LECTURE 2:
 Learning from quantum field theory basics of the general boundary formulation

Robert Oeckl

IQG-FAU \& CCM-UNAM
IQG FAU Erlangen-Nürnberg
7 November 2013

Outline

(1) Lessons from quantum field theory
(2) 1 - From the path integral to TQFT
(3) 2 - Crossing symmetry and the joint state space
4. The probability interpretation - generalizing the Born rule
(5) 3-The time-ordered product and composition of observables
(6) Formalizing observables
(7) A remark on fermions

Recap

We recall that the standard formulation of quantum theory has severe deficiencies that impede its application in a general relativistic context, notably:

- Dependence on a predetermined notion of time
- Non-locality in space

How to proceed?

How do we obtain a better foundation of quantum theory?
Learn from nature! For a theorist this means: Take the best description of nature at a fundamental level that we have available. This is quantum field theory. Analyze its operational core and look for clues of an underlying structure.

How to proceed?

How do we obtain a better foundation of quantum theory?
Learn from nature! For a theorist this means: Take the best description of nature at a fundamental level that we have available. This is quantum field theory. Analyze its operational core and look for clues of an underlying structure.

This leads us here to a formulation of the foundations such that

- there is no reference to time
- locality is manifest
- the standard formulation is recovered (when applicable)

This is called the general boundary formulation and it is based on

- The mathematical framework of topological quantum field theory. (A branch of modern algebraic topology.)
- A generalization of the Born rule.

Lessons from quantum field theory

Various important structural features of quantum field theory as it is practically used are awkward from the point of view of the standard formulation. We focus on a few:
(1) The Feynman path integral. This turns out to be much more suitable to describe the dynamics of quantum field theory than Hamiltonian or time-evolution operators.
(2) Crossing symmetry. This property of the S-matrix is completely unmotivated from the point of view of the standard formulation.
(3) The time-ordered product of fields. This rather than the operator product is the relevant structure to extract physical predictions.

Taking the listed structures seriously from a foundational point of view gives valuable clues towards a reformulation.

Transition amplitudes

1 - From the path integral to TQFT

The dynamics of quantum field theory is efficiently described using the Feynman path integral [Feynman 1948]. In particular, the transition amplitudes describing time-evolution can be recovered from the path integral.

$$
\begin{aligned}
& \left\langle\psi_{2}, U_{\left[t_{1}, t_{2}\right]} \psi_{1}\right\rangle= \\
& \int_{K_{t_{1}} \times K_{t_{2}}} \mathcal{D} \varphi_{1} \mathcal{D} \varphi_{2} \psi_{1}\left(\varphi_{1}\right) \overline{\psi_{2}\left(\varphi_{2}\right)} Z_{\left[t_{1}, t_{2}\right]}\left(\varphi_{1}, \varphi_{2}\right) \\
& Z_{\left[t_{1}, t_{2}\right]}\left(\varphi_{1}, \varphi_{2}\right):=\int_{K_{\left[t_{1}, t_{2}\right]},\left.\phi\right|_{t_{i}}=\varphi_{i}} \mathcal{D} \phi e^{\mathrm{i} S(\phi)}
\end{aligned}
$$

$K_{\left[t_{1}, t_{2}\right]}-$ space of field configurations in the spacetime region $\left[t_{1}, t_{2}\right] \times \mathbb{R}^{3}$. $K_{t_{i}}$ - instantaneous space of field configurations at t_{i}.

Composition in time

1 - From the path integral to TQFT

Consider the composition of time-evolutions

- in operator form: $U_{\left[t_{1}, t_{3}\right]}=U_{\left[t_{2}, t_{3}\right]} \circ U_{\left[t_{1}, t_{2}\right]}$
- in terms of matrix elements:

$$
\left\langle\psi_{3}, U_{\left[t_{1}, t_{3}\right]} \psi_{1}\right\rangle=\sum_{i \in N}\left\langle\psi_{3}, U_{\left[t_{2}, t_{3}\right]} \xi_{i}\right\rangle\left\langle\xi_{i}, U_{\left[t_{1}, t_{2}\right]} \psi_{1}\right\rangle
$$

In the path integral picture this arises from
 a temporal composition property of the path integral.

$$
\begin{aligned}
& Z_{\left[t_{1}, t_{3}\right]}\left(\varphi_{1}, \varphi_{3}\right)= \\
& \quad \int_{K_{t_{2}}} \mathcal{D} \varphi_{2} Z_{\left[t_{1}, t_{2}\right]}\left(\varphi_{1}, \varphi_{2}\right) Z_{\left[t_{2}, t_{3}\right]}\left(\varphi_{2}, \varphi_{3}\right)
\end{aligned}
$$

Composition in spacetime I
 1 - From the path integral to TQFT

The path integral satisfies a much more general composition property in spacetime. This comes from:

- The locality of the integral over field configurations in spacetime
- The additivity of the action in spacetime: Say M_{1} and M_{2} are non-overlapping spacetime regions, then,

$$
S_{M_{1} \cup M_{2}}=S_{M_{1}}+S_{M_{2}} \quad \text { and so } \quad e^{i S_{M_{1}} \cup M_{2}}=e^{i S_{M_{1}}} e^{i S_{M_{2}}}
$$

Composition in spacetime II

1 - From the path integral to TQFT

$$
Z_{M_{1} \cup M_{2}}\left(\varphi_{1}, \varphi_{2}\right)=\int_{K_{\Sigma}} \mathcal{D} \varphi_{\Sigma} Z_{M_{1}}\left(\varphi_{1}, \varphi_{\Sigma}\right) Z_{M_{2}}\left(\varphi_{\Sigma}, \varphi_{2}\right)
$$

Lesson

This suggests that quantum (field) theory itself should incorporate such a generalized composition property.

Topological quantum field theory

1 - From the path integral to TQFT

This property of the path integral motivated the notion of topological quantum field theory [E. Witten, G. Segal, M. Atiyah etc. ca. 1988].

To geometric structures (pieces of spacetime)

- hypersurfaces Σ : oriented manifolds of dim. $d-1$
- regions M : oriented manifolds of dim. d with boundary
associate algebraic structures
- to Σ a Hilbert space \mathcal{H}_{Σ}
- to M an amplitude map

$$
\rho_{M}: \mathcal{H}_{\partial M} \rightarrow \mathbb{C}
$$

Core axioms

1 - From the path integral to TQFT

- Let $\bar{\Sigma}$ denote Σ with opposite orientation. Then $\mathcal{H}_{\bar{\Sigma}}=\mathcal{H}_{\Sigma}^{*}$.
- (Decomposition rule) Let $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ be a disjoint union of hypersurfaces. Then $\mathcal{H}_{\Sigma}=\mathcal{H}_{\Sigma_{1}} \otimes \mathcal{H}_{\Sigma_{2}}$.
- (Gluing rule) If M_{1} and M_{2} are adjacent regions, then:

$$
\rho_{M_{1} \cup M_{2}}\left(\psi_{1} \otimes \psi_{2}\right)=\rho_{M_{1}} \diamond \rho_{M_{2}}\left(\psi_{1} \otimes \psi_{2}\right):=\sum_{i \in N} \rho_{M_{1}}\left(\psi_{1} \otimes \xi_{i}\right) \rho_{M_{2}}\left(\xi_{i}^{*} \otimes \psi_{2}\right)
$$

Here, $\psi_{1} \in \mathcal{H}_{\Sigma_{1}}, \psi_{2} \in \mathcal{H}_{\Sigma_{2}}$ and $\left\{\xi_{i}\right\}_{i \in N}$ is an ON-basis of $\mathcal{H}_{\Sigma^{2}}$

Recovering transition amplitudes

1 - From the path integral to TQFT

Via time-translation symmetry identify $\mathcal{H}_{\Sigma_{1}} \cong \mathcal{H}_{\Sigma_{2}} \cong \mathcal{H}$. Then,

$$
\rho_{\left[t_{1}, t_{2}\right]}\left(\psi_{1} \otimes \psi_{2}^{*}\right)=\left\langle\psi_{2}, U_{\left[t_{1}, t_{2}\right]} \psi_{1}\right\rangle .
$$

Recovering transition amplitudes

1 - From the path integral to TQFT

- region: $M=\left[t_{1}, t_{2}\right] \times \mathbb{R}^{3}$
- boundary: $\partial M=\Sigma_{1} \cup \bar{\Sigma}_{2}$
- state space:

$$
\mathcal{H}_{\partial M}=\mathcal{H}_{\Sigma_{1}} \otimes \mathcal{H}_{\bar{\Sigma}_{2}}=\mathcal{H}_{\Sigma_{1}} \otimes \mathcal{H}_{\Sigma_{2}}^{*}
$$

Via time-translation symmetry identify $\mathcal{H}_{\Sigma_{1}} \cong \mathcal{H}_{\Sigma_{2}} \cong \mathcal{H}$. Then,

$$
\rho_{\left[t_{1}, t_{2}\right]}\left(\psi_{1} \otimes \psi_{2}^{*}\right)=\left\langle\psi_{2}, U_{\left[t_{1}, t_{2}\right]} \psi_{1}\right\rangle .
$$

- But, does it make sense do go beyond this example?
- Does the boundary Hilbert space $\mathcal{H}_{\partial M}$ have a useful physical interpretation in general?

Crossing symmetry

2 - Crossing symmetry and the joint state space

Quantum field theory satisfies crossing symmetry. That is, transition amplitudes remain (essentially) invariant when individual particles are moved between the in- and the out-state spaces.

Thus, particles might reasonably thought of as living in a joint product Hilbert space $\mathcal{H}_{\text {in }} \otimes \mathcal{H}_{\text {out }}$, distinguished merely by quantum numbers.

Boundary state spaces

2 - Crossing symmetry and the joint state space

The analogous picture for a connected boundary looks like this:

Lesson

Crossing symmetry is indispensable for state spaces associated to more general boundaries to make sense.

Probabilities: Born rule (I)

Consider a simple measurement:

- At t_{1} we prepare a state ψ.
- At t_{2} we ask whether the system is in state η.

The conditional probability for this is $P(\eta \mid \psi)=|\langle\eta, U \psi\rangle|^{2}$
Probabilities in quantum theory are conditional and involve two ingredients: preparation and question.

Probabilities: Born rule (II)

Suppose we ask instead for a range of possible outcomes.

Ask for the outcome to be in the subspace $A \subseteq H$ spanned by the orthonormal vectors $\eta_{1}, \ldots, \eta_{k}$. These can be seen as alternative and exclusive outcomes.

Prepare ψ.
The conditional probability for this is $P(A \mid \psi)=\sum_{i=1}^{k}\left|\left\langle\eta_{k}, U \psi\right\rangle\right|^{2}$
Probabilities depend generally on subspaces. The case of a single state arises as the special case of a one-dimensional subspace.

Probabilities: Born rule (III)

We may need to condition on a range of outcomes. Say, the apparatus registers only measurements in this range.

Ask for the outcome to be η_{i} given that the output lies in the subspace $S \subseteq H$ spanned by the orthonormal vectors $\eta_{1}, \ldots, \eta_{k}$.

Prepare ψ.

The conditional probability for this is

$$
P\left(\eta_{i} \mid S, \psi\right)=\frac{\left|\left\langle\eta_{i}, U \psi\right\rangle\right|^{2}}{\sum_{i=1}^{k}\left|\left\langle\eta_{k}, U \psi\right\rangle\right|^{2}}
$$

Probabilities arise generally as quotients.

Probabilities: Born rule (IV)

We may also need to condition past events on future events. Suppose a measurement is prepared with uniform probability over all states. (This is the maximally mixed state.) We register measurements with a fixed outcome only and ask for a specific initial state.

Register (or select) outcomes η only.
Prepare with uniform probability $\psi_{1}, \ldots, \psi_{n}$ (an ON-basis of H). Ask for the initial state ψ.

The conditional probability for this is $P(\psi \mid \eta)=|\langle\eta, U \psi\rangle|^{2}$
The conditional structure need not be related to the causal structure.

Probabilities

Generalizing the Born rule

Consider a spacetime region M. The associated amplitude ρ_{M} allows to extract probabilities for measurements in M.

Probabilities in quantum theory are generally conditional probabilities. They depend on two pieces of information. Here these are:

- $\mathcal{S} \subseteq \mathcal{H}_{\partial M}$ representing preparation or knowledge
- $\mathcal{A} \subseteq \mathcal{H}_{\partial M}$ representing observation or the question

The probability that the physics in M is described by \mathcal{A} given that it is described by \mathcal{S} is: (here $\mathcal{A} \subseteq \mathcal{S}$) [RO 2005]

$$
P(\mathcal{A} \mid \mathcal{S})=\frac{\sum_{i \in J}\left|\rho_{M}\left(\xi_{i}\right)\right|^{2}}{\sum_{i \in I}\left|\rho_{M}\left(\xi_{i}\right)\right|^{2}}
$$

Here $\left\{\xi_{i}\right\}_{i \in I}$ is an ON-basis of \mathcal{S} and reduces on $J \subseteq I$ to an ON-basis of the subspace \mathcal{A}.

Recovering standard probabilities

Generalizing the Born rule

To compute the probability of measuring ψ_{2} at t_{2} given that we prepared ψ_{1} at t_{1} we set

$$
\mathcal{S}=\psi_{1} \otimes \mathcal{H}^{*}, \quad \mathcal{A}=\mathcal{H} \otimes \psi_{2}^{*}
$$

The resulting expression yields correctly

$$
P(\mathcal{A} \mid \mathcal{S})=\frac{\left|\rho_{\left[t_{1}, t_{2}\right]}\left(\psi_{1} \otimes \psi_{2}^{*}\right)\right|^{2}}{1}=\left|\left\langle\psi_{2}, U_{\left[t_{1}, t_{2}\right]} \psi_{1}\right\rangle\right|^{2}
$$

Observables are labeled

3 - The time-ordered product and composition of observables

- Standard observables of QFT are values of fields $\hat{\phi}(x)$ and their derivatives $\partial_{0} \phi(x)$ at spacetime points x.
- These observables carry a label x specifying when (and where) they are applied.
- For consistency under changes of reference frame we need

$$
[A(x), B(y)]=0 \quad \text { if } x \text { and } y \text { are spacelike separated, }
$$

that is, if there is a reference frame where x and y are instantaneous.

The time-ordered product

3 - The time-ordered product and composition of observables

- There is only one operationally meaningful composition of two observables, given by the commutative time-ordered product:

$$
T A(x) B(y):= \begin{cases}A(x) B(y) & \text { if } x_{0}>y_{0} \\ B(y) A(x) & \text { if } x_{0}<y_{0}\end{cases}
$$

- In QFT all physically measurable quantities are constructed via the time-ordered product. The noncommutative operator product is never directly used.
- The operator product can be recovered from the time-ordered product. For equal times:
$[A(t, \bar{x}), B(t, \bar{y})]=\lim _{\epsilon \rightarrow 0} T A(t+\epsilon, \bar{x}) B(t-\epsilon, \bar{y})-T B(t+\epsilon, \bar{y}) A(t-\epsilon, \bar{x})$

The path integral and observables

3 - The time-ordered product and composition of observables
Observables in QFT are quantized through the path integral:

$$
\begin{gathered}
\left\langle\psi_{2}, \hat{A} \psi_{1}\right\rangle=\int_{K_{t_{1}} \times K_{t_{2}}} \mathcal{D} \varphi_{1} \mathcal{D} \varphi_{2} \psi_{1}\left(\varphi_{1}\right) \overline{\psi_{2}\left(\varphi_{2}\right)} Z_{\left[t_{1}, t_{2}\right]}^{A}\left(\varphi_{1}, \varphi_{2}\right) \\
Z_{\left[t_{1}, t_{2}\right]}^{A}\left(\varphi_{1}, \varphi_{2}\right):=\int_{K_{\left[t_{1}, t_{2}\right]}, \phi \varphi_{t_{i}}=\varphi_{i}} \mathcal{D} \phi A(\phi) e^{i S(\phi)}
\end{gathered}
$$

For example, for the classical observable $A=\phi(p)$, the quantization $\hat{A}=\hat{\phi}(p)$ is the usual field operator.

Lesson

Observables are naturally spacetime objects.

Composition of observables

3 - The time-ordered product and composition of observables

The observables of QFT inherit the composition property of the path integral. This is the origin of the time-ordered product.

For example, if $A=\phi(p) \phi(q)$, then $\hat{A}=T \hat{\phi}(p) \hat{\phi}(q)$. This can also be obtained by spacetime composition of $\hat{\phi}(p)$ with $\hat{\phi}(q)$.

Lesson

Quantum observables are spacetime composable in the same way as amplitudes. Moreover, there is a correspondence between the classical product and quantum composition.

Observables in the GBF

Observables are associated to regions M and encoded through observable maps $\rho_{M}^{O}: \mathcal{H}_{\partial M} \rightarrow \mathbb{C}$, similar to the amplitude maps.

Observables can be composed in the same way as amplitudes via gluing of the underlying regions. The same formula as for amplitudes applies. We denote their composition as

$$
\rho_{M_{1}}^{O_{1}} \diamond \rho_{M_{2}}^{O_{2}}: \mathcal{H}_{\partial\left(M_{1} \cup M_{2}\right)} \rightarrow \mathbb{C}
$$

Recovering standard observables

- region: $M=[t, t] \times \mathbb{R}^{3}$
- boundary: $\partial M=\Sigma \cup \bar{\Sigma}$
- state space:

$$
\mathcal{H}_{\partial M}=\mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\Sigma}=\mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\Sigma}^{*}
$$

Recall $\mathcal{H}_{\Sigma} \cong \mathcal{H}$. In this geometry of an infinitesimally thin slice there is a correspondence between observable maps $\rho_{[t, t]}^{O}: \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\Sigma}^{*} \rightarrow \mathbb{C}$ and standard observables $\hat{O}: \mathcal{H} \rightarrow \mathcal{H}$ via matrix elements:

$$
\rho_{[t, t]}^{O}\left(\psi_{1} \otimes \psi_{2}^{*}\right)=\left\langle\psi_{2}, \hat{O} \psi_{1}\right\rangle \quad \forall \psi_{1}, \psi_{2} \in \mathcal{H}
$$

Observables and expectation values

Consider a spacetime region M carrying an observable O. The associated observable map ρ_{M}^{O} allows to extract expectation values for measurements in M.

The expectation value of the observable O conditional on the system being prepared in the subspace $\mathcal{S} \subseteq \mathcal{H}_{\partial M}$ can be represented as follows: [RO 2010]

$$
\langle O\rangle_{\mathcal{S}}=\frac{\sum_{i \in I} \overline{\rho_{M}\left(\xi_{i}\right)} \rho_{M}^{O}\left(\xi_{i}\right)}{\sum_{i \in I}\left|\rho_{M}\left(\xi_{i}\right)\right|^{2}}
$$

Here $\left\{\xi_{i}\right\}_{i \in I}$ is an ON-basis of \mathcal{S}.

Recovering standard expectation values

To compute the expectation value of observable O at time t given by

$$
\rho_{[t, t]}^{O}\left(\psi_{1} \otimes \psi_{2}^{*}\right)=\left\langle\psi_{2}, \hat{O} \psi_{1}\right\rangle
$$

in the state ψ we set

$$
\mathcal{S}=\psi \otimes \mathcal{H}^{*}
$$

The standard expectation value is then correctly recovered as

$$
\langle O\rangle_{\mathcal{S}}=\frac{\rho_{[t, t]}^{O}\left(\psi \otimes \psi^{*}\right)}{1}=\langle\psi, \hat{O} \psi\rangle .
$$

Composition correspondence

Suppose we are given classical observables O_{1} and O_{2} localized in adjacent spacetime regions M_{1} and M_{2} respectively. In the classical theory there is a natural composition of these observables given by the ordinary product $O_{1} \cdot O_{2}$ in the joint spacetime region $M_{1} \cup M_{2}$.

We then say that a quantization prescription $O_{1} \mapsto \rho_{M_{1}}^{O_{1}}, O_{2} \mapsto \rho_{M_{2}}^{O_{2}}$ satisfies the composition correspondence property if,

$$
\rho_{M_{1} \cup M_{2}}^{O_{1} \cdot O_{2}}=\rho_{M_{1}}^{O_{1}} \diamond \rho_{M_{2}}^{O_{2}}
$$

As already mentioned, quantum field theory satisfies this!

A remark on fermions

The formalism in the form presented so far only applies to bosonic theories. In the presence of fermionic degrees of freedom certain modifications apply [RO 2012]:

- All structures are equipped with a \mathbb{Z}_{2}-grading that distinguishes even and odd fermion number.
- Hilbert spaces are replaced by Krein spaces. These are indefinite inner product spaces decomposing into a positive definite and negative definite part.

$$
\mathcal{H}_{\Sigma}=\mathcal{H}_{\Sigma}^{+} \oplus \mathcal{H}_{\Sigma}^{-}
$$

The reason that these Krein spaces are "invisible" in ordinary QFT has to do with the restriction to spacelike hypersurfaces and to a global choice of time orientation.

Learning from QFT (essay):

R. O., Reverse engineering quantum field theory, AIP Conf. Proc. 1508 (2012) 428-432. arXiv:1210.0944.

GBF foundations:

R. O., General boundary quantum field theory: Foundations and probability interpretation, Adv. Theor. Math. Phys. 12 (2008) 319-352. arXiv:hep-th/0509122.

GBF observables:
R. O., Observables in the General Boundary Formulation, Quantum Field Theory and Gravity, Springer, 2012, pp. 137-156. arXiv:1101.0367. R. O., Schrödinger-Feynman quantization and composition of observables in general boundary quantum field theory, arXiv:1201.1877.

GBF fermions:
R. O., Free fermi and bose fields in TQFT and GBF. arXiv:1208.5038.

