LECTURE 5: Bosons and Fermions

Robert Oeckl

IQG-FAU \& CCM-UNAM

IQG FAU Erlangen-Nürnberg 28 November 2013

slides at http://www.matmor.unam.mx/ robert/cur/2013_Erlangen.html

Outline

(1) Lagrangian field theory
(2) Elements of geometric quantization

- Prequantization and polarization
- Linear field theory
(3) The holomorphic quantization scheme
- Encoding semiclassical linear field theory
- State spaces
- Amplitudes
- Coherent states
- Universal amplitude formula
(4) Fermionic field theory
(5) Fock space quantization
- Fermionic semiclassical linear field theory
- Structure of quantum theory
- Fock space
- The quantization scheme
(6) Probabilities and superselection

Lagrangian field theory (I)

Formulate field theory in terms of first order Lagrangian density $\Lambda(\varphi, \partial \varphi, x)$. For a spacetime region M the action of a field ϕ is

$$
S_{M}(\phi):=\int_{M} \Lambda(\phi(\cdot), \partial \phi(\cdot), \cdot)
$$

Classical solutions in M are extremal points of this action. These are obtained by setting to zero the first variation of the action,

$$
\left.\left(\mathrm{d} S_{M}\right)_{\phi}(X)=\int_{M} X^{a}\left(\frac{\delta \Lambda}{\delta \varphi^{a}}-\partial_{\mu} \frac{\delta \Lambda}{\delta \partial_{\mu} \varphi^{a}}\right)(\phi)+\int_{\partial M} X^{a} \partial_{\mu}\right\lrcorner \frac{\delta \Lambda}{\delta \partial_{\mu} \varphi^{a}}(\phi)
$$

under the condition that the infinitesimal field X vanishes on ∂M. This yields the Euler-Lagrange equations,

$$
\left(\frac{\delta \Lambda}{\delta \varphi^{a}}-\partial_{\mu} \frac{\delta \Lambda}{\delta \partial_{\mu} \varphi^{a}}\right)(\phi)=0
$$

Lagrangian field theory (II)

The boundary term can be defined for an arbitrary hypersurface Σ.

$$
\left(\theta_{\Sigma}\right)_{\phi}(X)=-\int_{\Sigma} X^{a} \partial_{\mu} \frac{\delta \Lambda}{\delta \partial_{\mu} \varphi^{a}}(\phi)
$$

This 1-form is called the symplectic potential. Its exterior derivative is the symplectic 2-form,

$$
\begin{aligned}
\left(\omega_{\Sigma}\right)_{\phi}(X, Y)=\left(\mathrm{d} \theta_{\Sigma}\right)_{\phi}(X, Y) & =-\frac{1}{2} \int_{\Sigma}\left(\left(X^{b} Y^{a}-Y^{b} X^{a}\right) \partial_{\mu}\right\lrcorner \frac{\delta^{2} \Lambda}{\delta \varphi^{b} \delta \partial_{\mu} \varphi^{a}}(\phi) \\
+ & \left.\left.\left(Y^{a} \partial_{\nu} X^{b}-X^{a} \partial_{\nu} Y^{b}\right) \partial_{\mu}\right\lrcorner \frac{\delta^{2} \Lambda}{\delta \partial_{\nu} \varphi^{b} \delta \partial_{\mu} \varphi^{a}}(\phi)\right)
\end{aligned}
$$

We denote the space of solutions in M by L_{M} and the space of germs of solutions on a hypersurface Σ by L_{Σ}.

Lagrangian field theory (III)

Let M be a region and $\phi \in L_{\partial M}$. Then ϕ may or may not be induced from a solution in M. If ϕ arises from a solution in M and X, Y arise from infinitesimal solutions in M, then,

$$
\left(\omega_{\partial M}\right)_{\phi}(X, Y)=\left(\mathrm{d} \theta_{\partial M}\right)_{\phi}(X, Y)=-\left(\mathrm{dd} S_{M}\right)_{\phi}(X, Y)=0
$$

This means, L_{M} induces an isotropic submanifold of $L_{\partial M}$.
It is natural to require that the symplectic form is non-degenerate. We are then led to the converse statement: If given X we have $\left(\omega_{\partial M}\right)_{\phi}(X, Y)=0$ for all induced Y, then X itself must be induced. This means, L_{M} induces a coisotropic submanifold of $L_{\partial M}$.

Taking both statements together yields,

L_{M} induces a Lagrangian submanifold of $L_{\partial M}$.

Geometric quantization: Prequantization

Geometric quantization is designed to output the structures of the standard formulation of quantum theory, i.e., a Hilbert space of states and an operator algebra of observables acting on it. Its main input is the space L of solutions of the classical theory in spacetime with its symplectic structure ω. It proceeds roughly in two steps:

1 We consider a hermitian line bundle B over L with a connection ∇ that has curvature 2-form ω. Define the prequantum Hilbert space H as the space of square-integrable sections with inner product

$$
\left\langle s^{\prime}, s\right\rangle=\int\left(s^{\prime}(\eta), s(\eta)\right)_{\eta} \mathrm{d} \mu(\eta)
$$

Here the measure $\mathrm{d} \mu$ is given by the $2 n$-form $\omega \wedge \cdots \wedge \omega$ if L has dimension $2 n$. Classical observables, i.e., functions on L, act naturally as operators on H with the "correct" commutation relations.

Geometric quantization: Polarization

2 This Hilbert space is too large. Choose in each complexified tangent space $\left(T_{\phi} L\right)^{\mathbb{C}}$ a Lagrangian subspace P_{ϕ} with respect to ω_{ϕ}. We then restrict H to those sections s of B such that

$$
\nabla_{\bar{X}} s=0,
$$

if $X_{\phi} \in P_{\phi}$ for all $\phi \in L$. This is called a polarization. The subspace \mathcal{H} of H obtained in this way is the Hilbert space of states. Not all observables are well defined on it as they might not leave the subspace $\mathcal{H} \subseteq H$ invariant.

Kähler polarization

We are interested in a Kähler polarization. Then P_{ϕ} is determined by a complex structure J_{ϕ} in $T_{\phi} L$ that is compatible with ω_{ϕ}. J_{ϕ} satisfies $J_{\phi} \circ J_{\phi}=-1$ and $\omega_{\phi}\left(J_{\phi} X, J_{\phi} Y\right)=\omega_{\phi}(X, Y)$. Then

$$
P_{\phi}=\left\{X \in\left(T_{\phi} L\right)^{\mathbb{C}}: \mathrm{i} X=J_{\phi} X\right\} .
$$

J_{ϕ} yields a real inner product on $T_{\phi} L$:

$$
g_{\phi}\left(X_{\phi}, Y_{\phi}\right):=2 \omega_{\phi}\left(X_{\phi}, J_{\phi} Y_{\phi}\right)
$$

We shall require g_{ϕ} to be positive definite. We also obtain a complex inner product on $T_{\phi} L$ viewed as a complex vector space:

$$
\left\{X_{\phi}, Y_{\phi}\right\}_{\phi}:=g_{\phi}\left(X_{\phi}, Y_{\phi}\right)+2 \mathrm{i} \omega_{\phi}\left(X_{\phi}, Y_{\phi}\right)
$$

The Hilbert space \mathcal{H} obtained from H through a Kähler polarization is also called the holomorphic representation.

Linear field theory

To be able to deal with the field theory case where L is generically infinite-dimensional we restrict ourselves to the simplest setting of linear field theory. That is, we take L to be a real vector space and the symplectic form ω to be invariant under translations in L. Not much is known beyond this setting.

Then, L can be naturally identified with its tangent space. Moreover, the symplectic form ω, the complex structure J, the real and complex inner products $g,\{\cdot, \cdot\}$ all become structures on the vector space L. The line bundle B becomes trivial and its section (the elements of H) can be identified with complex functions on L. For a Kähler polarization the elements of the subspace $\mathcal{H} \subseteq H$ are precisely the holomorphic functions on L. Moreover, the inner product formula simplifies,

$$
\left\langle\psi^{\prime}, \psi\right\rangle=\int \overline{\psi^{\prime}(\eta)} \psi(\eta) \exp \left(-\frac{1}{2} g(\eta, \eta)\right) \mathrm{d} \mu(\eta)
$$

The measure

What is the measure $\mathrm{d} \mu$?
It turns out that on an infinite-dimensional vector space L no translation-invariant measure exists. Instead, we should look for a Gaussian measure

$$
\mathrm{d} v \approx \exp \left(-\frac{1}{2} g(\eta, \eta)\right) \mathrm{d} \mu
$$

However, not even that exists on the Hilbert space L. The measure does exist if we extend L to a larger vector space \hat{L}. Concretely v and \hat{L} can be constructed as an inductive limit of finite-dimensional quotient spaces of L. It turns out that \hat{L} can also be identified with the algebraic dual of the topological dual of L.

A priori, wave functions are thus really functions of \hat{L} rather than on L. But, a function that is square-integrable on \hat{L} and holomorphic is completely determined by its values on L. This allows us to "forget" about \hat{L} to some extent.

Bosonic semiclassical linear field theory

Spacetime is modeled by a collection of hypersurfaces and regions.
To these geometric structures
 associate the classical data,

- per hypersurface Σ : a symplectic vector space ($L_{\Sigma}, \omega_{\Sigma}$) of solutions near Σ,
- per region M : a Lagrangian subspace $L_{M} \subseteq L_{\partial M}$ of solutions in M.

In addition,

- per hypersurface Σ : a complex structure J_{Σ}.
It follows that $L_{\partial M}=L_{M} \oplus_{\mathbb{R}} J_{\partial M} L_{M}$ is an orthogonal sum.

Holomorphic quantization: State spaces

For each hypersurface Σ we define a Hilbert space of states \mathcal{H}_{Σ} by using the geometric quantization prescription. Thus, \mathcal{H}_{Σ} is a space of holomorphic functions on L_{Σ} with the inner product,

$$
\left\langle\psi^{\prime}, \psi\right\rangle_{\Sigma}:=\int_{\hat{L}_{\Sigma}} \overline{\psi^{\prime}(\phi)} \psi(\phi) \mathrm{d} v_{\Sigma}(\phi)
$$

Holomorphic quantization: Amplitudes

For each region M we define the linear amplitude map $\rho_{M}: \mathcal{H}_{\partial M} \rightarrow \mathbb{C}$ by

$$
\rho_{M}(\psi):=\int_{\hat{L}_{M}} \psi(\phi) \mathrm{d} v_{M}(\phi) .
$$

Here \hat{L}_{M} is an extension of L_{M} and v_{M} is a Gaussian measure on \hat{L}_{M}, depending on g_{∂} that heuristically takes the form

$$
\mathrm{d} v_{M} \approx \exp \left(-\frac{1}{4} g_{M}(\eta, \eta)\right) \mathrm{d} \mu
$$

with μ a (fictitious) translation-invariant measure.
It can be shown that this prescription is here equivalent to the Feynman path integral prescription.

Holomorphic quantization: main result

We obtain a quantum theory in terms of the data of the GBF. [RO 2010]

```
Theorem
With an additional integrability assumption, the GBF core axioms are satisfied by this quantization prescription.
```

The quantization scheme may be viewed (in various ways) as a functor from classical field theories to general boundary quantum field theories.

This scheme can be generalized to affine field theories. [RO 2011]

Coherent States

The Hilbert spaces \mathcal{H}_{Σ} are reproducing kernel Hilbert spaces and contain coherent states of the form

$$
K_{\xi}(\phi)=\exp \left(\frac{1}{2}\{\xi, \phi\}_{\Sigma}\right)
$$

associated to classical solutions $\xi \in L_{\Sigma}$. They have the reproducing property,

$$
\left\langle K_{\xi}, \psi\right\rangle_{\Sigma}=\psi(\xi),
$$

and satisfy the completeness relation

$$
\left\langle\psi^{\prime}, \psi\right\rangle_{\Sigma}=\int_{\hat{L}_{\Sigma}}\left\langle\psi^{\prime}, K_{\xi}\right\rangle_{\Sigma}\left\langle K_{\xi}, \psi\right\rangle_{\Sigma} \mathrm{d} v_{\Sigma}(\xi)
$$

They can be thought of as representing quantum states that approximate specific classical solutions.

Universal amplitude formula

Remarkably, the amplitude can be written down in closed form. [RO 2010]

- Consider a region M.
- $\xi \in L_{\partial M}$ a solution on the boundary of M.
- Decompose uniquely $\xi=\xi^{\mathrm{c}}+\xi^{\mathrm{n}}$ into the classically allowed ($\xi^{\mathrm{c}} \in L_{M}$) and forbidden ($\xi^{\mathrm{n}} \in J_{\partial M} L_{M}$) parts.
- The amplitude for the associated normalized coherent state \tilde{K}_{ξ} is:

$$
\rho_{M}\left(\tilde{K}_{\xi}\right)=\exp \left(\mathrm{i} \omega_{\partial M}\left(\xi^{\mathrm{n}}, \xi^{\mathrm{c}}\right)-\frac{1}{2} g_{\partial M}\left(\xi^{\mathrm{n}}, \xi^{\mathrm{n}}\right)\right)
$$

This has a simple and compelling physical interpretation.

Fermionic field theory (I)

Starting with a Lagrangian density Λ we obtain a symplectic form $\tilde{\omega}_{\Sigma}$ associated to any hypersurface Σ as in the bosonic case.

A fermionic field is generally a section of a complex vector bundle (associated with the spin bundle). The associated complex structure can be used to produce a symmetric bilinear form g_{Σ} from $\tilde{\omega}_{\Sigma}$. This (and not $\tilde{\omega}_{\Sigma}$) is the "correct" object to encode fermionic field theory:

$$
g_{\Sigma}(X, Y)=2 \tilde{\omega}_{\Sigma}(X, \mathrm{i} Y)
$$

(g_{Σ} can be also be derived directly by already taking into account the "anti-commuting" nature of the fermionic field at the classical level.)

The symmetric form g_{Σ} arises from the integral of a $(d-1)$-form on a hypersurface. Its sign thus depends on orientation: $g_{\bar{\Sigma}}=-g_{\Sigma}$.

Fermionic field theory (II)

As in the bosonic case the additional ingredient for the geometric quantization on a hypersurface is the complex structure $J_{\Sigma}: L_{\Sigma} \rightarrow L_{\Sigma}$. This has to satisfy $J_{\Sigma}^{2}=-\mathbf{1}$ and $g_{\Sigma}\left(J_{\Sigma} \cdot, J_{\Sigma} \cdot\right)=g_{\Sigma}(\cdot, \cdot)$.

As in the bosonic case, the complex structure encodes a kind of global orientation. Its sign thus depends on orientation: $J_{\bar{\Sigma}}=-J_{\Sigma}$.

Fermionic field theory (II)

As in the bosonic case the additional ingredient for the geometric quantization on a hypersurface is the complex structure $J_{\Sigma}: L_{\Sigma} \rightarrow L_{\Sigma}$. This has to satisfy $J_{\Sigma}^{2}=-1$ and $g_{\Sigma}\left(J_{\Sigma} \cdot, J_{\Sigma} \cdot\right)=g_{\Sigma}(\cdot, \cdot)$.

As in the bosonic case, the complex structure encodes a kind of global orientation. Its sign thus depends on orientation: $J_{\bar{\Sigma}}=-J_{\Sigma}$.

Let M be a region and L_{M} the space of solutions in M. Then we have a natural map $L_{M} \rightarrow L_{\partial M}$ by "forgetting" the solution in the interior of M. The following key property encodes the classical dynamics.
L_{M} induces a hypermaximal neutral subspace of $L_{\partial M}$:

- $g_{\partial M}\left(\phi, \phi^{\prime}\right)=0$ for all $\phi, \phi^{\prime} \in L_{M}$.
- If $\phi \notin L_{M}$ then there is $\phi^{\prime} \in L_{M}$ such that $g_{\partial M}\left(\phi, \phi^{\prime}\right) \neq 0$.

There is a compatibility condition between $J_{\partial M}$ and L_{M}.

The appearance of Krein spaces

Similar to the bosonic case, the structures associated to a hypersurface induce a complex inner product:

$$
\begin{gathered}
\omega_{\Sigma}\left(\phi, \phi^{\prime}\right):=\frac{1}{2} g_{\Sigma}\left(J_{\Sigma} \phi, \phi^{\prime}\right) \\
\left\{\phi, \phi^{\prime}\right\}_{\Sigma}:=g_{\Sigma}\left(\phi, \phi^{\prime}\right)+2 \mathrm{i} \omega_{\Sigma}\left(\phi, \phi^{\prime}\right)
\end{gathered}
$$

But recall that g_{Σ} changes sign under orientation change and $g_{\partial M}$ is partially null.

Thus, the spaces L_{Σ} are not in general Hilbert spaces. Instead, they are Krein spaces, a special version of indefinite inner product spaces that decompose as

$$
L_{\Sigma}=L_{\Sigma}^{+} \oplus L_{\Sigma}^{-} .
$$

Here, L_{Σ}^{+}is positive definite and L_{Σ}^{-}is negative definite. (This decomposition also provides for a topology on L_{Σ}.)

Fermionic semiclassical linear field theory

Spacetime is modeled by a collection of hypersurfaces and regions.

To these geometric structures associate the classical data,

- per hypersurface Σ : a real Krein space $\left(L_{\Sigma}, g_{\Sigma}\right)$,
- per region M :
a hypermaximal neutral subspace $L_{M} \subseteq L_{\partial M}$.
In addition,
- per hypersurface Σ : a complex structure J_{Σ}.

Structure of quantum field theory in the GBF

Spacetime is modeled by a collection of hypersurfaces and regions.

To these geometric structures associate the quantum data,

- per hypersurface Σ : an f-graded Krein space \mathcal{H}_{Σ},
- per region M :
a linear f-graded amplitude map

$$
\rho_{M}: \mathcal{H}_{\partial M} \rightarrow \mathbb{C} .
$$

Compared to the purely bosonic case we have a \mathbb{Z}_{2}-grading called f-grading on all structures. Moreover, instead of Hilbert spaces we have Krein spaces.

Fock space (I)

We distinguish bosonic and fermionic case via

$$
\kappa:=1 \text { in the bosonic case, } \kappa:=-1 \text { in the fermionic case. }
$$

Given a Krein space L, the Fock space $\mathcal{F}(L)$ over L is the completion of an \mathbb{N}_{0}-graded Krein space,

$$
\begin{gathered}
\mathcal{F}(L)=\bigoplus_{n=0}^{\widehat{\infty}} \mathcal{F}_{n}(L), \\
\mathcal{F}_{n}(L):=\left\{\psi: L \times \cdots \times L \rightarrow \mathbb{C} n \text {-lin. cont. : } \psi \circ \sigma=\kappa^{|\sigma|} \psi, \forall \sigma \in S^{n}\right\} .
\end{gathered}
$$

There is a natural \mathbb{Z}_{2}-grading. In the bosonic case it is trivial, i.e., $|\psi|=0$ for all $\psi \in \mathcal{F}(L)$. In the fermionic case it is,

$$
|\psi|:= \begin{cases}0 & \text { if } \psi \in \mathcal{F}_{n}(L), n \text { even } \\ 1 & \text { if } \psi \in \mathcal{F}_{n}(L), n \text { odd } .\end{cases}
$$

Fock space (II)

Given $\xi_{1}, \ldots, \xi_{n} \in L$ define a generating state in $\mathcal{F}_{n}(L)$ as

$$
\psi\left[\xi_{1}, \ldots, \xi_{n}\right]\left(\eta_{1}, \ldots, \eta_{n}\right):=\frac{1}{n!} \sum_{\sigma \in S^{n}} \kappa^{|\sigma|} \prod_{i=1}^{n}\left\{\xi_{i}, \eta_{\sigma(i)}\right\} .
$$

The inner product in Fock space is determined by the inner product of generating states,

$$
\left\langle\psi\left[\eta_{1}, \ldots, \eta_{n}\right], \psi\left[\xi_{1}, \ldots, \xi_{n}\right]\right\rangle:=2^{n} \sum_{\sigma \in S^{n}} \kappa^{|\sigma|} \prod_{i=1}^{n}\left\{\xi_{i}, \eta_{\sigma(i)}\right\} .
$$

This makes $\mathcal{F}(L)$ into a Krein space as well.

Fock quantization: State spaces

For each hypersurface Σ we define the corresponding state space \mathcal{H}_{Σ} to be the Fock space $\mathcal{F}\left(L_{\Sigma}\right)$.

For all $n \in \mathbb{N}_{0}$ define $\iota_{\Sigma, n}: \mathcal{F}_{n}\left(L_{\Sigma}\right) \rightarrow \mathcal{F}_{n}\left(L_{\bar{\Sigma}}\right)$ by,

$$
(\iota \Sigma, n(\psi))\left(\xi_{1}, \ldots, \xi_{n}\right):=\overline{\psi\left(\xi_{n}, \ldots, \xi_{1}\right)} .
$$

Taking these maps together for all $n \in \mathbb{N}_{0}$ defines $\iota_{\Sigma}: \mathcal{F}\left(L_{\Sigma}\right) \rightarrow \mathcal{F}\left(L_{\bar{\Sigma}}\right)$.
A decomposition $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ induces a direct sum of Krein spaces $L_{\Sigma}=L_{\Sigma_{1}} \oplus L_{\Sigma_{2}}$. This induces an isomorphism of Fock spaces

$$
\tau_{\Sigma_{1}, \Sigma_{2} ; \Sigma}: \mathcal{F}\left(L_{\Sigma_{1}}\right) \otimes \mathcal{F}\left(L_{\Sigma_{2}}\right) \rightarrow \mathcal{F}\left(L_{\Sigma}\right)
$$

This also yields the f-graded transposition,
$\mathcal{F}\left(L_{\Sigma_{1}}\right) \otimes \mathcal{F}\left(L_{\Sigma_{2}}\right) \rightarrow \mathcal{F}\left(L_{\Sigma_{2}}\right) \otimes \mathcal{F}\left(L_{\Sigma_{1}}\right) \quad: \quad \psi_{1} \otimes \psi_{2} \mapsto(-1)^{\left|\psi_{1}\right|+\left|\psi_{2}\right|} \psi_{2} \otimes \psi_{1}$.

Fock quantization: Amplitudes

Given a region M we recall the real orthogonal decomposition $L_{\partial M}=L_{M} \oplus J_{\partial M} L_{M}$ giving rise to the map $u_{M}: L_{\partial M} \rightarrow L_{\partial M}$,

$$
u_{M}\left(\xi+J_{\partial M} \eta\right)=\xi-J_{\partial M} \eta, \quad \forall \xi, \eta \in L_{M}
$$

The amplitude for a generating state is now defined as,

$$
\rho_{M}\left(\psi\left[\xi_{1}, \ldots, \xi_{2 n}\right]\right):=\frac{1}{n!} \sum_{\sigma \in S^{2 n}} \kappa^{|\sigma|} \prod_{j=1}^{n}\left\{\xi_{\sigma(j)}, u_{M}\left(\xi_{\sigma(2 n+1-j)}\right)\right\}_{\partial M} .
$$

The amplitude vanishes for states with odd particle number.

Fock quantization: Main result

This quantization scheme yields the data of a quantum theory in terms of the GBF. [RO 2012]

Theorem

With an additional integrability assumption, the GBF core axioms as well as the vacuum axioms are satisfied.

The quantization prescription may be viewed (in various ways) as a functor from semiclassical field theories to general boundary quantum field theories.

In the bosonic case the Fock quantization scheme is equivalent to the Holomorphic quantization scheme.

Probabilities and superselection (I)

We recall the probability rule for the bosonic GBF, where all state spaces are Hilbert spaces. A measurement is determined by two subspaces of $\mathcal{H}_{\partial M}$,

- \mathcal{S}, representing the preparation and
- $\mathcal{A} \subseteq \mathcal{S}$, representing the question asked.

The probability for an affirmative answer is then,

$$
P(\mathcal{A} \mid \mathcal{S})=\frac{\sum_{i \in J}\left|\rho_{M}\left(\xi_{i}\right)\right|^{2}}{\sum_{i \in I}\left|\rho_{M}\left(\xi_{i}\right)\right|^{2}}
$$

Here $\{\xi\}_{i \in I}$ is an ON-basis of \mathcal{S} and $\{\xi\}_{i \in J}$ is an ON-basis of \mathcal{A}, with $J \subseteq I$.

Probabilities and superselection (II)

The very same formula works for Krein spaces. But there are some differences.

The notion of ON-basis is more restrictive in the Krein space case. It implies that the subspaces \mathcal{S} and \mathcal{A} must decompose as direct sums $\mathcal{S}=\mathcal{S}^{+} \oplus \mathcal{S}^{-}$and $\mathcal{A}=\mathcal{A}^{+} \oplus \mathcal{A}^{-}$, where $\mathcal{S}^{ \pm}, \mathcal{A}^{ \pm} \subseteq \mathcal{H}_{\partial M}^{ \pm}$. This amounts to a signature superselection rule.

In the fermionic case this superselection rule is not invariant under orientation change. But the physics should be. But for fermionic theories there is also the fermionic superselection rule [Wick, Wightman, Wigner 1952] that forbids the mixing of states with even and odd fermion number. This amounts to requiring decompositions $\mathcal{S}=\mathcal{S}_{0} \oplus \mathcal{S}_{1}$ and $\mathcal{A}=\mathcal{A}_{0} \oplus \mathcal{A}_{1}$ in terms of the f-grading of $\mathcal{H}_{\partial M}$.

In combination with the fermionic superselection rule, the signature superselection rule becomes orientation invariant.

Further remarks on fermions

- Why are there (apparently) no Krein spaces in ordinary quantum field theory?

Further remarks on fermions

- Why are there (apparently) no Krein spaces in ordinary quantum field theory?

On a globally hyperbolic spacetime for Dirac fermions the inner product on spacelike hypersurfaces is always definite. With a (usually implicit) global choice of orientation it is always positive definite. Consequently the associated state spaces are all Hilbert space.

Further remarks on fermions

- Why are there (apparently) no Krein spaces in ordinary quantum field theory?

On a globally hyperbolic spacetime for Dirac fermions the inner product on spacelike hypersurfaces is always definite. With a (usually implicit) global choice of orientation it is always positive definite. Consequently the associated state spaces are all Hilbert space.

- Time emerging

It turns out that the map $u_{M}: L_{\partial M} \rightarrow L_{\partial M}$ also encodes a notion of evolution in time. The quantum theory inherits this notion. This is a purely algebraic phenomenon, independent of a spacetime metric. This may suggest on emergent notion of time in a theory of quantum gravity with fermions.

Most recent developments

Everything I have shown you so far is based on a formalism involving Hilbert or Krein spaces, amplitude maps and observable maps. This was inspired by the path integral and the standard formulation in terms of pure states. I refer to this now as the amplitude formalism.

There is a new formalism that involves "mixed states". This positive formalism is obtained by "taking the modulus square" of the amplitude formalism. [RO 2012]

Properties of the Positive Formalism

- Remarkably, it still admits the same composition properties as the path integral!
- Focuses on operationally relevant information and eliminates unphysical data (phases etc.).
- Probability interpretation simpler and conceptually clearer.
- All models expressed in the amplitude formalism can be translated into the positive formalism (functorially).
- Admits general quantum operations and opens the GBF to quantum information theory.
- More freedom to formulate quantum theories and quantization schemes.
- Appears necessary to overcome the state locality problem in QFT. [RO 2013]

