v < 'Y, so it must be the case that Y n 
Ca (a I v)1-a(v) E I(A<a). This finishes the proof that W has size less than b. 

For every t E W, define Z (t) E [A<a]<w as follows: 

1. Z(t) = {A,e} if IA,e nYI =Wand a,e = a It, or 

2. Y n Ca (a I t/-aC~l ~* LJZ (t). 

Let V = LJ Z (t). It follows that Vis an AD family of size less than b (so it 
~EW 

is less than a). In this way, V I Y is not maximal, so we can find Aa E [Yt n'DJ_. 
Define aa = a. We need to prove that Aa is almost disjoint with A<m but this 
follows by the same argument as the one of Theorem 23. ■ 

As discussed ear lier, we get the following: 

Corollary 34 If c < Nw, then there is a completely separable MAD family (in 
fact, s < Nw is enough). 

If there was a model where there are no completely separable MAD families, 
then a< s and the negation of P(b,s) must hold in that model. The author 
does not know if this is consistent. 
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