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The quantization problem

Quantum theories are often constructed by applying a quantization
scheme to a classical theory. Standard quantization schemes are
designed to output the ingredients of the standard formulation, i.e., a
Hilbert space and operators on it. Instead we need quantization
schemes that output the ingredients of the GBF: a Hilbert space per
hypersurface, an amplitude map per region, and possibly observable
maps (not considered in this talk).

Recall from last lecture that the axiomatic framework of the GBF is
inspired by the Feynman path integral. As a consequence, the
Schrödinger-Feynman quantization scheme can be easily adapted to
the GBF.
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Recall: Spacetime

Spacetime is modeled by a collection of hypersurfaces and regions.

M

Σ

∂M

Spacetime regions are the arena
for local physics.

“Holography”
Information about local
physics is communicated
between adjacent regions
through interfacing
hypersurfaces (channels).
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Classical data (I)

A classical field theory needs to be encoded in terms of data
associated to these geometric structures (hypersurfaces and regions).

K∂M

KM,SMM

KΣ

Σ

∂M

per hypersurface Σ :
a space KΣ of field
configurations on Σ,

per region M :
a space KM of field
configurations in M and a
function SM : KM → R, the
action.
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Classical data (II)

The classical data satisfy a number of axioms concerning
decomposition of hypersurfaces, gluing of regions etc. These follow
“automatically” from the field theoretic setup.

M1

M2

Σ1
Σ2

KΣ1
KΣ2

M1

M2

Σ Σ

Σ1
Σ2

KΣ
KΣ1

KΣ2

KM1∪M2
KM1

KM2

For example, given a gluing we have the exact sequence:

KM1∪M2 → KM1 × KM2 ⇒ KΣ

We also have additivity of the action under composition of spacetime
regions (recall last lecture) etc.
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Schrödinger-Feynman quantization: hypersurfaces

In the Schrödinger representation states are wave functions on field
configurations. The state spaceHΣ for the hypersurface Σ is the space
of complex functions on KΣ with inner product,

〈ψ′, ψ〉Σ =

∫
KΣ

Dϕ ψ′(ϕ)ψ(ϕ).

Here,Dϕ is a translation invariant measure on KΣ.

Such a measure does not really exist in most cases. As usual, it is fruitful to
proceed pretending that it does.
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Schrödinger-Feynman quantization: regions

The Feynman path integral serves to define the field propagator
ZM : K∂M → C in a spacetime region M,

ZM(ϕ) =

∫
φ∈KM,φ|∂M=ϕ

Dφ e iSM(φ).

Here,Dφ is a translation invariant measure on KM.

The amplitude map ρM is then,

ρM(ψ) =

∫
K∂M

Dϕ ψ(ϕ)ZM(ϕ).

These quantum data “automatically” satisfy the axioms of the GBF.

Again, the measureDφ does not actually exist in most cases.
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Klein-Gordon Theory
Classical Theory

We consider a real scalar field theory in Minkowski spacetime with
the action

SM(φ) =
1
2

∫
d4x

(
(∂µφ)∂µφ −m2φ2

)
.

The equations of motion are given by the Klein-Gordon equation:

(� + m2)φ = 0.

We take the configuration spaces associated to hypersurfaces and
regions to be vector spaces of real valued functions:

KΣ := {ϕ : Σ→ R}

KM := {φ : M→ R}
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Klein-Gordon Theory
Standard Geometry (I)

I. Consider constant-time
hypersurfaces and
time-interval regions as in
the standard formulation. x

M

ϕ1

ϕ2

t1

t2
φ

Consider an constant-time hypersurface at time t. Expanding in
Fourier modes, elements of Kt are conveniently parametrized in terms
of functions η on momentum space,

ϕ(x) =

∫
d3k

(2π)32E

(
η(k)e−i(Et−kx) + η(k)ei(Et−kx)

)
.

Ht is the space of wave functions over Kt.
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Klein-Gordon Theory
Standard Geometry (II)

Consider a region [t1, t2] ×R3 determined by a time interval. The path
integral can be formally solved there, yielding the field propagator,

Z[t1,t2](ϕ1, ϕ2) = N[t1,t2] exp
(
−

1
2

∫
d3x

(
ϕ1 ϕ2

)
W

(
ϕ1
ϕ2

))
,

W =
−iω

sinω∆

(
cosω∆ −1
−1 cosω∆

)
, ∆ = t2 − t1, ω =

√
−

∑
i

∂2
i + m2.

This can be obtained by
1 using the stationary phase method in the path integral with a

classical solution matching boundary conditions
2 formally solving the inverse problem of determining the classical

solution in terms of boundary data through an operator equation
3 inserting the solution into the path integral
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Klein-Gordon Theory
Standard Geometry (III)

The propagator allows to calculate amplitudes. Demanding
time-translation invariance allows to deduce the vacuum wave
function,

ψ0(ϕ) = C exp
(
−

1
2

∫
d3xϕωϕ

)
.

Multi-particle states are now wave functions of the form pψ0, where p
is a polynomial. It is then straightforward to calculate the inner
product onHt. This also allows the identification ofHt with the Fock
space over Kt.

In particular, a particle state may be characterized by 3 quantum
numbers: the 3 momenta ki.
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Klein-Gordon Theory
Timelike Hypersurfaces (I)

II. Consider hypersurfaces
with constant z = x1
coordinate and
corresponding
space-interval regions.

M
ϕ

ϕ′

z

t
φ

z′
Parametrize configurations on constant x1 hypersurface analogous to
the spacelike case,

ϕ(t, x̃) =

∫
|E|>m

dE d2k̃
(2π)32k1

(
η(E, k̃)e−i(Et−k̃x̃−k1x1) + c.c.

)
,

where x̃ := (x2, x3), k̃ := (k2, k3) and k1 :=
√
|E2 − k̃2 −m2|.

Note that the sign of E can be negative!
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Klein-Gordon Theory
Timelike Hypersurfaces (II)

Quantization can be performed similarly to the spacelike case. We
omit the details.

In particular, a particle state may be characterized by 3 quantum
numbers: the momenta k2, k3 and the energy E. Recall that E may be
negative. This yields the same degrees of freedom as in the spacelike
case.

But, in contrast to the spacelike case there is no notion of in-state or
out-state. Rather each particle in a multi-particle state might
individually be either in-going or out-going. This is what the sign of
the energy E encodes.

[RO 2005]
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Klein-Gordon Theory
Timelike Hypersurfaces (III)

Additional field configurations exist with |E| < m,

ϕ(t, x̃) =

∫
|E|<m

dE d2k̃
(2π)32k1

(
η(E, k̃)(cosh(k1x1) + i sinh(k1x1))e−i(Et−k̃x̃) + c.c.

)
.

Configurations correspond to two classes of solutions:
Propagating waves: E2 > k̃2 + m2, oscillate in space
Evanescent waves: E2 < k̃2 + m2, exponential in space

The space of configurations decomposes as a direct sum Kx1 = Kp
x1
⊕Ke

x1
.

The space of wave functions is a tensor productHx1 = H
p
x1
⊗H

e
x1

.

A vacuum can be defined inHe
x1

[D. Colosi, RO 2007], but the existence
and properties of particle states remain unclear. . .
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Klein-Gordon Theory
The Hypercylinder

To go beyond standard transition amplitudes,
consider an example with a connected boundary.
[RO 2005]

M = R × B3
R.

∂M = ΣR = R × S2
R.

(Consider propagating waves only.)

The state spaceHΣR is again a Fock space.
A particle can be characterized by three quantum numbers:
energy E and angular momentum l,m.
The sign of the energy determines if a particle is in-going or
out-going. The state space decomposes asHΣR = Hin ⊗Hout.
This decomposition is neither geometrical nor temporal.
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S-matrix

Usually, interacting QFT is described via the S-matrix:

Assume interaction is relevant only
after the initial time t1 and before
the final time t2. The S-matrix is the
asymptotic limit of the amplitude
between free states at early and at
late time:

〈ψ2|S|ψ1〉 = lim
t1→−∞
t2→+∞

〈ψ2|Uint(t1, t2)|ψ1〉
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Spatially asymptotic S-matrix (I)

Similarly, we can describe
interacting QFT via a spatially
asymptotic amplitude. Assume
interaction is relevant only
within a radius R from the
origin in space (but at all
times). Consider then the
asymptotic limit of the
amplitude of a free state on the
hypercylinder when the radius
goes to infinity:

S(ψ) = lim
R→∞

ρR(ψ)

[D. Colosi, RO 2007–2008]
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Spatially asymptotic S-matrix (II)

Results:
The perturbative description of interactions works as in the
standard path integral and S-matrix picture. Technically, the
interactions are introduced via sources. In the hypercylinder
geometry, this involves evanescent modes in an essential way,
even if they vanish asymptotically.
The S-matrices are equivalent when the interaction is confined in
space and time. This equivalence is realized through an
isomorphism of the asymptotic state spaces.
In the standard formulation, crossing symmetry is an emergent
feature of the S-matrix. In the hypercylinder setting of the GBF
crossing symmetry is manifest.
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QFT in curved spacetime

The methods presented so far can be generalized for applications to
QFT in curved spacetime. Some applications so far:

Certain spacetimes do not admit asymptotic states at timelike
infinity. The usual S-matrix cannot be defined there. A famous
example is Anti-deSitter spacetime. Here the spatially
asymptotic S-matrix can be defined and yield a physically
meaningful description of quantum scattering. [M. Dohse, work in
progress]

A natural application would also be to static black holes.
The spatially asymptotic S-matrix can also be defined in other
curved spacetimes such as deSitter spacetime. [D. Colosi, 2009]

Unitary quantum evolution can be shown to hold in certain
classes of curved spacetime. [D. Colosi, RO 2009]

The Unruh effect has been analyzed with these tools. [D. Colosi,
D. Rätzel 2012; E. Bianchi, H. M. Haggard, C. Rovelli 2013]
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QFT with compact regions

All applications mentioned involve hypersurfaces and spacetime
regions that are infinitely extended. However, an aim of the GBF
program is to achieve an explicitly local description of QFT. At least
in Riemannian spacetime this is relatively easy to achieve.

Consider a real scalar field theory (in n dimensions) with action

SM(φ) =
1
2

∫
dnx

(
(∂iφ)∂iφ −m2φ2

)
.

The equations of motion are the Helmholtz equation(
∂i∂i + m2

)
φ = 0

It turns out, that there is no difficulty in obtaining the boundary Hilbert
spaces and amplitudes for spacetime regions that have for example the
shape of an n-ball and may be taken to be arbitrarily small.
[D. Colosi, RO 2008]
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Why corners?

We would like to obtain any compact region by gluings of just one
topological type of elementary region: the ball.
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Example: Two ball-shaped regions
are glued to another ball-shaped
region. This requires gluing along
parts of boundaries.

This introduces (virtual) corners where boundaries are split. In a sense
these are boundaries of boundaries.

If regions are topological, the corners are “invisible” and only
become apparent in the process of gluing.
If regions are differentiable, corners may become actual corners,
i.e., visible in the differentiable structure as points with a
neighborhood diffeomorphic to R+ ×R+ ×Rn−1. This requires to
extend the notion of manifold.
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2-dimensional quantum Yang-Mills theory

The problem of corners has been solved within the GBF in
2-dimensional quantum Yang-Mills theory. At the same time this
gave an example of implementing gauge symmetries into the GBF. In
the following we exhibit some of the geometric aspects of this. (Slides
taken from another talk.)
[RO 2006]
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Two dimensions: hypersurfaces

There are two types of elementary hypersurfaces (A):

an open string with
state spaceHO

a closed string with
state spaceHC

We also assign ιO : HO →HŌ and ιC : HC →HC̄ (b.1).

There are two types of elementary decompositions (a):

open string to two
open strings

τOO : HO ⊗HO →

HO

closed string to an
open string τOC : HO →HC

Remarks: τOO must be associative, τOC ◦ τOO must be commutative
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Two dimensions: regions

Any connected region is a Riemann surface with holes. It is
characterized by two non-negative integers, the genus g and the
number of holes n.

There is only one type of elementary region, the disc
D with amplitude ρD : HC → C (B).

The slice region associated with an open string can be thought of as a
squeezed disc:

This gives rise to a bilinear pairing
HO ⊗HO → C defined by

(·, ·)O = ρ̂D := ρD ◦ τOC ◦ τOO

By axiom (b.2) this is related to the inner
product onHO via 〈·, ·〉O = (ιO(·), ·)O.
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