LECTURE 5: Bosons and Fermions

Robert Oeckl

IQG-FAU & CCM-UNAM

IQG FAU Erlangen-Nürnberg 28 November 2013

slides at http://www.matmor.unam.mx/~robert/cur/2013_Erlangen.html

・ロト ・四ト ・ヨト ・ヨト - ヨー

Outline

Lagrangian field theory

Elements of geometric quantization

- Prequantization and polarization
- Linear field theory
- The holomorphic quantization scheme
 - Encoding semiclassical linear field theory
 - State spaces
 - Amplitudes
 - Coherent states
 - Universal amplitude formula
 - Fermionic field theory
 - Fock space quantization
 - Fermionic semiclassical linear field theory
 - Structure of quantum theory
 - Fock space
 - The quantization scheme
 - Probabilities and superselection

イロト イ理ト イヨト イヨト

Lagrangian field theory (I)

Formulate field theory in terms of first order Lagrangian density $\Lambda(\varphi, \partial \varphi, x)$. For a spacetime region *M* the **action** of a field ϕ is

$$S_M(\phi) := \int_M \Lambda(\phi(\cdot), \partial \phi(\cdot), \cdot).$$

Classical solutions in *M* are extremal points of this action. These are obtained by setting to zero the first variation of the action,

$$(\mathrm{d}S_M)_{\phi}(X) = \int_M X^a \left(\frac{\delta\Lambda}{\delta\varphi^a} - \partial_\mu \frac{\delta\Lambda}{\delta\partial_\mu\varphi^a}\right)(\phi) + \int_{\partial M} X^a \partial_\mu \lrcorner \frac{\delta\Lambda}{\delta\partial_\mu\varphi^a}(\phi)$$

under the condition that the infinitesimal field X vanishes on ∂M . This yields the **Euler-Lagrange equations**,

$$\left(\frac{\delta\Lambda}{\delta\varphi^a} - \partial_\mu \frac{\delta\Lambda}{\delta\partial_\mu\varphi^a}\right)(\phi) = 0.$$

Robert Oeckl (FAU & UNAM)

IQG 20131128 3/31

Lagrangian field theory (II)

The boundary term can be defined for an arbitrary hypersurface Σ .

$$(\theta_{\Sigma})_{\phi}(X) = -\int_{\Sigma} X^{a} \partial_{\mu} \lrcorner \frac{\delta \Lambda}{\delta \partial_{\mu} \varphi^{a}}(\phi)$$

This **1**-form is called the **symplectic potential**. Its exterior derivative is the **symplectic 2-form**,

$$(\omega_{\Sigma})_{\phi}(X,Y) = (\mathrm{d}\theta_{\Sigma})_{\phi}(X,Y) = -\frac{1}{2} \int_{\Sigma} \left((X^{b}Y^{a} - Y^{b}X^{a}) \partial_{\mu} \lrcorner \frac{\delta^{2}\Lambda}{\delta\varphi^{b}\delta\partial_{\mu}\varphi^{a}}(\phi) + (Y^{a}\partial_{\nu}X^{b} - X^{a}\partial_{\nu}Y^{b}) \partial_{\mu} \lrcorner \frac{\delta^{2}\Lambda}{\delta\partial_{\nu}\varphi^{b}\delta\partial_{\mu}\varphi^{a}}(\phi) \right).$$

We denote the space of solutions in *M* by L_M and the space of germs of solutions on a hypersurface Σ by L_{Σ} .

Robert Oeckl (FAU & UNAM)

Lagrangian field theory (III)

Let *M* be a region and $\phi \in L_{\partial M}$. Then ϕ may or may not be induced from a solution in *M*. If ϕ arises from a solution in *M* and *X*, *Y* arise from infinitesimal solutions in *M*, then,

 $(\omega_{\partial M})_{\phi}(X,Y) = (\mathrm{d}\theta_{\partial M})_{\phi}(X,Y) = -(\mathrm{d}\mathrm{d}S_M)_{\phi}(X,Y) = 0.$

This means, L_M induces an **isotropic** submanifold of $L_{\partial M}$.

It is natural to require that the symplectic form is **non-degenerate**. We are then led to the converse statement: If given X we have $(\omega_{\partial M})_{\phi}(X, Y) = 0$ for all induced Y, then X itself must be induced. This means, L_M induces a **coisotropic** submanifold of $L_{\partial M}$.

Taking both statements together yields,

 L_M induces a Lagrangian submanifold of $L_{\partial M}$.

Geometric quantization: Prequantization

Geometric quantization is designed to output the structures of the **standard formulation** of quantum theory, i.e., a Hilbert space of states and an operator algebra of observables acting on it. Its main input is the space *L* of solutions of the classical theory in spacetime with its symplectic structure ω . It proceeds roughly in two steps:

1 We consider a hermitian line bundle *B* over *L* with a connection ∇ that has curvature 2-form ω . Define the **prequantum** Hilbert space *H* as the space of square-integrable sections with inner product

$$\langle s',s\rangle = \int (s'(\eta),s(\eta))_{\eta} \,\mathrm{d}\mu(\eta).$$

Here the measure $d\mu$ is given by the 2*n*-form $\omega \land \dots \land \omega$ if *L* has dimension 2*n*. Classical observables, i.e., functions on *L*, act naturally as operators on *H* with the "correct" commutation relations.

Robert Oeckl (FAU & UNAM)

イロト イポト イヨト 一日

Geometric quantization: Polarization

2 This Hilbert space is too large. Choose in each complexified tangent space $(T_{\phi}L)^{\mathbb{C}}$ a Lagrangian subspace P_{ϕ} with respect to ω_{ϕ} . We then restrict *H* to those sections *s* of *B* such that

$$\nabla_{\overline{X}}s=0,$$

if $X_{\phi} \in P_{\phi}$ for all $\phi \in L$. This is called a **polarization**. The subspace \mathcal{H} of H obtained in this way is the Hilbert space of states. Not all observables are well defined on it as they might not leave the subspace $\mathcal{H} \subseteq H$ invariant.

Kähler polarization

We are interested in a **Kähler polarization**. Then P_{ϕ} is determined by a complex structure J_{ϕ} in $T_{\phi}L$ that is compatible with ω_{ϕ} . J_{ϕ} satisfies $J_{\phi} \circ J_{\phi} = -1$ and $\omega_{\phi}(J_{\phi}X, J_{\phi}Y) = \omega_{\phi}(X, Y)$. Then

$$P_{\phi} = \{ X \in (T_{\phi}L)^{\mathbb{C}} : iX = J_{\phi}X \}.$$

 J_{ϕ} yields a real inner product on $T_{\phi}L$:

$$g_{\phi}(X_{\phi}, Y_{\phi}) := 2\omega_{\phi}(X_{\phi}, J_{\phi}Y_{\phi}).$$

We shall require g_{ϕ} to be positive definite. We also obtain a complex inner product on $T_{\phi}L$ viewed as a complex vector space:

$$\{X_{\phi}, Y_{\phi}\}_{\phi} := g_{\phi}(X_{\phi}, Y_{\phi}) + 2\mathrm{i}\omega_{\phi}(X_{\phi}, Y_{\phi}).$$

The Hilbert space \mathcal{H} obtained from H through a Kähler polarization is also called the **holomorphic representation**.

Robert Oeckl (FAU & UNAM)

Linear field theory

To be able to deal with the field theory case where *L* is generically infinite-dimensional we restrict ourselves to the simplest setting of linear field theory. That is, we take *L* to be a real vector space and the symplectic form ω to be invariant under translations in *L*. Not much is known beyond this setting.

Then, *L* can be naturally identified with its tangent space. Moreover, the symplectic form ω , the complex structure *J*, the real and complex inner products *g*, {·, ·} all become structures on the vector space *L*. The line bundle *B* becomes trivial and its section (the elements of *H*) can be identified with complex functions on *L*. For a Kähler polarization the elements of the subspace $\mathcal{H} \subseteq H$ are precisely the **holomorphic** functions on *L*. Moreover, the inner product formula simplifies,

$$\langle \psi', \psi \rangle = \int \overline{\psi'(\eta)} \psi(\eta) \exp\left(-\frac{1}{2}g(\eta, \eta)\right) d\mu(\eta).$$

Robert Oeckl (FAU & UNAM)

The measure

What is the measure $d\mu$?

It turns out that on an infinite-dimensional vector space *L* no translation-invariant measure exists. Instead, we should look for a **Gaussian measure**

 $\mathrm{d}\nu \approx \exp\left(-\frac{1}{2}g(\eta,\eta)\right)\mathrm{d}\mu.$

However, not even that exists on the Hilbert space *L*. The measure does exist if we extend *L* to a larger vector space \hat{L} . Concretely *v* and \hat{L} can be constructed as an inductive limit of finite-dimensional quotient spaces of *L*. It turns out that \hat{L} can also be identified with the algebraic dual of the topological dual of *L*.

A priori, wave functions are thus really functions of \hat{L} rather than on L. But, a function that is square-integrable on \hat{L} and holomorphic is completely determined by its values on L. This allows us to "forget" about \hat{L} to some extent.

Robert Oeckl (FAU & UNAM)

Bosonic semiclassical linear field theory

Spacetime is modeled by a collection of **hypersurfaces** and **regions**. To these geometric structures

associate the classical data,

- per hypersurface Σ : a symplectic vector space $(L_{\Sigma}, \omega_{\Sigma})$ of **solutions** near Σ,
- per region M : a Lagrangian subspace $L_M \subseteq L_{\partial M}$ of **solutions** in М.

In addition,

• per hypersurface Σ : a complex structure J_{Σ} .

イロト イロト イヨト イヨト

It follows that $L_{\partial M} = L_M \oplus_{\mathbb{R}} J_{\partial M} L_M$ is an orthogonal sum.

For each hypersurface Σ we define a Hilbert space of states \mathcal{H}_{Σ} by using the geometric quantization prescription. Thus, \mathcal{H}_{Σ} is a space of holomorphic functions on L_{Σ} with the inner product,

$$\langle \psi', \psi \rangle_{\Sigma} := \int_{\hat{L}_{\Sigma}} \overline{\psi'(\phi)} \psi(\phi) \, \mathrm{d} v_{\Sigma}(\phi).$$

Robert Oeckl (FAU & UNAM)

IQG 20131128 12/31

イロト イ理ト イヨト イヨト

Holomorphic quantization: Amplitudes

For each region *M* we define the linear amplitude map $\rho_M : \mathcal{H}_{\partial M} \to \mathbb{C}$ by

$$\rho_M(\psi) := \int_{\hat{L}_M} \psi(\phi) \, \mathrm{d} \nu_M(\phi).$$

Here \hat{L}_M is an extension of L_M and ν_M is a Gaussian measure on \hat{L}_M , depending on $g_{\partial M}$ that heuristically takes the form

$$\mathrm{d}\nu_M \approx \exp\left(-\frac{1}{4}g_M(\eta,\eta)\right)\mathrm{d}\mu$$

with μ a (fictitious) translation-invariant measure.

It can be shown that this prescription is here equivalent to the Feynman path integral prescription.

Holomorphic quantization: main result

We obtain a quantum theory in terms of the data of the GBF. [RO 2010]

Theorem

With an additional integrability assumption, the GBF core axioms are satisfied by this quantization prescription.

The quantization scheme may be viewed (in various ways) as a **functor** from classical field theories to general boundary quantum field theories.

This scheme can be generalized to affine field theories. [RO 2011]

Coherent States

The Hilbert spaces \mathcal{H}_{Σ} are reproducing kernel Hilbert spaces and contain coherent states of the form

$$K_{\xi}(\phi) = \exp\left(\frac{1}{2}\{\xi,\phi\}_{\Sigma}\right)$$

associated to classical solutions $\xi \in L_{\Sigma}$. They have the reproducing property,

$$\langle K_{\xi},\psi\rangle_{\Sigma}=\psi(\xi),$$

and satisfy the completeness relation

$$\langle \psi', \psi \rangle_{\Sigma} = \int_{\hat{L}_{\Sigma}} \langle \psi', K_{\xi} \rangle_{\Sigma} \langle K_{\xi}, \psi \rangle_{\Sigma} \, \mathrm{d} \nu_{\Sigma}(\xi).$$

They can be thought of as representing quantum states that approximate specific classical solutions.

Robert Oeckl (FAU & UNAM)

Bosons and Fermions

IQG 20131128 15 / 31

Universal amplitude formula

Remarkably, the amplitude can be written down in closed form. [RO 2010]

- Consider a region *M*.
- $\xi \in L_{\partial M}$ a solution on the boundary of *M*.
- Decompose uniquely $\xi = \xi^{c} + \xi^{n}$ into the classically allowed $(\xi^{c} \in L_{M})$ and forbidden $(\xi^{n} \in J_{\partial M}L_{M})$ parts.
- The amplitude for the associated normalized coherent state \tilde{K}_{ξ} is:

$$\rho_{M}(\tilde{K}_{\xi}) = \exp\left(\mathrm{i}\,\omega_{\partial M}(\xi^{\mathrm{n}},\xi^{\mathrm{c}}) - \frac{1}{2}g_{\partial M}(\xi^{\mathrm{n}},\xi^{\mathrm{n}})\right)$$

This has a simple and compelling physical interpretation.

Robert Oeckl (FAU & UNAM)

IQG 20131128 16 / 31

Fermionic field theory (I)

Starting with a Lagrangian density Λ we obtain a symplectic form $\tilde{\omega}_{\Sigma}$ associated to any hypersurface Σ as in the bosonic case.

A fermionic field is generally a section of a **complex vector bundle** (associated with the spin bundle). The associated complex structure can be used to produce a **symmetric bilinear form** g_{Σ} from $\tilde{\omega}_{\Sigma}$. This (and not $\tilde{\omega}_{\Sigma}$) is the "correct" object to encode fermionic field theory:

 $g_{\Sigma}(X,Y)=2\tilde{\omega}_{\Sigma}(X,\mathrm{i}Y)$

 $(g_{\Sigma} \text{ can be also be derived directly by already taking into account the "anti-commuting" nature of the fermionic field at the classical level.)$

The symmetric form g_{Σ} arises from the integral of a (d - 1)-form on a hypersurface. Its sign thus depends on **orientation**: $g_{\overline{\Sigma}} = -g_{\Sigma}$.

Fermionic field theory (II)

As in the bosonic case the additional ingredient for the **geometric quantization** on a hypersurface is the **complex structure** $J_{\Sigma} : L_{\Sigma} \to L_{\Sigma}$. This has to satisfy $J_{\Sigma}^2 = -1$ and $g_{\Sigma}(J_{\Sigma}, J_{\Sigma}) = g_{\Sigma}(\cdot, \cdot)$.

As in the bosonic case, the complex structure encodes a kind of global orientation. Its sign thus depends on **orientation**: $J_{\overline{\Sigma}} = -J_{\Sigma}$.

IQG 20131128 18 / 31

Fermionic field theory (II)

As in the bosonic case the additional ingredient for the **geometric quantization** on a hypersurface is the **complex structure** $J_{\Sigma} : L_{\Sigma} \to L_{\Sigma}$. This has to satisfy $J_{\Sigma}^2 = -1$ and $g_{\Sigma}(J_{\Sigma}, J_{\Sigma}) = g_{\Sigma}(\cdot, \cdot)$.

As in the bosonic case, the complex structure encodes a kind of global orientation. Its sign thus depends on **orientation**: $\overline{J_{\Sigma}} = -J_{\Sigma}$.

Let *M* be a region and L_M the space of solutions in *M*. Then we have a natural map $L_M \rightarrow L_{\partial M}$ by "forgetting" the solution in the interior of *M*. The following key property encodes the **classical dynamics**.

 L_M induces a hypermaximal neutral subspace of $L_{\partial M}$:

- $g_{\partial M}(\phi, \phi') = 0$ for all $\phi, \phi' \in L_M$.
- If $\phi \notin L_M$ then there is $\phi' \in L_M$ such that $g_{\partial M}(\phi, \phi') \neq 0$.

There is a **compatibility condition** between $J_{\partial M}$ and L_M .

Robert Oeckl (FAU & UNAM)

Bosons and Fermions

IQG 20131128 18 / 31

The appearance of Krein spaces

Similar to the bosonic case, the structures associated to a hypersurface induce a **complex inner product**:

$$\omega_{\Sigma}(\phi, \phi') := \frac{1}{2} g_{\Sigma}(J_{\Sigma}\phi, \phi')$$
$$\{\phi, \phi'\}_{\Sigma} := g_{\Sigma}(\phi, \phi') + 2i\omega_{\Sigma}(\phi, \phi')$$

But recall that g_{Σ} changes sign under orientation change and $g_{\partial M}$ is partially null.

Thus, the spaces L_{Σ} are not in general Hilbert spaces. Instead, they are **Krein spaces**, a special version of **indefinite inner product spaces** that decompose as

$$L_{\Sigma} = L_{\Sigma}^{+} \oplus L_{\Sigma}^{-}.$$

Here, L_{Σ}^+ is **positive definite** and L_{Σ}^- is **negative definite**. (This decomposition also provides for a topology on L_{Σ} .)

Robert Oeckl (FAU & UNAM)

IQG 20131128 19 / 31

Fermionic semiclassical linear field theory

Spacetime is modeled by a collection of **hypersurfaces** and **regions**.

To these geometric structures associate the classical data,

- per hypersurface Σ : a real Krein space (L_Σ, g_Σ),
- per region M: a hypermaximal neutral subspace $L_M \subseteq L_{\partial M}$.

In addition,

per hypersurface Σ :
a complex structure J_Σ .

Structure of quantum field theory in the GBF

Spacetime is modeled by a collection of hypersurfaces and regions.

To these geometric structures associate the quantum data,

- per hypersurface Σ : an f-graded Krein space H_Σ,
- per region M: a linear f-graded amplitude map $\rho_M : \mathcal{H}_{\partial M} \to \mathbb{C}.$

Compared to the purely bosonic case we have a \mathbb{Z}_2 -grading called **f-grading** on all structures. Moreover, instead of **Hilbert spaces** we have **Krein spaces**.

Robert Oeckl (FAU & UNAM)

IQG 20131128 21 / 31

Fock space (I)

We distinguish bosonic and fermionic case via

 $\kappa := 1$ in the bosonic case, $\kappa := -1$ in the fermionic case.

Given a Krein space *L*, the **Fock space** $\mathcal{F}(L)$ over *L* is the completion of an \mathbb{N}_0 -graded Krein space,

$$\mathcal{F}(L) = \bigoplus_{n=0}^{\infty} \mathcal{F}_n(L),$$

 $\mathcal{F}_n(L) := \{ \psi : L \times \cdots \times L \to \mathbb{C} \text{ n-lin. cont. } : \psi \circ \sigma = \kappa^{|\sigma|} \psi, \forall \sigma \in S^n \}.$

There is a natural \mathbb{Z}_2 -grading. In the bosonic case it is trivial, i.e., $|\psi| = 0$ for all $\psi \in \mathcal{F}(L)$. In the fermionic case it is,

$$|\psi| := \begin{cases} 0 & \text{if } \psi \in \mathcal{F}_n(L), n \text{ even} \\ 1 & \text{if } \psi \in \mathcal{F}_n(L), n \text{ odd.} \end{cases}$$

Robert Oeckl (FAU & UNAM)

Fock space (II)

Given $\xi_1, \ldots, \xi_n \in L$ define a **generating state** in $\mathcal{F}_n(L)$ as

$$\psi[\xi_1,\ldots,\xi_n](\eta_1,\ldots,\eta_n):=\frac{1}{n!}\sum_{\sigma\in S^n}\kappa^{|\sigma|}\prod_{i=1}^n\{\xi_i,\eta_{\sigma(i)}\}.$$

The inner product in Fock space is determined by the inner product of generating states,

$$\langle \psi[\eta_1,\ldots,\eta_n],\psi[\xi_1,\ldots,\xi_n]\rangle := 2^n \sum_{\sigma\in S^n} \kappa^{|\sigma|} \prod_{i=1}^n \{\xi_i,\eta_{\sigma(i)}\}.$$

This makes $\mathcal{F}(L)$ into a **Krein space** as well.

Robert Oeckl (FAU & UNAM)

Bosons and Fermions

IQG 20131128 23 / 31

Fock quantization: State spaces

For each hypersurface Σ we define the corresponding state space \mathcal{H}_{Σ} to be the Fock space $\mathcal{F}(L_{\Sigma})$.

For all $n \in \mathbb{N}_0$ define $\iota_{\Sigma,n} : \mathcal{F}_n(L_{\Sigma}) \to \mathcal{F}_n(L_{\overline{\Sigma}})$ by,

 $(\iota_{\Sigma,n}(\psi))(\xi_1,\ldots,\xi_n):=\overline{\psi(\xi_n,\ldots,\xi_1)}.$

Taking these maps together for all $n \in \mathbb{N}_0$ defines $\iota_{\Sigma} : \mathcal{F}(L_{\Sigma}) \to \mathcal{F}(L_{\overline{\Sigma}})$.

A decomposition $\Sigma = \Sigma_1 \cup \Sigma_2$ induces a direct sum of Krein spaces $L_{\Sigma} = L_{\Sigma_1} \oplus L_{\Sigma_2}$. This induces an isomorphism of Fock spaces

 $\tau_{\Sigma_1,\Sigma_2;\Sigma}:\mathcal{F}(L_{\Sigma_1})\otimes\mathcal{F}(L_{\Sigma_2})\to\mathcal{F}(L_{\Sigma}).$

This also yields the f-graded transposition,

 $\mathcal{F}(L_{\Sigma_1})\otimes \mathcal{F}(L_{\Sigma_2}) \to \mathcal{F}(L_{\Sigma_2})\otimes \mathcal{F}(L_{\Sigma_1}) \quad : \quad \psi_1\otimes \psi_2\mapsto (-1)^{|\psi_1|+|\psi_2|}\psi_2\otimes \psi_1.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Fock quantization: Amplitudes

Given a region *M* we recall the real orthogonal decomposition $L_{\partial M} = L_M \oplus J_{\partial M} L_M$ giving rise to the map $u_M : L_{\partial M} \to L_{\partial M}$,

 $u_M(\xi+J_{\partial M}\eta)=\xi-J_{\partial M}\eta,\quad \forall\xi,\eta\in L_M.$

The **amplitude** for a generating state is now defined as,

$$\rho_M(\psi[\xi_1,\ldots,\xi_{2n}]) := \frac{1}{n!} \sum_{\sigma \in S^{2n}} \kappa^{|\sigma|} \prod_{j=1}^n \{\xi_{\sigma(j)}, u_M(\xi_{\sigma(2n+1-j)})\}_{\partial M}.$$

The amplitude vanishes for states with odd particle number.

Robert Oeckl (FAU & UNAM)

Bosons and Fermions

IQG 20131128 25 / 31

Fock quantization: Main result

This **quantization scheme** yields the data of a quantum theory in terms of the GBF. [RO 2012]

Theorem

With an additional integrability assumption, the GBF core axioms as well as the vacuum axioms are satisfied.

The quantization prescription may be viewed (in various ways) as a **functor** from semiclassical field theories to general boundary quantum field theories.

In the bosonic case the Fock quantization scheme is **equivalent** to the Holomorphic quantization scheme.

Probabilities and superselection (I)

We recall the probability rule for the bosonic GBF, where all state spaces are **Hilbert spaces**. A measurement is determined by two subspaces of $\mathcal{H}_{\partial M}$,

- *S*, representing the **preparation** and
- $\mathcal{A} \subseteq \mathcal{S}$, representing the **question** asked .

The probability for an affirmative answer is then,

$$P(\mathcal{A}|\mathcal{S}) = \frac{\sum_{i \in J} |\rho_M(\xi_i)|^2}{\sum_{i \in I} |\rho_M(\xi_i)|^2}.$$

Here $\{\xi\}_{i \in I}$ is an ON-basis of S and $\{\xi\}_{i \in J}$ is an ON-basis of \mathcal{A} , with $J \subseteq I$.

Probabilities and superselection (II)

The very same formula works for **Krein spaces**. But there are some differences.

The notion of ON-basis is more restrictive in the Krein space case. It implies that the subspaces S and \mathcal{A} must decompose as direct sums $S = S^+ \oplus S^-$ and $\mathcal{A} = \mathcal{A}^+ \oplus \mathcal{A}^-$, where $S^{\pm}, \mathcal{A}^{\pm} \subseteq \mathcal{H}_{\partial M}^{\pm}$. This amounts to a signature superselection rule.

In the fermionic case this superselection rule is **not** invariant under **orientation change**. But the physics should be. But for fermionic theories there is also the **fermionic superselection rule** [Wick, Wightman, Wigner 1952] that forbids the mixing of states with even and odd fermion number. This amounts to requiring decompositions $S = S_0 \oplus S_1$ and $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1$ in terms of the **f-grading** of $\mathcal{H}_{\partial M}$.

In combination with the fermionic superselection rule, the signature superselection rule becomes **orientation invariant**.

Robert Oeckl (FAU & UNAM)

Bosons and Fermions

IQG 20131128 28 / 31

Further remarks on fermions

• Why are there (apparently) no **Krein spaces** in ordinary quantum field theory?

IQG 20131128 29 / 31

イロト イロト イヨト

Further remarks on fermions

• Why are there (apparently) no **Krein spaces** in ordinary quantum field theory?

On a globally hyperbolic spacetime for **Dirac fermions** the inner product on **spacelike hypersurfaces** is always **definite**. With a (usually implicit) global choice of orientation it is always **positive definite**. Consequently the associated state spaces are all **Hilbert space**.

Further remarks on fermions

• Why are there (apparently) no **Krein spaces** in ordinary quantum field theory?

On a globally hyperbolic spacetime for **Dirac fermions** the inner product on **spacelike hypersurfaces** is always **definite**. With a (usually implicit) global choice of orientation it is always **positive definite**. Consequently the associated state spaces are all **Hilbert space**.

• Time emerging

It turns out that the map $u_M : L_{\partial M} \to L_{\partial M}$ also encodes a notion of **evolution in time**. The quantum theory inherits this notion. This is a purely algebraic phenomenon, independent of a spacetime metric. This may suggest on **emergent notion of time** in a theory of quantum gravity with fermions.

Robert Oeckl (FAU & UNAM)

Bosons and Fermions

IQG 20131128 29 / 31

Everything I have shown you so far is based on a formalism involving **Hilbert** or **Krein spaces**, **amplitude maps** and **observable maps**. This was inspired by the **path integral** and the standard formulation in terms of pure states. I refer to this now as the **amplitude formalism**.

There is a new formalism that involves "mixed states". This **positive formalism** is obtained by "taking the modulus square" of the **amplitude formalism**. [RO 2012]

Properties of the Positive Formalism

- Remarkably, it still admits the same **composition properties** as the **path integral**!
- Focuses on operationally relevant information and eliminates unphysical data (phases etc.).
- Probability interpretation simpler and conceptually clearer.
- All models expressed in the amplitude formalism can be translated into the positive formalism (functorially).
- Admits general **quantum operations** and opens the GBF to **quantum information theory**.
- More freedom to formulate quantum theories and quantization schemes.
- Appears necessary to overcome the **state locality problem** in QFT. [RO 2013]