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1 Measureable spaces and topology
The basic idea behind integration theory via measures may be roughly described as follows:
Given a space (set) we want to associate ”sizes” to ”pieces” of the space. To do this we first
have to make precise what we mean by a ”piece”, i.e., what subsets we admit as ”pieces”.
This is the purpose of the concept of a σ-algebra and a measurable space. Given that we
know what a piece is, we want to assign a number to it, its ”size”, in such a way that sizes
add up appropriately when we join pieces. This is provided by the concept of a measure.
Then, we can declare the integral for the characteristic function on a piece to be the size of
the piece. Approximating more arbitrary functions by linear combinations of characteristic
functions for pieces then yields a general notion of integral.

Before embarking on the theory of measurable spaces we recall basic notions of topolgy.

1.1 Basic Definitions
Definition 1.1 (Topology). Let S be a set. A subset T of the set P(S) of subsets of S is
called a topology iff it has the following properties:

• ∅ ∈ T and S ∈ T .

• Let {Ui}i∈I be a family of elements in T . Then ⋃i∈I Ui ∈ T .

• Let U, V ∈ T . Then U ∩ V ∈ T .

A set equipped with a topology is called a topological space. The elements of T are called
the open sets in S. A complement of an open set in S is called a closed set.

Definition 1.2. Let S be a topological space and x ∈ S. Then a subset U ⊆ S is called a
neighborhood of x iff it contains an open set which in turn contains x. We denote the set
of neighborhoods of x by Nx.

Definition 1.3. Let S be a topological space and U a subset. The closure U of U is the
smallest closed set containing U . The interior

◦
U of U is the largest open set contained in

U . U is called dense in S iff U = S.

Definition 1.4 (base). Let T be a topology. A subset B of T is called a base of T iff
the elements of T are precisely the unions of elements of B. It is called a subbase iff the
elements of T are precisely the finite intersections of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of P(S). B is the base of a topology on
S iff it satisfies all of the following properties:

• ∅ ∈ B.

• For every x ∈ S there is a set U ∈ B such that x ∈ U .
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• Let U, V ∈ B. Then there exits a family {Wα}α∈A of elements of B such that
U ∩ V =

⋃
α∈A Wα.

Proof. Exercise.

Definition 1.6. Let S be a topological space and p a point in S. We call a family {Uα}α∈A

of open neighborhoods of p a neighborhood base at p iff for any neighborhood V of p there
exists α ∈ A such that Uα ⊆ V .

Definition 1.7 (Continuity). Let S, T be topological spaces. A map f : S → T is called
continuous at p ∈ S iff f−1(Nf(p)) ⊆ Np. f is called continuous iff it is continuous at every
p ∈ S. We denote the space of continuous maps from S to T by C(S, T ).

Proposition 1.8. Let S, T be topological spaces and f : S → T a map. Then, f is
continuous iff for every open set U ∈ T the preimage f−1(U) in S is open.

Proof. Exercise.

Proposition 1.9. Let S, T, U be topological spaces, f ∈ C(S, T ) and g ∈ C(T, U). Then,
the composition g ◦ f : S → U is continuous.

Proof. Immediate.

Definition 1.10. Let S, T be topological spaces. A bijection f : S → T is called a
homeomorphism iff f and f−1 are both continuous. If such a homeomorphism exists S and
T are called homeomorphic.

Definition 1.11. Let T1, T2 be topologies on the set S. Then, T1 is called finer than T2
and T2 is called coarser than T1 iff all open sets of T2 are also open sets of T1.

Definition 1.12 (Induced Topology). Let S be a topological space and U a subset. Con-
sider the topology given on U by the intersection of each open set on S with U . This is
called the induced topology on U .

Definition 1.13 (Product Topology). Let S be the cartesian product S =
∏

α∈I Sα of
a family of topological spaces. Consider subsets of S of the form ∏

α∈I Uα where finitely
many Uα are open sets in Sα and the others coincide with the whole space Uα = Sα. These
subsets form the base of a topology on S which is called the product topology.

Exercise 1. Show that alternatively, the product topology can be characterized as the
coarsest topology on S =

∏
α∈I Sα such that all projections S ↠ Sα are continuous.

Proposition 1.14. Let S, T, X be topological spaces and f ∈ C(S × T, X), where S × T
carries the product topology. Then the map fx : T → X defined by fx(y) = f(x, y) is
continuous for every x ∈ S.
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Proof. Fix x ∈ S. Let U be an open set in X. We want to show that W := f−1
x (U) is open.

We do this by finding for any y ∈ W an open neighborhood of y contained in W . If W is
empty we are done, hence assume that this is not so. Pick y ∈ W . Then (x, y) ∈ f−1(U)
with f−1(U) open by continuity of f . Since S × T carries the product topology there must
be open sets Vx ⊆ S and Vy ⊆ T with x ∈ Vx, y ∈ Vy and Vx × Vy ⊆ f−1(U). But clearly
Vy ⊆ W and we are done.

Definition 1.15 (Quotient Topology). Let S be a topological space and ∼ an equivalence
relation on S. Then, the quotient topology on S/∼ is the finest topology such that the
quotient map S ↠ S/∼ is continuous.

1.2 Some properties of topological spaces
In a topological space it is useful if two distinct points can be distinguished by the topology.
A strong form of this distinguishability is the Hausdorff property.

Definition 1.16 (Hausdorff). Let S be a topological space. Assume that given any two
distinct points x, y ∈ S we can find open sets U, V ⊂ S such that x ∈ U and y ∈ V and
U ∩ V = ∅. Then, S is said to have the Hausdorff property. We also say that S is a
Hausdorff space.

Definition 1.17. Let S be a topological space. S is called first-countable iff there exists
a countable neighborhood base at each point of S. S is called second-countable iff the
topology of S admits a countable base.

Definition 1.18 (open cover). Let S be a topological space and U ⊆ S a subset. A family
of open sets {Uα}α∈A is called an open cover of U iff U ⊆

⋃
α∈A Uα.

Proposition 1.19. Let S be a second-countable topological space and U ⊆ S a subset.
Then, every open cover of U contains a countable subcover.

Proof. Exercise.

Definition 1.20 (compact). Let S be a topological space and U ⊆ S a subset. U is called
compact iff every open cover of U contains a finite subcover.

Proposition 1.21. A closed subset of a compact space is compact. A compact subset of a
Hausdorff space is closed.

Proof. Exercise.

Proposition 1.22. The image of a compact set under a continuous map is compact.

Proof. Exercise.
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Definition 1.23. Let S be a topological space. S is called locally compact iff every point
of S possesses a compact neighborhood.

Exercise 2 (One-point compactification). Let S be a locally compact Hausdorff space.
Let S̃ := S ∪ {∞} to be the set S with an extra element ∞ adjoint. Define a subset U of S̃
to be open iff either U is an open subset of S or U is the complement of a compact subset
of S. Show that this makes S̃ into a compact Hausdorff space.

1.3 σ-Algebras and Measurable Spaces
Definition 1.24 (Boolean Algebra). Let A be a set equipped with three operations: ∧ :
A × A → A, ∨ : A × A → A and ¬ : A → A and two special elements 0, 1 ∈ A. Suppose
these satisfy the following properties:

• (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z) ∀x, y, z ∈ A. (associativity)

• x ∧ y = y ∧ x and x ∨ y = y ∨ x ∀x, y ∈ A. (commutativity)

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) ∀x, y, z ∈ A.
(distributivity)

• x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x ∀x, y ∈ A. (absorption)

• x ∧ ¬x = 0 and x ∨ ¬x = 1 ∀x ∈ A. (complement)

Then, A is called a Boolean algebra.

Proposition 1.25. Let A be a Boolean algebra. Then, the following properties hold:

x ∧ x = x, x ∨ x = x, x ∧ 0 = 0, x ∧ 1 = x, x ∨ 0 = x, x ∨ 1 = 1 ∀x ∈ A.

Proof. Exercise.

Exercise 3. Show that the set with two elements 0, 1 forms a Boolean algebra. This is
important in logic, where 0 stands for ”false” and 1 for ”true”.

Exercise 4. Let S be a set. Show that the set P(S) of subsets of S forms a Boolean
algebra, where ∨ = ∪ is the union, ∧ = ∩ is the intersection and ¬ is the complement of
sets.

Definition 1.26 (Algebra of sets). Let S be a set. A subset M of the set P(S) of subsets
of S is called an algebra of sets iff it is a Boolean subalgebra of P(S).

Proposition 1.27. Let S be a set and M a subset of the set P(S) of subsets of S. Then
M is an algebra of sets iff it contains the empty set and is closed under complements, finite
unions, and finite intersections.
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Proof. Immediate.

Exercise 5. Show that the above proposition remains true if we erase either the re-
quirement for closedness under finite unions or the requirement for closedness under finite
intersections.

Definition 1.28. Let S be a set and M an algebra of subsets of S. We call M a σ-algebra
of sets iff it is closed under countable unions and countable intersections.

Exercise 6. Show that the above definition remains unchanged if we remove either the
requirement for closedness under countable unions or closedness under countable intersec-
tions.

Definition 1.29. Let S be a set and B a subset of the set P(S) of subsets of S. Then,
the smallest σ-algebra M on S containing B is called the σ-algebra generated by B.

Exercise 7. Justify the above definition by showing that the smallest σ-algebra in the
sense of the definition always exists.

Definition 1.30. Let S be a set and B a subset of P(S). Then, B is called monotone iff
it satisfies the following properties:

• Let {An}n∈N be a sequence of elements of B such that An ⊆ An+1. Then, ⋃n∈N An ∈
B.

• Let {An}n∈N be a sequence of elements of B such that An ⊇ An+1. Then, ⋂n∈N An ∈
B.

Proposition 1.31. 1. A σ-algebra is monotone. 2. An algebra that is monotone is a
σ-algebra.

Proof. Exercise.

Proposition 1.32 (Monotone Class Theorem). Let S be a set and N an algebra of subsets
of S. Then, the smallest set M of subsets of S which contains N and is monotone is the
σ-algebra generated by N .

Proof. For each A ∈ M and consider

MA := {B ∈ M : A ∩ B ∈ M, A ∩ ¬B ∈ M, ¬A ∩ B ∈ M}.

It is easy to see that MA is monotone. [Exercise.Show this!] Furthermore, if A ∈ N ,
then N ⊆ MA since N is an algebra. So in this case M ⊆ MA by minimality of M and
consequently M = MA. Thus, for B ∈ M we have B ∈ MA and hence A ∈ MB if A ∈ N .
So, N ⊆ MB and by minimality we conclude M = MB for any B ∈ M. But this means
that M is an algebra. Thus, by Proposition 1.31.2, M is a σ-algebra. Furthermore, by
minimality and Proposition 1.31.1, it is the σ-algebra generated by N .
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Definition 1.33. Let S be a set and M a σ-algebra of subsets of S. Then, we call the
pair (S, M) a measurable space and the elements of M measurable sets.

Definition 1.34. Let S be a measurable space and U a subset of S. Then, the σ-algebra
on S intersected with U is called the induced σ-algebra on U .

Definition 1.35. Let S be a topological space. Then, the σ-algebra generated by the
topology of S is called the algebra of Borel sets. Its elements are called Borel measurable.

1.4 Sequences and convergence
Definition 1.36 (Convergence of sequences). Let x := {xn}n∈N be a sequence of points
in a topological space S. We say that x has an accumulation point (or limit point) p iff
for every neighborhood U of p we have xk ∈ U for infinitely many k ∈ N. We say that x
converges to a point p iff for any neighborhood U of p there is a number n ∈ N such that
for all k ≥ n : xk ∈ U .

Proposition 1.37. Let S, T be topological spaces and f : S → T . If f is continuous,
then for any p ∈ S and sequence {xn}n∈N converging to p, the sequence {f(xn)}n∈N in
T converges to f(p). Conversely, if S is first countable and for any p ∈ S and sequence
{xn}n∈N converging to p, the sequence {f(xn)}n∈N in T converges to f(p), then f is
continuous.

Proof. Exercise.

Proposition 1.38. Let S be Hausdorff space and {xn}n∈N a sequence in S which converges
to a point p ∈ S. Then, {xn}n∈N does not converge to any other point in S.

Proof. Exercise.

Definition 1.39. Let S be a topological space and U ⊆ S a subset. Consider the set BU

of sequences of elements of U . Then the set U
s consisting of the points to which some

element of BU converges is called the sequential closure of U .

Proposition 1.40. Let S be a topological space and U ⊆ S a subset. Let x be a sequence
of points in U which has an accumulation point p ∈ S. Then, p ∈ U .

Proof. Suppose p /∈ U . Since U is closed S \ U is an open neighborhood of p. But
S \ U does not contain any point of x, so p cannot be accumulation point of x. This is a
contradiction.

Corollary 1.41. Let S be a topological space and U a subset. Then, U ⊆ U
s ⊆ U .

Proof. Immediate.
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Proposition 1.42. Let S be a first-countable topological space and U a subset. Then,
U

s = U .

Proof. Exercise.

Definition 1.43. Let S be a topological space and U ⊆ S a subset. U is said to be limit
point compact iff every sequence in U has an accumulation point (limit point) in U . U
is called sequentially compact iff every sequence of elements of U contains a subsequence
converging to a point in U .

Proposition 1.44. Let S be a first-countable topological space and x = {xn}n∈N a sequence
in S with accumulation point p. Then, x has a subsequence that converges to p.

Proof. By first-countability choose a countable neighborhood base {Un}n∈N at p. Now
consider the family {Wn}n∈N of open neighborhoods Wn :=

⋂n
k=1 Uk at p. It is easy to

see that this is again a countable neighborhood base at p. Moreover, it has the property
that Wn ⊆ Wm if n ≥ m. Now, Choose n1 ∈ N such that xn1 ∈ W1. Recursively, choose
nk+1 > nk such that xnk+1 ∈ Wk+1. This is possible since Wk+1 contains infinitely many
points of x. Let V be a neighborhood of p. There exists some k ∈ N such that Uk ⊆ V .
By construction, then Wm ⊆ Wk ⊆ Uk for all m ≥ k and hence xnm ∈ V for all m ≥ k.
Thus, the subsequence {xnm}m∈N converges to p.

Proposition 1.45. Sequential compactness implies limit point compactness. In a first-
countable space the converse is also true.

Proof. Exercise.

Proposition 1.46. A compact set is limit point compact.

Proof. Consider a sequence x in a compact set S. Suppose x does not have an accumulation
point. Then, for each point p ∈ S we can choose an open neighborhood Up which contains
only finitely many points of x. However, by compactness, S is covered by finitely many of
the sets Up. But their union can only contain a finite number of points of x, a contradiction.

1.5 Metric and pseudometric spaces
Definition 1.47. Let S be a set and d : S × S → R+

0 a map with the following properties:

• d(x, y) = d(y, x) ∀x, y ∈ S. (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ S. (triangle inequality)

• d(x, x) = 0 ∀x ∈ S.



10 Robert Oeckl – RA NOTES – 15/01/2021

Then d is called a pseudometric on S. S is also called a pseudometric space. Suppose d
also satisfies

• d(x, y) = 0 =⇒ x = y ∀x, y ∈ S. (definiteness)

Then d is called a metric on S and S is called a metric space.

Definition 1.48. Let S be a pseudometric space, x ∈ S and r > 0. Then the set Br(x) :=
{y ∈ S : d(x, y) < r} is called the open ball of radius r centered around x in S. The set
Br(x) := {y ∈ S : d(x, y) ≤ r} is called the closed ball of radius r centered around x in S.

Proposition 1.49. Let S be a pseudometric space. Then, the open balls in S together with
the empty set form the basis of a topology on S. This topology is first-countable and such
that closed balls are closed. Moreover, the topology is Hausdorff iff S is metric.

Proof. Exercise.

Definition 1.50. A topological space is called (pseudo)metrizable iff there exists a (pseudo)metric
such that the open balls given by the (pseudo)metric are a basis of its topology.

Proposition 1.51. In a pseudometric space any open ball can be obtained as the countable
union of closed balls. Similarly, any closed ball can be obtained as the countable intersection
of open balls.

Proof. Exercise.

Proposition 1.52. Let S be a set equipped with two pseudometrics d1 and d2. Then, the
topology generated by d2 is finer than the topology generated by d1 iff for all x ∈ S and
r1 > 0 there exists r2 > 0 such that B2

r2(x) ⊆ B1
r1(x). In particular, d1 and d2 generate the

same topology iff the condition holds both ways.

Proof. Exercise.

Proposition 1.53 (epsilon-delta criterion). Let S, T be pseudometric spaces and f : S → T
a map. Then, f is continuous at x ∈ S iff for every ϵ > 0 there exists δ > 0 such that
f(Bδ(x)) ⊆ Bϵ(f(x)).

Proof. Exercise.

1.6 Measurable Functions
As we see the concept of a measurable space is very similar to the concept of a topological
space. Both are based on a set of subsets closed under certain operations. We can push this
analogy further and consider the analog of a continuous function: a measurable function.
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Definition 1.54. Let S, T be measurable spaces. Then a map f : S → T is called
measurable iff the preimage of every measurable set of T is a measurable set of S. If either
T or S or T and S are topological spaces instead we call f measurable iff it is measurable
with respect to the generated σ-algebra(s) of Borel sets.

Proposition 1.55. Let S, T, U be measurable spaces, f : S → T and g : T → U measurable.
Then, g ◦ f : S → U is measurable.

Proof. Immediate.

Proposition 1.56. Let S be a measurable space, T a topological space and f : S → T .
Then, f is measurable iff the preimage of every open set is measurable. Also, f is measurable
iff the preimage of every closed set is measurable.

Proof. Exercise.

Corollary 1.57. Let S and T be topological spaces and f : S → T a continuous map.
Then, f is measurable.

Proposition 1.58. Let S be a measurable space, T and U topological spaces, f : S →
T × U . Denote by fT : S → T and fU : S → U the component functions. If the product
f : S → T × U is measurable, then both fT and fU are measurable. Conversely, if T and
U are second-countable and fT and fU are measurable, then f is measurable.

Proof. First suppose that f is measurable. Then, fT = pT ◦ f , where pT is the projection
T ×U → T . Since pT is continuous, it is measurable by Corollary 1.57 and the composition
fT is measurable by Proposition 1.55. In the same way it follows that fU is measurable.

Conversely, suppose now that fT and fU are measurable. If V ⊆ T and W ⊆ U
are open sets, then f−1

T (V ) and f−1
U (W ) are measurable in S and so is their intersection

f−1(V × W ) = f−1
T (V ) ∩ f−1

U (W ). Since T and U are second-countable, every open
set in T × U can be written as a countable union of products of open sets in T and U
[Exercise.Show this!]. But the preimage of such a countable union in S under f−1 can
be written as a countable union of preimages. Since these are measurable, their countable
union is also measurable. It follows then from Proposition 1.56 that f is measurable.

In the following K denotes either the field of real numbers R or the field of complex
numbers C.

Proposition 1.59. Let S be a measurable space, f, g : S → K measurable and λ ∈ K.
Then:

1. |f | : x 7→ |f(x)| is measurable.

2. f + g : x 7→ f(x) + g(x) is measurable.
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3. λf : x 7→ λf(x) is measurable.

4. fg : x 7→ f(x)g(x) is measurable.

5. If K = R then sup(f, g) and inf(f, g) are measurable.

Proof. Exercise.

This shows in particular that measurable functions with values in R or C form an
algebra. Another important property of the set of measurable maps is its closedness under
pointwise limits. This can be formulated for the more general case when the values are
taken in a metric space.

Theorem 1.60 (adapted from S. Lang). Let S be a measurable space and T a metric
space. Suppose {fn}n∈N is a sequence of measurable functions fn : S → T which converges
pointwise to the function f : S → T . Then, f is measurable.

Proof. Let U be an open set in T . Suppose x ∈ f−1(U). Since {fn(x)}n∈N converges to f(x)
there exists m ∈ N such that x ∈ f−1

n (U) for all n > m. In particular, x ∈
⋃∞

n=k f−1
n (U)

for any k ∈ N and so also x ∈
⋂∞

k=1
⋃∞

n=k f−1
n (U). Since this is true for any x ∈ f−1(U) we

get

f−1(U) ⊆
∞⋂

k=1

∞⋃
n=k

f−1
n (U).

Consider now for all l ∈ N the open sets

Ul := {x ∈ U : min
y /∈U

d(x, y) > 1/l}.

Then, U =
⋃∞

l=1 Ul and applying the above reasoning to each Ul we get,

f−1(U) ⊆
∞⋃

l=1

∞⋂
k=1

∞⋃
n=k

f−1
n (Ul).

Suppose now that x /∈ f−1(U) and fix l ∈ N. Since B1/l(f(x)) ∩ Ul = ∅ there exists m ∈ N
such that x /∈ f−1

n (Ul) for all n > m. In particular, x /∈
⋂∞

k=1
⋃∞

n=k f−1
n (Ul). Since this is

true for any l ∈ N we get x /∈
⋃∞

l=1
⋂∞

k=1
⋃∞

n=k f−1
n (Ul). Since this is true for any x /∈ f−1(U)

we get, combining with the above result,

f−1(U) =
∞⋃

l=1

∞⋂
k=1

∞⋃
n=k

f−1
n (Ul).

Since fn is measurable for all n ∈ N the right hand side is measurable. We have thus shown
that preimages of open sets are measurable. By Proposition 1.56 this is sufficient for f to
be measurable.
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Definition 1.61. Let S be a measurable space. A map f : S → K is called a simple map
iff it is measurable and takes only finitely many values.

Proposition 1.62. Let S be a measurable space and f : S → K a map that takes only
finitely many values. Then f is a simple map (i.e., is measurable) iff the preimage of each
of the values of f is measurable.

Proof. Exercise.

Proposition 1.63. The simple functions with values in K form a subalgebra of the algebra
of measurable functions with values in K.

Proof. Exercise.

Theorem 1.64 (adapted from S. Lang). Let S be a measurable space and f : S → K
measurable. Then, f is the pointwise limit of a sequence of simple maps. If, moreover, f
takes values in R+

0 , then the sequence can be chosen to increase monotonically.

Proof. Consider first the case K = R. Fix n ∈ N. For each k ∈ {1, . . . , 2n+1n} define the
interval Ik := [−n + k−1

2n , −n + k
2n ). Also, define I0 := (−∞, −n) and I2n+1n+1 := [n, ∞).

Notice that R is the disjoint union of the measurable intervals Ik for k ∈ {0, . . . , 2n+1n+1}.
Now set Xk := f−1(Ik) for all k ∈ {0, . . . , 2n+1n+1}. Since the intervals Ik are measurable
so are the sets Xk. Define the function fn : S → R by fn(Xk) := −n + k−1

2n for all
k ∈ {1, . . . , 2n+1n + 1} and fn(X0) := −n. It is easy to see that {fn}n∈N is a sequence
of simple functions that converge pointwise to f . [Exercise.Show this!] Moreover, if f
takes values in R+

0 only, the sequence is monotonically increasing. [Exercise.Show this!]
To treat the case K = C we decompose f into its real and imaginary part. The sum of
simple sequences for each part is again a simple sequence.
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2 Measures
2.1 Positive Measures

Definition 2.1. Let {an}n∈N be a monotonously increasing sequence of real numbers.
Then we say that limn→∞ an = ∞ iff for any a ∈ R there exists m ∈ N such that an > a
for all n > m.

Definition 2.2 (Positive Measure). Let S be a set with an algebra M of subsets. Then, a
map µ : M → [0, ∞] is called a (positive) measure iff it is countably additive, i.e., satisfies
the following properties:

• µ(∅) = 0.

• Let {Un}n∈N be a sequence of elements of M such that Un ∩ Um = ∅ if n 6= m and
such that ⋃n∈N Un ∈ M. Then,

µ

⋃
n∈N

Un

 =
∑
n∈N

µ (Un) .

If U ∈ M, then µ(U) is called its measure. Moreover, a measurable space S with σ-algebra
M and positive measure µ : M → [0, ∞] is called a measure space.

We shall mostly be interested in the case where M actually is a σ-algebra. However, it
will turn out convenient to keep the definition more general when we consider constructing
measures.

Proposition 2.3. Let S be a set, M an algebra of subsets of S and µ : M → [0, ∞] a
measure. Then, the following properties hold:

1. Let A, B ∈ M and A ⊆ B. Then, µ(A) ≤ µ(B).

2. Let {An}n∈N be a sequence of elements of M such that ⋃n∈N An ∈ M. Then,

µ

⋃
n∈N

An

 ≤
∑
n∈N

µ(An).

3. Let {An}n∈N be a sequence of elements of M such that An ⊆ An+1 for all n ∈ N and⋃
n∈N An ∈ M. Then,

µ

⋃
n∈N

An

 = lim
n→∞

µ(An).
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4. Let {An}n∈N be a sequence of elements of M such that An ⊇ An+1 for all n ∈ N and⋂
n∈N An ∈ M. If furthermore, µ(An) < ∞ for some n ∈ N then,

µ

⋂
n∈N

An

 = lim
n→∞

µ(An).

Proof. Exercise.

Exercise 8. Check whether the following examples are measures.

• Let S be a set and consider the σ-algebra of all subsets of S. If A ⊆ S is finite define
µ(A) to be its number of elements. If A ⊆ S is infinite define µ(A) = ∞. µ is called
the counting measure.

• Let S be a set and consider the σ-algebra of all subsets of S. If A ⊆ S is finite define
µ(A) = 0. If A ⊆ S is infinite define µ(A) = ∞.

• Let S be a set and consider the σ-algebra of all subsets of S. If A ⊆ S is countable
define µ(A) = 0. If A ⊆ S is not countable define µ(A) = ∞.

• Let S be a set and consider the σ-algebra of all subsets of S. Let x ∈ S. For A ⊆ S
define µ(A) = 1 if x ∈ A and µ(A) = 0 otherwise. µ is called the Dirac measure with
respect to x.

Definition 2.4. Let S be a measure space and A ⊆ S a measurable subset. We say that A
is σ-finite iff it is equal to some countable union of measurable sets with finite measure. We
say that a measure is finite respectively σ-finite iff the measure space is finite respectively
σ-finite with respect to the measure.

Exercise 9. Which of the examples of measures above are σ-finite?

Definition 2.5. Let (S, M, µ) be a measure space. If every subset of any set of measure
0 is measurable, then we call (S, M, µ) complete.

Proposition 2.6. Let (S, M, µ) be a measure space. Then, there exists a unique complete
measure space (S, M∗, µ∗) such that M∗ is a σ-algebra containing M and µ∗|M = µ and
M∗ is smallest with these properties. (S, M∗, µ∗) is called the completion of (S, M, µ).
Moreover, the element of M∗ are precisely the sets of the form A ∪ N , where A ∈ M and
N is a subset of a set of measure 0 in M.

Proof. Exercise.

Proposition 2.7. Let (S, M, µ) be a measure space and f : S → K measurable with respect
to M∗. Then, there exists a function g : S → K such that g is measurable with respect to
M and g does not differ from f outside of a subset N ∈ M of measure 0.
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Proof. By Theorem 1.64 there exists a sequence {fn}n∈N of simple maps with respect to M∗

that converges pointwise to f . For each fn we can find a set Nn ∈ M of measure 0 such that
the function kn : S → K defined by kn(p) = fn(p) if p ∈ S \ Nn and kn(p) = 0 otherwise, is
simple with respect to M. (Exercise.Show this!) The set N :=

⋃∞
n=1 Nn ∈ M has measure

zero. Moreover, gn : S → K defined by gn(p) = fn(p) if p ∈ S \ N and gn(p) = 0 otherwise,
is simple with respect to M. Moreover, the sequence {gn}n∈N converges pointwise to
g : S → K defined by g(p) = f(p) if p ∈ S \ N and g(p) = 0 otherwise. Thus, by
Theorem 1.60, g is measurable with respect to M.

2.2 Extension of Measures

We now turn to the question of how to construct measures. We will focus here on the
method of extension. That is, we consider a measure that is merely defined on an algebra
of subsets and extend it to a measure on a σ-algebra.

Definition 2.8. Let S be a set and M a σ-algebra of subsets of S. Then, a map λ : M →
[0, ∞] is called an outer measure on M iff it satisfies the following properties:

• λ(∅) = 0.

• Let A, B ∈ M and A ⊆ B. Then, λ(A) ≤ λ(B). (monotonicity)

• Let {An}n∈N be a sequence of elements of M. Then,

λ

⋃
n∈N

An

 ≤
∑
n∈N

λ (An) . (countable subadditivity)

Lemma 2.9. Let S be a set, N an algebra of subsets of S and µ a measure on N . On the
σ-algebra P(S) of all subsets of S define the function λ : P(S) → [0, ∞] given by

λ(X) = inf

∑
n∈N

µ(An) : An ∈ N ∀n ∈ N and X ⊆
⋃

n∈N
An

 .

Then, λ is an outer measure on P(S). Moreover, it extends µ, i.e., λ(A) = µ(A) for all
A ∈ N .

Proof. Exercise.

Definition 2.10. Let S be a set and λ an outer measure on the σ-algebra P(S) of all
subsets of S. Then, A ⊆ S is called λ-measurable iff λ(X) = λ(X ∩ A) + λ(X ∩ ¬A) for all
X ⊆ S.
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Lemma 2.11. Let S be a set and λ an outer measure on the σ-algebra P(S) of all subsets
of S. Let M be the set of subsets of S that are λ-measurable. Then, M is a σ-algebra and
λ is a complete measure on M.

Proof. It is clear that M contains the empty set and S. Also, from the definition it is clear
that a set is λ-measurable iff its complement is. Let now A, B ∈ M. We proceed to show
that A ∩ B ∈ M. Let C ⊆ S be arbitrary. Since B is λ-measurable we have,

λ(C ∩ A ∩ B) + λ(C ∩ A ∩ ¬B) = λ(C ∩ A).

Adding λ(C ∩ ¬A) we get,

λ(C ∩ A ∩ B) + λ(C ∩ A ∩ ¬B) + λ(C ∩ ¬A) = λ(C),

since A is λ-measurable. The λ-measurability of A ∩ B follows if we can show,

λ(C ∩ A ∩ ¬B) + λ(C ∩ ¬A) = λ(C ∩ ¬(A ∩ B)).

But this equation can be rewritten term-wise as,

λ(C ∩ ¬(A ∩ B) ∩ A) + λ(C ∩ ¬(A ∩ B) ∩ ¬A) = λ(C ∩ ¬(A ∩ B)),

which follows from the λ-measurability of A. Thus M is an algebra.
Now consider a sequence {An}n∈N of disjoint λ-measurable sets and let A =

⋃
n∈N An

be their union. Let C ⊆ S be arbitrary. By iteration we find that for any n ∈ N we have,

λ(C ∩ (A1 ∪ · · · ∪ An)) =
n∑

k=1
λ(C ∩ Ak).

On the other hand C∩¬A ⊆ C∩¬(A1∪· · ·∪An) and so λ(C∩¬A) ≤ λ(C∩¬(A1∪· · ·∪An))
since λ is an outer measure. With λ-measurability of A1 ∪ · · · ∪ An we get thus,

λ(C) = λ(C ∩ (A1 ∪ · · · ∪ An)) + λ(C ∩ ¬(A1 ∪ · · · ∪ An))

≥
n∑

k=1
λ(C ∩ Ak) + λ(C ∩ ¬A).

But this is true for any n ∈ N, so,

λ(C) ≥
∞∑

k=1
λ(C ∩ Ak) + λ(C ∩ ¬A) ≥ λ(C ∩ A) + λ(C ∩ ¬A).

as λ is an outer measure. The same property of λ gives us directly the converse inequality,

λ(C) ≤ λ(C ∩ A) + λ(C ∩ ¬A).
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Thus, A is λ-measurable and consequently M is a σ-algebra. What is more, setting C = A
we see that λ is countably additive on M, i.e., defines a positive measure on it.

Now let A ∈ M with λ(A) = 0 and B ⊆ A. Also let C ⊆ S be arbitrary. Then we
have,

λ(C ∩ B) ≤ λ(C ∩ A) ≤ λ(A) = 0.

We also get,

λ(C) = λ(C ∩ A) + λ(C ∩ ¬A) = λ(C ∩ ¬A) ≤ λ(C ∩ ¬B) ≤ λ(C).

In particular,
λ(C ∩ B) = 0 and λ(C ∩ ¬B) = λ(C).

Thus, B is λ-measurable. This shows completeness of (S, M, λ).

Theorem 2.12 (Hahn). Let S be a set, N an algebra of subsets of S and µ a measure
on N . Then, µ can be extended to a σ-algebra M containing N such that µ is a complete
measure on M and for all X ∈ M we have

µ(X) = inf

∑
n∈N

µ(An) : An ∈ N ∀n ∈ N and X ⊆
⋃

n∈N
An

 .

Proof. Exercise.

Proposition 2.13 (Uniqueness of Extension). Let S be a measurable space with σ-algebra
M and measures µ1, µ2. Suppose there is an algebra N ⊆ M generating M and such that
µ(A) := µ1(A) = µ2(A) for all A ∈ N . Furthermore, assume that µ is σ-finite with respect
to N . Then, µ1 = µ2 also on M.

Proof. Let {Xn}n∈N be a sequence of elements of N such that S =
⋃

n∈N Xn and Xn ⊆
Xn+1 and µ(Xn) < ∞ for all n ∈ N. (By σ-finiteness, there is a sequence {Yk}k∈N with
S =

⋃
k∈N Yk and µ(Yk) < ∞ for all k ∈ N. Now set Xn :=

⋃n
k=1 Yk.) Define the finite

measures µ1,n(A) := µ1(A ∩ Xn) and µ2,n(A) := µ2(A ∩ Xn) on M for all n ∈ N. Now, let
Bn be the subsets of M where µ1,n and µ2,n agree. By construction, N ⊆ Bn for all n ∈ N.
We show that the Bn are monotone.

Fix n ∈ N. Let {Ak}k∈N be a sequence of elements of Bn such that Ak ⊆ Ak+1 for all
k ∈ N and set A :=

⋃
k∈N Ak. Then, using Proposition 2.3,

µ1,n(A) = lim
k→∞

µ1,n(Ak) = lim
k→∞

µ2,n(Ak) = µ2,n(A).

So, A ∈ Bn. Now, let {Ak}k∈N be a sequence of elements of Bn such that Ak ⊇ Ak+1 for all
k ∈ N and set A :=

⋂
k∈N Ak. Again using Proposition 2.3 we get (note that the finiteness

of the measure is essential here),

µ1,n(A) = lim
k→∞

µ1,n(Ak) = lim
k→∞

µ2,n(Ak) = µ2,n(A).
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So, A ∈ Bn. Hence, Bn is monotone and by Proposition 1.32 we must have M ⊆ Bn and
hence M = Bn.

Thus, µ1,n = µ2,n for all n ∈ N. But then, µ1 = limn→∞ µ1,n = limn→∞ µ2,n = µ2.
This completes the proof.

Proposition 2.14. Let (S, M, µ) be a measure space. Let N be an algebra of subsets of S
that generates M. Denote the completion of M with respect to µ by M∗. Then, for any
X ∈ M∗ with finite measure and any ϵ > 0 there exists A ∈ N such that

µ((X \ A) ∪ (A \ X)) < ϵ.

Proof. Let X ∈ M∗. By Hahn’s Theorem 2.12 there exists a sequence {An}n∈N of disjoint
elements of N such that X ⊆

⋃
n∈N An and

∞∑
n=1

µ(An) < µ(X) + ϵ/2.

Now fix k ∈ N such that
∞∑

n=k+1
µ(An) < ϵ/2.

Set A :=
⋃k

n=1 An. Then, on the one hand,

µ(A \ X) ≤ µ

(( ∞⋃
n=1

An

)
\ X

)
< ϵ/2,

while on the other hand,

µ(X \ A) ≤ µ

(( ∞⋃
n=1

An

)
\ A

)
= µ

 ∞⋃
n=k+1

An

 < ϵ/2.

This implies the statement.

2.3 The Lebesgue Measure
In the following we are going to construct the Lebesgue measure. This is the unique (as we
shall see) measure on the real numbers assigning to an interval its length. The construction
proceeds in various stages.

Lemma 2.15. The finite disjoint unions of intervals of the type [a, b), (−∞, a), and [a, ∞)
together with ∅ form an algebra N of subsets of the real numbers.

Proof. Exercise.
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Lemma 2.16. The prescription µ([a, b)) = b − a determines uniquely a finitely additive
function µ : N → [0, ∞] on the algebra N considered above.

Proof. Exercise.

Lemma 2.17. The function µ : N → [0, ∞] defined above is countably additive and thus
a measure.

Proof. Let {An}n∈N be a sequence of pairwise disjoint elements of N such that A :=⋃
n∈N ∈ N . We wish to show that

µ(A) =
∑
n∈N

µ(An).

By finite additivity we have µ(A) ≥ µ(
⋃m

n=1 An) =
∑m

n=1 µ(An) for all m ∈ N and hence

µ(A) ≥
∑
n∈N

µ(An).

It remains to show the opposite inequality.
Assume at first that A is a finite interval [a, b). Then, A is the disjoint union of a

sequence of intervals {Ik}k∈N with Ik = [ak, bk) in such a way that each An is the finite
union of some Ik. (We also allow the degenerate case ak = bk in which case Ik = ∅.) Fix
now ϵ > 0 (with ϵ < b−a) and define I ′

k := (ak −2−(k+1)ϵ, bk) for all k ∈ N. Then, the open
sets {I ′

k}k∈N cover the compact interval [a, b − ϵ/2]. Thus, there is a finite set of indices
I ⊂ N such that [a, b − ϵ/2] ⊂

⋃
k∈I I ′

k. Then clearly also [a, b − ϵ/2) ⊂
⋃

k∈I I ′′
k , where

I ′′
k := [ak − 2−(k+1)ϵ, bk). By finite additivity of µ we get

µ([a, b − ϵ/2)) ≤ µ

⋃
k∈I

I ′′
k

 ≤
∑
k∈I

µ
(
I ′′

k

)
=
∑
k∈I

(
µ(Ik) + ϵ2−(k+1)

)
≤ ϵ/2 +

∑
k∈I

µ(Ik).

But since µ(A) = µ([a, b − ϵ/2)) + ϵ/2, we find µ(A) ≤ ϵ +
∑

k∈I µ(Ik). Thus, there exists
m ∈ N such that µ(A) ≤ ϵ +

∑m
n=1 µ(An). But since ϵ was arbitrary we can conclude

µ(A) ≤
∑

n∈N µ(An) and hence equality.
Exercise.Complete the proof.

Proposition 2.18. Consider the real numbers with its σ-algebra B of Borel sets. Then,
the prescription µ([a, b)) := b − a uniquely extends to a measure µ : B → [0, ∞].

Proof. By Lemmas 2.15, 2.16 and 2.17 the prescription uniquely defines a measure µ on the
algebra N of unions of intervals of the type [a, b), (−∞, a), and [a, ∞). By Theorem 2.12
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µ extends to a σ-algebra M containing N . But the σ-algebra generated by N is the σ-
algebra B of Borel sets. (Exercise.Show this!) So, in particular, we get a measure on B.
By Proposition 2.13 this is unique since µ is σ-finite on N . (Exercise.Show this latter
statement!)

Definition 2.19. The measure defined in the preceding Proposition is called the Lebesgue
measure on R.

Exercise 10. Consider the real numbers with the Lebesgue measure. Determine µ(Q) and
µ(R \ Q).

Exercise 11. The Cantor set C is a subset of the interval [0, 1]. It can be described for
example as

C =
∞⋂

n=0

(3n−1)/2⋃
k=0

[2k

3n
,
2k + 1

3n

]
.

Show that µ(C) = 0.

Proposition 2.20. The Lebesgue measure is translation invariant, i.e., µ(A + c) = µ(A)
for any measurable A and c ∈ R.

Proof. Straightforward.

Exercise 12. Consider the following equivalence relation on R: Let x ∼ y iff x − y ∈ Q.
Now choose (using the axiom of choice) one representative out of each equivalence class,
such that this representative lies in [0, 1]. Call the set obtained in this way A.

1. Show that (A + r) ∩ (A + s) = ∅ if r and s are distinct rational numbers. Supposing
that A is Lebesgue measurable, conclude that µ(A) = 0.

2. Show that R =
⋃

q∈Q(A + q). Supposing that A is Lebesgue measurable, conclude
that µ(A) > 0.

We obtain a contradiction showing that A is not Lebesgue measurable.

We can define the Lebesgue measure more generally for Rn. The intervals of the type
[a, b) are replaced by products of such intervals. Otherwise the construction proceeds in
parallel.

Proposition 2.21. Consider Rn with its σ-algebra B of Borel sets. Then, the prescription
µ([a1, b1) × · · · × [an, bn)) = (b1 − a1) · · · (bn − an) uniquely extends to a measure µ : B →
[0, ∞].

Exercise 13. Sketch the proof by explaining the changes with respect to the one-dimensional
case.
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3 Completeness
3.1 Elementary properties of pseudometric spaces

Proposition 3.1. Let S be a pseudometric space and x := {xn}n∈N a sequence in S. Then
x converges to p ∈ S iff for any ϵ > 0 there exists an n0 ∈ N such that d(xn, p) < ϵ for all
n ≥ n0.

Proof. Immediate.

Definition 3.2. Let S be a pseudometric space and x := {xn}n∈N a sequence in S. Then
x is called a Cauchy sequence iff for all ϵ > 0 there exists an n0 ∈ N such that d(xn, xm) < ϵ
for all n, m ≥ n0.

Exercise 14. Give an example of a set S, a sequence x in S and two metrics d1 and d2

on S that generate the same topology, but such that x is Cauchy with respect to d1, but
not with respect to d2.

Proposition 3.3. Any converging sequence in a pseudometric space is a Cauchy sequence.

Proof. Exercise.

Proposition 3.4. Suppose x is a Cauchy sequence in a pseudometric space. If p is
accumulation point of x then x converges to p.

Proof. Exercise.

Definition 3.5. Let S be a pseudometric space and U ⊆ S a subset. If every Cauchy
sequence in U converges to a point in U , then U is called complete.

Proposition 3.6. A complete subset of a metric space is closed. A closed subset of a
complete pseudometric space is complete.

Proof. Exercise.

Exercise 15. Give an example of a complete subset of a pseudometric space that is not
closed.

Definition 3.7 (Totally boundedness). Let S be a pseudometric space. A subset U ⊆ S
is called totally bounded iff for any r > 0 the set U admits a cover by finitely many open
balls of radius r.

Proposition 3.8. A subset of a pseudometric space is compact iff it is complete and totally
bounded.
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Proof. We first show that compactness implies totally boundedness and completeness. Let
U be a compact subset. Then, for r > 0 cover U by open balls of radius r centered at
every point of U . Since U is compact, finitely many balls will cover it. Hence, U is totally
bounded. Now, consider a Cauchy sequence x in U . Since U is compact x must have an
accumulation point p ∈ U (Proposition 1.46) and hence (Proposition 3.4) converge to p.
Thus, U is complete.

We proceed to show that completeness together with totally boundedness imply com-
pactness. Let U be a complete and totally bounded subset. Assume U is not compact
and choose a covering {Uα}α∈A of U that does not admit a finite subcover. On the other
hand, U is totally bounded and admits a covering by finitely many open balls of radius
1/2. Hence, there must be at least one such ball B1 such that C1 := B1 ∩ U is not covered
by finitely many Uα. Choose a point x1 in C1. Observe that C1 itself is totally bounded.
Inductively, cover Cn by finitely many open balls of radius 2−(n+1). For at least one of
those, call it Bn+1, Cn+1 := Bn+1 ∩ Cn is not covered by finitely many Uα. Choose a point
xn+1 in Cn+1. This process yields a Cauchy sequence x := {xk}k∈N. Since U is complete
the sequence converges to a point p ∈ U . There must be α ∈ A such that p ∈ Uα. Since
Uα is open there exists r > 0 such that Br(p) ⊆ Uα. This implies, Cn ⊆ Uα for all n ∈ N
such that 2−n+1 < r. However, this is a contradiction to the Cn not being finitely covered.
Hence, U must be compact.

Proposition 3.9. The notions of compactness, limit point compactness and sequential
compactness are equivalent in a pseudometric space.

Proof. Exercise.

Proposition 3.10. A totally bounded pseudometric space is second-countable.

Proof. Exercise.

Proposition 3.11. Let S be equipped with a pseudometric d. Then p ∼ q ⇐⇒ d(p, q) = 0
for p, q ∈ S defines an equivalence relation on S. The prescription d̃([p], [q]) := d(p, q) for
p, q ∈ S is well defined and yields a metric d̃ on the quotient space S/∼. The topology
induced by this metric on S/∼ is the quotient topology with respect to that induced by d on
S. Moreover, S/∼ is complete iff S is complete.

Proof. Exercise.

3.2 Completion of metric spaces
Often it is desirable to work with a complete metric space when one is only given a non-
complete metric space. To this end one can construct the completion of a metric space.
This is detailed in the following exercise.

Exercise 16. Let S be a metric space.
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• Let x := {xn}n∈N and y := {yn}n∈N be Cauchy sequences in S. Show that the limit
limn→∞ d(xn, yn) exists.

• Let T be the set of Cauchy sequences in S. Define the function d̃ : T × T → R+
0 by

d̃(x, y) := limn→∞ d(xn, yn). Show that d̃ defines a pseudometric on T .

• Show that T is complete.

• Define S as the metric quotient T/∼ as in Proposition 3.11. Then, S is complete.

• Show that there is a natural isometric embedding (i.e., a map that preserves the
metric) iS : S → S. Furthermore, show that this is a bijection iff S is complete.

Definition 3.12. The metric space S constructed above is called the completion of the
metric space S.

Proposition 3.13 (Universal property of completion). Let S be a metric space, T a
complete metric space and f : S → T an isometric map. Then, there is a unique isometric
map f : S → T such that f = f ◦ iS. Furthermore, the closure of f(S) in T is equal to
f(S).

Proof. Exercise.

3.3 Norms and seminorms
In the following K will denote a field which can be either R or C.

Definition 3.14. Let V be a vector space over K. Then a map V → R+
0 : x 7→ ‖x‖ is

called a seminorm iff it satisfies the following properties:

1. ‖λx‖ = |λ|‖x‖ for all λ ∈ K, x ∈ V .

2. For all x, y ∈ V : ‖x + y‖ ≤ ‖x‖ + ‖y‖. (triangle inequality)

A seminorm is called a norm iff it satisfies in addition the following property:

3. ‖x‖ = 0 =⇒ x = 0.

Proposition 3.15. Let V be a seminormed vector space over K. Then, d(v, w) := ‖v −w‖
defines a pseudometric on V . Moreover, d is a metric iff the seminorm is a norm.

Proof. Exercise.

Remark 3.16. Since a seminormed space is a pseudometric space all the concepts de-
veloped for pseudometric spaces apply. In particular the notions of convergence, Cauchy
sequence and completeness apply to seminormed spaces.



26 Robert Oeckl – RA NOTES – 15/01/2021

Exercise 17. Show that the operations of addition and multiplication are continuous in
a seminormed space.

Definition 3.17. A complete normed vector space is called a Banach space.

Exercise 18. Show that Rn with norm given by ‖x‖ =
√

x2
1 + · · · + x2

n is a Banach space.
Show that ‖x‖ = |x1| + · · · + |xn| is another norm that also makes Rn into a Banach space.

Exercise 19. Let S be a set and Fb(S,K) the set of bounded maps S → K.

1. Fb(S,K) is a vector space over K.

2. The supremum norm on it is a norm defined by

‖f‖sup := sup
p∈S

|f(p)|.

3. Fb(S,K) with the supremum norm is a Banach space.

Exercise 20. Let n ∈ N and S be a set with n elements. Show that Fb(S,R) is isomorphic
to Rn as a vector space and that the supremum norm yields in this way yet another norm
on Rn, different from the ones of Exercise 18, that also make it into a Banach space.

Exercise 21. Let S be a topological space and Cb(S,K) the set of bounded continuous
maps S → K.

1. Cb(S,K) is a vector space over K.

2. Cb(S,K) with the supremum norm is a Banach space.

Proposition 3.18. Let V be a vector space with a seminorm ‖ · ‖V . Consider the subset
A := {v ∈ V : ‖v‖V = 0}. Then, A is a vector subspace. Moreover v ∼ w ⇐⇒ v − w ∈ A
defines an equivalence relation and W := V/ ∼ is a vector space. The seminorm ‖ · ‖V

induces a norm on W via ‖[v]‖W := ‖v‖V for v ∈ V . Also, V is complete with respect to
the seminorm ‖ · ‖V iff W is complete with respect to the norm ‖ · ‖W .

Proof. Exercise.

Proposition 3.19. Let V, W be seminormed vector spaces. Then, a linear map α : V → W
is continuous iff there exists a constant c ≥ 0 such that

‖α(v)‖W ≤ c‖v‖V ∀v ∈ V.

Proof. Exercise.
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4 The integral
4.1 The integral of positive functions
Let X be a set and H a vector space of functions on X with values in R. Denote by H+

the subset of functions with values in [0, ∞).

Definition 4.1. We say that a map F : H → R is positive iff for all f, g ∈ H with f ≥ g
we have F (f) ≥ F (g).

Proposition 4.2. A linear map F : H → R is positive iff f ∈ H with f ≥ 0 implies
F (f) ≥ 0.

The set [0, ∞] carries a total order by declaring a ≤ ∞ for all a ∈ [0, ∞]. When viewed
as a topological space we will consider the topology of the one-point compactification of
[0, ∞). We declare the following rules for addition and multiplication, additional to the
usual ones in [0, ∞):

• a + ∞ = ∞ for all a ∈ [0, ∞].

• 0 · ∞ = 0

• a · ∞ = ∞ for all a ∈ (0, ∞].

Definition 4.3. We say that a map F : H+ → [0, ∞] is positive iff for all f, g ∈ H+ with
f ≥ g we have F (f) ≥ F (g).

Definition 4.4. We say that a map F : H+ → [0, ∞] is semilinear iff

• F (λf) = λF (f) for λ ∈ [0, ∞) and f ∈ H+, and,

• F (f + g) = F (f) + F (g) for f, g ∈ H+.

Proposition 4.5. A semilinear map F : H+ → [0, ∞] is positive.

Proof. Exercise.

Proposition 4.6. Consider a semilinear map F : H+ → [0, ∞]. Set K+ := F −1([0, ∞))
and K := K+ − K+ as a subset of H. Then, K is a vector subspace of H. Also, there is
a unique positive linear map F ′ : K → R such that F ′|K+ = F |K+.

Proof. Exercise.

Proposition 4.7. Suppose that f, g ∈ H implies sup(f, g) ∈ H and (equivalently) inf(f, g) ∈
H. Then, f, g ∈ K implies sup(f, g) ∈ K and inf(f, g) ∈ K.
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Proof. Note that the equivalence between the conditions follows from inf(f, g) = − sup(−f, −g).
Moreover, note that the condition that f, g ∈ H implies sup(f, g) ∈ H is equivalent to
the apparently weaker condition that f ∈ H implies sup(f, 0) ∈ H. This is because
sup(f, g) = sup(f − g, 0) + g. Now let f ∈ K. By definition there exist f1, f2 ∈ K+ such
that f = f1 − f2. But, as is easy to see sup(f, 0) ≤ f1. So sup(f, 0) ∈ K+ ⊂ K. This
completes the proof.

Let (X, M) be a measurable space. We denote the vector space of measurable functions
on X with values in K by L(X,K) and the subspace of simple functions by S(X,K). In
the case K = R we also simply write L(X) and S(X). We denote the subsets of functions
with values in [0, ∞) by L+(X) and S+(X) respectively. We call such functions positive.
Note that in this sense 0 is a positive function.

Let (X, M, µ) be a measure space. We define in the following the µ-integral, or simply
integral, which associates to certain measurable functions f : X → K a value, denoted

f 7→
∫

X
f dµ.

When it is clear with respect to which measure the integral is taken, the symbol dµ may
be omitted. When the integral is taken with respect to the whole measure space and it is
clear which measure space this is, the subscript indicating the set over which is integrated
may be omitted.

Definition 4.8. The integral for positive simple functions is the map S+(X) → [0, ∞]
defined as follows. Given f ∈ S+(X) let f(X) = {a1, . . . , an} and Xi := f−1(ai). Then,

∫
X

f dµ :=
n∑

i=1
aiµ(Xi).

Proposition 4.9. The integrals S+(Y ) → [0, ∞] for Y ∈ M are the unique collection of
maps with the following properties:

1. They are semilinear maps.

2.
∫

Y 1 dµ = µ(Y ), where 1 is the constant function with value 1.

3. Let Y1, Y2 ∈ M such that Y1 ∩ Y2 = ∅ and Y = Y1 ∪ Y2. Then,∫
Y

f dµ =
∫

Y1
f dµ +

∫
Y2

f dµ.

Proof. We first show unicity. Thus, we suppose that we are given an integral with the
described properties. Let f ∈ S+(X) and set f(X) = {a1, . . . , an} and Xi := f−1(ai).
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Iterating property (3), then applying semilinearity (1), then property (2), we recover the
previous definition of the integral,

∫
X

f dµ =
n∑

i=1

∫
Xi

ai · 1 dµ =
n∑

i=1
ai

∫
Xi

1 dµ =
n∑

i=1
aiµ(Xi).

We turn to the proof of the different properties for the defined integral. Property (2)
is immediate from the definition. We proceed to demonstrate property (3). Thus, let
f ∈ S+(Y ) and set f(Y ) = {a1, . . . , an} and Xi := f−1(ai). Then, the restrictions f |Y1

and f |Y2 take values in subsets of {a1, . . . , an} and we have Xi ∩ Yj = f |−1
Yj

(ai). Thus, we
get from the definition of the integral,

∫
Yj

f dµ =
n∑

i=1
aiµ(Xi ∩ Yj).

Strictly speaking we should only sum over the values ai actually occuring in Yj . However,
the summands for the additional values vanish since for these Xi ∩ Yj = ∅ and thus µ(Xi ∩
Yj) = 0, so including them does not modify the sum. We then have,

∫
Y1

f dµ +
∫

Y2
f dµ =

n∑
i=1

ai (µ(Xi ∩ Y1) + µ(Xi ∩ Y2))

=
n∑

i=1
aiµ((Xi ∩ Y1) ∪ (Xi ∩ Y2)) =

n∑
i=1

aiµ(Xi) =
∫

Y
f dµ.

We proceed to demonstrate property (1). We start with the multiplicative property of
a semilinear map. Let f ∈ S+(X), λ ∈ [0, ∞) and g = λf . If λ = 0 we have immediately∫

X g dµ = 0, as required. Suppose thus λ 6= 0. Set f(X) = {a1, . . . , an} and Xi := f−1(ai).
Then g(X) = {λa1, . . . , λan}. Note that the values λai are all distinct. By definition we
then have, as required,

∫
X

g dµ =
n∑

i=1
λaiµ(Xi) = λ

n∑
i=1

aiµ(Xi) = λ

∫
X

f dµ.

It remains to show additivity of the integral. Thus, let f, g ∈ S+(X). Set f(X) =
{a1, . . . , an} and Xi := f−1(ai) as well as g(X) = {b1, . . . , bm} and Yj := g−1(bj). Define
Zij = Xi ∩ Yj . Note that the Zij form a disjoint partition of X. Moreover the function
f + g takes the constant value ai + bj on Zij . Using property (3) and the definition of the
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integral we get,∫
X

(f + g) dµ =
∑
i,j

∫
Zij

(f + g) dµ =
∑
i,j

(ai + bj)µ(Zij)

=
∑
i,j

aiµ(Zij) +
∑
i,j

bjµ(Zij) =
n∑

i=1
aiµ(Xi) +

m∑
j=1

bjµ(Yj)

=
∫

X
f dµ +

∫
X

g dµ.

This completes the proof.

Definition 4.10. The µ-integral for positive measurable functions is the map L+(X) →
[0, ∞] defined as follows. Given f ∈ L+(X),∫

X
f dµ := sup

{∫
X

g dµ : 0 ≤ g ≤ f and g ∈ S+(X)
}

The coincidence of this definition with the previous one in the case of simple maps is
implied by the following result.

Proposition 4.11. The integrals L+(Y ) → [0, ∞] for Y ∈ M are a collection of maps
with the following properties:

1. They coincide with Definition 4.8 for simple maps.

2. They are multiplicative, i.e.
∫

Y λfdµ = λ
∫

Y fdµ for λ ∈ [0, ∞).

3. They are positive, i.e.
∫

Y f dµ ≤
∫

Y g dµ if f ≤ g.

4. Let Y1, Y2 ∈ M such that Y1 ∩ Y2 = ∅ and Y = Y1 ∪ Y2. Then,∫
Y

f dµ =
∫

Y1
f dµ +

∫
Y2

f dµ.

Proof. Exercise.

Theorem 4.12 (Monotone Convergence Theorem). Let {fn}n∈N be an increasing sequence
of positive measurable functions on X that converges pointwise to a function f : X → [0, ∞).
Then, f is measurable and

lim
n→∞

∫
X

fn dµ =
∫

X
f dµ.

Proof. The measurability of f follows from Theorem 1.60. We denote,

b := lim
n→∞

∫
X

fn dµ.
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Since fn ≤ f for all n ∈ N positivity of the integral implies,

b ≤
∫

X
f dµ.

Let g ∈ S+(X) such that 0 ≤ g ≤ f and choose 0 < c < 1. Define En ∈ M as,

En := {x ∈ X : fn(x) ≥ cg(x)}

Then {En}n∈N is an increasing sequence of measurable subsets of X with X =
⋃

n∈N En.
Moreover, for any n ∈ N, ∫

X
fn dµ ≥

∫
En

fn dµ ≥ c

∫
En

g dµ.

The limit n → ∞ exits on both sides. On the left hand side this is b. To see the limit on
the right hand side set g(X) = {a1, . . . , am} and Xi := g−1({ai}). Then, we have

∫
En

g dµ =
m∑

i=1
aiµ(En ∩ Xi).

But µ(En ∩ Xi) → µ(Xi) as n → ∞ by Proposition 2.3.4. We obtain,

b ≥ c

∫
X

g dµ.

But c was arbitrary, so the inequality is valid without c. On the other hand, by definition
of the integral of f as a supremum of intgerals of simple functions g we obtain,

b ≥
∫

X
f dµ.

Combining both inequalities yields the desired equality.

Proposition 4.13. The integral L+(Y ) → [0, ∞] is a semilinear map.

Proof. It remains to show additivity. Exercise.Hint: Use approximability from below by
simple functions (Theorem 1.64) and apply the Monotone Convergence Theorem 4.12.

Lemma 4.14 (Fatou’s Lemma). Let {fn}n∈N be a sequence of positive measurable functions
on X such that f := lim infn→∞ fn takes only finite values. Then, f is measurable and∫

f ≤ lim inf
n→∞

∫
fn.
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Proof. Define gn := infk≥n fk. Note that gn is the limit m → ∞ of the decreasing sequence
of measurable functions {hn,m}m≥n defined as hn,m := inf{fk : n ≤ k ≤ m}, so it is
measurable. The sequence {gn}n∈N is increasing. Moreover, f = limn→∞ gn. So, by the
Monotone Convergence Theorem 4.12 we have,

lim
n→∞

∫
gn =

∫
f.

On the other hand, by definition of gn and positivity of the integral we have,∫
gn ≤

∫
fk ∀k ≥ n.

This implies, ∫
gn ≤ inf

k≥n

∫
fk.

Taking the limit yields,
lim

n→∞

∫
gn ≤ lim inf

n→∞

∫
fn.

This completes the proof.

4.2 Integrable functions
Let L1+(X, µ) denote the subset of L+(X) such that the integral is finite,

L1+(X, µ) :=
{

f ∈ L+(X) :
∫

X
f dµ < ∞

}
.

Define now L1(X, µ) := L1+(X, µ) − L1+(X, µ). By Proposition 4.6 L1(X, µ) is a vector
space and we obtain a uniquely defined positive linear map∫

X
: L1(X, µ) → R.

We call L1(X, µ) the space of integrable functions. Note also that given f, g ∈ L1(X, µ,R),
sup(f, g) and inf(f, g) are measurable by Proposition 1.59 and integrable by Proposition 4.7.

We may now extend the notion of integral to functions that take values in the complex
numbers rather than the real numbers. A further extension to functions taking values in
Banach spaces over R or C is also straightforward, but we shall not consider this here.

We define the complex vector space L1(X, µ,C) := L1(X, µ) + iL1(X, µ) of integrable
complex valued functions. The integral is extended from R to C by complex linearity. For
f = fR + ifI with fR, fI ∈ L1(X, µ) we define,∫

X
f dµ :=

∫
X

fR dµ + i
∫

X
fI dµ.

We also write L1(X, µ,R) := L1(X, µ) and L1(X, µ,K) if we want to make statements valid
for both cases K = R and K = C.
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Proposition 4.15. We summarize basic properties of the integral.

1. The integral is a positive linear function.

2. f, g ∈ L1(X, µ,R) implies sup(f, g), inf(f, g) ∈ L1(X, µ,R).

3. Let Y1, Y2 ∈ M such that Y1 ∩ Y2 = ∅ and Y = Y1 ∪ Y2. Then, for f ∈ L1(Y, µ,K),∫
Y

f dµ =
∫

Y1
f dµ +

∫
Y2

f dµ.

Proof. It remains to demonstrate the validity of (3). This follows from linearity upon
decomposing f into a linear combination of positive integrable functions and Proposi-
tion 4.11.(3).

Theorem 4.16. Let f ∈ L(X,K). Then f is integrable iff |f | ∈ L+(X) is integrable.

Proof. Without loss of generality take K = C. Suppose that f ∈ L(X,C). Let fR = <(f)
and fI = =(f). Define f+

R = sup(fR, 0) and f−
R = sup(−fR, 0). Similarly, f+

I = sup(fI, 0)
and f−

I = sup(−fI, 0). Note that all these component functions are positive and f =
f+

R − f−
R + if+

I − if−
I . Now suppose that f is integrable. Then, by definition both fR and

fI are integrable. Moreover, f+
R , f−

R , f+
I , f−

I are all integrable and so is their sum. The
inequality

|f | ≤ |fR| + |fI| = f+
R + f−

R + f+
I + f−

I

implies the integrability of |f |. Conversely, suppose that |f | is integrable. But all of f+
R ,

f−
R , f+

I , f−
I are smaller or equal to |f |, so they are all integrable. So is thus their linear

combination f .

Theorem 4.17. For f ∈ L1(X, µ,K), |
∫

f | ≤
∫

|f |.

Proof. Let c ∈ K with |c| = 1 such that |
∫

f | = c
∫

f . Then,∣∣∣∣∫ f

∣∣∣∣ = c

∫
f =

∫
cf =

∫
<(cf) ≤

∫
|cf | =

∫
|f |.

Proposition 4.18. Let f be an integrable map. Then, f vanishes outside a σ-finite set.

Proof. Exercise.

Proposition 4.19. The space L1(X, µ,K) carries a seminorm given by

‖f‖1 :=
∫

X
|f | dµ.
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Proof. Exercise.

The fact that we only have a seminorm and not necessarily a norm comes from the
inability of the integral to ”see” sets of measure zero.

Proposition 4.20. Let f ∈ L1(X, µ,K). Then, ‖f‖1 = 0 iff f vanishes outside a set of
measure zero.

Proof. Exercise.

We also say ”almost everywhere” to mean ”outside a set of measure zero”.

Theorem 4.21 (Dominated Convergence Theorem). Let {fn}n∈N be a sequence of inte-
grable functions that converges pointwise to a function f . Also assume that there exists a
positive integrable function g with |fn| ≤ g for all n ∈ N. Then, f is integrable, {fn}n∈N
converges to f in the ‖ · ‖1-seminorm and {

∫
fn}n∈N converges to

∫
f .

Proof. f is measurable by Theorem 1.60. We have |f | ≤ g from pointwise convergence. By
positivity of the integral and integrability of g this implies the integrability of f . Define
a sequence of positive integrable functions via hn := 2g − |f − fn|. Note that {hn}n∈N
converges pointwise to 2g. We apply Fatou’s Lemma 4.14 to this sequence. This yields,∫

2g ≤ lim inf
n→∞

∫
hn.

We may substract the constant
∫

2g on both sides and multiply the inequality by −1 to
get,

0 ≥ lim sup
n→∞

∫
|f − fn|.

Since the integrals on the right hand side are bounded from below by 0, the limes superior
is actually a proper limes and the inequality is an equality,

0 = lim
n→∞

∫
|f − fn|.

This is precisely the convergence of {fn}n∈N to f in the ‖ · ‖1-seminorm. The convergence
of the integral itself follows with Theorem 4.17.

Theorem 4.22. Let {fn}n∈N be a sequence of integrable functions that converges pointwise
to a function f . Also assume there is a constant c ≥ 0 such that ‖fn‖1 ≤ c for all n ∈ N.
Then, f is integrable.

Proof. f is measurable by Theorem 1.60. We consider the sequence of absolute value
functions {|fn|}n∈N and apply Fatou’s Lemma 4.14. This yields,∫

|f | =
∫

lim inf
n→∞

|fn| ≤ lim inf
n→∞

∫
|fn| ≤ c.

Thus, |f | is integrable and so is f by Theorem 4.16.
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Theorem 4.23. Let {fn}n∈N be a Cauchy sequence in L1(X, µ,K) with respect to the
seminorm ‖ · ‖1. Then, the sequence converges to some f ∈ L1(x, µ,K) in the seminorm
‖·‖1. In particular, L1(X, µ,K) is complete. Furthermore, there exists a subsequence which
converges pointwise almost everywhere to f and for any ϵ > 0 converges uniformly to f
outside of a set of measure less than ϵ.

Proof. Since {fn}n∈N is Cauchy, there exists a subsequence {fnk
}k∈N such that

‖fnl
− fnk

‖1 < 2−2k ∀k ∈ N and ∀l ≥ k.

Define
Yk := {x ∈ X : |fnk+1(x) − fnk

(x)| ≥ 2−k} ∀k ∈ N.

Then,
2−kµ(Yk) ≤

∫
Yk

|fnk+1 − fnk
| ≤

∫
X

|fnk+1 − fnk
| ≤ 2−2k ∀k ∈ N.

This implies, µ(Yk) ≤ 2−k for all k ∈ N. Define now Zj :=
⋃∞

k=j Yk for all j ∈ N. Then,
µ(Zj) ≤ 21−j for all j ∈ N.

Fix ϵ > 0 and choose j ∈ N such that 21−j < ϵ. Let x ∈ X \ Zj . Then, for k ≥ j we
have

|fnk+1(x) − fnk
(x)| < 2−k.

Thus, the sum ∑∞
k=1 fnk+1(x) − fnk

(x) converges absolutely. In particular, the limit

f(x) := lim
l→∞

fnl
(x) = fn1(x) +

∞∑
l=1

fnl+1(x) − fnl
(x)

exists. For all k ≥ j we have the estimate,

|f(x) − fnk
(x)| =

∣∣∣∣∣
∞∑

l=k

fnl+1(x) − fnl
(x)
∣∣∣∣∣ ≤

∞∑
l=k

∣∣fnl+1(x) − fnl
(x)
∣∣ ≤ 21−k

Thus, {fnk
}k∈N converges to f uniformly outside of Zj , where µ(Zj) < ϵ.

Repeating the argument for arbitrarily small ϵ we find that f is defined on X \ Z,
where Z :=

⋂∞
j=1 Zj . Furthermore, {fnk

}k∈N converges to f pointwise on X \ Z. Note that
µ(Z) = 0. By Theorem 1.60, f is measurable on X \ Z. We extend f to a measurable
function on all of X by declaring f(x) = 0 if x ∈ Z.

Note that the Cauchy property implies that the sequence {‖fnk
‖}k∈N is bounded. Thus

we can apply Theorem 4.22 and conclude that f is integrable. It remains to show that
{fn}n∈N converges to f in the seminorm ‖ · ‖1. Let ϵ > 0. By the Cauchy property there
exists m ∈ N such that ‖fnk

− fnl
‖1 < ϵ for all k, l ≥ m. Let k ≥ m be arbitrary. We apply

Fatou’s Lemma 4.14 to the sequence {|fnk
− fnl

|}l∈N. This yields,

‖fnk
− f‖1 =

∫
X

|fnk
− f | =

∫
X

lim inf
l→∞

|fnk
− fnl

| ≤ lim inf
l→∞

∫
X

|fnk
− fnl

| ≤ ϵ.
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Thus, the sequence {fnk
}k∈N converges to f in the seminorm ‖ · ‖1. But since this is a

subsequence of the Cauchy sequence {fn}n∈N the latter must also converge to f .

Theorem 4.24 (Averaging Theorem). Let X be a measure space with σ-finite measure µ.
Let S ⊆ K be a closed subset and f ∈ L1(X, µ,K). If for every measurable set A of finite
and positive measure we have

1
µ(A)

∫
A

fdµ ∈ S,

then f(x) ∈ S for almost all x ∈ X.
Proof. Let C := {x ∈ X : f(x) /∈ S}. We need to show that µ(C) = 0. Assume the
contrary, i.e., µ(C) > 0. Write K \ S =

⋃
n∈N Bn as a countable union of closed balls

{Bn}n∈N. (Use second countability of K and recall Proposition 1.51.) Their preimages are
measurable and cover C. There is at least one closed ball Bn such that µ(f−1(Bn)) > 0.
Say this closed ball has center x and radius r. Furthermore, there is a measurable subset
D ⊆ f−1(Bn) such that 0 < µ(D) < ∞. Then,∣∣∣∣ 1

µ(D)

∫
D

f dµ − x

∣∣∣∣ = 1
µ(D)

∣∣∣∣∫
D

(f − x) dµ

∣∣∣∣
≤ 1

µ(D)

∫
D

|f − x| dµ ≤ 1
µ(D)

∫
D

r dµ = r.

In particular, 1
µ(D)

∫
D f dµ ∈ Bn. But Bn ∩ S = ∅, so we get a contradiction with the

assumptions.

Exercise 22. 1. Explain where in the above proof σ-finiteness was used. 2. Extend the
proof to the case where µ is not σ-finite by replacing f(x) ∈ S with f(x) ∈ S ∪ {0} in the
statement of the Theorem.

Finally, we return to the simple functions.
Proposition 4.25. The space of integrable simple functions S1(X, µ,K) is precisely the
space of simple functions that vanish outside of a set of finite measure.
Proof. Exercise.

Lemma 4.26. Let f ∈ L1(X, µ,K) and ϵ > 0. Then there exists g ∈ S1(X, µ,K) such that
‖f − g‖1 < ϵ. In particular, S1(X, µ,K) is a dense subspace of L1(X, µ,K).
Proof. Exercise.

Lemma 4.27. Let (X, M, µ) be a measure space and N an algebra of subsets of X that
generates the σ-algebra M. Let f ∈ S1(X, µ,K) and ϵ > 0. Then, there exists g ∈
S1(X, µ,K) such that g is measurable with respect to N (i.e., g−1({p}) ∈ N for all p ∈ K)
and such that ‖f − g‖1 < ϵ.
Proof. Exercise.Hint: Use Proposition 2.14.
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4.3 Exercises
Exercise 23 (Lang). Consider the interval [0, 1] with the Lebesgue measure µ. Let {fn}n∈N
be a sequence of continuous functions fn : [0, 1] → [0, 1] which converges pointwise to 0
everywhere. Show that

lim
n→∞

∫ 1

0
fn dµ = 0.

Exercise 24 (Lang). Let X, Y be measurable spaces and f : X → Y a measurable map.
Denote the σ-algebra on X by M and the σ-algebra on Y by N . Let µ be a positive
measure on M. Define a function ν : N → [0, ∞] as follows: ν(N) := µ(f−1(N)). Show
that ν is a positive measure on N . Moreover show that if g ∈ L1(Y, ν), then g◦f ∈ L1(X, µ)
and ∫

X
g ◦ f dµ =

∫
Y

g dν.

Exercise 25 (Lang, extended). Let X be a measure space with finite measure µ and
f ∈ L1(X, µ). Show that the limit

lim
n→∞

∫
X

|f |1/n dµ

exists and compute it. Give an example where the limit does not exist if µ(X) = ∞.

Exercise 26 (Fundamental Theorem of Differentiation and Integration). Let f : R → R
be continuously differentiable and a, b ∈ R with a ≤ b. Then,∫ b

a
f ′ dµ = f(b) − f(a),

where µ is the Lebesgue measure. [Hint: Note that f ′ is integrable on [a, b]. Consider the
map g : R → R given by g(y) :=

∫ y
a f ′ dµ. Show that g is continuously differentiable and

that g′ = f ′. Apply the fact that a function with vanishing derivative is constant to the
difference f − g to conclude the proof.]

Exercise 27 (Partial Integration). Let f, g : R → R be continuously differentiable and
a, b ∈ R with a ≤ b. Show that,∫ b

a
fg′ dµ = fg|ba −

∫ b

a
f ′g dµ,

where dµ is the Lebesgue measure.

Exercise 28 (adapted from Lang). Equip the space [0, ∞] with the topology of the one-
point compactification by adding the point ∞ to the interval [0, ∞) with its usual topology.
(Recall Exercise 2).
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1. Let X be a measurable space and f : X → [0, ∞]. Let Y := f−1([0, ∞)). Show
that f is a measurable function iff Y is a measurable set and f |Y : Y → [0, ∞) is a
measurable function.

2. Let X be a measure space with σ-finite measure µ. Show that f : X → [0, ∞]
is measurable iff there exists an increasing sequence {fn}n∈N of integrable simple
functions fn : X → [0, ∞) which converges pointwise to f .

3. (X and µ as above.) Let f : X → [0, ∞] measurable. We define its integral by
extension of Definition 4.10. For each measurable subset A ⊆ X define

µf (A) :=
∫

A
f dµ.

Show that µf is a positive measure. Let g : X → [0, ∞] measurable and show that,∫
X

g dµf =
∫

X
fg dµ.



Robert Oeckl – RA NOTES – 15/01/2021 39

5 The spaces Lp and Lp

5.1 Elementary inequalities and seminorms
Lemma 5.1. Let a, b ≥ 0 and p ≥ 1. Then,(

a + b

2

)p

≤ ap + bp

2
.

Let a, b ≥ 0 and p > 1. Set q such that 1/p + 1/q = 1. Then,

a1/pb1/q ≤ a

p
+ b

q
.

Proof. Exercise.

Definition 5.2. Let X be a measure space with measure µ and p > 0.

Lp(X, µ,K) := {f : X → Kmeasurable : |f |p integrable} .

Define also the function ‖ · ‖p : Lp(X, µ,K) → R+
0 given by

‖f‖p :=
(∫

X
|f |p

)1/p

.

Proposition 5.3. The set Lp(X, µ,K) for p ∈ (0, ∞) is a vector space. Also, ‖ · ‖p is
multiplicative, i.e., ‖λf‖p = |λ|‖f‖p for all λ ∈ K and f ∈ Lp. Furthermore, if p ≤ 1
the function dp : Lp(X, µ,K) × Lp(X, µ,K) → [0, ∞) given by dp(f, g) := ‖f − g‖p

p is a
pseudometric.

Proof. Exercise.

Definition 5.4. Let X be a measure space with measure µ. We call a measurable function
f : X → K essentially bounded iff there exists a bounded measurable function g : X → K
such that g = f almost everywhere. We denote the set of essentially bounded functions by
L∞(X, µ,K). Define also the function ‖ · ‖∞ : L∞(X, µ,K) → R+

0 given by

‖f‖∞ := inf {‖g‖sup : g = f a.e. and g bounded measurable} .

Proposition 5.5. The set L∞(X, µ,K) is a vector space and ‖ · ‖∞ is a seminorm.

Proof. Exercise.

Proposition 5.6. Let f ∈ Lp for p ∈ (0, ∞). Then, f vanishes outside of a σ-finite set.

Proof. By Proposition 4.18, |f |p vanishes outside a σ-finite set and hence so does f .
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Proposition 5.7. Let f ∈ L∞. Then, the set {x : |f(x)| > ‖f‖∞} has measure zero.
Moreover, there exists g ∈ L∞ bounded such that g = f almost everywhere and ‖g‖sup =
‖g‖∞ = ‖f‖∞.

Proof. Fix c > 0 and consider the set Ac := {x : |f(x)| ≥ ‖f‖∞ + c}. Since there exists a
bounded measurable function g such that g = f almost everywhere and ‖g‖sup < ‖f‖∞ + c
we must have µ(Ac) = 0. Thus {A1/n}n∈N is an increasing sequence of sets of measure
zero. So, their union A :=

⋃
n∈N A1/n = {x : |f(x)| > ‖f‖∞} must have measure zero.

Define now

g(x) :=
{

f(x) if x ∈ X \ A

0 if x ∈ A
.

Then, g is measurable, bounded, and g = f almost everywhere. Moreover, ‖g‖sup ≤ ‖f‖∞.
On, the other hand, since g = f almost everywhere we must have ‖g‖sup ≥ ‖f‖∞ by the
definition of ‖ · ‖∞. Also, f − g = 0 almost everywhere and hence ‖f − g‖∞ ≤ ‖0‖sup, i.e.,
‖f − g‖∞ = 0 and thus ‖f‖∞ = ‖g‖∞.

Proposition 5.8. Let f ∈ Lp for p ∈ (0, ∞]. Then ‖f‖p = 0 iff f = 0 almost everywhere.

Proof. If p < ∞ apply Proposition 4.20 to |f |p. Exercise.Complete the proof for p =
∞.

Theorem 5.9 (Hölder’s inequality). Let p ∈ [1, ∞] and q such that 1/p + 1/q = 1. Given
f ∈ Lp and g ∈ Lq we have fg ∈ L1 and,

‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof. First observe that fg is measurable by Proposition 1.59 since f and g are measur-
able.

We start with the case p = 1 and q = ∞. (The case q = 1 and p = ∞ is analogous.) By
Proposition 5.7 there is a bounded measurable function h ∈ L∞ such that h = g almost
everywhere and ‖h‖sup = ‖g‖∞. We have

|fh| ≤ |f |‖h‖sup.

Thus, the measurable function |fh| is bounded from above by an integrable function and
hence is integrable itself by positivity of the integral. By Theorem 4.16 fh itself is inte-
grable. But fh = fg almost everywhere and so fg is integrable. Moreover, integrating the
above inequality over X we obtain,

‖fg‖1 =
∫

X
|fg| =

∫
X

|fh| ≤ ‖h‖sup

∫
X

|f | = ‖f‖1‖g‖∞.

It remains to consider the case p ∈ (1, ∞). If ‖f‖p = 0 or ‖g‖q = 0 then f or g vanishes
almost everywhere by Proposition 5.8. Thus, fg vanishes almost everywhere and ‖fg‖1 = 0
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by the same Proposition (and in particular fg ∈ L1). We thus assume now ‖f‖p 6= 0 and
‖g‖q 6= 0. Set

a := |f |p

‖f‖p
p
, and b := |g|q

‖g‖q
q
.

Using the second inequality of Lemma 5.1 we find,

|fg|
‖f‖p‖g‖q

≤ 1
p

|f |p

‖f‖p
p

+ 1
q

|g|q

‖g‖q
q
.

This implies that |fg| is bounded from above by an integrable function and is hence inte-
grable by positivity of the integral. Moreover, integrating both sides of the inequality over
X yields the inequality that is to be demonstrated.

Proposition 5.10 (Minkowski’s inequality). Let p ∈ [1, ∞] and f, g ∈ Lp. Then,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

In particular, ‖ · ‖p is a seminorm.

Proof. The case p = 1 is already implied by Proposition 4.19 while the case p = ∞ is implied
by Proposition 5.5. We may thus assume p ∈ (1, ∞). Set q such that 1/p + 1/q = 1. We
have,

|f + g|p ≤ |f ||f + g|p−1 + |g||f + g|p−1.

Notice that |f + g|p−1 ∈ Lq so that the two summands on the right hand side are inte-
grable by Theorem 5.9. Integrating on both sides and applying Hölder’s inequality to both
summands on the right hand side yields,

‖f + g‖p
p ≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q

Noticing that ‖|f + g|p−1‖q = ‖f + g‖p−1
p we find,

‖f + g‖p
p ≤ (‖f‖p + ‖g‖p)‖f + g‖p−1

p .

Dividing by ‖f + g‖p−1
p yields the desired inequality. This is nothing but the triangle

inequality for ‖ · ‖p. The other properties making this into a seminorm are immediately
verified.

5.2 Properties of Lp spaces
Theorem 5.11 (Dominated Convergence Theorem in Lp). Let p ∈ [1, ∞). Let {fn}n∈N
be a sequence of functions in Lp such that there exists a real valued function g ∈ Lp with
|fn| ≤ g for all n ∈ N. Assume also that {fn}n∈N converges pointwise almost everywhere to
a measurable function f . Then, f ∈ Lp and {fn}n∈N converges to f in the ‖ · ‖p-seminorm.
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Proof. Exercise.Adapt the proof of Theorem 4.21.

Theorem 5.12. Let p ∈ [1, ∞) and {fn}n∈N be a Cauchy sequence in Lp. Then, the
sequence converges to some f ∈ Lp in the ‖ · ‖p-seminorm. That is, Lp is complete.
Furthermore, there exists a subsequence which converges pointwise almost everywhere to f
and for any ϵ > 0 converges uniformly to f outside of a set of measure less than ϵ.

Proof. Since {fn}n∈N is Cauchy, there exists a subsequence {fnk
}k∈N such that

‖fnl
− fnk

‖p < 2−2k ∀k ∈ N and ∀l ≥ k.

Define
Yk := {x ∈ X : |fnk+1(x) − fnk

(x)| ≥ 2−k} ∀k ∈ N.

Then,
2−kpµ(Yk) ≤

∫
Yk

|fnk+1 − fnk
|p ≤

∫
X

|fnk+1 − fnk
|p < 2−2kp ∀k ∈ N.

This implies, µ(Yk) < 2−kp ≤ 2−k for all k ∈ N. Define now Zj :=
⋃∞

k=j Yk for all j ∈ N.
Then, µ(Zj) ≤ 21−j for all j ∈ N.

Fix ϵ > 0 and choose j ∈ N such that 21−j < ϵ. Let x ∈ X \ Zj . Then, for k ≥ j we
have

|fnk+1(x) − fnk
(x)| < 2−k.

Thus, the sum ∑∞
k=1 fnk+1(x) − fnk

(x) converges absolutely. In particular, the limit

f(x) := lim
l→∞

fnl
(x) = fn1(x) +

∞∑
l=1

fnl+1(x) − fnl
(x)

exists. For all k ≥ j we have the estimate,

|f(x) − fnk
(x)| =

∣∣∣∣∣
∞∑

l=k

fnl+1(x) − fnl
(x)
∣∣∣∣∣ ≤

∞∑
l=k

∣∣fnl+1(x) − fnl
(x)
∣∣ ≤ 21−k

Thus, {fnk
}k∈N converges to f uniformly outside of Zj , where µ(Zj) < ϵ.

Repeating the argument for arbitrarily small ϵ we find that f is defined on X \ Z,
where Z :=

⋂∞
j=1 Zj . Furthermore, {fnk

}k∈N converges to f pointwise on X \ Z. Note that
µ(Z) = 0. By Theorem 1.60, f is measurable on X \ Z. We extend f to a measurable
function on all of X by declaring f(x) = 0 if x ∈ Z.

For fixed k ∈ N consider the sequence {gl}l∈N of integrable functions given by

gl := |fnl
− fnk

|p.

Then g := lim inf l→∞ gl is equal to |f − fnk
|p almost everywhere. We apply Fatou’s

Lemma 4.14 to obtain,∫
X

|f − fnk
|p ≤ lim inf

l→∞

∫
X

|fnl
− fnk

|p ≤ 2−2kp.
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In particular, f − fnk
∈ Lp and so f ∈ Lp and

‖f − fnk
‖p ≤ 2−2k.

So {fnk
}k∈N and therefore also {fn}n∈N converge to f in the ‖ · ‖p-seminorm.

Theorem 5.13. Let {fn}n∈N be a Cauchy sequence in L∞. Then, the sequence converges
uniformly almost everywhere to a function f ∈ L∞. Furthermore, the sequence converges
to f in the L∞-seminorm. In particular, L∞ is complete.

Proof. Define Zn := {x ∈ X : |fn(x)| > ‖fn‖∞} for all n ∈ N and Yn,m := {x ∈ X :
|fn(x)−fm(x)| > ‖fn−fm‖∞}. By Proposition 5.7 µ(Zn) = 0 for all n ∈ N and µ(Yn,m) = 0
for all n, m ∈ N. Define

Z :=

⋃
n∈N

Zn

 ∪

 ⋃
n,m∈N

Yn,m

 .

Then, µ(Z) = 0. So, {fn(x)}n∈N is Cauchy for x ∈ X \ Z and thus converges due to the
completeness of K. This defines a measurable function f on X \ Z. We extend f to a
measurable function on all of X by defining f(x) = 0 if x ∈ Z. Exercise.Complete the
proof.

Proposition 5.14. Let p ∈ [1, ∞). Then, S1 ⊆ Lp is a dense subset.

Proof. Exercise.

Proposition 5.15. The simple maps form a dense subset of L∞.

Proof. Let f ∈ L∞ and fix ϵ > 0. The statement follows if we can show that there exists a
simple map h such that ‖f − h‖∞ < ϵ. By Proposition 5.7 there is a bounded map g ∈ L∞

such that g = f almost everywhere and ‖g‖sup = ‖f‖∞. Since g is bounded, its image
A ⊂ K is bounded and thus contained in a compact set. This means that we can cover
A by a finite number of open balls {Bk}k∈{1,...,n} of radius ϵ. Denote the centers of the
balls by {xk}k∈{1,...,n}. Now take measurable subsets Ck ⊆ Bk such that Ci ∩ Cj = ∅ if
i 6= j while still covering A, i.e., A ⊆

⋃
k∈{1,...,n} Ck. (Exercise.Explain how this can be

done.) Define Dk := g−1(Ck). {Dk}k∈{1,...,k} form a measurable partition of X. Now set
h(x) := xk if x ∈ Dk. Then, h is simple and ‖f − h‖∞ = ‖g − h‖∞ ≤ ‖g − h‖sup ≤ ϵ.

Exercise 29. Analogues of the Monotone Convergence Theorem (Theorem 4.12) and the
Dominated Convergence Theorem (Theorem 4.21 or 5.11) are not true in L∞. Give a
counterexample to both. More precisely, give a pointwise increasing sequence {fn}n∈N of
real non-negative valued functions fn ∈ L∞ on some measure space X such that {fn}n∈N
converges pointwise to some f ∈ L∞, but {fn}n∈N does not converge to any function in
the ‖ · ‖∞-seminorm.
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We have seen already that the spaces Lp with p ∈ [1, ∞] are vector spaces with a
seminorm ‖ · ‖p and are complete with respect to this seminorm. In order to convert a
vector space with a seminorm into a vector space with a norm, we may quotient by those
elements whose seminorm is zero.

Definition 5.16. Let p ∈ [1, ∞]. Then the quotient space Lp/ ∼ in the sense of Proposi-
tion 3.18 is denoted by Lp. It is a Banach space.

Banach spaces have many useful properties that make it easy to work with them. So
usually, one works with the spaces Lp instead of the spaces Lp. Nevertheless one can still
think of the these as “spaces of functions” even though they are spaces of equivalence
classes. But (because of Proposition 5.8) two functions are in one equivalence class only if
they are ”essentially the same”, i.e., equal almost everywhere.

Proposition 5.17. Let p, q ∈ (0, ∞] and set r ∈ (0, ∞] such that 1/r = 1/p + 1/q. Then,
given f ∈ Lp and g ∈ Lq we have fg ∈ Lr. Moreover, the following inequality holds,

‖fg‖r ≤ ‖f‖p‖g‖q.

Proof. Exercise.[Hint: For f ∈ Lp and g ∈ Lq apply Hölder’s Theorem (Theorem 5.9) to
|f |r and |g|r, in the case r < ∞. Treat the case r = ∞ separately.]

Proposition 5.18. Let 0 < p ≤ q < r ≤ ∞. Then, Lp ∩ Lr ⊆ Lq. Moreover, if r < ∞,

‖f‖q(r−p)
q ≤ ‖f‖p(r−q)

p ‖f‖r(q−p)
r ∀f ∈ Lp ∩ Lr.

If r = ∞ we have,
‖f‖q

q ≤ ‖f‖p
p ‖f‖q−p

∞ ∀f ∈ Lp ∩ L∞.

If p ≥ 1, then also Lp ∩ Lr ⊆ Lq.

Proof. Exercise.

Proposition 5.19. Let X be a measure space with finite measure µ. Let 0 < p ≤ q ≤ ∞.
Then, Lq(X, µ) ⊆ Lp(X, µ). Moreover,

‖f‖p ≤ ‖f‖q (µ(X))1/p−1/q ∀f ∈ Lq(X, µ).

If p ≥ 1, then also Lq(X, µ) ⊆ Lp(X, µ).

Proof. Exercise.

Lemma 5.20. Let X be a measure space with σ-finite measure µ and let p ∈ (0, ∞). Then,
there exists a function w ∈ Lp(X, µ) such that 0 < w < 1.
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Proof. Let {Xn}n∈N be a sequence of disjoint sets of finite measure such that X =
⋃

n∈N Xn.
Define

w(x) :=
(

2−n

1 + µ(Xn)

)1/p

if x ∈ Xn.

This has the desired properties. Exercise.Show this.

Exercise 30 (adapted from Lang). Let X be a measure space with σ-finite measure µ and
let p ∈ [1, ∞). Let T : Lp → Lp be a bounded linear map. For each g ∈ L∞ consider the
bounded linear map Mg : Lp → Lp given by f 7→ gf . Assume that T and Mg commute
for all g ∈ L∞, i.e., T ◦ Mg = Mg ◦ T . Show that T = Mh for some h ∈ L∞. [Hint: Use
Lemma 5.20 to obtain a function w ∈ Lp ∩L∞ with 0 < w. Then, for f ∈ Lp ∩L∞ we have

T (wf) = wT (f) = fT (w).

If we define h := T (w)/w we thus have T (f) = hf . Prove that h is essentially bounded
by contradiction: Assume it is not and consider sets of positive measure where |h| > c for
some constant c and evaluate T on the characteristic function of such sets. Finally, prove
that T (f) = hf for all f ∈ Lp.]

5.3 Hilbert spaces and L2

Definition 5.21. Let V be a complex vector space and 〈·, ·〉 : V × V → C a map. 〈·, ·〉 is
called a sesquilinear form iff it satisfies the following properties:

• 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉 and
〈u, v + w〉 = 〈u, v〉 + 〈u, w〉 for all u, v, w ∈ V .

• 〈λu, v〉 = λ〈u, v〉 and 〈u, λv〉 = λ〈u, v〉 for all λ ∈ C and v ∈ V .

〈·, ·〉 is called hermitian iff it satisfies in addition the following property:

• 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

〈·, ·〉 is called positive iff it satisfies in addition the following property:

• 〈v, v〉 ≥ 0 for all v ∈ V .

〈·, ·〉 is called definite iff it satisfies in addition the following property:

• If 〈v, v〉 = 0 then v = 0 for all v ∈ V .

Proposition 5.22 (from Lang). Let V be a complex vector space with a positive hermitian
sesquilinear form 〈·, ·〉 : V ×V → C. If v ∈ V is such that 〈v, v〉 = 0, then 〈v, w〉 = 〈w, v〉 = 0
for all w ∈ V .
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Proof. Suppose 〈v, v〉 = 0 for a fixed v ∈ V . Fix some w ∈ V . For any t ∈ R we have,

0 ≤ 〈tv + w, tv + w〉 = 2t <(〈v, w〉) + 〈w, w〉.

If <(〈v, w〉) 6= 0 we could find t ∈ R such that the right hand side would be negative,
a contradiction. Hence, we can conclude <(〈v, w〉) = 0, for all w ∈ V . Thus, also 0 =
<(〈v, iw〉) = <(−i〈v, w〉) = =(〈v, w〉) for all w ∈ V . Hence, 〈v, w〉 = 0 and 〈w, v〉 =
〈v, w〉 = 0 for all w ∈ V .

Theorem 5.23 (Schwarz Inequality). Let V be a complex vector space with a positive
hermitian sesquilinear form 〈·, ·〉 : V × V → C. Then, the following inequality is satisfied:

|〈v, w〉|2 ≤ 〈v, v〉〈w, w〉 ∀v, w ∈ V.

Proof. If 〈v, v〉 = 0 then also 〈v, w〉 = 0 by Proposition 5.22 and the inequality holds.
Thus, we may assume α := 〈v, v〉 6= 0 and we set β := −〈w, v〉. By positivity we have,

0 ≤ 〈βv + αw, βv + αw〉.

Using sesquilinearity and hermiticity on the right hand side this yields,

0 ≤ |〈v, v〉|2〈w, w〉 − 〈v, v〉|〈v, w〉|2.

(Exercise.Show this.) Since 〈v, v〉 6= 0 we can divide by it and arrive at the required
inequality.

Proposition 5.24. Let V be a complex vector space with a positive hermitian sesquilinear
form 〈·, ·〉 : V × V → C. Then, V carries a seminorm given by ‖v‖ :=

√
〈v, v〉. If 〈·, ·〉 is

also definite then ‖ · ‖ is a norm.

Proof. Exercise.Hint: To prove the triangle inequality, show that ‖v+w‖2 ≤ (‖v‖+‖w‖)2

can be derived from the Schwarz inequality (Theorem 5.23).

Definition 5.25. A positive definite hermitian sesquilinear form is also called an inner
product or a scalar product. A complex vector space equipped with such a form is called
an inner product space or a pre-Hilbert space. It is called a Hilbert space iff it is complete
with respect to the induced norm.

Proposition 5.26. Consider the map 〈·, ·〉 : L2 × L2 → C given by

〈f, g〉 :=
∫

fg.

Then, 〈·, ·〉 is a positive hermitian sesquilinear form on L2. Moreover, the seminorm induced
by it according to Proposition 5.24 is the ‖·‖2-seminorm. Also, the map 〈·, ·〉 : L2 ×L2 → C
given by 〈[f ], [g]〉 := 〈f, g〉 defines a positive definite hermitian sesquilinear form on L2.
The norm induced by it is the ‖ · ‖2-norm. This makes L2 into a Hilbert space.
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Proof. Exercise.

The following Theorem about Hilbert spaces is fundamental, but we do not include the
proof here, as we will only use it one single time.

Theorem 5.27. Let H be a complex Hilbert space and α : H → C a bounded linear map.
Then, there exists a unique element w ∈ H such that

α(v) = 〈v, w〉 ∀v ∈ H.
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6 Relations between measures
Proposition 6.1. Let X be a measured space with σ-algebra M. Let µ1, µ2 be positive
measures on M. Then, µ := µ1 + µ2 is a positive measure on (X, M). Moreover, L1(µ) =
L1(µ1) ∩ L1(µ2) and∫

A
f dµ =

∫
A

f dµ1 +
∫

A
f dµ2 ∀f ∈ L1(µ), A ∈ M.

Proof. Exercise.

Definition 6.2 (Complex Measure). Let X be a measured space with σ-algebra M. Then,
a map µ : M → C is called a complex measure iff it is countably additive, i.e., satisfies the
following property: If {An}n∈N is a sequence of elements of M such that An ∩ Am = ∅ if
n 6= m, then

µ

⋃
n∈N

An

 =
∞∑

n=1
µ(An).

Remark 6.3. 1. The above definition implies µ(∅) = 0. 2. The convergence of the series in
the definition is absolute since its limit must be invariant under reorderings. 3. In contrast
to positive measures, a complex measure is always finite.

Exercise 31. Show that the complex measures on a given σ-algebra form a complex vector
space.

Definition 6.4. Let X be a measured space with σ-algebra M. Let µ be a positive
measure on (X, M) and ν a positive or complex measure on (X, M). We say that ν is
absolutely continuous with respect to µ, denoted ν � µ iff µ(A) = 0 implies ν(A) = 0 for
all A ∈ M.

Definition 6.5. Let X be a measured space with σ-algebra M. Let µ be a positive or
complex measure on (X, M). We say that µ is concentrated on A ∈ M iff µ(B) = µ(B ∩A)
for all B ∈ M.

Definition 6.6. Let X be a measured space with σ-algebra M. Let µ, ν be positive or
complex measures on (X, M). We say that µ and ν are mutually singular, denoted µ ⊥ ν,
iff there exist disjoint sets A, B ∈ M such that µ is concentrated on A and ν is concentrated
on B.

Proposition 6.7. Let µ be a positive measure and ν, ν1, ν2 be positive or complex measures.

1. If µ is concentrated on A and ν � µ, then ν is concentrated on A.

2. If ν1 � µ and ν2 ⊥ µ, then ν1 ⊥ ν2.
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3. If ν � µ and ν ⊥ µ, then ν = 0.

4. If ν1 � µ and ν2 � µ, then ν1 + ν2 � µ.

5. If ν1 ⊥ ν and ν2 ⊥ ν, then ν1 + ν2 ⊥ ν.

Proof. Exercise.

Theorem 6.8. Let X be a measure space with σ-algebra M and σ-finite measure µ. Let
ν be a finite measure on (X, M).

1. (Lebesgue) Then, there exists a unique decomposition

ν = νa + νs,

into finite measures such that νa � µ and νs ⊥ µ.

2. (Radon-Nikodym) There exists a unique [h] ∈ L1(µ) such that for all A ∈ M,

νa(A) =
∫

A
h dµ.

Proof. We first show the uniqueness of the decomposition ν = νa + νs in (1.). Suppose
there is another decomposition ν = ν ′

a + ν ′
s. Note that all the measures involved here are

finite and thus are also complex measures. In particular, we obtain the following equality
of complex measures, νa − ν ′

a = ν ′
s − νs. However, by Proposition 6.7 the left hand side is

absolutely continuous with respect to µ while the right hand side is singular with respect
to µ. Again by Proposition 6.7, the equality of both sides implies that they must be zero,
i.e., ν ′

a = νa and ν ′
s = νs.

To show the uniqueness of [h] ∈ L1(µ) in (2.) we note that given another element
[h′] ∈ L1(µ) with the same property, we would get

∫
A(h − h′) dµ = 0 for all measurable

sets A. By the Averaging Theorem 4.24 (h − h′)(x) = 0 almost everywhere and so 0 =
[h − h′] = [h] − [h′] ∈ L1(µ).

We proceed to construct the decomposition ν = νa + νs and the element [h] ∈ L1(µ).
By Lemma 5.20, there is a function w ∈ L1(µ) with 0 < w < 1. This yields the finite
measure µw, given by

µw(A) :=
∫

A
w dµ ∀A ∈ M.

(Recall the last part of Exercise 28.) Define the finite measure φ := ν + µw. Note that
L1(φ) ⊆ L1(ν) and L1(φ) ⊆ L1(µw) and we have (using Proposition 6.1),∫

X
f dφ =

∫
X

f dν +
∫

X
fw dµ ∀f ∈ L1(φ). (1)
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In particular, we may deduce∣∣∣∣∫
X

fdν

∣∣∣∣ ≤ ‖f‖ν,1 ≤ ‖f‖φ,1 ∀f ∈ L1(φ).

By Proposition 5.19 we have L2(φ) ⊆ L1(φ) and even

‖f‖φ,1 ≤ ‖f‖φ,2 (φ(X))1/2 ∀f ∈ L2(φ).

Combining the inequalities we find∣∣∣∣∫
X

fdν

∣∣∣∣ ≤ ‖f‖φ,2 (φ(X))1/2 ∀f ∈ L2(φ).

This means that the linear map α : L2(φ) → C given by [f ] 7→
∫

X [f ]dν is bounded. Since
L2(φ) is a Hilbert space, Theorem 5.27 implies that there is an element g ∈ L2(φ) such
that α([f ]) = 〈[f ], [g]〉 for all f ∈ L2(φ). This implies,∫

X
fdν =

∫
X

fg dφ ∀f ∈ L2(φ) (2)

By inserting characteristic functions for f we obtain

ν(A) =
∫

A
g dφ ∀A ∈ M.

On the other hand we have ν(A) ≤ φ(A) for all measurable sets A and hence,

0 ≤ 1
φ(A)

∫
A

g dφ = ν(A)
φ(A)

≤ 1 ∀A ∈ M : φ(A) > 0.

We can now apply the Averaging Theorem (Theorem 4.24) to conclude that 0 ≤ g ≤ 1
almost everywhere. We modify g on a set of measure zero if necessary so that 0 ≤ g ≤ 1
everywhere. In particular, if f ∈ L2(φ) then (1 − g)f ∈ L2(φ) and gf ∈ L2(φ). Combining
(1) and (2) we find ∫

X
(1 − g)f dν =

∫
X

fgw dµ ∀f ∈ L2(φ).

Set Za := {x ∈ X : g(x) < 1} and Zs := {x ∈ X : g(x) = 1} and define the measures
νa(A) := ν(A ∩ Za) and νs := ν(A ∩ Zs) for all A ∈ M. Since X is the disjoint union of
Za and Zs we obviously have ν = νa + νs. Taking f to be the characteristic function of Zs

we find that
∫

Zs
w dµ = 0. Since 0 < w, we conclude that µ(Zs) = 0. In particular, this

implies that µ is concentrated on Za, while νs is concentrated on Zs, so νs ⊥ µ.
Define now the sequence {fn}n∈N of functions fn :=

∑n
k=1 gk−1. Since g is bounded, fn

is bounded. Multiplying with characteristic functions we find for measurable sets A,∫
A

(1 − gn) dν =
∫

A
(1 − g)fn dν =

∫
A

fngw dµ.
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Note that {1−gn}n∈N increases monotonically and converges pointwise to the characteristic
function of Za. Thus, by the Monotone Convergence Theorem 4.12 the left hand side
converges to ν(A ∩ Za) = νa(A).

The sequence {fngw}n∈N is also increasing monotonically with its µ-integrals over A
bounded by νa(A). So the Monotone Convergence Theorem 4.12 applies and the pointwise
limit is a µ-integrable function h. We get

νa(A) =
∫

A
h dµ,

showing existence in (2.) and also νa � µ, thus completing the existence proof for (1.).

Remark 6.9. The function h appearing in the above Theorem is also called the Radon-
Nikodym derivative, denoted as h = dνa/dµ.
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7 Measures and integrals on product spaces

7.1 The Product of measures

Definition 7.1. Let S, T be sets and M ⊆ P(S), N ⊆ P(T ) be algebras of subsets. For
(A, B) ∈ M × N we view A × B as a subset of S × T , called a rectangle. We denote the
set of rectangles by M × N ⊆ P(S × T ). Then, M□N ⊆ P(S × T ) denotes the algebra
generated by the set of rectangles. We also call this the product algebra. Similarly, M⊠N
denotes the σ-algebra generated by M□N which we call the product σ-algebra.

Proposition 7.2. M□N consists of the finite disjoint union of elements of M × N .

Proof. Exercise.

Proposition 7.3. Let M′, N ′ be the σ-algebras generated by M and N respectively. Then,

N ⊠ M = N ′ ⊠ M′.

Proof. Exercise.

Lemma 7.4. Let (S, M), (T, N ) be measurable spaces. Let U ∈ M ⊠ N and p ∈ S. Set
Up := {q ∈ T : (p, q) ∈ U} ⊆ T . Then, Up ∈ N .

Proof. Let A denote the set of subsets V ⊆ S × T such that V ∈ M ⊠ N and Vp ∈ N .
Let (A, B) ∈ M × N . Then the rectangle A × B is in A since (A × B)p = B if p ∈ A and
(A × B)p = ∅ otherwise. Thus, all rectangles are in A. Moreover, A is an algebra: Clearly
∅ ∈ A. Also, if V ∈ A, then ¬V ∈ A since (¬V )p = ¬(Vp). Similarly, for A, B ∈ A we
have (A ∩ B)p = Ap ∩ Bp. So, M□N ⊆ A. But A is even a σ-algebra: Let {An}n∈N be
a sequence of elements of A. Then, (

⋃
n∈N An)p =

⋃
n∈N(An)p. Thus, M ⊠ N ⊆ A. But

A ⊆ M ⊠ N by construction.

Lemma 7.5. Let (S, M), (T, N ), (U, A) be measurable spaces and f : S × T → U a
measurable map, where S × T is equipped with the product σ-algebra M ⊠ N . For p ∈ S
denote by fp : T → U the map fp(q) := f(p, q). Then, fp is measurable for all p ∈ S.

Proof. Let V ∈ A. Then, f−1
p (V ) = (f−1(V ))p, using the notation of Lemma 7.4. But by

that same Lemma, (f−1(V ))p ∈ N .

Theorem 7.6. Let (S, M, µ) and (T, N , ν) be measure spaces with σ-finite measures.
Then, there exists a unique measure µ ⊠ ν on the measurable space (S × T, M ⊠ N ) such
that for sets of finite measure A ∈ M and B ∈ N we have

(µ ⊠ ν)(A × B) = µ(A)ν(B).
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Proof. At first we assume the measures to be finite. It is clear from Proposition 7.2 that
µ ⊠ ν, if it exists, is uniquely determined on M□N by additivity. A priori it is not clear,
however, if µ⊠ν can be well defined even merely on M□N , since a given element of M□N
can be presented as a disjoint union of rectangles in different ways. For U ∈ M□N define
αU : S → R+

0 by αU (p) := ν(Up). If U = A × B is a rectangle, we have αU (p) = χA(p)ν(B)
for p ∈ S. In particular, αU is integrable on S and we have

µ(A)ν(B) =
∫

S
αU dµ.

For U a finite disjoint union of rectangles the function αU is simply the sum of the corre-
sponding functions for the individual rectangles and is thus integrable on S. In particular,
we must have

(µ ⊠ ν)(U) =
∫

S
αU dµ,

incidentally showing that µ ⊠ ν is well defined on M□N .
We proceed to show that µ ⊠ ν is countably additive on M□N . Let {Un}n∈N be

an increasing sequence of elements of M□N such that U :=
⋃

n∈N Un ∈ M□N . Then,
{αUn}n∈N is an increasing sequence of integrable positive functions on S and we can apply
the Monotone Convergence Theorem 4.12. Since αUn converges pointwise to αU we must
have

lim
n→∞

∫
S

αUn dµ =
∫

S
αU dµ.

That is, limn→∞(µ ⊠ ν)(Un) = (µ ⊠ ν)(U), implying countable additivity. It is now guar-
anteed by Hahn’s Theorem 2.12 and Proposition 2.13 that µ ⊠ ν extends to a measure on
M ⊠ N , and uniquely so.

It remains to consider the case of σ-finite measures. Exercise.

Exercise 32. Show whether the operation of taking the product measure is associative.

Exercise 33. Show that the Lebesgue measure on Rn+m is the completion of the product
measure of the Lesbegue measures on Rn and Rm.

In the following we denote the completion of a σ-algebra A with respect to a given
measure by A∗.

Lemma 7.7. Let (S, M, µ) and (T, N , ν) be measure spaces with σ-finite complete mea-
sures. Let Z ∈ (M ⊠ N )∗ of measure 0. Then, for almost all p ∈ S we have ν(Zp) = 0.

Proof. We consider first the case that the measures are finite. For all n ∈ N define Yn :=
{p ∈ S : ν(Zp) ≥ 1/n}. Now fix n ∈ N and j ∈ N. Since the algebra N□M generates
the σ-algebra N ⊠M, Theorem 2.12, implies that there is a sequence of disjoint rectangles
{Aj,k×Bj,k}k∈N such that Z ⊆ Rj and (µ⊠ν)(Rj) < 1/(nj), where Rj :=

⋃∞
k=1(Aj,k×Bj,k).

Define now Xj := {p ∈ S : ν((Rj)p) ≥ 1/n}. Obviously, Yn ⊆ Xj . Moreover, Xj is
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measurable since p 7→ ν((Rj)p) =
∑∞

k=1 χAj,k
(p)ν(Bj,k) is measurable, being a pointwise

limit of measurable functions (Theorem 1.60). We have then,

(µ ⊠ ν)(Rj) =
∞∑

k=1
µ(Aj,k)ν(Bj,k) =

∞∑
k=1

∫
S

χAj,k
(p)ν(Bj,k) dµ(p)

=
∫

S

∞∑
k=1

χAj,k
(p)ν(Bj,k) dµ(p) =

∫
S

ν((Rj)p) dµ(p)

≥
∫

Xj

ν((Rj)p) dµ(p) ≥
∫

Xj

1
n

dµ = 1
n

µ(Xj)

(Exercise.Justify the interchange of sum and integral!) Thus we get the estimate µ(Xj) <
1/j. Repeating the construction for all j ∈ N set X :=

⋂∞
j=1 Xj . We then have Yn ⊆ X,

but µ(X) = 0. Thus, since µ is complete, Yn is measurable and has measure 0. This
in turn implies that Y := {p ∈ S : ν(Zp) > 0} =

⋃∞
n=1 Yn has measure 0 as required.

Exercise.Complete the proof for the σ-finite case!

7.2 Fubini’s Theorem
Lemma 7.8. Let (S, M, µ) and (T, N , ν) be measure spaces with σ-finite measures. Let
A × B ⊆ S × T be a rectangle such that 0 < (µ ⊠ ν)(A × B) < ∞. Then, 0 < µ(A) < ∞
and 0 < ν(B) < ∞.

Proof. Exercise.

Lemma 7.9. Let (S, M, µ) and (T, N , ν) be measure spaces with σ-finite complete mea-
sures. Let {(λ1, A1, B1), . . . , (λn, An, Bn)} be triples of elements of K, M, N respectively
and such that 0 ≤ µ(Ai) < ∞ and 0 ≤ ν(Bi) < ∞. Define g : S × T → K by

g(p, q) :=
n∑

k=1
λkχAk

(p)χBk
(q).

Then, g ∈ S1(S × T, µ ⊠ ν). Moreover, gp ∈ S1(T, ν) for all p ∈ S and

p 7→
∫

T
gp dν

defines a function in S1(S, µ) satisfying∫
S

(∫
T

gp dν

)
dµ(p) =

∫
S×T

g d(µ ⊠ ν).

Proof. Exercise.
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Theorem 7.10 (Fubini’s Theorem, Part 1). Let (S, M, µ) and (T, N , ν) be measure spaces
with σ-finite complete measures and f ∈ L1(S×T, (M⊠N )∗, µ⊠ν). Then, fp ∈ L1(T, N , ν)
for almost all p ∈ S and

p 7→
∫

T
fp dν

defines almost everywhere a function in L1(S, M, µ) satisfying∫
S

(∫
T

fp dν

)
dµ(p) =

∫
S×T

f d(µ ⊠ ν).

Proof. By Lemmas 4.26 and 4.27 there is a sequence {fn}n∈N of integrable simple functions,
measurable with respect to M□N , that converges to f in the ‖·‖1-seminorm. Each function
fn can be written as a linear combination of characteristic functions on elements of M□N
with finite measure. By modifying fn if necessary, but without affecting convergence of the
sequence we can also arrange that the supports of the characteristic functions all have non-
zero measure. Due to Theorem 4.23, by replacing {fn}n∈N with a subsequence if necessary,
we can ensure moreover pointwise convergence to f , except on a set N of measure zero.
Taking into account Lemma 7.8 we notice that the functions fn satisfy the conditions of
Lemma 7.9.

By Lemma 7.7, there exists a subset X ⊆ S with measure 0 such that ν(Np) = 0 if
p /∈ X. Fix for the moment p ∈ S \ X. Then, {(fn)p}n∈N converges to fp pointwise outside
Np. Moreover, since the (fn)p are measurable with respect to (T, N ) by construction, so is
fp outside of Np due to Theorem 1.60. But, Np has measure zero and (T, N , ν) is complete
by assumption, so fp is measurable everywhere.

Since {fn}n∈N is Cauchy, we can restrict to a subsequence such that

‖fl − fk‖1 < 2−2k ∀k ∈ N, ∀l ≥ k.

By applying Lemma 7.9 to |fl − fk|, we have for all k ∈ N and l ≥ k,∫
S

‖(fl)p − (fk)p‖1,ν dµ(p) =
∫

S

(∫
T

|(fl)p − (fk)p| dν

)
dµ(p)

=
∫

S

(∫
T

|fl − fk|p dν

)
dµ(p) =

∫
S×T

|fl − fk| d(µ ⊠ ν) = ‖fl − fk‖1 < 2−2k.

Now for k ∈ N set Yk ⊆ S to

Yk :=
{

p ∈ S : ‖(fk+1)p − (fk)p‖1,ν ≥ 2−k
}

.

Then, for all k ∈ N,

2−kµ(Yk) ≤
∫

Yk

‖(fk+1)p − (fk)p‖1,νdµ(p)

≤
∫

S
‖(fk+1)p − (fk)p‖1,νdµ(p) ≤ 2−2k.
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This implies, µ(Yk) ≤ 2−k for all k ∈ N. Define now Zj :=
⋃∞

k=j Yk for all j ∈ N. Then,
µ(Zj) ≤ 21−j for all j ∈ N.

Fix j ∈ N and let p ∈ S \ Zj . Then, for k ≥ j we have

‖(fk+1)p − (fk)p‖1,ν < 2−k.

This implies for k ≥ j and l ≥ k,

‖(fl)p − (fk)p‖1,ν < 21−k.

In particular, {(fn)p}n∈N is a Cauchy sequence with respect to the ‖ · ‖1,ν-seminorm. Since
j was arbitrary, this remains true for p ∈ S \ Z, where Z :=

⋂∞
j=1 Zj . Note that µ(Z) = 0.

Now let p ∈ S \ (X ∪ Z). Since {(fn)p}n∈N converges to fp pointwise almost everywhere,
and fp is measurable, Theorem 4.23 then implies that fp is integrable and that {(fn)p}n∈N
converges to fp in the ‖ · ‖1,ν-seminorm.

Now define
hn : p 7→

∫
T

(fn)p dν

By Lemma 7.9 this is an integrable simple map and by the previous arguments it converges
pointwise outside of X ∪ Z to

h : p 7→
∫

T
(f)p dν.

Thus, h is measurable in S \(X ∪Z) by Theorem 1.60 and can be extended to a measurable
function on all of S, for example by setting h(p) = 0 if p ∈ X ∪ Z. On the other hand,
{hn}n∈N is a Cauchy sequence with respect to the ‖ · ‖1,µ-seminorm since, for all l, k ∈ N,

‖hl − hk‖1,µ =
∫

S
|hl − hk|dµ =

∫
S

∣∣∣∣∫
T

((fl)p − (fk)p) dν

∣∣∣∣ dµ(p)

≤
∫

S

(∫
T

|(fl)p − (fk)p| dν

)
dµ(p) = ‖fl − fk‖1

and {fn}n∈N is Cauchy. Thus, by Theorem 4.23, h is integrable and {hn}n∈N converges to
h in the ‖ · ‖1,µ-seminorm. Then,∫

S×T
f d(µ ⊠ ν) = lim

n→∞

∫
S×T

fn d(µ ⊠ ν) = lim
n→∞

∫
S

(∫
T

(fn)p dν

)
dµ(p)

= lim
n→∞

∫
S

hn dµ =
∫

S
h dµ =

∫
S

(∫
T

fp dν

)
dµ(p).

Lemma 7.11. Let (S, M, µ) and (T, N , ν) be measure spaces with σ-finite complete mea-
sures and f : S ×T → K measurable with respect to (M⊠N )∗. Then, for almost all p ∈ S,
fp is measurable with respect to N .
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Proof. By Proposition 2.7, there is a function g : S × T → K that is measurable with
respect to M ⊠ N and such that g coincides with f at least outside a set N ∈ M ⊠ N
of measure 0. By Lemma 7.5, gp is measurable for all p ∈ S. By Lemma 7.7, ν(Np) = 0
for all p ∈ S \ Y , where Y ∈ M is of measure 0. Let p ∈ S \ Y , then gp coincides with fp

almost everywhere and since (T, N , ν) is complete fp must be measurable.

Theorem 7.12 (Fubini’s Theorem, Part 2). Let (S, M, µ) and (T, N , ν) be measure spaces
with σ-finite complete measures and f : S×T → K be measurable with respect to (M⊠N )∗.
Suppose that fp ∈ L1(T, N , ν) for almost all p ∈ S. Moreover suppose that the function

p 7→
∫

T
|fp| dν

defined almost everywhere in this way is in L1(S, M, µ). Then, f ∈ L1(S×T, (N⊠M)∗, µ⊠
ν).

Proof. Denote by X ∈ M a set of measure 0 such that fp ∈ L1(T, N , ν) for p ∈ S \ X.
By Theorem 1.64 there exists a an increasing sequence {fn}n∈N of simple functions fn :
S×T → R+

0 with respect to (M⊠N )∗ that converges pointwise to |f |. Moreover, because of
σ-finiteness the fn can be chosen to have finite support. (Exercise.Explain!) In particular,
this implies that each fn is integrable. Applying Theorem 7.10 to fn yields a set Nn ∈ M
of measure 0 such that (fn)p ∈ L1(T, N , ν) for all p ∈ S \ Nn. Moreover, it implies that
hn : S → R+

0 defined by hn(p) :=
∫

T (fn)p dν for p ∈ S \ Nn and hn(p) = 0 otherwise, is
integrable. Also it implies, ∫

S
hn dµ =

∫
S×T

fn d(µ ⊠ ν)

Let N :=
⋃

n∈N Nn. This has measure 0. Note that since fn ≤ |f | for all n ∈ N we also
have hn(p) ≤

∫
T |fp| dν for all p ∈ S \ {N ∪ X}. Putting things together we get for all

n ∈ N ∫
S×T

fn d(µ ⊠ ν) =
∫

S
hn dµ ≤

∫
S

(∫
T

|fp| dν

)
dµ

Thus, by the Monotone Convergence Theorem 4.12, {fn}n∈N converges pointwise almost
everywhere to an integrable function. But {fn}n∈N converges pointwise to |f |, which is
measurable, so |f | must be integrable. Then, by Theorem 4.16, f is integrable.
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