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J. CANCINO, O. GUZMÁN AND M. HRUŠÁK

Abstract. We review the use of the Katětov order in the classification of

ultrafilters.

1. Prologue: A brief and selective history of ultrafilters

The notions of a filter and ultrafilter were formally introduced by H. Cartan in
1937 ( [39,40]), allegedly after a memorable reunion of the Bourbaki group (see [127]
for an entertaining narrative), in search of a suitable generalization of the notion
of convergence. However, the story does not really start there. One can trace the
development of the notion independently as part of three, originally quite separate,
endeavors: topological - the aforementioned study of convergence, algebraic - the
study of (principal) ideals in rings, and measure theoretic - questions related to the
measure extension problem. We shall go through them one by one next.

Convergence in terms of nets had been developed by E. H. Moore and H. L.
Smith [146], G. Birkhoff [10] and J. W. Tukey [182] in parallel to the filter-based
treatment of convergence. Some authors (e.g. R. Engelking [65]) attribute the first
occurrence of the notion of an ultrafilter to F. Riesz’s 1908 paper [154] where on
page 23 a family of subsets of a space is defined which if the word verkettet is
interpreted as ”intersect”, indeed, defines an ultrafilter, however, in the context
of the paper it becomes clear that what he means is the family of sets which
accumulate to a given point of the space, hence, the family of the positive sets
with respect to the neighborhood filter of the point. A filter base, as a basis of the
neighborhood filter of a point in a space is explicitly defined in L. Vietoris’ [188]
in 1921. The space of ultrafilters βN was first considered by E. Čech [41] in 1937
(no mention of ultrafilters there), though he himself attributes the definition and
proof of existence of the so-called Stone-Čech compactification of completely regular
spaces to A. Tychonoff [184]. B. Posṕı̌sil [151] answering a question posed in [41]
then proves that the size of βN is 22

ω

.
The measure extension problem of Lebesgue [128] from 1904 was swiftly solved

by Vitali [189] in 1905 in the negative. The Polish school of mathematics started
looking at variants of the problem, in particular, into the existence of a diffuse fi-
nite or countably additive measure which measures all subsets of a given set. First,
S. Banach and K. Kuratowski [2] in 1929 showed that assuming the Continuum
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Hypothesis there cannot be a a countably additive such measure on the reals and
then S. Ulam [186] (1930) showed that the minimal cardinality of a set which ad-
mits such a measure has to be inaccessible, hence initiating the study of measurable
cardinals. For the finitely additive case A. Tarski [180] in 1930 published his cel-
ebrated prime ideal theorem, proving the existence of two-valued diffuse finitely
additive measures on an arbitrary infinite set, i.e. the characteristic function of a
free ultrafilter on the set. Curiously, (as acknowledged by Tarski at the end of his
paper) the result is equivalent to a result of S. Ulam [185] published in the previous
issue of Fundamenta Mathematicae.

Whereas the name filter is descriptively fitting, the dual notion of an ideal is
not quite as self-explanatory. The reason for this is that the term ideal pre-dates
the term filter by almost a full century and has its origin in the ideal numbers
E. E. Kummer1 [117] used in the proof of the failure of unique factorization for
cyclotomic fields. R. Dedekind [54] then formalized and studied ideals as subsets of
arbitrary rings. M. H. Stone’s representation [178] (1936) and duality [179] (1937)
theorems identified Boolean rings with Boolean algebras and the algebraic ideals
with complements of filters. From today’s perspective it is astounding that Stone’s
work precedes the notion of an ultrafilter.

It was P. Samuel [162] who made the natural switch from maximal ideals to
ultrafilters in the proof of Stone duality and coined the term space of ultrafilters
for βN which quickly became an important object of study. W. Rudin [161] in
1956 showed that the space N∗ = βN \ N of non-principal ultrafilters on N is not
homogeneous (assuming the Continuum Hypothesis) by noting that under CH there
are P-points while non-P-points exist in ZFC, hence realizing that not all ultrafilters
are the same.

At roughly the same time J.  Loś [129], building on previous work of T. Skolem
[171] and E. Hewit [88] introduced the ultraproduct and proved his famous theo-
rem. The use of ultraproducts spread quickly through mathematics most notably in
model theory, non-standard analysis and the theory of large cardinals (see e.g. [147]
and [78,79]). We refer the interested reader to J. Keisler’s survey [111] and the re-
cent book by I. Goldbring [80] for further reading on (the history of) ultraproducts.
We only mention the remarkable theorem of Keisler [109] that (assuming the Gen-
eralized Continuum Hypothesis) two models are elementarily equivalent if and only
if they have isomorphic ultrapowers and D. Scott’s [164] incompatibility of measur-
able cardinals with the Axiom of constructibility.

The study of ultrafilters as combinatorial objects in their own right started in
the 1960’s through the introduction of several interesting partial orders comparing
ultrafilters. J. Isbell [105] in 1965 briefly mentions ultrafilters in his study of the
Tukey order ( [182]) of cofinal types of directed partial orders (the problem whether
consistently all free ultrafilters on N are Tukey-equivalent became known as Is-
bell’s problem and will be further discussed in this article). M. E. Rudin [159,160]
studying the topological and similarity types of ultrafilters as points in βN , H.
J. Keisler [110] comparing ultrapowers, and M. Katětov [107, 108] in the study of
descriptive complexity of functions, independently introduced a pre-order on ultra-
filters; Rudin and Keisler considered only ultrafilters, while Katětov, in fact, intro-
duced two orders on filters in general which coincide when restricted to ultrafilters.
Now, the more restrictive of the two is called Rudin-Keisler order and the other

1Together with K. Weierstrass co-advisor of Georg Cantor.
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Katětov order. Yet another order was considered by Z. Froĺık [76] in order to give a
ZFC proof of W. Rudin’s non-homogeneity of N∗ = βN\N. This ordering is refreed
to as the Rudin-Froĺık order. The curious feature of Z. Froĺık’s proof is that unlike
W. Rudin’ CH argument, his does not produce an explicit topological property sat-
isfied by some but not all points of N∗. This has been rectified only much later by
K. Kunen [120] in his construction of weak P-points (i.e. ultrafilters which are not
accumulation points of any countable subsets of N∗). G. Choquet [46, 46, 52, 130]
and his school [52,53,130], in particular, G. Mokobodzki [145] identified important
classes of ultrafilters: selective ultrafilters (denoted as absolu), Q-points (as rare),
Hausdorff ultrafilters (denoted as property C ) and rapid ones, and showed that
these notions all differ assuming CH. Blass [14] and others later showed how these
combinatorial properties correspond to model-theoretic properties of the associated
ultrapowers.

At the beginning of the 1970’s the study of not only topological but also com-
binatorial properties of ultrafilters became a very active area of research. Whole
PhD theses were dedicated exclusively to the study of ultrafilters, most notably
D. Booth’s [23], A. Blass’s [11], J. Ketonen’s [112], R. A. Pitt’s [149], R. C.
Solomon’s [174], M. Daguenet’s [50], D. C. Devlin’s [55], N. I. Rosen’s [55], C.
Laflamme’s [122], S. Garćıa-Ferreira’s [77], M. Benedikt’s [8] and, more recently, J.
Flašková’s [72], J. L. Verner’s [190], A. Medini’s [135] and J. Cancino’s [34].

Much work has been done on the Rudin-Keisler and Tukey orders and the topol-
ogy of βN. We refer the reader to the survey [139] by J. van Mill and its update [87]
and Dobrinen’s survey [57]. One has to highlight the work done by K. Kunen here.
First [118] he showed how independent families can be used to remove the give
ZFC proofs of results about the Rudin-Keisler order originally proved using CH,
then [120] he constructed, in ZFC, weak-P-points, giving the ultimate proof of non-
homogeneity of N∗. Much thanks to Kunen’s insight it became clear that selective
ultrafilters are special. They are Rudin-Keisler minimal, being selective is equiva-
lent to being both a P-point and a Q-point, and to being Ramsey. A very useful
charactarization of selective ultrafilters was given by Mathias [134] by proving that
an ultrafilter is selective if and only if it intersects every tall analytic ideal. It was
only fitting that Kunen [119] proved that selective ultrafilters consistently do not
exist. This result was soon followed by A. Miller’s proof [141] of the consistency
of non-existence of Q-points and Shelah’s celebrated construction of the model of
ZFC without P-points (see [192] and [43]).

One also has to mention the first monograph dedicated to the theory of ultrafil-
ters by W.W. Comfort and S. Negrepontis [48], the role ultrafilters played in Ram-
sey theory of semigroups (see [91,93]), in particular, Hindman’s finite sums theorem
and the corresponding notion of a union ultrafilter, the work of A. Blass [13–15]
and his students [38,64,123–126,156–158], and the work of J.E. Baumgartner [5–7]
which ends this pre-introduction end leads us to the proper text.

2. Introduction

It is impossible to overstate the importance of ultrafilters in infinite combina-
torics, general topology, and model theory. From constructing ultraproducts, find-
ing limits on topological spaces, building compactifications of topological spaces and
semigroups, and proving Ramsey-type theorems, applications of ultrafilters can be
found across all of mathematics.
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The study of ultrafilters is such a big area that it is impossible to survey all of
it in a single paper. We will restrict ourselves to ultrafilters over countable sets.
Even so, the topic is very extensive, so we will focus on the interaction between
ultrafilters and definable ideals. Unfortunately, we will not have the opportunity
to talk about the importance of ultrafilters in topology or model theory. Many of
the topics that could not be covered in this survey can be consulted in the excellent
recent book [80].

The general outline of the paper is as follows: In the third section, we review the
preliminaries and notation. In the fourth chapter, we review the Katětov, Rudin-
Keisler, Katětov-Blass and Rudin-Blass orderings on ideals. We prove some basic
facts regarding definable ideals that will be needed in later chapters. In the fifth
chapter, we introduce Baumgartner’s notion of I-ultrafilters, which allows us to
classify ultrafilters using analytic (even Borel) ideals. We provide characterizations
of some classes of ultrafilters that resemble the characterization of Mathias of se-
lective ultrafilter. Now, our task is to find ways to construct I-ultrafilters. We do
this on chapters sixth where we study generic existence of classes of ultrafilters,
and seventh, where we use the parametrized diamonds introduce in [136] to build
ultrafilters with special properties. In the last chapter, we tackle the question of:
How different can ultrafilters be? We review consistency results regarding the non-
existence of ultrafilters, we study the Tukey order and Isbell’s problem. We also
present an axiomatization of a model due to the first author where there are no
I-ultrafilters for any Fσ ideal I.

3. Preliminaries and some notation

For completeness, we recall the definition of filters and ultrafilters.

Definition 3.1. Let X be a set and F a family of subsets of X. We say F is a
filter if the following conditions hold:

(1) X ∈ F and ∅ /∈ F .
(2) If A,B ∈ F , then A ∩B ∈ F .
(3) If A ∈ F and A ⊆ B, then B ∈ F .

A filter U is called an ultrafilter if it is a maximal filter. Unless otherwise spec-
ified, we assume that ultrafilters are not principal, which means that no singleton
belongs to U .

Ideals are dual to filters. While a filter is a measure or notion of “largeness”,
and ideal is an abstraction of “smallness”.

Definition 3.2. Let X be a set and I a family of subsets of X. We say I is an
ideal if:

(1) ∅ ∈ I and X /∈ I.
(2) If A,B ∈ I, then A ∪B ∈ I.
(3) If A ∈ I and B ⊆ A, then A ∈ I.

Given a set X and A ⊆ X, the complement of A relative to X is defined as
Ac = X\A. If F is a filter on X, the dual ideal of F is defined as F∗ = {Ac | A ∈ F}.
Similarly, for an ideal I, define dual filter of I as I∗ = {Ac | A ∈ F}. It is straight
forward to see that F∗ is an ideal and I∗ a filter. If I is an ideal on X, we let
I+ = ℘ (X) ∖ I be the family of I-positive sets. If F is a filter, we define F+
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= (F∗)
+

; it is easy to see that F+ is the family of all sets that have non-empty
(infinite) intersection with every element of F . If A ∈ I+ then the restriction of
I to A, defined as I ↾A = ℘ (A) ∩ I, is an ideal on A, where P (A) denotes the
powerset of A. An ideal is called tall if every infinite set has an infinite subset on the
ideal. A stronger notion of tallness is the one of ω-hitting; an ideal I is ω-hitting if
for every {Xn | n ∈ ω} ⊆ [ω] ω, there is a single A ∈ I such that A ∩Xn is infinite
for every n ∈ ω. We say that I is a P -ideal if every countable subfamily of I has a
pseudounion in I.

We now present the Borel ideals that will be critical in the present paper. The
reader may read [96] and [97] to learn more about them. For the next definitions,
given n ∈ ω, denote the column Cn = {(n,m) | m ∈ ω} and C = {Cn | n ∈ ω} .
Given f ∈ ωω, denote D (f) = {(n,m) | m ≤ f (n)} .

• The ideal fin is the ideal of finite subsets of ω.
• The eventually different ideal ED is the ideal on ω2 generated by C and the

graphs of functions from ω to ω.
• The ideal EDfin is the restriction of ED to △ = {(n,m) | m ≤ n} .
• The ideal fin×fin is the ideal on ω2 generated by C∪ {D (f) | f ∈ ωω} .
• The ideal conv is the ideal on Q∩[0, 1] generated by all convergent sequences.
• The nowhere dense ideal, nwd is the ideal of nowhere dense subsets of the

rational numbers.

• The summable ideal is the ideal I 1
n

=

{
A ⊆ ω |

∑
n∈A

1
n+1 < ∞

}
.

• The density zero ideal is the ideal Z =

{
A ⊆ ω | limn−→∞

|A∩[2n,2n+1)|
2n = 0

}
.

• The ideal R is the ideal on ω generated by the homogenous sets of the
random graph.

• The ideal GFC is the ideal on [ω]
2

generated by (the edges) of all finitely
chromatic graphs.

• The non-flat ideal nflat is the ideal on [ω]<ω generated by {[ω]n : n ∈
ω} ∪ {Xf : f ∈ (ω \ {0})ω is increasing}, where Xf = {s ∈ [ω]<ω : (∃k ∈
s)(s ∩ (k, f(k)] ̸= ∅)}.

Other than the non-flat ideal these ideals are Borel of low complexity:

Ideal Borel Complexity

fin Fσ

ED Fσ

EDfin Fσ

R Fσ

I 1
n

Fσ

GFC Fσ

nwd Fσδ

Z Fσδ

conv Fσδσ

fin×fin Fσδσ

We actually do not know whether nflat is Borel (it is clearly analytic).
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We now recall the combinatorial properties of ultrafilters on countable sets that
are most used in the literature.

Definition 3.3. Let U be an ultrafilter in ω.

(1) U is selective (or Ramsey) if for every partition {Pn | n ∈ ω} of ω, either
there is n ∈ ω such that Pn ∈ U or there is X ∈ U such that |X ∩ Pn| ≤ 1
for every n ∈ ω.

(2) U is a P -point if for every decreasing {Xn | n ∈ ω} ⊆ U there is X ∈ U
such that X ⊆∗ Xn for every n ∈ ω.

(3) U is a Q-point if for every partition {Pn | n ∈ ω} of ω into finite sets, there
is X ∈ U such that |X ∩ Pn| ≤ 1 for every n ∈ ω.

(4) U is rapid if the enumerative functions of the sets in U is a dominating
family in (ωω,≤∗) .

(5) U is Hausdorff if for every f, g ∈ ωω, either {n | f (n) = g (n)} ∈ U or there
is U ∈ U such that f [U ] ∩ g [U ] = ∅.

It is well-known that an ultrafilter is selective if and only if it is both a P -point
and a Q-point, all Q-points are rapid and all selective ultrafilters are Hausdorff.

Let A,B ⊆ ω, By A ⊆∗ B (A is almost contained in B) we mean that A \ B is
finite. We say that A is a pseudounion (pseudointersection) of a family H ⊆ [ω]

ω

if A almost contains (is almost contained) in every B ∈ H.
Topology turns out to be extremely useful when studying ideals and filters on

the natural numbers. We endow P (ω) with the natural topology that makes it
homeomorphic to 2ω, the Cantor space. In this way, the topology of P (ω) has a
subbase the sets of the form ⟨n⟩0 = {A ⊆ ω | n /∈ A} and ⟨n⟩1 = {A ⊆ ω | n ∈ A},
for n ∈ ω. We view filters as subspaces of P (ω) . All notions of Borel, analytic
meager are referred to this topology. A major topic on descriptive set theory if
that nicely definable subspaces have very nice and desirable properties, this also
applies for filters and ideals.

We will frequently refer to the cardinal invariants of the continuum. An excellent
reference for this topic is [12]. The simplest cardinal invariant is c, which is the
size of the real numbers. Given f, g ∈ ωω, define f ≤∗ g if there are only finitely
many n for which g (n) < f (n) . We say a family B ⊆ ωω is unbounded if there is
no g ∈ ωω such that f ≤∗ g for every f ∈ B. On the other hand, a family D ⊆ ωω is
dominating if for every f ∈ ωω, there is g ∈ D such that f ≤∗ g. The unboundedness
number b is the least size of an unbounded family, while the dominating number
d is the smallest size of a dominating family. It is straightforward to see that
ω1 ≤ b ≤ d ≤ c. We say that P = {Pn | n ∈ ω} is an interval partition if it is a
partition of ω in (finite) intervals. There is an equivalent reformulation of b and
d using interval partitions. Given P and R interval partitions, define P ≤∗ R if
almost all intervals from R contain (at least) one interval from P. In this way, b is
the smallest size of an unbounded family of interval partitions, while d is the least
size of a dominating family of interval partitions. Let A,B ⊆ ω. We say that A
decides B if A ⊆∗ B or A ⊆∗ Bc. A reaping family R ⊆ [ω]

ω
is a family deciding

each subset of ω. The reaping number r is the least size of a reaping family. Now,
a family R is σ-reaping if for every {Xn | n ∈ ω} ⊆ [ω]

ω
, there is a single R ∈ R

that decides each Xn. The σ-reaping number rσ is the least size of a reaping family.
It is currently unknown if r and rσ are equal. It is easy to see that b ≤ r ≤ rσ ≤ c.
The ultrafilter number u is the smallest size of a base of an ultrafilter. Clearly we
have that r ≤ u ≤ c.
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Definition 3.4. Let X a set and I an ideal on X.

(1) add(I) is the smallest size of an unbounded family in (I,⊆) .
(2) cov(I) is the smallest size of a family D ⊆ I such that ∪D = X.
(3) non(I) is the smallest size of a subset of X that is not in I.
(4) cof(I) is the smallest size of cofinal family in (I,⊆) .

It is easy to see that add(I) ≤ cov(I) , non(I) ≤ cof(I) ≤ 2|X|. In general, there
is no relation between cov(I) and non(I) . In case I is an ideal on ω, the three
cardinals defined above are trivial. However, in [31] Brendle and Shelah found
analogues of these invariants that are useful for ideals on countable sets, we recall
their definitions. They defined these for filters, the notation used here follows [89].

Definition 3.5. Let I be a tall ideal on ω. Define:

(1) add∗ (I) is the smallest size of an unbounded family in (I,⊆∗) .
(2) cov∗ (I) is the smallest size of a family D ⊆ I such that for every X ∈ [ω]

ω
,

there is A ∈ D such that A ∩X is infinite.
(3) non∗ (I) is the smallest size of a family H ⊆ [ω]

ω
such that for every A ∈ I,

there is H ∈ H such that A ∩H is finite.

Once again, it is easy to see that add*(I) ≤ cov*(I) , non*(I) ≤ cof(I) and in
general there is no relationship between cov*(I) and non*(I) .

By M we denote the ideal of meager sets on 2ω. In this way, cov(M) we denote
the smallest size of a family of meager sets that are needed to cover 2ω (equivalently,
any perfect Polish space). It is well-known that ω1 ≤ cov(M) ≤ d, while there is
no ZFC provable relation between b and cov(M) .

Meagerness of filters can be reformulated in a very useful combinatorial way, as
we will now review.

Definition 3.6. Let I be an ideal on ω and P = {Pn | n ∈ ω} an interval partition.
We say that I is a Talagrand partition of I if for every X ∈ [ω]

ω
we have that⋃

n∈X

Pn ∈ I+.

The following is a very important theorem, the reader may consult the book [3]
for a proof.

Theorem 3.7 (Talagrand [181]). Let I be an ideal. The following are equivalent:

(1) I has the Baire property.
(2) I is meager.
(3) I has a Talagrand partition.
(4) The enumerative functions from the elements of I∗ is bounded.

In this paper, a tree p ⊆ ω<ω is closed under taking initial segments. We denote
[p] the set of cofinal branches of p.

4. Orderings on ideals and ultrafilters

Since filters, ideals and ultrafilters play a fundamental role in infinite combina-
torics, we need ways to classify and study them. As mentioned in the introduction,
the Katětov, Rudin-Keisler and Tukey orderings have proven to be invaluable tools
for their study.
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Definition 4.1. Let X,Y be two sets, I an ideal on X, J an ideal on Y and
f : X −→ Y.

(1) f is a Katětov function from I to J if for every A ⊆ Y , the following
holds: If A ∈ J , then f−1 (A) ∈ I.

(2) f is a Rudin-Keisler function from I to J if for every A ⊆ Y , the following
holds: A ∈ J if and only if f−1 (A) ∈ I.

(3) f is a Katětov-Blass function from I to J if it is a Katětov function and
it is finite to one.

(4) f is a Rudin-Blass function from I to J if it is a Rudin-Keisler function
and it is finite to one.

(5) J ≤K I if there is a Katětov function from I to J . The orders ≤KB, ≤RKand
≤RBare defined analogously.

(6) I and J are Katětov equivalent (denoted as I =K J ) if I ≤K J and J ≤K I.
Rudin-Keisler, Katětov-Blass and Rudin-Blass equivalences are defined anal-
ogously.

The following is a list of easy facts regarding the orderings of ideals. We will be
using these properties implicitly throughout the text.

Lemma 4.2. Let I, J be ideals on ω and X ⊆ ω.

(1) If I ⊆ J , then I ≤KB J .
(2) If I ≤RK J , then I ≤K J .
(3) fin ≤KB I.
(4) I is Katětov equivalent to fin if and only if I is not tall.
(5) If X ∈ I+, then I ≤KB I ↾ X.
(6) If X ∈ I∗, then I =RB I ↾ X.
(7) If I ≤K J , then cov∗ (J ) ≤ cov∗ (I) .
(8) If I ≤KB J , then non∗ (I) ≤ non∗ (J ) .
(9) I is meager if and only if fin ≤RB I.

The following equivalence of the Katětov order is often useful:

Lemma 4.3. Let X,Y be two sets, I an ideal on X, J an ideal on Y and f :
X −→ Y. The following are equivalent:

(1) f is a Katětov function from I to J .
(2) For every A ⊆ X, if A ∈ I+, then f [A] ∈ J +.

Evidently, if I ≤RK J , then I ≤K J . However, in general the orderings are
very different. For example, the ideal fin is Katětov-below any ideal, yet if U is
an ultrafilter, it is easy to see that fin ≰RK U∗. Nevertheless, these two orderings
coincide when restricted to maximal ideals:

Lemma 4.4. Let U and V ultrafilters on ω. The following are equivalent:

(1) U∗ ≤K V∗.
(2) U∗ ≤RK V∗.

The following is an important theorem of Mary Ellen Rudin and Saharon Shelah,

Theorem 4.5 (Shelah-Rudin [169]). There are 2c many ≤RK-incomparable ultra-
filters.

Although the Rudin-Keisler order has been studied extensively, many questions
remain unsolved (see
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Problem 4.6 (van Mill [139]). Is there an ultrafilter that is ≤RK-comparable to any
other ultrafilter?

It is not hard to prove that there is no such ultrafilter in case that u = c. In [92]
Hindman obtained some partial results in case c is singular and Butkovičová [33]
in case there is a κ < c such that 2κ > c. It should be mentioned here that it
is a theorem of ZFC that there are no least or largest ultrafilters in either the
Rudin-Keisler or the Rudin-Blass orders.

Another simple question about the Rudin-Keisler and Rudin-Blass orders is the
following:

Problem 4.7 (H.-Sanchis-Tamariz–Mascarúa [102]). Is there an ultrafilter that has
the same RK- and RB-predecessors?

Of course, every P-point is such, but it seems unknown whether such an ultra-
filtar exist in ZFC.

We will now prove that the Katětov order is both c+-directed downwards an
upwards when restricted to tall ideals. This means that that every family of ideals of
size c has a lower and an upper bound in the Katětov order. This is an unpublished
result of A. Blass, which appeared in [25]. We first need the following:

Definition 4.8. Let P ⊆ ωω. We say that P is an independent family of functions
if for every f0, ..., fn ∈ P distinct and m0, ...,mn ∈ ω, there are infinitely many
a ∈ ω such that fi (a) = mi for every i ≤ n.

It is easy to construct large independent families:

Lemma 4.9. There is a perfect P ⊆ ωω family of functions.

Proof. Let P be the set of all p ⊆ ω<ω with the following properties:

(1) p is a finite tree.
(2) Every node in p has an extension to the last level of p.

Order p ≤ q if p is an end-extention of q. Given a filter G ⊆ P, define TG =
⋃

p∈G

p.

It is not hard to find countably many dense sets of P and a sufficiently generic filter
G such that P = [TG] is a perfect family of functions. □

We can now prove the following:

Proposition 4.10 (Blass, see [25]). The Katětov order is c+-directed upwards and
downwards when restricted to tall ideals.

Proof. Let L = {Iα | α < c} be a family of tall ideals on ω. We want to find a lower
and upper bound of L in the Katětov order.

We first find an upper bound. Let P = {fα | α < c} ⊆ ωω be an independent
family of functions. Define J the ideal generated by

⋃
α<c

f−1
α (Iα) . We claim that

J is a proper ideal. To prove this, it is enough to show that for every α0, ..., αn ∈ c
and Aα0

, ..., Aαn
⊆ ω with Aαi

∈ Iαi
, the set B =

⋃
i≤n

f−1
αi

(Aαi
) is coinfinite. Since

each Aαi is a proper subset of ω, we choose mi /∈ Aαi . Since P is independent, it
follows that there are infinitely many a ∈ ω such that fi (a) = mi for every i ≤ n,
so a /∈ B.
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Finally, it is clear that fα is a Katětov function from J to Iα, so J is a ≤K-upper
bound of L.

In order to find a lower bound let A = {Aα | α < c} be a MAD family. Define
an ideal K such that A ⊆ K+ and K ↾ Aα is Katětov equivalent to Iα. Since A
is maximal and each Iα is tall, it follows that K is tall. Since each Iα is Katětov
equivalent to a restriction of K, it follows that K is a ≤K-lower bound of L. □

The next lemma will be used in the proof of Proposition 5.8. It first appeared
in [126]:

Lemma 4.11 (C. Laflamme, J. P. Zhu [126]). There exist a family D ⊆ ωω such
that |D| = d and for any two ultrafilters V ≤RB U , there is h ∈ D such that
h(U) ≤RB V. Moreover, for each h ∈ D, there is a partition {In : n ∈ ω} of ω into
intervals such that h(k) = n if and only if k ∈ In.

A simple Baire category argument shows that there are no Gδ ideals (see [3]).
In this way, Fσ is the lowest possible complexity of an ideal. In [132] Mazur found
a very simple representation of Fσ-ideals, which we will review now.

Definition 4.12. We say φ : ℘ (ω) −→ [0,∞] is a lower semicontinuous submea-
sure if the following hold:

(1) φ (ω) = ∞.
(2) φ (A) ≤ φ (B) whenever A ⊆ B.
(3) φ (A ∪B) ≤ φ (A) + φ (B) for every A,B ⊆ ω.
(4) φ (A) < ∞ for every finite A ⊆ ω.
(5) If A ⊆ ω, then φ (A) = sup{φ (A ∩ n) | n ∈ ω}.

Given a lower semi-continuous submeasure φ we define the following ideals:

(1) fin(φ) = {A ⊆ ω | φ (A) < ∞} .
(2) exh(φ) = {A ⊆ ω | limn−→∞ φ (A \ n) = 0} .

The theorem of Mazur is as follows,

Theorem 4.13 (Mazur [132]). Let I be an ideal on ω. The following are equivalent:

(1) I is Fσ.
(2) There is a lower semicontinuous submeasure φ such that I = fin(φ) .

It follows from the theorem that all analytic P -ideals are actually Fσδ. The
following theorem by Greb́ık and Vidnyánszky is worth pointing out.

Theorem 4.14 (Greb́ık, Vidnyánszky [82]). Every tall analytic ideal contains a
tall Fσ-ideal.

Similar to the theorem of Mazur, Solecki found a very nice and useful represen-
tation of analytic P -ideals.

Theorem 4.15 (Solecki [172]). Let I be an ideal on ω.

(1) I is an analytic P -ideal if and only if there is a lower semicontinuous
submeasure φ such that I = exh(φ) .

(2) I is an Fσ P -ideal if and only if there is a lower semicontinuous submeasure
φ such that I = exh(φ) = fin(φ) .

Using submeasures, we can define the following important class of ideals:
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Definition 4.16. Let g : ω −→ [0,∞) be a function such that
∑
n∈ω

g(n) diverges to

infinity. Define φg : P (ω) −→ [0,∞) as φg (A) =
∑
n∈A

g (n), for each A ∈ P(ω). It

turns out that φg is a lower semicontinuous submeasure on ω, so it defines an ideal
which we denote by Jg = fin(φg).

Ideals of this form are known as summable ideals. Obviously, the summable ideal
is of this form.

Proposition 4.17. For any g : ω −→ [0,∞) be such that
∑
n∈ω

g(n) diverges to

infinity. Then:

(1) Jg is an Fσ and a P -ideal.
(2) Jg is a tall ideal if and only if ⟨g(n) : n ∈ ω⟩ converges to 0.

The following two operations are often useful, they are used to push and pull-
back ultrafilters through functions:

Definition 4.18. Let X,Y be two sets, I an ideal on X, J an ideal on Y and
f : X −→ Y.

(1) f (I) is an ideal on Y defined as f (I) =
{
A ⊆ Y | f−1 (A) ∈ I

}
.

(2) f−1 (J ) is a (possibly improper) ideal on X generated by
{
f−1 (B) | B ∈ J

}
.

In the above situation, note that since f−1 (B ∪ C) = f−1 (B) ∪ f−1 (C) for
B,C ⊆ Y, it follows that a set D ⊆ X is in f−1 (J ) if and only if there is B ∈ J
such that D ⊆ f−1 (B) . In this way, f−1 (J ) = {A ⊆ X | f [A] ∈ J } . Note that it
is very possible that f−1 (J ) is a trivial ideal. In fact we have the following:

Lemma 4.19. Let X,Y be two sets, J an ideal on Y and f : X −→ Y. The
following are equivalent:

(1) f−1 (J ) is a proper ideal.
(2) im(f) ∈ J +.

We have the following:

Proposition 4.20. Let I be an ideal on ω, f : ω −→ ω and X = im(f) . If f−1 (I)
is a proper ideal, then the following holds:

(1) I ≤K f−1 (I) as witnessed by f.
(2) I ↾ X ≤RK f−1 (I) as witnessed by f.
(3) I ↾ X ≤RB f−1 (I) if f is finite to one.
(4) If X ∈ I∗, then I ≤RK f−1 (I) .
(5) If J is an ideal on ω such that f is a Katětov function from J to I, then

f−1 (I) ⊆ J .

Lemma 4.21. Let I be an ideal on ω and f : ω −→ ω.

(1) f (I) is the ideal generated by {f [Bc]c | B ∈ I}.
(2) cof(f (I)) ≤ cof(I) .
(3) f (I) ≤K I.

We will now prove a result regarding the complexity of these ideals.

Proposition 4.22. Let I be an ideal on ω and f : ω −→ ω.

(1) If I is Borel (analytic), then f (I) is Borel (analytic).
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(2) If I is analytic, then f−1 (I) is analytic.
(3) If I is Borel and f is finite to one, then f−1 (I) is Borel. Moreover, the

Borel complexity of f−1 (I) is at most the Borel complexity of I.

Proof. Before starting the proof, we make some (well-known) remarks. Define the
functions F,G : P (ω) −→ P (ω) where F (A) = f−1 (A) and G (A) = f [A] .

Claim 4.23. (1) F is continuous.
(2) If f is finite to one, then G is continuous.

In both cases, it is enough to see that the preimage of every element of the
subbase {⟨n⟩i | n ∈ ω ∧ i ∈ 2} is open. In the case of F :

F−1 (⟨n⟩1) = {A | n ∈ F (A)} ,
=

{
A | n ∈ f−1 (A)

}
,

= {A | f (n) ∈ A} ,
= ⟨f (n)⟩1 .

F−1 (⟨n⟩0) = {A | n /∈ F (A)} ,
=

{
A | n /∈ f−1 (A)

}
,

= {A | f (n) /∈ A} ,
= ⟨f (n)⟩0 .

Now, assuming f is finite to one:

G−1 (⟨n⟩1) = {A | n ∈ G (A)} ,
= {A | n ∈ f [A]} ,
=

⋃
f(m)=n

⟨m⟩1 .

G−1 (⟨n⟩0) = {A | n /∈ G (A)} ,
= {A | n /∈ f [A]} ,
= P (ω) \

⋃
f(m)=n

⟨m⟩1 .

Since f is finite to one, it follows that
⋃

f(m)=n

⟨m⟩1 is clopen, so G−1 (⟨n⟩0) is

open. Now, we have that F−1 (I) = f (I) , so the first point of the proposition
follows. We now prove the second point, so assume that I is an analytic ideal. It
then follows that F [I] =

{
f−1 (A) | A ∈ I

}
is an analytic set. Since f−1 (I) =

{B | ∃A ∈ F [I] (A ⊆ B)} , we get that f−1 (I) is analytic as well.
Finally, assume that I is Borel and f is finite to one. We now have that G−1 (I) =

f−1 (I) , so f−1(I) is Borel. □

Lemma 4.24. Let I be a tall analytic P -ideal.

(1) If X ∈ I+, then I ↾ X is an analytic P -ideal.
(2) There is a tall summable ideal J such that J ⊆ I.
(3) If f : ω −→ ω is finite to one, then f−1 (I) is an analytic P -ideal.

Proof. The first point is trivial. We prove the second point. Let φ be a lower semi-
continuous submeasure such that I = exh(φ) . Define the function g : ω −→ [0,∞)
given by g (n) = φ ({n}) . It is not difficult to verify that Jg ⊆ I.
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We now prove the third point. Assume f ∈ ωω is finite to one. By Proposition
4.22, it is enough to prove that f−1 (I) is a P -ideal. It is enough to prove that for
every {Bn | n ∈ ω} ⊆ I, the family

{
f−1 (Bn) | n ∈ ω

}
has a pseudounion. Since

I is a P -ideal, we know there is A ∈ I such that Bn ⊆∗ A for every n ∈ ω. Since f
is finite to one, it follows that f−1 (Bn) ⊆∗ f−1 (A) for every n ∈ ω. □

In the next section will need the following theorem, which was proved in [99]:

Theorem 4.25 (H.-Meza-Minami, [99]). Let I be a Borel ideal on ω. The following
are equivalent:

(1) I is ω-hitting.
(2) EDfin ≤KB I.

5. I-ultrafilters

The following notion was formally introduced by J. Baumgartner in [5].

Definition 5.1. Let U be an ultrafilter on ω, X a set and I ⊆ P (X) closed under
subsets and that contains all singletons.

(1) U is an I-ultrafilter if for every function g : ω −→ X, there is A ∈ U such
that g [A] ∈ I.

(2) U is a weak I-ultrafilter if for every finite to one function g : ω −→ X,
there is A ∈ U such that g [A] ∈ I.

Baumgartner was obviously unaware of the work of M. Daguenet [52] who con-
sidered the same notion almost 20 years earlier, and, in particular, showed that
P-points are exactly the fin×fin-ultrafilters, in the form of an instance of the fol-
lowing simple lemma.

Lemma 5.2. Let I be an ideal on ω and U an ultrafilter on ω.

(1) U is an I-ultrafilter if and only if I ≰K U∗.
(2) U is a weak I-ultrafilter if and only if I ≰KB U∗.

It is easy to find ultrafilters that are not I-ultrafilters, just extend I∗ to any
ultrafilter. The notions of (weak) I-ultrafilters allows us to classify ultrafilters
using Borel ideals as parameters. In practice, it turns out that most of the more
interesting combinatorial properties of ultrafilters can be reformulated in terms of
I-ultrafilters.

Remark 5.3. The following table summarizes the relatioships between combinato-
rial properties of ultrafilters and the ideals (or classes of ideals) which charactarize
these:
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Type of Ultrafilter I-ultrafilter weak U-ultrafilter Reference

Selective ED [96]
Selective R [96]
Selective tall analytic ideals [134]
P -point fin×fin [52]
P -point conv [5]
Q-point EDfin [96]
Rapid tall analytic P -ideals [187]

Hausdorff GFC [98]
Non-flat nflat [67,115]

We make one comment on the non-flat type of ultrafilters. The original formu-
lation was given for flat ultrafilters in [67], in connection with the space of bounded
operators of a separable, infinite dimensional complex Hilbert space. Later it was
found that flat ultrafilters are those whose dual ideal is Katětov above the ideal
nflat, i.e., ultrafilters such that nflat ≤K U∗, giving a purely combinatorial chara-
cterization ( [115, 116]). It is known that P -points are non-flat, however, the exis-
tence of nflat-ultrafilters in ZFC remains unknown.

Problem 5.4 (Farah-Phillip-Steprans [67]). Does ZFC prove the existence of a
nflat-ultrafilter?

There are other natural classes of combinatorial properties of ultrafilters which
can be characterized as I-ultrafilters (see [7, 9, 27, 28, 42, 53, 67, 69–71, 75, 83, 85, 94,
95,114,125,131,156,157,175,176]).

The reader may note from the table above that there may be non-Katětov equiva-
lent ideals I and J for which the classes of I-ultrafilters and J -ultrafilters coincide.
At the moment, it is not clear if there is a combinatorial characterization of when
two different ideals induce the same class of ultrafilters. This topic was studied
by R. Filipów, K. Kowitz and A. Kwela in [69] where (among other results) they
proved the following:

Theorem 5.5 (Filipów-Kowitz-Kwela [69]). Assume CH. Let I and J be ideals on
ω such that I is tall, J is Katětov uniform and P (ω) /J is σ-closed. There is an
I-ultrafilter that is not a J -ultrafilter if and only if I ≰K J .

Here, J is Katětov uniform if it is Katětov equivalent to all its restrictions. An
extreme case where many different ideals give raise to the same class of ultrafilters
is the model constructed by the first author in [35], where all tall Fσ ideals induce
the same class of ultrafilters.

We now introduce the following notion, which can be viewed as an ultrafilter
that “has no interesting combinatorial properties”.

Definition 5.6. Let U be an ultrafilter on ω. We say that U is unremarkable if
I ≤K U∗ for every analytic ideal I.

Since there are only c-many analytic ideals, Proposition 4.10 yields the following:

Proposition 5.7. There is an unremarkable ultrafilter.
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On the other hand, assuming additional hypothesis to ZFC we can obtain stronger
versions of this proposition.

Proposition 5.8. Assume b = c. Then there is an ultrafilter all of whose Rudin-
Blass predecessors are unremarkable.

An ultrafilter like the one in the previous proposition can not be constructed just
on the basis of ZFC, since in the Miller’s model p-points are dense in the Rudin-Blass
ordering. Moreover, in Miller’s model, I-ultrafilters are dense in the Rudin-Blass
ordering whenever I is an analytic p-ideal ( [36]). Hausdorff utrafilters are also
dense in the Rudin-Blass ordering in the Miller’s model, as was proved in [4]. The
best known ZFC approximation to an ultrafilter like in Proposition 5.8 was given
in [126] by presenting an ultrafilter all of whose Rudin-Blass precessors are Katětov-
Blass above EDfin, that is, no RB-predecessor is a Q-point.

Theorem 5.9 (C. Laflamme, J. P. Zhu [126]). There is an ultrafilter U such that
for all V ≤RB U , EDfin ≤KB V. Therefore, no Rudin-Blass predecessor of U is a
Q-point.

Note that the previous theorem implies that for any ideal I which is KB-below
the ideal EDfin, there is an ultrafilter for which all RB-predecessors are KB-above
I. We don’t know of any other ideal having this property.

Definition 5.10. Given two ideals on ω I and J , we say they are compatible if
I ∪ J generates a proper ideal, in which case we denote by ⟨I ∪ J ⟩ the ideal that
I ∪ J generates.

Lemma 5.11. If I and J are analytic, then ⟨I ∪ J ⟩ is analytic.

Proof. Note that
⋃

: P(ω) × P(ω) → P(ω) is continuous, I × J is analytic and
⟨I ∪ J ⟩ =

⋃
(I × J ) □

Lemma 5.12. Let I be a meager ideal on ω and f : ω → ω a finite to one function.
Then f(I) is meager.

Proof. Let {In : n ∈ ω} be a partition of ω into intervals witnessing that I is
meager. Define a sequence of natural numbers ⟨kn : n ∈ ω⟩ as follows:

(1) k0 = 0.
(2) Once kn is defined, let kn+1 be big enough so there is m ∈ ω such that

Im ⊆ f−1[[kn, kn+1)].

Now define Jn = [kn, kn+1) for each n ∈ ω. We claim that {Jn : n ∈ ω} witnesses
f(I) is meager. Assume otherwise there is A ∈ [ω]ω such that

⋃
n∈A Jn ∈ f(I).

Then f−1[
⋃

n∈A Jn] ∈ I. However, by construction {kj : j ∈ ω}, for each n ∈ A,

there is mn ∈ ω such that Imn ⊆ f−1[Jn], So, for all n ∈ ω, Imn ⊆ f−1[
⋃

n∈A Jn],

which implies f−1[
⋃

n∈A Jn] /∈ I, a contradiction. □

Lemma 5.13. Let {Iα : α < λ} be a ⊆-increasing family of meager ideals on ω
where λ < b. Then I =

⋃
α<λ Iα is a meager ideal.

Proof. It is clear that I is an ideal, so all we have to prove is that I is indeed a
meager ideal. For each α < λ, let Pα = {Iαn : n ∈ ω} be a Talagrand partition for
Iα is a meager ideal, that is, for any X ∈ Iα. Now, since λ < d, there is an interval
partition {Pn : n ∈ ω} such that for each α < λ, there is k ∈ ω such that for all
n ≥ k, Pn contains some interval from Pα. This implies that P witnesses that I is
a meager ideal. □
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Lemma 5.14. Let I and J be ideals on ω and f : ω → ω such that f(I) = fin.
Then:

(1) If im(f) ∈ J +, then f−1(J ) and I are compatible.
(2) If J is meager, im(f) ∈ J + and f is finite to one, then ⟨f−1(J ) ∪ I⟩ is

meager.
(3) If I and J are analytic, then ⟨f−1(J ) ∪ I⟩ is analytic.

Proof. (1) Let us assume that f−1(J ) and I are not compatible, so there are
A ∈ I and B ∈ J such that ω = A ∪ f−1[B]. Then, for each n /∈ B, we should
have f−1({n}) ⊆ A. Since im(f) ∈ J +, we have im(f) \ B is infinite, so for each
n ∈ im(f) \ B, f−1({n}) ⊆ A, that is f−1(ω \ B) ⊆ A, which contradicts that
A ∈ I.

(2) Let ⟨In : n ∈ ω⟩ be a Talagrand partition for J . For each n ∈ ω, define
Dn = f−1(In). Clearly {Dn : n ∈ ω} is a partition of ω into finite sets. We
claim that for any X ∈ ⟨f−1(J ∪ I)⟩, X contains at most finitely many sets Dn.
Suppose otherwise there is X ∈ ⟨f−1(J ) ∪ I⟩ such that for infinitely many n ∈ ω,
Dn ⊆ X. We can assume X = A ∪ f−1[B] where A ∈ I and B ∈ J . Let
Z =

⋃
{Dn : Dn ⊆ X}, so Z ⊆ X and it is the union of infinitely many sets Dn.

Therefore, there are infinitely many n ∈ ω such that In ⊆ f(Z), so f(Z) ∈ J +,
and we can find Y ∈ [ω]ω and {kn : n ∈ Y } such that kn ∈ In \ B and In ⊆ f(Z).
Then, for each n ∈ Y , f−1({kn}) ⊆ A, which implies A ∈ I+, a contradiction.

(3) Follows directly from Lemma 5.11. □

Proof of Proposition 5.8. Let D ⊆ ωω be the family given by Lemma 4.11, let A
be the family of all analytic tall ideals and fix {(hα,Jα) : α < 2ω} an enumeration
of D × A. By recursion we construct a family of ideals {Iα : α ∈ d} such that for
each α < 2ω:

(1) Iα is meager.
(2) Iα ⊆ Iα+1.
(3) If α is a limit ordinal,

⋃
β<α Iβ ⊆ Iα.

(4) There is gα : ω → ω such that gα ◦ hα is Katětov from Iα to Jα.

We start with I0 = h−1
0 (J0). Suppose Iα has been defined. By Lemma 5.12, we

have that hα+1(Iα) is a meager ideal, so there is a finite to one function gα+1 such
that fin = gα+1 ◦ hα+1(Iα). Let fα+1 = gα+1 ◦ hα+1. By clause (2) of Lemma 5.14,
Iα and f−1

α+1(Jα+1) are compatible so ⟨Iα ∪ f−1
α+1(Jα+1)⟩ is a proper ideal. Define

Iα+1 = ⟨Iα ∪ f−1
α+1(Jα+1)⟩. This finishes the successor step. Now assume α is a

limit ordinal and Iβ has been defined for all β < α. Let I ′
α =

⋃
β<α Iβ . By Lemma

5.13, I ′
α is a meager ideal, Lemma 5.12 implies hα(I ′

α) is meager. Let gα be a finite
to one function such that fin = gα(hα(I ′

α)), let fα = gα ◦ hα. By clause (2) from
Lemma 5.14, ⟨I ′

α ∪ f−1
α (Jα)⟩ is a meager ideal. Then define Iα = ⟨I ′

α ∪ f−1
α (Jα)⟩.

This finishes the construction.
Now define I =

⋃
α<2ω Iα and let U be any ultrafilter such that I∗ ⊆ U . We

claim that no RB-predecessor of U is a J -ultrafilter for any analytic ideal J . Let
V ≤RB U and an analytic ideal J be arbitrary. Then, by the choice of the family
D (see Lemma 4.11), there is h ∈ D such that h(U) ≤RB V. There is α < 2ω such
that (hα,Jα) = (h,J ). Thus, gα ◦ hα is a Katětov function from Iα to J , so for
any X ∈ J , (gα ◦ hα)−1[X] ∈ Iα, that is, h−1

α [g−1
α [X]] ∈ Iα, so h−1

α [g−1
α [X]] ∈ U∗,

which in turn implies g−1
α [X] ∈ hα(U)∗. Since h = hα, we have proved that
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J ≤KB h(U)∗. Since h(U) ≤RB V, this implies that J ≤KB V∗, so U is not a J -
ultrafilter. Since V ≤RB U and J were arbitrary, we have that no RB-predecessor
of U is a J -ultrafilter, for any analytic ideal J . □

Under CH, the Proposition 5.8 can be strengthened to Rudin-Keisler ordering.

Proposition 5.15. Asume CH. There is an ultrafilter all of whose Rudin-Keisler
predecessors are unremarkable.

Proof. Let {(fα, Iα) : α ∈ ω1} be an enumeration of all ordered pairs (f, I) such
that f ∈ ωω and I is an analytic ideal. By recursion we construct a sequence
{Jα : α ∈ ω1} such that:

(1) J0 = [ω]<ω.
(2) Jα is an analytic ideal.
(3) If α < β, then Jα ⊆ Jβ .
(4) Iα ≤K Jα+1.

At limit steps α we define Jα =
⋃

β<α Jβ . Note that Jα is analytic since the
countable union of analytic sets if analytic. Now suppose Jα has been defined and
we have to define Jα+1. By clause (1) from Lemma 4.22, fα(Jα) is analytic, so by
Talagrand’s theorem there is hα : ω → ω such that h(fα(Jα)) is the ideal of finite
sets. Define Jα+1 to be the ideal generated by Jα ∪ {(hα ◦ fα)−1[A] : A ∈ Iα}.
By clause (2) from Lemma 5.14, we have that Jα+1 is a proper ideal, and by 5.11,
Jα+1 is also an analytic ideal. It is clear from the construction that Iα ≤K Jα+1.
This finishes the construction. Now define H =

⋃
α<ω1

Jα, which is a proper ideal,
and let U be an ultrafilter extending H∗. Let us see that U satisfies the lemma.
Let I be an analytic ideal and f ∈ ωω. By construction, there is α ∈ ω1 such that
(I, f) = (Iα, fα). Then, for any A ∈ I, f−1

α [h−1
α [A]] = (hα ◦ fα)−1[A] ∈ U∗, which

means that h−1
α [A] ∈ fα(U)∗. Thus, hα witnesses I ≤K f(U)∗. □

In [134] Mathias obtained a very nice characterization of Ramsey ultrafilters:
An ultrafilter is Ramsey if and only if it has non empty intersection with every tall
analytic ideal (with the aid of large cardinals, this can be extended to a larger class
of ideals, see [193] for more details). We aim to obtain analogous characterizations
for other classes of ultrafilters.

Proposition 5.16. Let I be an ideal and U an ultrafilter. The following are equiv-
alent:

(1) U is an (weak) I-ultrafilter.
(2) U ∩ f−1 (I) ̸= ∅ for every f ∈ ωω (that is finite to one).
(3) If J is an ideal on ω such that I ≤K J (I ≤KB J ), then J ∩ U ̸= ∅.
(4) If J is an ideal on ω for which there is X ∈ I+ such that I ↾ X ≤RK J ,

(I ↾ X ≤RB J ),then J ∩ U ̸= ∅.

Proof. We only prove the version corresponding to I-ultrafilters, the one for weak
I-ultrafilters is analogous.

Clearly 1) and 2) are equivalent. We prove that 1) implies 3) by contrapositive.
Assume there is an ideal J on ω such that I ≤K J but J ∩ U = ∅. This means
that J ⊆ U∗, so I ≤K U∗.

We will now prove that 3) implies 4). Let J be an ideal on ω for which there is
X ∈ I+ such that I ↾ X ≤RK J . It follows that I ≤K J , so J ∩ U ̸= ∅.
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We now prove that 4) implies 2). Let f : ω −→ ω, we need to find A ∈ U such that
f [A] ∈ I. If f−1 (I) is not a proper ideal, there is nothing to do. Assume that it is
a proper ideal and let X = im(f) . We know that X ∈ I+ and I ↾ X ≤RK f−1 (I)
(see Proposition 4.20), so we are done. □

In the case that I is definable, by applying Proposition 4.22, we have the follow-
ing:

Proposition 5.17. Let I be an analytic ideal and U an ultrafilter. The following
are equivalent:

(1) U is a I-ultrafilter.
(2) If J is an analytic ideal on ω such that I ≤K J , then J ∩ U ̸= ∅.
(3) If J is an analytic ideal on ω for which there is X ∈ I+ such that I ↾

X ≤RB J , then J ∩ U ̸= ∅.

In case for I-weak ultrafilters and for I is Borel, we only need to check the
intersection for Borel ideals.

Proposition 5.18. Let I be a Borel (analytic) ideal and U an ultrafilter. The
following are equivalent:

(1) U is an I-ultrafilter.
(2) If J is a Borel (analytic) ideal on ω such that I ≤KB J , (I ≤KB J ) then

J ∩ U ̸= ∅.
(3) If J is a Borel (analytic) ideal on ω for which there is X ∈ I+ such that

I ↾ X ≤RB J , then J ∩ U ̸= ∅.

Now we will give the following theorem, which encompasses all the character-
izations that we know of ultrafilters in the style of Mathias’s characterization of
Ramsey ultrafilters.

Theorem 5.19. Let U be an ultrafilter on ω. Then:

(1) (Mathias [134]) U is selective if and only if U ∩ I ̸= ∅ for every tall analytic
ideal I.

(2) U is selective if and only if U ∩ I ̸= ∅ for every tall Fσ (or Borel) ideal I.
(3) (Hrušák-Reyes Saenz [101]) U is a Q-point if and only if U ∩ I ≠ ∅ for

every ω-hitting Borel ideal I.
(4) (Vojtáš [187]) U is rapid if and only if U ∩ I ̸= ∅ for all analytic P -ideal I.

Proof. The first point is a direct application of Theorem 5.3 and Proposition 5.17.
The second point follows inmediately from the first and the theorem of Greb́ık and
Vidnyánszky 4.14. Alternatively, it is enough to note that in order for an ultrafilter
to satisfy the partition relation U −→ (U)

2
2 , it is only needed to intersect Fσ ideals,

since the ideal of monochromatic sets of a coloring has this complexity. Point 3
follows from Theorems 5.3, 4.25 and Proposition 5.18. Point 4 follows by Theorem
5.3 and Lemma 4.24. □

Regarding Vojtáš’ characterization of a rapid ultrafilter, we would like to mention
the following refinement due to J. Flašková and the first author (see [74] and [36]).

Theorem 5.20 (Flašková [74], C. [36]). (1) There is a family D of summable
ideals of size d such that an ultrafilter U is rapid if and only if U ∩ I ̸= ∅
for every I ∈ D.
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(2) If D is a family of summable ideals of size less than d, then there is a
non-rapid ultrafilter U such that U ∩ I ̸= ∅ for every I ∈ D.

We have established the importance of I-ultrafilters. Naturally, now the question
is how to build them. There are several methods, but there are more questions than
answers. For some ideals I it is possible to find I-ultrafilters in ZFC, while for others
it is consistent that they do not exist. Moreover, there are ideals, such as the zero
density ideal Z for which it is unknown if it is consistent that Z-ultrafilters do not
exist. A characterization of the ideals for which their respective ultrafilters exist in
ZFC is unknown. Two canonical constructions to build I-ultrafilters are the “generic
existence method” and with the aid of parameterized diamonds, two methods we
will explore below. Of course, there are other constructions, such as Todorcevic’s
ingenious construction of a selective ultrafilter under m > ω1 (see [183]).

6. Generic existence of I-ultrafilters

The ”generic existence method” is probably the most direct of straight forward
aproach to build a combinatorial object. In our context, we simply have to list all
the requirements that we need to satisfy and try to solve them recursively, in at
most c steps. Of course, there is a risk that the recursion cannot continue, so often
a cardinal invariant hypothesis is needed to ensure that the recursion does not get
stuck before we can satisfy all the requirements. Although it is not always possible
to perform a generic existence construction, it is very important to understand
when it is possible and what are the obstructions for achieving such construction.

Definition 6.1. Let P be a property which an ultrafilter may or may not have. We
say that ultrafilters with property P exist generically if for every filter F generated
by less than c many sets, can be extended to an ultrafilter with property P.

The relevant cardinal invariant in our context is the “exterior cofinality” of an
ideal. This cardinal was studied by Brendle and Flašková in [28] and by Hong and
Zhang in [94].

Definition 6.2. Let I be an ideal on ω. The exterior cofinality of I (also called
the generic existence number of I) is defined as ge (I) = min{cof(J ) | I ⊆ J }.

The next lemma is useful to work with the generic existence numbers.

Lemma 6.3. Let I be an ideal on ω. The following cardinal invariants are equal.

(1) ge (I) .
(2) min{cof(J ) | I ≤K J }.
(3) min{cof(J ) | I ≤KB J }.

Proof. Denote µ = min{cof(J ) | I ≤K J } and µ0 = min{cof(J ) | I ≤KB J }. It is
clear that µ ≤ µ0 ≤ ge (I) , so it is enough to prove that ge (I) ≤ µ. Let J be an
ideal such that cof(J ) = µ and I ≤K J . Find f ∈ ωω a Katětov function from J
to I. It follows that I ⊆ f (J ). In this way, ge (I) ≤ cof(f (J )) ≤ µ (see Lemma
4.21). □

We now write some basic remarks regarding this cardinal invariant.

Lemma 6.4. Let I, J be tall ideals on ω.
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(1) ω1 ≤ ge (I) ≤ c.
(2) non∗ (I) ≤ ge (I) ≤ cof(I) .
(3) If I ≤K J , then ge (I) ≤ ge (J ) .

The following is a very important theorem, which enable us to perform generic
existence constructions of ultrafilters.

Theorem 6.5 (Brendle-Flašková [28], Hong-Zhang [94]). Let I be an ideal on ω.
The following are equivalent:

(1) I-ultrafilters exist generically.
(2) Weak I-ultrafilters exist generically.
(3) ge (I) = c.

Proof. Obviously the first point implies the second one. We now argue that point
2 implies point 3 by proving that if ge (I) < c, then weak I-ultrafilters do not exist
generically. Let J be an ideal extending I such that cof(J ) < c. It is clear that
every ultrafilter extending J ∗ is not a weak I-ultrafilter.

We now prove that if ge (I) = c, then I-ultrafilters exist generically. Let F be
a filter such that κ = cof(F) < c. Fix an enumeration ωω = {fα | α < c} . We
recursively define {Fα | α < c} a family of filters such that for every α < c, the
following holds:

(1) F0 = F .
(2) If ξ < α, then Fξ ⊆ Fα.
(3) If α is limit, then Fα =

⋃
ξ<α

Fξ.

(4) cof(Fα) ≤ κ + |α| .
(5) There is A ∈ Fα+1 such that fα [A] ∈ I.

Assume Fα is already defined, we will find Fα+1. Since cof(Fα) < ge (I) , it
follows that I ≰K F∗

α. In particular, fα is not a Katětov function from F∗
α to I.

This means that there is A ∈ F+
α such that fα [A] ∈ I. Let Fα+1 be the filter

generated by Fα ∪ {A} . This finishes the construction.
Any ultrafilter extending

⋃
α<c

Fα is an I-ultrafilter. □

We now present the following chart, containing some of the ideals and their
exterior cofinalities.

Ideal ge Ultrafilter Reference

fin×fin d P -point [94]
conv d P -point [28]
ED cov(M) Selective [94]
R cov(M) Selective [28]
nwd cof(M) Nowhere dense [27]
mz max {non (E) , d} Measure zero [27]

For more computations of the exterior cofinality, see [28].

7. Simple existence under parametrized diamonds.

Generic existence of I-ultrafilters is a rather powerful kind of existence when
compared to the simple existence of I-ultrafilters. In this section we turn our
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attention to two cardinal invariants on ideals which, in the presence of parametrized
diamond principles, imply the simple existence of I-ultrafilters. The parametrized
diamonds are guessing principles introduced by Džamonja, Moore and the third
author in [136]. These principles are weakenings of Jensen’s diamond, but they
have the advantage that they are valid in a large number of models, even in models
where the Continuum Hypothesis fails.

Definition 7.1. Let I be an ideal on ω. The cardinal invariant z(I) is defined as
follows:

z(I) = min{|D| : (∀f ∈ ωω)(∃A ∈ D)(f [A] ∈ I)}
Let FtO denote the family of finite to one functions from ω to ω. Then zfin(I)

is defined as follows:

zfin(I) = min{|D| : (∀f ∈ FtO)(∃A ∈ D)(f [A] ∈ I)}
We will now introduce the principles ♢ (z (I)) and ♢ (zfin (I)) that we will use

to build I-ultrafilters. This is a particular instance of the diamond principles from
[136]. We will say that a function F : 2<ω1 → X is a Borel function if for all α < ω,
F ↾ 2α is Borel.

Definition 7.2. Let I a Borel ideal. The parametrized diamond principle ♢(z(I))
is the following assertion:

⋇ For any Borel function F : 2<ω1 → ωω, there is a function g : ω1 → [ω]ω

such that for all f ∈ 2ω1 the set {α ∈ ω1 : F (f ↾ α)[g(α)] ∈ I} is stationary.

The function g is called a ♢(z(I))-guessing sequence.
The principle ♢(zfin(I)) is defined in a similar way (the function F takes values

in FtO instead of ωω).

Proposition 7.3 (C. [34]). Let I be a Borel ideal. Then:

(1) ♢(z(I)) implies the existence of I-ultrafilters
(2) ♢(zfin(I)) implies the existence of weak I-ultrafilters.

Proof. The two proofs are similar, so we only prove the first one. We can assume

that the domain of the function F consists of ordered pairs (f, A⃗), where f ∈ ωω

and A⃗ = ⟨Aβ : β < α⟩ is a sequence of countable length of infinite subsets of ω.

Define F (f, A⃗) as follows:

(1) If A⃗ is a centered family, let p(A⃗) be a pseudointersection of ⟨Aβ : β < α⟩
(defined in a recursive or in a Borel way), and φA⃗ : ω → Aα be its increasing

enumeration. Then make F (f, A⃗) = f ◦ φA⃗.

(2) If A⃗ is not a centered family, then F (f, A⃗) = id.

Let g be a ♢(z(I))-guessing sequence for F . Then construct a sequence B⃗ =
⟨Bα : α ∈ ω1⟩ as follows. Start with Bn = ω \n and suppose ⟨Bβ : β < α⟩ has been

defined. Then define Bα = φ⟨Bβ :β<α⟩[g(α)]. Clearly, B⃗ is a ⊆∗-decreasing sequence
of sets, so it is centered.

Let us see that B⃗ is a witness for z(I). Pick any f ∈ ωω and consider (f, B⃗).

Then the set {α ∈ ω1 : F (f, B⃗ ↾ α)[g(α)] ∈ I} is stationary. Let α ∈ ω1 be such that

F (f, B⃗ ↾ α)[g(α)] ∈ I. Since B⃗ ↾ α is a centered family, it follows from the definition

of F that F (f, B⃗ ↾ α) = f ◦ φB⃗↾α, so f ◦ φ⟨Bβ :β<α⟩[g(α)] = f [φ⟨Bβ :β<α⟩[g(α)]] =

f [Bα], and due to the choice of α, f [Bα] ∈ I.

Let U be any ultrafilter extending B⃗. It is clear that U is an I-ultrafilter. □
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Proposition 7.4 (C. [34]). Let I,J be ideals on ω. Then:

(1) If I ≤K J , then z(J ) ≤ z(I).
(2) If I ≤KB J , then zfin(J ) ≤ zfin(I)

Proposition 7.5 (C. [34]). If I is an ideal on ω such that for some n, k ∈ ω there
exists a coloring φ : [ω]n → k whose homogeneous sets are in the ideal I, then
zfin(I) ≤ max{d, rσ}.

Proposition 7.6 (C. [34]). For any meager ideal I, min{r, d} ≤ zfin(I).

For the next proposition, rpart is the minimal cardinality of a family R ⊆ [ω]ω

such that for any partition {Pn : n ∈ ω} into infinite sets, there is A ∈ R such that
either, there is n ∈ ω such that A ⊆ Pn, or for all n ∈ ω, A ∩ Pn is finite.

Proposition 7.7 (C. [34]).

(1) z(conv) = rσ.
(2) r ≤ z(nwd) ≤ rσ.
(3) zfin(EDfin) = d.
(4) z(Fin× Fin) = zfin(Fin× Fin) = rpart.
(5) z(ED) = zfin(ED) = max{rpart, d}.
(6) max{rpart, d} ≤ zfin(R) ≤ z(R) ≤ max{rσ, d}.
(7) If I is an analytic p-ideal, min{rσ, d} ≤ zfin(I) ≤ d.
(8) zfin(Z) = zfin(SC) = min{rσ, d}.

8. How different can ultrafilters be?

At first glance, all ultrafilters might look the same. We may ask, how can we
build two really different ultrafilters? From a topological point of view, this question
translates to whether ω∗ is homogeneous. As mentioned in the introduction, this
led Rudin to introduce P -points and thus finding really different ultrafilters under
the Continuum Hypothesis. Some time later, Frolik proved from ZFC that ω∗ is not
homogeneous. Finally, it was Kunen who explicitly found ultrafilters with different
topological properties. Van Mill continued with this task by finding many points
on ω∗ with different topological type (see [139]). Although the question in the
topological sense is completely resolved, there are still several criteria for which
there is still no complete answer. Naturally, assuming the Continuum Hypothesis,
it is possible to build all kind of ultrafilters. So the question really is if we can find
a model where all ultrafilters are as similar as possible.

Without a doubt, the best-known types of ultrafilters are the selective, P -points
and Q-points. In each case, it is known that its existence cannot be proven from
ZFC. In Kunen [119] he proved that in the random model there are no selective
ultrafilters. In [141] and [140], Miller proved that there are no Q points in the
Laver and Miller models. Finally, Shelah proved (see [192] and [165]) that it is
consistent that there are no P -points. In [43] the second author and Chodounský
proved that there are no P -points in the Silver model. Regarding nwd-ultrafilters,
in Shelah [167] build a model where they do not exist. The method developed by
Shelah was later expanded by Brendle in [27]. Recently, the first author build a
model where there are no I-ultrafilters, for any ideal I that is Fσ.
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Regarding the existence of P -points and Q-points, the following is known:

Proposition 8.1. (1) d = ω1 implies that there is a Q-point.
(2) (Ketonen [113]) d = c implies that there is a P -point.
(3) In this way, c ≤ ω2 implies that there is either a P -point or a Q-point.

The following problem is one of the most important open question regarding
ultrafilters on countable sets, see [143]

Problem 8.2. Is it consistent that there are no P -points and no Q-points?

One of the first difficulties in building a model there there are no P -points and
no Q-points, is that the continuum most be larger than ω2. In this way, we can not
use usual countable support iterations of proper forcings since they do not allow us
to pass ω2, while usual finite support iterations are also ruled out since they add
Cohen reals. Although Proposition 8.1 points out to a deeper problem. In order
to destroy Q-points, we need to add unbounded reals; however, adding unbounded
reals cofinally often will create P -points. It is the general belief that it should be
possible to build a model without a P -point or a Q-point, but the reality could be
completely different.

As we have discussed before, ultrafilters can be classified using Borel ideals and
the Katětov order. We may wonder if this classification can be trivial; is it possible
that every ultrafilter is Katětov above every tall Borel ideal? (in other words, if
every ultrafilter is unremarkable). Is it possible to find a Borel ideal I for which
we can prove in ZFC that I-ultrafilters exist? According to Theorem 6.5, it is
enough to find a Borel ideal for which exterior cofinality is provable to be c. An old
construction of Posṕı̌sil (see [151]) can be used to find an analytic ideal with that
property.

Definition 8.3. Let P be an independent family. By Pos(P) denote the ideal
generated by {Ac | A ∈ I} ∪ {

⋂
C | C ∈ [I]

ω}.

We now have the following:

Proposition 8.4 ( [151], [85]). Let P be an independent family.

(1) Pos(P) is a proper ideal.
(2) If |P| = c, then ge(Pos(P)) = c.
(3) If P is perfect, then Pos(P) is an analytic ideal.

Proof. For the first point, we need to prove that ω /∈ Pos(P) . Let A0, ..., An ∈ I
and C0, ..., Cn ∈ [I]

ω
. We need to show that X = (

⋃
Ac

i) ∪ (
⋂
C0) ∪ ... ∪ (

⋂
Cn)

is co-infinite. Since each Ci is infinite, we can choose Bi ∈ Ci such that Bi /∈
{A0, ..., An} . It follows that (

⋂
C0) ∪ ... ∪ (

⋂
Cn) ⊆ B0 ∪ ... ∪ Bn. Since I is inde-

pendent, (
⋃
Ac

i) ∪ (
⋃
Bi) has infinite complement, so we are done.

We now prove the second point by contradiction. Assume that |P| = c and there
is an ideal I with cof(I) < c and Pos(P) ⊆ I. Let B ⊆ I be a base of size less than
c. It follows that there must be B ∈ B and {An | n ∈ ω} ⊆ I such that Ac

n ⊆ B
for every n ∈ ω. In this way,

⋃
n∈ω

Ac
n ⊆ B, so

⋃
n∈ω

Ac
n ∈ I. However, we know that⋂

n∈ω
An is also in I, which entails that ω ∈ I.

We leave the computation of the complexity of the ideal to the reader. □
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We conclude:

Corollary 8.5. There is an analytic ideal I for which I-ultrafilters exist generi-
cally.

We can now obtain a Borel ideal as above appealing to the following theorem of
H. Sakai:

Theorem 8.6 (Sakai [163]). Every analytic ideal is contained in a Borel ideal.

The theorem of Sakai uses the Luzin separation theorem and does not provide an
explicit complexity of the Borel ideal. In [85] the second and third author found a
variation Pos(P) (named PosB (P)) that is Fσδσ and extends Pos(P) . In particular,
it follows that ge(PosB(P)) = c. Hence we conclude:

Theorem 8.7 ( [85]). There is an Fσδσ-ideal I for which I-ultrafilters exist gener-
ically.

Moreover, using ideas from [28], it as proved in [85] that the complexity Fσδσ is
optimal.

Theorem 8.8 ( [85]). It is consistent that I-ultrafilters do not exist generically for
every Fσδ-ideal I.

Of course, the theorem above does not rule out the existence of I-ultrafilters for
Fσδ or even Fσ ideals. In fact, it is not even known if there are Z-ultrafilters in
ZFC.

Problem 8.9 (H. [97]). Are there Z-ultrafilters in ZFC?

Problem 8.10 (G.-H. [85]). Is it consistent that there are no I-ultrafilters for any
Fσδ-ideal I?

In general, we would like to understand for which Borel ideals I, does ZFC imply
the existence of I-ultrafilters (or weak I-ultrafilters). The case of Fσ ideals was
solved by the first author in [35], where it was proved that consistently there are
no weak I-ultrafilters for any Fσ ideal I. There is a way to present the results
from [35] in an axiomatic framework employing the principle of Near Coherence of
Filters.

Definition 8.11 (Blass [16]). Let U and V be two non-principal ultrafilters on
ω. We say that U and V are nearly coherent if there is a finite to one function
f : ω → ω such that f(U) = f(V).

The Near Coherence of Filters, denoted by NCF, is the assertion that any two
different ultrafilters on ω are nearly coherent.

The NCF principle has some quite interesting consequences, among them we can
find the following:

Theorem 8.12 (Blass [16]). The Near Coherence of Filters principle implies the
following:

(1) There are no Q-points.
(2) u < d.
(3) The P -points are dense in the Rudin-Keisler ordering.
(4) For any family {Uα : α < λ} of ultrafilters where λ < d, there is a finite to

one function h : ω → ω such that for all α, β ∈ λ, h(Uα) = h(Uβ).
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Theorem 8.13. Assume NCF and let I be an ideal on ω.

(1) If u < z(I), then there is no I-ultrafilter.
(2) If u < zfin(I), then there is no weak I-ultrafilter.

Proof. Let U be an non-principal ultrafilter on ω, we need to find a function f :
ω → ω such that I ∩ f(U) = ∅. Let λ = z(I). Let V0 be an ultrafilter generated
by less than λ sets. By NCF, there is a finite to one function h : ω → ω such that
h(U) = h(V0). Since V0 is generated by less than λ sets, h(U) is also generated by
less than λ sets. Let B be an ultrafilter base for h(U) of cardinality smaller than λ.
Then there is a function f : ω → ω such that f(B) ∩ I = ∅. Therefore, we also get
f(h(U)) ∩ I = ∅, so f ◦ h witnesses U is not a I-ultrafilter.

Note that if u < zfin(I) we can take the function f : ω → ω to be finite to one,
so f ◦h is finite to one; thus, in this case there are not even weak I-ultrafilters. □

Note that from Proposition 7.7 we have that zfin(EDfin) = d. It is well known
that in the Miller’s model d = c and the Near Coherence of Filters holds, so the
previous theorem gives us a proof that in the Miller’s model there is no Q-point. It
turns out that this can be generalized to the case of ideals of Borel complexity Fσ.

Theorem 8.14 (C. [35]). The conjunction of the next assertions is relatively con-
sistent:

(1) The Near Coherence of Filters.
(2) For any Fσ ideal I, zfin(I) = c.

Therefore, it is relatively consistent that for any Fσ ideal I, there is no weak I-
ultrafilter.

Note that the previous theorem implies that no Fσδσ-ideal from Proposition 8.7
can be extended to an Fσ-ideal.

Another way to classify ultrafilters is with the Tukey order, which is used to study
directed sets (that is, partial orders in which any two elements have a common upper
bound).

Definition 8.15. Let D = (D,≤D) and E = (E,≤E) two directed partial orders.

(1) Let f : D −→ E. We say that f is a cofinal function from D to E if it maps
cofinal subsets of D to cofinal subsets of E.

(2) We say that E ≤T D (E is Tukey below D) if there is a cofinal function
from D to E.

(3) We say E and D are Tukey equivalent (denoted D =T E) if E ≤T D and
D ≤T E.

The Tukey order can be formulated in terms of the Katětov order as follows: for
every directed set D, define ncf(D) as the ideal on D of all non cofinal subsets of
D. It follows that E ≤T D if and only if ncf(E) ≤Kncf(D) . Moreover, if we define
bnd(D) as the ideal of bounded subsets of D, it is also possible to prove that E ≤T D
if and only if bnd(D) ≤Kbnd(E) . In this way, we get the following:

Lemma 8.16. Let D = (D,≤D) and E = (E,≤E) two directed partial orders. The
following are equivalent:

(1) E ≤T D.
(2) There is f : D −→ E that maps cofinal subsets of D to cofinal subsets of E.
(3) There is g : E −→ D that maps unbounded subsets of E to unbounded

subsets of D (a function with this property is called a Tukey function).
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An example of a directed set is
(
[κ]

<ω
,⊆
)

(where κ is an infinite cardinal).
These directed sets play a crucial role in the study of the Tukey order:

Lemma 8.17. Let D = (D,≤D) be a directed set. If |D| ≤ κ, then D ≤T [κ]
<ω

.

Proof. Take an enumeration (maybe with repetitions) D = {dα | α ∈ κ} . Define

f : [κ]
<ω −→ D such that if s = {α1, ..., αn} , then dα1 , ..., dαn ≤D f (s) . It is easy

to see that f is a cofinal function. □

The following types of sets are useful:

Definition 8.18. Let D = (D,≤D) be a directed set. We say that B ⊆ D is strongly
unbounded if no infinite subset of B has an upper bound.

We now have a simple description of the Tukey class of T [κ]
<ω

.

Lemma 8.19. Let D = (D,≤D) be a directed set.

(1) If D has a strongly unbounded subset of size κ, then [κ]
<ω ≤T D.

(2) If D = κ and has a strongly unbounded subset of size κ, then [κ]
<ω

=T D.

Let U be an ultrafilter on ω. It follows that U is a directed set when ordered
with the reverse inclusion (it is also a directed set when ordered with inclusion,

but a trivial one). It follows that every ultrafilter is Tukey below [c]
<ω

. This is the
motivation for the following definition:

Definition 8.20. Let U be an ultrafilter on ω. We say that U is Tukey top if
U =T [c]

<ω
.

Equivalently, U is Tukey top if there is W ⊆ U of size c such that for every B ∈
[W]

ω
, we have that ∩B /∈ U .

Proposition 8.21 (Isbell [106]). There is a Tukey top ultrafilter.

Proof. Let P be an independent family of size c and U any ultrafilter extending
Pos(P)

∗
. It is easy to see that P ⊆ U is a strongly unbounded set. □

However, the following is unknown:

Problem 8.22 (Isbell [106]). Is there a non-Tukey top ultrafilter?

As far as we know, it might be consistent that all ultrafilters have the same
Tukey type. It is known that consistently the problem has an affirmative answer.
In fact, Dobrinen and Todorcevic proved in [59] that P -points are not Tukey top.
They also introduced the following class of ultrafilters:

Definition 8.23. Let U be an ultrafilter on ω. We say that U is basically gener-
ated if there is a base B ⊆ U closed under intersections such that every convergent
sequence on B (when viewed as a subspace of P (ω)) has a bounded (in U) subse-
quence.

This is a variation of the notion of basic directed set introduced earlier by Solecki
and Todorcevic in [173]. The following is proved in [59]:

Proposition 8.24 (Dobrinen-Todorcevic [59]). (1) Every P -point is basically
generated.

(2) If U is basically generated, then [ω1]
<ω ≰T U . In particular, U is not Tukey

top.
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(3) The class of basically generated ultrafilters is closed under taking limits.

We would also like to highlight the following (particular case) of a Theorem of
Dobrinen and Todorcevic, which says that Tukey functions between P -points may
be assumed to be continuous:

Theorem 8.25 (Dobrinen-Todorcevic [59]). Let U be a P -point and V an ultrafilter
such that V ≤T U . There is a continuous and monotone f : P (ω) −→ P (ω) such
that f ↾ U is a cofinal function from U to V.

Proposition 8.26. Any non P-point ultrafilter is Tukey above (ωω,≤∗).

Proof. Let {An : n ∈ ω} be a partition of ω witnessing U is not a P-point, and such
that min(An) < min(An+1) for all n ∈ ω. Then, for each X ∈ U , there are infinitely
many n ∈ ω such that An ∩X is infinite. For each X ∈ U , define fX : ω → ω as
fX(n) = minAkn

∩X where kn ∈ ω is the minimal l ≥ n such that X∩Al is infinite.
Let us see that any cofinal D ⊆ U , the set {fX : X ∈ D} is cofinal in (ωω,≤∗). Fix
h ∈ ωω, define Xh =

⋃
n∈ω An \h(n). We can assume h is strictly increasing. Since

{An : n ∈ ω} witness U is not a P-point, we have Xh ∈ U . Since D is cofinal in U ,
there is B ∈ U such that B ⊆ Xh. It is easy to see that h ≤ fB . □

Proposition 8.27. It is consistent that all ultrafilters are Tukey above (ωω,≤∗).

To learn more about the Tukey order on ultrafilters, the reader may consult the
paper [59], the survey [57] and the references in there.

It has been very fruitful to study the preservation of ultrafilters under forcing.
Let U be an ultrafilter on ω and P a forcing notion. Unless P does not add new
reals, U will no longer be an ultrafilter after forcing with P. However, it might still
generate an ultrafilter.

Definition 8.28. U be an ultrafilter on ω and P a partial order. We say that P
preserves U if U generates an ultrafilter after forcing with P. Equivalently, for every
p ∈ P and Ẋ such that p ⊩“Ẋ ⊆ ω”, there are q ≤ p and A ∈ U such that either
q ⊩“A ⊆ Ẋ” or q ⊩“A ∩ Ẋ = ∅”.

Evidently, if P does not add new reals, then P preserves all ultrafilters. On
the other hand, any filter adding either a Cohen, random or dominating real will
destroy all ultrafilters. As it is often the case, preservation under Sacks forcing is
particularly interesting, as we will now see. The following theorem is basically a
compilation of results obtained independently by Miller, Eisworth (unpublished)
and Yiparaki.

Theorem 8.29 (Eisworth, Miller [142], Yiparaki [191]). Let U be an ultrafilter on
ω. The following are equivalent:

(1) Sacks forcing preserves U .
(2) There is a forcing P that adds reals and preserves U .
(3) For every p ∈ S and c : p −→ 2, there is q ≤ p and A ∈ U such that c is

constant on q ↾ A.
(4) For every p ∈ S, there is q ≤ p and A ∈ U such that either A ⊆ x for every

x ∈ [q] or A ∩ x = ∅ for every x ∈ [q] .

It is interesting to compare S preservability with being Tukey top.

Corollary 8.30. Let U be an ultrafilter on ω.
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(1) The following are equivalent:
(a) U is Tukey top.
(b) There is B ⊆ U of size c such that if D ⊆ B is infinite, then

⋂
D ∈ U∗.

(2) The following are equivalent:
(a) U is not preserved by Sacks forcing.
(b) There is a perfect P ⊆ U such that if R ⊆ P is perfect, then

⋂
R ∈ U∗.

Although both notions are strikingly similar, it is not obvious if there is any
implication betweem them.

Problem 8.31 (Blass). What is the relationship between being preserved by Sacks
forcing and not being Tukey top?

It was proved by Bartoszyński, Goldstern, Judah and Shelah (see the Theorem
6.2.2 in the book [3]) that there is an analytic ideal I such that every ultrafilter
U extending I∗ is not preserved by Sacks forcing (equivalently, is not preserved
by any forcing adding new reals). It then follows by Theorem 8.6 that there is a
Borel ideal with this property. It was realized by Chodounský, the second and third
authors that the density zero filter has this property. In fact, the same is true for
being Tukey top.

Theorem 8.32 (Chodounský-G-H [44]). If U is not a Z-ultrafilter (in particular,
if Z∗ ⊆ U), then U is both Tukey top and destroyed by Sacks forcing.

Proof. For every n ∈ ω, define Pn = [2n, 2n+1) and σn : P (ω) −→ R where

σn (A) = |A∩Pn|
2n . For A ⊆ ω, denote σ (A) = limn−→∞ σn (A ∩ Pn) in case the

limit exists. In this way, Z is the set of all A ⊆ ω such that σ (A) = 0. We now
have the following:

Claim 8.33. There is p ∈ S such that:

(1) If x ∈ [p] , then σ (x) = 1
2 .

(2) If B ⊆ [p] is infinite, then σ(
⋃
B) = 1 and σ(

⋂
B) = 0.

The idea is to build p such that all any n of its branches are “independent” in
almost all of the Pm. The precise construction can be consulted in [44].

Now, let U be an ultrafilter such that Z ≤K U∗. Pick f ∈ ωω a Katětov function
and fix p the Sacks tree constructed above. Given x ∈ [p] , denote x0 = x and
x1 = ω \x. Find ix ∈ 2 such that f−1

(
xix
)
∈ U . In this way, we can find i ∈ 2 such

that B = {x ∈ [p] | ix = i} has size c. For concreteness, assume that i = 1 (the other
case is similar). We claim that {f−1

(
x1
)
| x ∈ B} ⊆ U is strongly unbounded. Let

{xn | n ∈ ω} ⊆ B and C =
⋂

n∈ω
f−1

(
x1
n

)
. We now have the following:

f [C] = f [
⋂
n∈ω

f−1
(
x1
n

)
] ⊆

⋂
n∈ω

f
[
f−1

(
x1
n

)]
⊆

⊆
⋂
n∈ω

x1
n =

⋂
n∈ω

xc
n =

(⋃
n∈ω

xn

)c

So f [C] ∈ Z. Since f is a Katětov function, we conclude that C ∈ U∗. The proof
that U is Sacks destructible is similar (see [44] for more details). □
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It was proved by Baumgartner and Laver in [6] that Ramsey ultrafilters are Sacks
indestructible. It was later noted that P -points are enough for Sacks preservation.
In this way, it is consistent that there are Sacks indestructible ultrafilters. However,
the following is unknown:

Problem 8.34 (Miller [142]). Is it consistent that there are no Sacks indestructible
ultrafilters?

Although Sacks indestructible ultrafilters are very interesting, the indestruc-
tubility of P -points is the one that has been studied the most. Miller proved the
following theorem:

Theorem 8.35 (Miller [140]). (1) Let P be a partial order. If P adds an un-
bounded real, then P destroys all non P -point.

(2) Miller forcing preserves an ultrafilter U if and only if U is a P -point.

It follows by the previous Theorem that if U× U is never preserved by Miller
forcing, even if U is preserved. In contrast, if U and V are preserved by Sacks
forcing, then U × V is also preserved. One of the reasons that the preservation of
P -points is so important is that this property can be iterated, as was proved by
Blass and Shelah.

Theorem 8.36 (Blass-Shelah, see [165]). Let ⟨Pα, Q̇α | α < δ⟩ be a countable
support iteration of proper forcings and U a P -point. If for every α < δ, we have
that Pα ⊩“Q̇α preserves U”, then Pδ preserves U .

Since most of our tools for preserving ultrafilters use P -points, it is natural to
ask the following:

Problem 8.37 (Nyikos). Is it consistent that there is an ultrafilter generated by
ω1 many sets, yet there are no P -points?

A positive solution to this problem was announced in [168], but it has not been
published at the moment this paper was written. Zapletal studied the preservation
of P -points and Ramsey ultrafilters under definable forcing. In case where a forcing
is suitable definable, preservation of this kind of ultrafilters is equivalent to simpler
and easier to check conditions.

Theorem 8.38 ((CH+LC) (Zapletal, [194]). Let P be a suitably definable proper
forcing. The following are equivalent:

(1) P preserves all P -points.
(2) P does not add a splitting real and has the weak Laver property.

Theorem 8.39 ((LC) (Zapletal, [193]). Let P be a suitably definable proper forcing
and U a Ramsey ultrafilter. The following are equivalent:

(1) P preserves U and it generates a Ramsey ultrafilter in the extension.
(2) P does not add a splitting real and is ωω-bounding.

The LC above denotes a large cardinal hypothesis. In practice, it is often the case
that no large cardinals are needed at all. The reader may find more information
(as well as the definition of the undefined notions) in Zapletal’s book [193].

We started this section wondering how different ultrafilters can be. It is worth
pointing out that all selective ultrafilters are equal in some sense. This can be seen
from the following theorem of Todorcevic:
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Theorem 8.40 ((LC) Todorcevic, see [66]). Let U be an ultrafilter. The following
are equivalent:

(1) U is selective.
(2) U is P (ω) /fin -generic over L(R).

A similar characterization of P (ω) /I generic ultrafilters for I an Fσ-ideal was
found by Chodounský and Zapletal in [45].
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250 (1979) 91–120.
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[70] Jana Flašková, More than a 0-point, Comment. Math. Univ. Carolin. 47 (2006), no.

4, 617–621.
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[73] Jana Flašková, The relation of rapid ultrafilters and Q-points to van der Waerden
ideal, Acta Univ. Carol., Math. Phys. 51 (suppl.) (2010) 19–27.
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