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1 Holomorphic functions

1.1 The complex derivative

The basic objects of complex analysis are the holomorphic functions. These are functions
that posses a complex derivative. As we will see this is quite a strong requirement and
will allow us to make far reaching statements about this type of functions. To properly
understand the concept of a complex derivative, let us recall first the concept of derivative
in Rn.

Definition 1.1. Let U be an open set in Rn and A : U → Rm a function. Given x ∈ U
we say that A is (totally) differentiable at x iff there exists an m× n-matrix A′ such that,

A(x+ ξ) = A(x) +A′ξ + o(‖ξ‖)

for ξ ∈ Rn sufficiently small. Then, A′ is called the derivative of A at x.

Recall that the matrix elements of A′ are the partial derivatives

A′
ij = ∂Ai

∂xj
.

Going from the real to the complex numbers, we can simply use the decomposition z = x+iy
of a complex number z into a pair of real numbers (x, y) to define a concept of derivative.
Thus, let U be an open set in C and consider a function f : U → C. We view U as an
open set in R2 with coordinates (x, y) and f = u+ iv as a function with values in R2 with
coordinates (u, v). The total derivative of f , if it exists, is then a 2 × 2-matrix f ′ given by

f ′ =
(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

So far we have only recited concepts from real analysis and not made use of the fact
that the complex numbers do not merely form a 2-dimensional real vector space, but a field.
Indeed, this implies that there are special 2 × 2-matrices, namely those that correspond to
multiplication by a complex number. As is easy to see, multiplication by a+ib corresponds
to the matrix, (

a −b
b a

)
.

The crucial step that leads us from real to complex analysis is now the additional require-
ment that the derivative f ′ take this form. It is then more useful to think of f ′ as the
complex number a+ ib, rather than this 2 × 2-matrix.
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Definition 1.2. Let U be an open set in C and f : U → C a function. Given z ∈ U we
say that f is complex differentiable at z iff there exists f ′(z) ∈ C such that,

f(z + ζ) = f(z) + f ′(z)ζ + o(|ζ|)

for ζ ∈ C sufficiently small. Then, f ′(z) is called the complex derivative of f at z. f is
called holomorphic at z iff f is complex differentiable in an open neighborhood of z.

Proposition 1.3. Let U be an open set in C and f : U → C a function. f is complex
differentiable at z ∈ U iff f is totally differentiable at z and its partial derivatives at z
satisfy the Cauchy-Riemann equations,

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

If U ⊆ C is open we say that f : U → C is holomorphic on U if it is holomorphic at
all z ∈ U . We denote the space of functions that are holomorphic on U by O(U). In the
following, non-empty connected open subsets of the complex plane will be of particular
importance. We will refer to such open sets as regions. Since any non-empty open set in
the complex plane is a disjoint union of regions it is sufficient to consider the spaces of
holomorphic functions of the type O(D), where D ⊆ C is a region. The elements of O(C)
are called entire functions.

Exercise 1. Let U be an open set in C and f : U → C a function. Given z ∈ U we say
that f is complex conjugate differentiable at z iff there exists fz(z) ∈ C such that,

f(z + ζ) = f(z) + fz(z)ζ + o(|ζ|)

for ζ ∈ C sufficiently small. Then, fz(z) is called the complex conjugate derivative of f at
z. f is called anti-holomorphic at z iff f is complex conjugate differentiable in an open
neighborhood of z.

1. Show that the total derivative of f as a real 2 × 2-matrix takes the form(
a b
b −a

)
, for a, b ∈ R,

where f is complex conjugate differentiable.

2. Deduce the corresponding modified Cauchy-Riemann equations.

3. Show that a function is anti-holomorphic iff it is the complex conjugate of a holo-
morphic function.
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1.2 Elementary properties of holomorphic functions
Proposition 1.4. Let D ⊆ C be a region and f ∈ O(D). Then, f is constant iff f ′(z) = 0
for all z ∈ D.

Proof. If f is constant it follows immediately that f ′ = 0. Conversely, suppose that f ′ = 0.
Then, viewing f as a function from an open set D in R2 to R2 we know that its total
derivative is zero. By results of real analysis it follows that f is constant along any path in
D. But since D is connected it is also path connected and f must be constant on D.

Proposition 1.5. Let D ⊆ C be a region.

1. If f ∈ O(D) and λ ∈ C, then λf ∈ O(D) and (λf)′(z) = λf ′(z).

2. If f, g ∈ O(D), then f + g ∈ O(D) and (f + g)′(z) = f ′(z) + g′(z).

3. If f, g ∈ O(D), then fg ∈ O(D) with (fg)′(z) = f ′(z)g(z) + f(z)g′(z).

4. If f, g ∈ O(D) and g(z) 6= 0 for all z ∈ D, then f/g ∈ O(D) and

(f/g)′(z) = f ′(z)g(z) − f(z)g′(z)
(g(z))2 .

Proof. The proofs are completely analogous to those for real functions on open subsets of
the real line with the ordinary real differential. Alternatively, 1.-3. follow from statements
in real analysis by viewing C as R2.

Note that items 1.-3. imply that O(D) is an algebra over the complex numbers.

Proposition 1.6. Let D1, D2 ⊆ C be regions. Let f ∈ O(D1) such that f(D1) ⊆ D2 and
let g ∈ O(D2). Then g ◦ f ∈ O(D1) and moreover the chain rule applies,

(g ◦ f)′(z) = g′(f(z))f ′(z) ∀z ∈ D1.

Proof. This is again a result of real analysis, obtained by viewing C as R2. (Note that g′

and f ′ are then 2×2-matrices whose multiplication translates to multiplication of complex
numbers here.)

Proposition 1.7. Let D1, D2 ⊆ C be regions. Let f : D1 → C be continuous and such that
f(D1) ⊆ D2. Let g ∈ O(D2) be such that g ◦ f(z) = z for all z ∈ D1. Let z ∈ D1. Suppose
that g′(f(z)) 6= 0 and that g′ is continuous at f(z). Then, f is complex differentiable at z
and

f ′(z) = 1
g′(f(z))

.
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Proof. Again, this is a statement imported from real analysis on R2. (There, the condition
g′(f(z)) 6= 0 is the condition that the determinant of the 2 × 2-matrix g′(f(z)) does not
vanish.)

A few elementary examples together with the properties of holomorphic functions we
have identified so far already allow us to generate considerable families of holomorphic
functions.

Example 1.8. The following are elementary entire functions.

• The constant functions: They have vanishing complex derivative.

• The identity function: f(z) = z has complex derivative f ′(z) = 1.

Example 1.9. The following are (classes of) holomorphic functions produced from the
elementary entire functions of Example 1.8 by addition, multiplication and division.

• Polynomials: Any polynomial p(z) =
∑
n λnz

n, where λn ∈ C, is entire with p′(z) =∑
n6=0 λnnz

n−1.

• Rational functions: Let p(z) and q(z) be polynomials with q 6= 0 and suppose that p
and q have no common zeros. Let D = C\N , where N is the set of zeros of q. Then,
f(z) = p(z)/q(z) ∈ O(D).

1.3 The exponential function
The most important example of a transcendental entire function is the complex exponential
function.

Definition 1.10. We define the complex exponential function exp : C → C as follows. For
all a, b ∈ R define

exp(a+ ib) := exp(a) (cos(b) + i sin(b)) ,

where exp, cos and sin are the functions known from real analysis.

Proposition 1.11. The complex exponential function has the following properties:

1. exp is entire.

2. exp′(z) = exp(z) for all z ∈ C.

3. exp(−z) = 1/ exp(z) for all z ∈ C.

4. exp(z + 2πin) = exp(z) for all z ∈ C and all n ∈ Z.

5. exp(C) = C \ {0}.
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6. For each z ∈ C\{0} there is a unique angle θ ∈ [0, 2π), called the argument or phase,
so that z = |z| exp(iθ).

Proof. Exercise.[Suggestion: Use properties of the functions exp, cos and sin defined on
the real numbers.]

Proposition 1.12. Let D ⊆ C be a region and f ∈ O(D). Then, the following statements
are equivalent:

1. f(z) = a exp(bz) for all z ∈ D, where a, b ∈ C are constants.

2. f ′(z) = bf(z) for all z ∈ D, where b ∈ C is a constant.

Proof. The implication 1. =⇒ 2. is straightforward using elementary properties of the
derivative (Propositions 1.5 and 1.6) together with Proposition 1.11.2. For the implication
2. =⇒ 1. consider the holomorphic function g : D → C given by g(z) := f(z) exp(−bz) for
all z ∈ D. Then, g′ = 0, so by Proposition 1.4 there exists a constant a ∈ C such that
g(z) = a for all z ∈ D. But since exp(−bz) = 1/ exp(bz) due to Proposition 1.11.3, we
obtain 1. as desired.

Remark 1.13. This Proposition shows in particular that the complex exponential function
is uniquely determined by the properties exp′ = exp and exp(0) = 1.

Proposition 1.14 (Addition Theorem).

exp(z + ζ) = exp(z) exp(ζ) ∀z, ζ ∈ C.

Proof. Fix ζ ∈ C. Then, f(z) := exp(z+ ζ) is holomorphic for z ∈ C and f ′(z) = f(z). So
f(z) = a exp(z) for some a ∈ C by Proposition 1.12. Since f(0) = exp(ζ) = a we obtain
the stated result.

Proposition 1.14 motivates us to use the notation ez := exp(z) as in the real case.

Remark 1.15. It might seem somewhat unsatisfactory to define the complex exponential
function by recurrence to transcendental functions from real analysis. Indeed, one could
instead start from a definition in terms of a power series. One can then derive properties
1.,2.,3. of Proposition 1.11 and consequently Propositions 1.12 and 1.14 from properties
of this power series. We come back to the power series of the exponential function in
Proposition 1.21.

Example 1.16. The following are transcendental entire functions produced using the
exponential function.

• Hyperbolic functions:

cosh(z) := exp(z) + exp(−z)
2

and sinh(z) := exp(z) − exp(−z)
2

.
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• Trigonometric functions:

cos(z) := exp(iz) + exp(−iz)
2

and sin(z) := exp(iz) − exp(−iz)
2i

.

Example 1.17 (The logarithm). Since exp(z + 2πi) = exp(z) we have to restrict the
domain of exp in order to find a unique inverse. It is customary to make the following
choice: Consider the region D2 := R+i(−π, π). Then exp is a bijective function D2 → D1,
where D1 = C \R−

0 . We define log as the unique function such that exp(log(z)) = z for all
z ∈ D1 and such that the image of log lies in D2 ⊆ C. Then, log ∈ O(D1) and log′(z) = 1/z
for all z ∈ D1. This version of the logarithm is also called the principal branch.

Exercise 2. Suppose f is a holomorphic function on a region D ⊆ C. Suppose that the
real or the imaginary part of f is constant. Show that f must be constant on D.

Exercise 3. At which points in the complex plane are the following functions complex
differentiable and at which points are they holomorphic?

1. f(x+ iy) = x4y5 + ixy3

2. f(x+ iy) = sin2(x+ y) + i cos2(x+ y)

Exercise 4. Define another version (“branch”) of the logarithm function that is holomor-
phic in the region D = C \ R+

0 .

Exercise 5. Define tan z := sinz
cos z . Where is this function defined and where is it holomor-

phic?

Exercise 6. Define a function z 7→
√
z on C or on a subset of C. Is this function holo-

morphic and if yes, where? Comment on possible choices in the construction.

1.4 Power series and analytic functions
With each sequence {cn}n∈N of complex numbers and each point z0 ∈ C we can associate
a power series

f(z) =
∞∑
n=0

cn(z − z0)n,

around z0. Recall the following result from real analysis.

Lemma 1.18. The radius of convergence r of the power series is given by
1
r

= lim sup
n→∞

|cn|1/n.

That is, the power series converges absolutely in the open disk Br(z0) to a complex function
f : Br(z0) → C. For any 0 < ρ < r the convergence is uniform in the open disk Bρ(z0). It
diverges for z outside of the closed disk Br(z0).
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Proof. Exercise.

Definition 1.19. Let D ⊆ C be a region and f : D → C. We say that f is analytic in
D iff for every point z ∈ D and any r > 0 such that Br(z) ⊆ D the function f can be
expressed as a power series around z with radius of convergence greater or equal to r.

Theorem 1.20. Let D ⊆ C be a region. Suppose that f is analytic in D. Then f ∈ O(D)
and f (k) is also analytic in D. Moreover, if

f(z) =
∞∑
n=0

cn(z − z0)n, (1)

converges in Br(z0), then

f (k)(z) =
∞∑
n=0

(n+ k)!
n!

cn+k(z − z0)n, (2)

converges in Br(z0). Moreover, the coefficients cn of the power series around a given point
are unique.

Proof. (Adapted from Rudin.) Fix z0 ∈ D and r > 0 such that Br(z0) ⊆ D. Suppose f is
given by the power series (1) and converges in Br(z0). Consider the power series

g(z) :=
∞∑
n=0

(n+ 1)cn+1(z − z0)n.

It is then enough to show that g(z) converges in Br(z0) and that g(z) is the complex
derivative of f for all z ∈ Br(z0). The statement (2) about the k-th derivative follows then
by iteration.

Firstly, it is clear by Lemma 1.18 that g(z) has the same radius of convergence as f(z).
In particular, g(z) converges in Br(z0). Fix z ∈ Br(z0) and define ξ := z − z0. Then, set ρ
arbitrarily such that |ξ| < ρ < r. Let ζ ∈ Bs(0) \ {0} where s := ρ− |ξ| and set

h(ζ) := f(z + ζ) − f(z)
ζ

− g(z).

We have to show that h(ζ) → 0 when |ζ| → 0. h(ζ) can be written as

h(ζ) =
∞∑
n=0

cnan(ζ),

where
an(ζ) := (ξ + ζ)n − ξn

ζ
− nξn−1.
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Note that a0(ζ) = 0 and a1(ζ) = 0. By explicit computation we find for n ≥ 2,

an(ζ) = ζ
n−1∑
k=1

kξk−1(ξ + ζ)n−k−1.

Now, |ξ| < ρ and |ξ + ζ| < ρ so that we get the estimate,

|an(ζ)| < |ζ|1
2
n(n− 1)ρn−2.

This implies

|h(ζ)| < |ζ|1
2

∞∑
n=2

|cn|n(n− 1)ρn−2.

However, since ρ < r, the sum converges by Lemma 1.18 showing that there is a constant
M such that

|h(ζ)| < |ζ|M.

This completes the proof of (2). Finally , the uniqueness of the coefficients cn follows from
the special case of (2) given by

f (k)(z0) = k!ck.

The first remarkable result of complex analysis is that the converse of this theorem is
also valid: Every holomorphic function is analytic. However, in order to show this we will
have to introduce the integral calculus in the complex plane. We will do this in the next
chapter.

Proposition 1.21. The exponential function is analytic in C and has a power series
representation given as follows:

exp(z) =
∞∑
n=0

1
n!
zn.

Proof. Exercise.

Lemma 1.22. Let n ∈ Z. Then,

∫ 2π

0
einθ dθ =

{
2π if n = 0
0 if n 6= 0

Proof. Exercise.
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Lemma 1.23. Let z0 ∈ C and r > 0, and suppose the power series

f(z) =
∞∑
n=0

cn(z − z0)n

has radius of convergence greater than r. Then,

cn = 1
2πrn

∫ 2π

0
f(z0 + reiθ)e−inθ dθ.

Proof. By Lemma 1.18 the power series converges uniformly in Br(z0). We can thus in the
following interchange integration and summation,∫ 2π

0
f(z0 + reiθ)e−inθ dθ

=
∫ 2π

0

∞∑
k=0

ckr
kei(k−n)θ dθ

=
∞∑
k=0

ckr
k
∫ 2π

0
ei(k−n)θ dθ

= 2πcnrn.

Here we have used Lemma 1.22.

Lemma 1.24 (Gutzmer Formula). Let z0 ∈ C and r > 0, and suppose the power series

f(z) =
∞∑
n=0

cn(z − z0)n

has radius of convergence greater than r. Set M := supz∈∂Br(z0) |f(z)|. Then,

∞∑
n=0

|cn|2r2n = 1
2π

∫ 2π

0

∣∣∣f(z0 + reiθ)
∣∣∣2 dθ ≤ M2.

Proof. Since

f(z0 + reiθ) =
∞∑
n=0

cnr
ne−inθ

we have, ∣∣∣f(z0 + reiθ)
∣∣∣2 =

∞∑
n=0

cnr
nf(z0 + reiθ)e−inθ,
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where the series converges uniformly as a series of functions on the interval θ ∈ [0, 2π].
Thus, we can interchange integration and summation in the following and use Lemma 1.23
to obtain,∫ 2π

0

∣∣∣f(z0 + reiθ)
∣∣∣2 dθ =

∞∑
n=0

cnr
n
∫ 2π

0
f(z0 + reiθ)e−inθ dθ = 2π

∞∑
n=0

|cn|2r2n.

This shows the claimed equality. The stated inequality is obtained by estimating the
integral through the maximum of its integrand.

Proposition 1.25 (Cauchy’s Estimates). Let D ⊆ C be a region, f : D → C analytic,
z0 ∈ D and r > 0 such that Br(z0) ⊂ D. Set M := supz∈∂Br(z0) |f(z)|. Then,

|f (n)(z0)| ≤ n!M
rn

.

Proof. Exercise.

Theorem 1.26 (Liouville Theorem). Every bounded function analytic in C is constant.

Proof. Let f : C → C be analytic in C and be bounded by N , i.e., |f(z)| ≤ N for all z ∈ C.
Since f is analytic in C and its power series f(z) =

∑∞
n=0 cnz

n around 0 has infinite radius
of convergence. Thus, for a radius r > 0 we have from Lemma 1.24 the estimate,

∞∑
n=0

|cn|2r2n ≤ M2 ≤ N2.

Since r can be arbitrarily large, this implies ck = 0 for all k ∈ N.

Exercise 7. Let a, b, c, d ∈ C such that c 6= 0 and ad− bc 6= 0. Show that f(z) := az+b
cz+d is

analytic in D := C \ {−d
c}.

Exercise 8. Suppose f : C → C is analytic in C and satisfies

|f(z)| ≤ a+ b|z|c ∀z ∈ C,

where a, b, c are positive constants. Show that f is a polynomial of degree less than or
equal to c.

Exercise 9. Let f : C → C be analytic in C. Show that the power series of f at 0 converges
uniformly in all of C if an only if f is a polynomial.
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2 Complex integration
2.1 Integration along paths
Definition 2.1. Let I = [a, b] ⊂ R be a compact interval. A continuous map γ : I → C
is called a curve in C. We denote the image of the curve γ by |γ|. If γ(a) = γ(b), the
curve is called closed. A curve γ : I → C is called a path iff it is piecewise continuously
differentiable. That is, there exist points a = x0 < x1 < · · · < xn = b such that γ restricted
to [xk−1, xk] is continuously differentiable for all k ∈ {1, . . . , n}.

Recall that continuous differentiability in a closed interval [a, b] means differentiability
in (a, b) such that the differential is continuous and has a continuous extension to [a, b].

For the theory of integration along paths what is important in a path is its image in
and in which direction this is retraced. In contrast, the concrete parametrization of a path
via an interval I ⊂ R is not important. To make this more precise we define the concept
of reparametrization of a path.

Definition 2.2. Let γ : [a, b] → C and γ̃ : [ã, b̃] → C be paths. We say that γ̃ is a
reparametrization of γ iff there exists a monotonous, continuous and piecewise continuously
differentiable map ϕ : [ã, b̃] → [a, b] with ϕ(ã) = a and ϕ(b̃) = b and such that γ̃ = γ ◦ ϕ.

We will be interested only in properties and usages of paths that are invariant under
reparametrization. The first such property we consider is the length of a path. Intuitively
it is quite clear what we mean by this. If a path γ : [a, b] → C is a straight line

γ(t) := (b− t)x1 + (t− a)x2
b− a

with end points x1 and x2, then its length should be |x2 − x1| where we use the standard
Euclidean inner product on C. In general, we can approximate a path by subdividing the
interval on which it is defined and replacing the pieces of paths in subdivisions by straight
lines. The length of the path should then be the limit of the sum of the lengths of these
straight lines when we make the subdivisions arbitrarily fine. That this limit exists is due
to the piecewise continuous differentiability property we have imposed. (The limit does
not necessarily exist for arbitrary curves, even if their image is bounded.) The result is the
following, which we state as a definition.

Definition 2.3. Let γ : [a, b] → C be a path. The length of γ, denoted l(γ) is defined by,

l(γ) :=
∫ b

a
|γ′(t)| dt.

Exercise 10. (a) Show that the definition indeed agrees with the result of the procedure
described above. (b) Give an example of a curve that has bounded image, but no well
defined length.
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Exercise 11. Show that the length of a path is invariant under reparametrization. That
is, show that if γ is a path and γ̃ is a reparametrization of γ, then l(γ) = l(γ̃).

Definition 2.4. Let U ⊆ C be open and f : U → C be a continuous map. Let γ : I → C
be a path such that |γ| ⊂ U . We define the complex integral of f along the path γ as
follows, ∫

γ
f(z) dz :=

∫ b

a
f(γ(t))γ′(t) dt. (3)

To make sense of this definition we note that t 7→ f(γ(t))γ′(t) is a piecewise continuous
function I → C and is therefore bounded and integrable.

Proposition 2.5. The complex integral is invariant under reparametrizations: Given an
open set U ⊆ C, a continuous function f : U → C, a path γ with |γ| ⊂ U and a
reparametrization γ̃ of γ. Then, ∫

γ̃
f(z) dz =

∫
γ
f(z) dz.

Proof. Exercise.

Similarly to what we have seen in the context of the concept of derivative, the concept
of integration introduced is quite similar to what we are familiar with in the case of R or
Rn. Nevertheless, again, there is an important difference that makes crucial use of the fact
that the complex numbers form a field. If we were to discuss integration along paths in
R2 weighted by path length, the formula to use would be almost identical to (3), with one
important difference: γ′ would be a 2×1-matrix and we would insert |γ′(t)| instead of γ′(t)
on the right hand side. Decomposing γ′ = reiθ the difference is that in the real case we
would only put the absolute value r. We might think of the complex case as letting the
direction of the curve (encoded in θ) enter the integrand. As we shall see, this leads to a
remarkable interplay between complex integral and derivative.

Suppose γ1 : [a, b] → C and γ2 : [b, c] → C are paths such that γ1(b) = γ2(b). Then, we
can form the composite path γ1 · γ2 : [a, c] → C in the obvious way. We have then,∫

γ1·γ2
f(z) dz =

∫
γ1
f(z) dz +

∫
γ2
f(z) dz.

Because of Proposition 2.5 we are usually interested in paths only up to reparametrization.
That is, we consider two paths as equivalent if one is a reparametrization of the other. We
may then talk about the composition of paths whenever the endpoint of the first coincides
with the initial point of the second.

Given a path γ : [0, 1] → C we may form the opposite path γ−1 : [0, 1] → C given by
γ−1(t) = γ(1 − t). Then clearly, (γ−1)−1 = γ. As is easy to see,∫

γ−1
f(z) dz = −

∫
γ
f(z) dz.
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We also find that the integral of any function along γ · γ−1 vanishes. γ · γ−1 is called
a retracing. Because the integral along a retracing vanishes, we consider a retracing as
equivalent to the trivial path.

Exercise 12. The concept of reparametrization can be generalized to include some form
of retracing. To this end remove the monotonicity condition from Definition 2.2. (a) Is
the length of a path invariant under generalized reparametrization? (b) Is the complex
integral along a path invariant under generalized reparametrization?

Exercise 13 (Transformation rule). Prove the following Proposition: Let D ⊆ C be a
region, g ∈ O(D) such that g′ : D → C is continuous and γ a path with |γ| ⊂ D. Then,
g ◦ γ is a path and for any continuous function f : U → C where U ⊆ C is open and
|g ◦ γ| ⊂ U we have, ∫

g◦γ
f(z) dz =

∫
γ
f(g(z))g′(z) dz.

Proposition 2.6. Let U ⊆ C be open, f : U → C continuous, γ be a path with |γ| ⊂ U .
Set ‖f‖γ := supz∈|γ| |f(z)|. Then,

∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ ≤ ‖f‖γl(γ).

Proof. Exercise.

Proposition 2.7. Let U ⊆ C be open and {fn}n∈N a sequence of continuous functions
fn : U → C converging uniformly. Let γ be a path in U . Then,

lim
n→∞

∫
γ
fn(z) dz =

∫
γ

lim
n→∞

fn(z) dz.

Proof. Exercise.[Hint: Use Proposition 2.6.]

2.2 Closed paths and winding

Definition 2.8. Let γ be a closed path. Let z ∈ C \ |γ| and define the index of z with
respect to γ as,

Indγ(z) = 1
2πi

∫
γ

1
ζ − z

dζ.

Theorem 2.9. Let γ be a closed path and U := C \ |γ|. Then, Indγ(z) ∈ Z for all z ∈ U .
Moreover, Indγ(z) = Indγ(z′) if z and z′ are in the same connected component of U . Also,
Indγ(z) = 0 if |z| is sufficiently large.
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Proof. Parametrizing γ : [a, b] → C we have,

Indγ(z) = 1
2πi

∫ b

a

γ′(t)
γ(t) − z

dt.

In order to show that Indγ(z) ∈ Z we define ϕ : [a, b] → C via,

ϕ(t) := exp
(∫ t

a

γ′(s)
γ(s) − z

ds
)
.

It is then sufficient to show that ϕ(b) = 1, which we proceed to do. Observe that ϕ is
continuous and piecewise continuously differentiable with piecewise differential

ϕ′(t) = ϕ(t)γ′(t)
γ(t) − z

.

The quotient function t 7→ ϕ(t)/(γ(t) − z) is also continuous and piecewise continuously
differentiable with piecewise differential given by,(

ϕ(t)
γ(t) − z

)′
= 0.

Thus, this function is piecewise constant and continuous. So it must be constant on the
connected set [a, b]. Equating its value at a with its value at b yields,

ϕ(b) = ϕ(a) γ(b) − z

γ(a) − z
= 1,

since ϕ(a) = exp(0) = 1 and γ is closed.
Exercise.Show that Indγ(z) = Indγ(z′) if z and z′ are in the same connected component

of U . [Hint: Show first that Indγ : U → C is continuous.]
It remains to show that Indγ(z) = 0 if z is sufficiently large. Let M := supt∈[a,b] |γ(t)|.

Then, if |z| > M + l(γ) we have, using Proposition 2.6,

|Indγ(z)| ≤ 1
2π

l(γ)
|z| −M

< 1.

On the other hand Indγ(z) ∈ Z, so we must have in this case Indγ(z) = 0. This completes
the proof.

Exercise 14. Let γ : [0, 1] → C be the path γ(t) := z0 + re2πikt with z0 ∈ C and r > 0
and k ∈ Z. Show that Indγ(z) = k if z ∈ Br(z0) and Indγ(z) = 0 if z ∈ C \Br(z0).

Let B be an open disk in C. We denote by ∂B its boundary, i.e., ∂B = B \ B. We
also denote by ∂B a closed path that traces the boundary ∂B once with positive (anti-
clockwise) direction. If B has center z0 and radius r, the path ∂B can be represented by
the corresponding path γ of Exercise 14 with k = 1.
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Lemma 2.10. Let z ∈ C, r > 0 and k ∈ Z. Then,

1
2πi

∫
∂Br(z)

(ζ − z)k dζ =
{

1 if k = −1
0 if k ∈ Z \ {−1}

.

Proof. Exercise.

2.3 Integrable functions
Definition 2.11. Let D ⊆ C be a region and f : D → C. If F ∈ O(D) such that F ′ = f ,
then F is called a primitive of f . f is called integrable in D if there exists such a primitive.

Theorem 2.12. Let D ⊆ C be a region, f : D → C be continuous and F : D → C. Then,
F is a primitive of f iff for every path γ : [a, b] → D∫

γ
f(z) dz = F (γ(b)) − F (γ(a)).

Proof. Suppose F is a primitive of f . Assume without loss of generality that γ is continu-
ously differentiable everywhere. Then, using the chain rule,∫

γ
f(z) dz =

∫ b

a
F ′(γ(t))γ′(t) dt =

∫ b

a
(F ◦ γ)′(t) dt = F (γ(b)) − F (γ(a)).

Conversely, suppose that F satisfies the stated formula for every path γ in D. Let
z ∈ D and choose r > 0 such that Br(z) ⊆ D. For ξ ∈ Br(0) let γξ : [0, 1] → C be the path
γξ(t) := z + tξ. By assumption,

F (z + ξ) − F (z) =
∫
γξ

f(ζ) dζ =
∫ 1

0
f(z + tξ)ξ dt

For ξ 6= 0 we get,
F (z + ξ) − F (z)

ξ
=
∫ 1

0
f(z + tξ) dt.

The right hand side of this expression converges to f(z) when |ξ| → 0 since,∣∣∣∣(∫ 1

0
f(z + tξ) dt

)
− f(z)

∣∣∣∣ ≤
∫ 1

0
|f(z + tξ) − f(z)| dt

≤ sup
ζ∈B|ξ|(0)

|f(z + ζ) − f(z)|,

where the right hand side expression converges to zero for |ξ| → 0 by continuity of f . Thus,
F is complex differentiable at z with the differential being F ′(z) = f(z). This completes
the proof.
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Proposition 2.13. Let D ⊆ C be a region and f : D → C be continuous. Then, f is
integrable in D iff for every closed path γ in D we have:∫

γ
f(z) dz = 0.

Proof. If f is integrable, then by Theorem 2.12 the integral along any close path must be
zero. Conversely, suppose the integral of f along any closed path is zero. Choose z0 ∈ D
arbitrarily. Define

F (z) :=
∫
γz

f(ζ) dζ,

where γz : [a, b] → D is a path such that γz(a) = z0 and γz(b) = z. Such a path always
exists by the path-connectedness of D. Also, the definition of F (z) is well, since any other
path with the same end points must yield the same value by assumption. F : D → C
defined in this way satisfies the assumption of Theorem 2.12 and is thus a primitive of
f .

Definition 2.14. Let D ⊂ C be a region. We call D star-shaped with center z0 ∈ D iff
for every element z ∈ D the path γ : [0, 1] → C given by γ(t) := z0 + t(z − z0) lies entirely
in D.

A triangle ∆ is a closed subset of C with the shape of a triangle. Its boundary ∂∆ is
the union of three straight line segments. We also denote by ∂∆ a closed path that traces
the boundary of the triangle once in positive (i.e., counter-clockwise) direction.

Lemma 2.15. Let D ⊆ C be a star-shaped region with center z0. Let f : D → C be
continuous. Then, f is integrable in D iff for every triangle ∆ in D with z0 a corner,∫

∂∆
f(z) dz = 0.

Proof. If f is integrable, we obtain the required implication as a special case of Proposi-
tion 2.13. Conversely, we show that f is integrable if the integral along all triangles in D
with one vertex in z0 vanishes. We define a function F : D → C as follows. Let z ∈ D
and define the path γz : [0, 1] → C by γz(t) := z0 + t(z − z0). Since D is star-shaped with
center z0, the path γz lies entirely in D. Then set,

F (z) :=
∫
γz

f(ζ) dζ.

Fix z ∈ D. By star-shapedness of D there exist r > 0 such that Br(z) ⊆ D and for all
ζ ∈ Br(z) the path γζ lies entirely in D. For all ξ ∈ Br(0) set γ̃ξ : [0, 1] → C to be the
path γ̃ξ(t) = z + tξ. Then, by assumption,

F (z + ξ) − F (z) =
∫
γz+ξ

f(ζ) dζ −
∫
γz

f(ζ) dζ =
∫
γ̃ξ

f(ζ) dζ,
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and we may proceed as in the proof of Theorem 2.12 to show that F is a primitive of f at
z. This completes the proof.

Proposition 2.16 (Integral Lemma of Goursat). Let D ⊆ C be a region, f ∈ O(D) and
∆ ⊂ D a triangle. Then, ∫

∂∆
f(z) dz = 0.

Proof. We produce a sequence of triangles {∆n}n∈N with ∆n ⊂ D by iteration. Set
∆1 := ∆. To produce ∆n+1 from ∆n proceed as follows. Subdivide ∆n into four tri-
angles ∆n,1, . . . ,∆n,4 by subdividing each of its sides into two pieces of equal length. Now
choose k ∈ {1, 2, 3, 4} such that the absolute value∣∣∣∣∣

∫
∂∆n,k

f(z) dz
∣∣∣∣∣

is maximized and set ∆n+1 := ∆n,k. This defines a sequence of triangles. Note that the
intersection ⋂n∈N ∆n is a single point z0 ∈ D.

By the addition property of the integral along paths we have for every n ∈ N the
identity ∫

∂∆n

f =
∫
∂∆n,1

f +
∫
∂∆n,2

f +
∫
∂∆n,3

f +
∫
∂∆n,4

f.

By the maximality condition of our construction, this implies, for all n ∈ N,∣∣∣∣∫
∂∆n

f

∣∣∣∣ ≤ 4
∣∣∣∣∣
∫
∂∆n+1

f

∣∣∣∣∣ , (4)

and thus, ∣∣∣∣∫
∂∆

f

∣∣∣∣ ≤ 4n−1
∣∣∣∣∫
∂∆n

f

∣∣∣∣ .
For the circumference of the triangles we obtain the relation,

l(∂∆n) = 1
2n−1 l(∂∆). (5)

Now set ϵ > 0 arbitrarily and choose r > 0 such that Br(z0) ⊆ D and

|g(z)| ≤ ϵ|z − z0|, where g(z) := f(z) − f(z0) − f ′(z0)(z − z0)

for all z ∈ Br(z0). (This is possible since f is complex differentiable at z0.) Now fix n ∈ N
such that ∆n ⊂ Br(z0). Note that the constant function and the identity function are
integrable so that with Proposition 2.13 we have,∫

∂∆n

f(z) dz =
∫
∂∆n

(
f(z0) + f ′(z0)(z − z0) + g(z)

)
dz =

∫
∂∆n

g(z) dz.
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Using the estimate of Proposition 2.6, and (5),∣∣∣∣∫
∂∆n

f

∣∣∣∣ ≤ ‖g‖∂∆n l(∂∆n) ≤ ϵ

2
l(∂∆n)2 = ϵ

22n−1 l(∂∆)2.

On the other hand, combining this with (4) we get,∣∣∣∣∫
∂∆

f

∣∣∣∣ ≤ ϵ

2
l(∂∆)2.

Since ϵ was arbitrary, we conclude that the integral of f along ∂∆ vanishes.

Proposition 2.17 (Cauchy Integral Theorem for star-shaped regions). Let D ⊆ C be a
star-shaped region and f ∈ O(D). Then, f is integrable in D.

Proof. This is obtained by combining Lemma 2.15 with Proposition 2.16.

We arrive at the important conclusion that a holomorphic function is integrable (in star-
shaped regions). Soon we will see that the converse is also true: An integrable function is
holomorphic.

Exercise 15. Let D := C \ [0, 1]. Show that f(z) := 1
z(z−1) is integrable in D. [Hint:

Observe that f(z) = 1
z−1 − 1

z and use primitives for the summands. Be careful about the
domain of definition.]

Exercise 16. Let D ⊆ C be a region and {fn}n∈N a sequence of continuous integrable
functions converging uniformly to a function f : D → C. Show that f is integrable in D.

Exercise 17. Let D1, D2 ⊆ C be regions such that D1∩D2 is connected. Let f : D1∪D2 →
C be continuous. (a) Show that if f is integrable in D1 and also integrable in D2, then f
is integrable in D1 ∪ D2. (b) Give a counter example in the case when the connectedness
condition is removed.

2.4 The Cauchy Integral Formula

In order to obtain Cauchy’s integral formula, a key result of complex analysis, we need a
sharpened version of Proposition 2.16.

Proposition 2.18. Let D ⊆ C be a region and p ∈ D. Let f : D → C be continuous
function which is moreover holomorphic in D \ {p}. Let ∆ be a triangle in D such that p
is one of the corners of ∆. Then, ∫

∂∆
f = 0.
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Proof. Fix ϵ > 0. Denote the corner points of ∆ by (p, x, y). Define the triangle ∆t

for t ∈ [0, 1] as the triangle with corner points (p, xt, yt), where xt := p + t(x − p) and
yt := p+ t(y − p). Then, l(∂∆t) → 0 as t → 0. By continuity of f on the compact set ∆,
Proposition 2.6 implies that there exists t > 0 such that∣∣∣∣∫

∂∆t

f

∣∣∣∣ < ϵ.

Now, subdivide the triangle ∆ into the triangle ∆t and the triangles with corners given
by (xt, x, y) and (xt, y, yt). The integral over boundary paths of the latter two triangles
vanishes by Proposition 2.16. On the other hand, the sum of the integrals over the boundary
paths of the three triangles equals the integral over the boundary path of ∆. Thus,∣∣∣∣∫

∂∆
f

∣∣∣∣ =
∣∣∣∣∫
∂∆t

f

∣∣∣∣ < ϵ.

Since ϵ was arbitrary the statement follows.

Exercise 18. The above Proposition can be strengthened considerably. Show the follow-
ing: Let ∆ ⊂ C be a triangle and let f : ∆ → C be continuous. Furthermore, assume that
f is holomorphic in the interior of ∆. Then,∫

∂∆
f = 0.

The above proposition implies a corresponding stronger version of Proposition 2.17.

Proposition 2.19. Let D ⊆ C be a star-shaped region with center z0 ∈ D and f : D → C
continuous. Furthermore assume that f is holomorphic in D \ {z0}. Then, f is integrable
in D.

Proof. Combine Lemma 2.15 with Proposition 2.18.

Theorem 2.20 (Cauchy Integral Formula). Let D ⊆ C be a star-shaped region with center
z, f ∈ O(D), γ a closed path in D \ {z}. Then,

f(z)Indγ(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ.

Proof. Define the function g : D → C as follows,

g(ζ) :=
{
f(ζ)−f(z)

ζ−z if ζ 6= z

f ′(z) if ζ = z
.
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By the property of the complex derivative of f at z, g is continuous in all of D. Moreover, g
is holomorphic in D\{z}. So, by Proposition 2.19, g is integrable in D. By Proposition 2.13
this implies,

0 =
∫
γ
g =

∫
γ

f(ζ)
ζ − z

dζ − f(z) 2πi Indγ(z).

The Cauchy Integral Formula is often used in the special case where the path is the
boundary of a disk: Let D ⊆ C be a region, f ∈ O(D), z ∈ D and r > 0 such that
Br(z) ⊂ D. Then,

f(z) = 1
2πi

∫
∂Br(z)

f(ζ)
ζ − z

dζ.

Lemma 2.21. Let U ⊆ C be open, f : U → C continuous and γ a closed path in U . Define
the function F : C \ |γ| → C via

F (z) :=
∫
γ

f(ζ)
ζ − z

dζ.

Then, F is analytic in C \ |γ|. Moreover, for all n ∈ N0,

F (n)(z) = n!
∫
γ

f(ζ)
(ζ − z)n+1 dζ.

Proof. Fix z0 ∈ C \ |γ| and define for all n ∈ N0,

cn :=
∫
γ

f(ζ)
(ζ − z0)n+1 dζ.

Set r := inft∈[a,b] |γ(t) − z0|. We proceed to show that the power series

G(z) :=
∞∑
n=0

cn(z − z0)n

converges in Br(z0) and agrees there with F (z). Fix z ∈ Br(z0). Define the partial sums
gn : |γ| → C for n ∈ N0 via,

gn(ζ) :=
n∑
k=0

f(ζ)(z − z0)k

(ζ − z0)k+1 .

Since |ζ − z0| ≥ r > |z − z0| and f is bounded on |γ|, the sequence of functions {gn}n∈N0

converges uniformly on |γ|. Thus, by Proposition 2.7,

G(z) = lim
n→∞

∫
γ
gn(ζ) dζ =

∫
γ

lim
n→∞

gn(ζ) dζ.
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In particular, G(z) is well defined and its radius of convergence is at least r. Consider now
the identity

1
1 − x

=
∞∑
k=0

xk,

for x ∈ B1(0) ⊂ C. Inserting x = (z − z0)/(ζ − z0) and dividing by (ζ − z0) we get,

1
ζ − z

=
∞∑
k=0

(z − z0)k

(ζ − z0)k+1 .

This implies,

lim
n→∞

gn(ζ) = f(ζ)
ζ − z

,

and hence G(z) = F (z).
Finally, Theorem 1.20 tells us that F is holomorphic and its complex derivatives are

again analytic in the same region. In particular, formula (2) of that Theorem yields,

F (n)(z) = n! cn,

and thus the stated formula.

Theorem 2.22 (Cauchy-Taylor Representation Theorem). Let D ⊆ C be a region, f ∈
O(D). Then, f is analytic in D. Moreover, for any z0 ∈ D and r > 0 such that Br(z0) ⊆ D
we have,

f (n)(z) = n!
2πi

∫
∂Br(z0)

f(ζ)
(ζ − z)n+1 dζ.

for all z ∈ Br(z0).

Proof. Fix z0 ∈ D and ρ > 0 such that Bρ(z0) ⊆ D. Then choose r such that 0 < r < ρ.
This implies, Br(z0) ⊂ D and by Theorem 2.20 and Exercise 14 we have,

f(z) = 1
2πi

∫
∂Br(z0)

f(ζ)
ζ − z

dζ.

for z ∈ Br(z0). Lemma 2.21 then tells us that f is analytic in Br(z0) and that

f (n)(z) = n!
2πi

∫
∂Br(z0)

f(ζ)
(ζ − z)n+1 dζ.

for z ∈ Br(z0) and n ∈ N0. But since r can be chosen arbitrarily close to ρ, the radius of
convergence of the power series for f around z0 is actually at least ρ. Thus, f is analytic
in D. This completes the proof.
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This Theorem finally yields the remarkable result that holomorphic functions are an-
alytic. Together with Theorem 1.20 this means that the properties of holomorphicity and
analiticity are really equivalent. Furthermore, it implies that the derivative of a holomor-
phic function is again a holomorphic function.

Definition 2.23. Let D ⊆ C be a region. We call f : D → C locally analytic iff for every
point z ∈ D there is r > 0 so that f can be represented by a power series around z with
radius of convergence r.

Definition 2.24. Let D ⊆ C be a region. We call f : D → C locally integrable iff for every
point z ∈ D there is a neighborhood U ⊆ D of z such that f is integrable in U .

Theorem 2.25. Let D ⊆ C be a region. For a function f : D → C the following statements
are equivalent:

1. f is holomorphic in D.

2. f is analytic in D.

3. f is locally analytic in D.

4. f is locally integrable in D.

Proof. Exercise.

Exercise 19. Calculate the following integrals. [Hint: Use the Cauchy Integral formula]

1. ∫
∂B2(0)

ez

(z + 1)(z − 3)2 dz

2. ∫
∂B2(−2i)

1
z2 + 1

dz

Exercise 20. Determine all entire functions f ∈ O(C) which satisfy the differential equa-
tion f ′′ + f = 0.

2.5 General Cauchy Theory
We have already seen that the index Indγ(z) of a point z with respect to a path γ is zero,
if z lies in the connected component of C \ |γ| which is unbounded. This motivates the
following definition.

Definition 2.26. Let γ be a closed path in C. We define the interior of γ as the subset
Intγ := {z ∈ C \ |γ| : Indγ(z) 6= 0}. Similarly, we define the exterior of γ as the subset
Extγ := {z ∈ C \ |γ| : Indγ(z) = 0}.
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Obviously, we have the disjoint union C = Intγ ∪ |γ| ∪ Extγ .

Lemma 2.27. Let D ⊆ C be a region and γ a path in D. Suppose g : |γ| × D → C is a
continuous function such that z 7→ g(ζ, z) is holomorphic for all ζ ∈ |γ|. Then, the function
h : D → C given by

h(z) :=
∫
γ
g(ζ, z) dζ

is holomorphic.

Proof. Fix z0 ∈ D. Let U ⊆ D be a star-shaped neighborhood of z0 with center z0 (e.g. a
disc centered at z0). Then, for all ζ ∈ |γ| and all closed paths γ̃ in U we have,∫

γ̃
g(ζ, z) dz = 0,

by Proposition 2.13 since z 7→ g(ζ, z) is holomorphic and thus integrable in U by Proposi-
tion 2.17. But we can interchange the order of integration by Fubini’s Theorem to get∫

γ̃
h(z) dz =

∫
γ̃

(∫
γ
g(ζ, z) dζ

)
dz =

∫
γ

(∫
γ̃
g(ζ, z) dz

)
dζ = 0.

Thus, h is integrable in U by Proposition 2.13 and therefore holomorphic in U by Theo-
rem 2.25. Since z0 was arbitrary, h is holomorphic in D.

Theorem 2.28. Let D ⊆ C be a region and γ a closed path in D. Then, the following
conditions are equivalent:

1. All f ∈ O(D) satisfy ∫
γ
f = 0.

2. For every f ∈ O(D) and every z ∈ D \ |γ| we have,

f(z)Indγ(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ.

3. Intγ ⊂ D.

Proof. To show 2.⇒1. for a given f ∈ O(D), choose z ∈ D \ |γ| arbitrarily and define
h ∈ O(D) via h(ζ) := (ζ − z)f(ζ). Applying the formula of 2. to h yields 1. since h(z) = 0
by construction.

We proceed to show 1.⇒3. If D = C there is nothing to demonstrate. So assume the
contrary and let z0 ∈ C \D. We have to demonstrate that Indγ(z0) = 0. Define f ∈ O(D)
via f(z) := (z − z0)−1. By 1.,

0 =
∫
γ
f = 2πi Indγ(z0).
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It remains to demonstrate 3.⇒2. Fix f ∈ O(D). Define the function g : D×D → C as
follows,

g(ζ, z) :=
{
f(ζ)−f(z)

ζ−z if ζ 6= z

f ′(z) if ζ = z
.

We proceed to show that g is continuous. For (ζ, z) ∈ D × D such that ζ 6= z this
is immediate. Thus, to consider the case ζ = z and fix z ∈ D. Let r > 0 such that
Br(z) ⊆ D. Consider the power series expansion of f around z,

f(ζ) =
∞∑
n=0

cn(ζ − z)n,

for all ζ ∈ Br(z). Then, for ζ, ξ ∈ Br(z),

g(ζ, ξ) = f ′(z) +
∞∑
n=2

cn

n∑
k=1

(ζ − z)n−k(ξ − z)k−1.

For ζ, ξ ∈ Bρ(z) with 0 < ρ < r we have thus the estimate,

|g(ζ, ξ) − g(z, z)| ≤
∣∣∣∣∣

∞∑
n=2

cn

n∑
k=1

(ζ − z)n−k(ξ − z)k−1
∣∣∣∣∣ ≤

∞∑
n=2

n|cn|ρn−1.

However, the series on the right hand side converges for all ρ < r to a continuous function
which goes to 0 when ρ → 0. Thus, g is continuous at (z, z). Since z was arbitrary in D this
completes the proof that g is continuous in D×D. Exercise.Show that g is holomorphic in
the second argument. Now we apply Lemma 2.27 to conclude that the function h : D → C
defined by

h(z) :=
∫
γ
g(ζ, z) dζ

is holomorphic in D.
Now observe that for z ∈ D \ |γ| we have

h(z) =
∫
γ
g(ζ, z) dζ = −2πi f(z)Indγ(z) +

∫
γ

f(ζ)
ζ − z

dζ.

Thus, to show 2. we need to show that h = 0. But if z ∈ D ∩ Extγ, then Indγ(z) = 0 and
we get

h(z) =
∫
γ

f(ζ)
ζ − z

dζ.

However, this formula actually defines a holomorphic function in all of Extγ by Lemma 2.21.
Thus, we use it to extend h to a holomorphic function on the open set D ∪ Extγ. Now
recall that the assumption is that Intγ ⊂ D. But this means D∪ Extγ = C, i.e. h is entire.
Exercise.Complete the proof. [Hint: Use Liouville’s Theorem 1.26].
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3 Basic properties
3.1 Holomorphic convergence
Proposition 3.1. Let D ⊆ C be a region and {fn}n∈N a sequence of holomorphic functions
fn ∈ O(D) that converges uniformly on any compact subset of D to f . Then, f ∈ O(D)
and the sequence {f (k)

n }n∈N converges uniformly on any compact subset of D to f (k) for all
k ∈ N.

Proof. Let z0 ∈ D and set r > 0 such that Br(z) ⊂ D. By Proposition 2.17 fn is integrable
in Br(z0). For any closed path γ in Br(z0) we thus have∫

γ
f =

∫
γ

lim
n→∞

fn = lim
n→∞

∫
γ
fn = 0,

where we have used Proposition 2.7 to interchange the integral with the limit. Thus, f is
integrable in Br(z0) and hence holomorphic there by Theorem 2.25. Since the choice of z0
was arbitrary we find that f is holomorphic in all of D.

Fix k ∈ N and consider z0 ∈ D. Choose r > 0 such that B2r(z0) ⊆ D. Now for each
z ∈ Br(z0) we have the Cauchy estimate (Proposition 1.25),

|f (k)
n (z) − f (k)(z)| ≤ k!

rk
‖fn − f‖∂Br(z) ≤ k!

rk
‖fn − f‖

B2r(z0).

For ϵ > 0 there is by uniform convergence of {fn}n∈N an n0 ∈ N such that |fn(z) − f(z)| <
ϵ rk/k! for all n ≥ n0 and all z ∈ B2r(z0). Hence, |f (k)

n (z) − f (k)(z)| < ϵ for all n ≥ n0 and
all z ∈ Br(z0). That is, {f (k)

n }n∈N converges to f (k) uniformly on some neighborhood of
every point of D. To obtain uniform convergence on a compact subset K ⊂ D it is merely
necessary to cover K with finitely many such neighborhoods.

3.2 From local to global structure
Definition 3.2. Let T be a topological space and A a subset. We say that p ∈ A is an
isolated point of A in T iff there exists a neighborhood U ⊆ T of p such that U ∩A = {p}.
We say that A is discrete in T iff all its points are isolated.

Theorem 3.3 (Riemann Continuation Theorem). Let D ⊆ C be a region and A ⊂ D a
discrete and relatively closed subset. Suppose that f ∈ O(D \ A). Then, the following
assertions are equivalent.

1. f extends to a holomorphic function on D.

2. f extends to a continuous function on D.

3. f is bounded in some neighborhood of any point of A.
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4. limz→z0(z − z0)f(z) = 0 for each point z0 ∈ A.

Proof. The implications 1.⇒2.⇒3.⇒4. are clear. It remains to show 4.⇒1. It is sufficient
to consider a single point z0 ∈ A. Moreover, without loss of generality we may assume
z0 = 0. Since 0 is isolated, there exists an open neighborhood U ⊆ D of 0 such that
U ∩A = {0}. Define g : U → C as follows,

g(z) :=
{
zf(z) if z 6= 0
0 if z = 0

.

By assumption, g is continuous in U . Define h : U → C by h(z) := zg(z). Since g is
holomorphic in U \ {0} so is h. Moreover, h(z) = h(0) + zg(z) = h(0) + o(|z|), so h is
complex differentiable at 0 with differential h′(0) = 0. Thus, h is actually holomorphic
in U . By Theorem 2.22 it can be represented for some radius of convergence r > 0 as a
power series h(z) =

∑∞
n=0 cnz

n around 0. But since h(0) = 0 and h′(0) = 0 we actually
have c0 = 0 and c1 = 0 and thus h(z) = z2∑∞

n=0 cn+2z
n, where the series still converges

pointwise in Br(0). But since h(z) = z2f(z) in U \ {0}, this implies that the power series∑∞
n=0 cn+2z

n coincides with f in U ∩ Br(0) \ {0}. This yields an analytic (and therefore
holomorphic) extension of f to (D \A) ∪ {z0}.

Theorem 3.4 (Identity Theorem). Let D be a region and f, g ∈ O(D). The following
statements are equivalent:

1. f = g

2. The coincidence set {z ∈ D|f(z) = g(z)} is not empty and not discrete.

3. There exists a point z0 ∈ D such that f (n)(z0) = g(n)(z0) for all n ∈ N.

Proof. The implication 1.⇒2. is trivial. We show 2.⇒3. Let h := f − g. Suppose z0 ∈
{z ∈ D|h(z) = 0} is not an isolated point. Suppose there exists m ∈ N0 such that
h(m)(z0) 6= 0 and choose the smallest such m. Since h is holomorphic in D it is also
analytic by Theorem 2.22 and has a power series expansion around z0 for some radius
r > 0, given by

h(z) =
∞∑
n=m

h(n)(z0)
n!

(z − z0)n = (z − z0)mk(z),

where k : Br(0) → C is the analytic function given by the power series,

k(z) =
∞∑
n=0

h(n+m)(z0)
(n+m)!

(z − z0)n.

In particular, k(z0) = h(m)(z0)/m! 6= 0. But continuity of k at z0 implies that there must
be a neighborhood U ⊆ D of z0 such that k(z) 6= 0 for z ∈ U . But this implies h(z) 6= 0
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for z ∈ U \ {z0}, a contradiction to the assumption that z0 is not an isolated point of the
coincidence set.

We proceed to show the implication 3.⇒1. Set Sn := {z ∈ D|h(n)(z) = 0} for all
n ∈ N0. Then, each Sn is closed in D and so is the intersection S :=

⋂∞
n=0 Sn. On the

other hand, S is open since given z1 ∈ S the power series expansion of h around z1 has
non-zero radius r of convergence by Theorem 2.22, but is identical to zero. So every point
z ∈ Br(z1) is element of S. Thus S is both open and closed in D. Connectedness of D
implies that S is either empty or S = D. The first possibility is excluded by the assumption
that z0 ∈ S. So the power series of h is zero around any point of D, hence h = 0, implying
f = g in D.

Corollary 3.5. Let I ⊆ R be an interval and f : I → C some function. For any region
D ⊆ C such that I ⊂ D there is at most one holomorphic function g : D → C such that
f(z) = g(z) for all z ∈ I.

This is relevant when we are interested in extending functions on R or some interval
I ⊂ R to holomorphic functions on the complex plane.

Theorem 3.6 (Maximum Modulus Principle). Let D ⊆ C be a region and f ∈ O(D).
Suppose that |f | has a local maximum at some point z ∈ D, i.e., that |f(z)| = ‖f‖U :=
supζ∈U |f(ζ)| for some neighborhood U ⊆ D of z, then f is constant.

Proof. Given a point z ∈ D and a neighborhood U of z as described, consider the power
series expansion f(ζ) =

∑∞
n=0 cn(ζ − z)n of f around z. Let ρ > 0 such that Bρ(z) ⊆ U .

Then, the power series converges with radius at least ρ and for 0 < r < ρ we have, by
Lemma 1.24,

∞∑
n=0

|cn|2r2n ≤ ‖f‖2
∂Br(z) ≤ ‖f‖2

U = |f(z)|2 = |c0|2.

This implies ck = 0 for all k ∈ N, i.e., f is constant in Bρ(z). But then the Identity
Theorem (Theorem 3.4) ensures that f is constant in all of D.

Proposition 3.7. Let D ⊆ C be a bounded region and K its closure. Suppose f : K → C
is continuous and its restriction to D is holomorphic. Then,

|f(z)| ≤ ‖f‖∂D ∀z ∈ D.

In case of equality for some z ∈ D, f is constant.

Proof. If f is constant the inequality is an equality and is valid trivially. Thus, suppose
that f is not constant. Since K is compact and f is continuous on K there exists a point
z ∈ K such that |f(z)| = ‖f‖K . We have to show that necessarily z ∈ ∂D = K\D. Assume
to the contrary that z ∈ D. Since |f(z)| = ‖f‖K = ‖f‖D we can apply Theorem 3.6 with
U = D, concluding that f is constant, a contradiction.
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Proposition 3.8 (Minimum Principle). Let D ⊆ C be a region and f ∈ O(D). Suppose
that |f | has a local minimum at some point z ∈ D, i.e., that |f(z)| = infζ∈U |f(ζ)| for some
neighborhood U ⊆ D of z. Then, f(z) = 0 or f is constant in D.

Proof. Let z ∈ D be a local minimum and U a neighborhood of z as described. Without
loss of generality we may assume that U is connected, i.e. a region. If f(z) = 0 we are
done. Thus, suppose f(z) 6= 0. Since z is local minimum of |f | in U , f(ζ) 6= 0 for all ζ ∈ U .
So, 1/f ∈ O(U). But |1/f | has a local maximum at z and we may apply Theorem 3.6
to conclude that 1/f is constant in U . But then f is constant in U and by Theorem 3.4
constant in D.

Proposition 3.9. Let D ⊆ C be a bounded region and K its closure. Suppose f : K → C
is continuous and its restriction to D is holomorphic. Then, either f has zeros in D or

|f(z)| ≥ inf
ζ∈∂D

|f(ζ)| ∀z ∈ D.

Proof. Exercise.

Exercise 21. Let D ⊆ C a region, a ∈ D. Suppose that f ∈ O(D \ {a}). Show that f has
a holomorphic extension to D if f ′ has.

Exercise 22. Let f, g be entire functions satisfying |f(z)| ≤ |g(z)| for all z ∈ C. Show
that there is a ∈ C such that f = ag.

Exercise 23. Let D ⊆ C be a region and L ⊂ C be a straight line. Let f : D → C be
continuous and f holomorphic in D \ L. Show that f is actually holomorphic in all of D.

Exercise 24. Let D ⊆ C be a region and f ∈ O(D). Suppose that there exists z ∈ D
such that f (n)(z) = 0 for almost all n ∈ N. Show that f is a polynomial.

Exercise 25. Let D ⊆ C be a region such that if z ∈ D then z ∈ D. Show that for
f ∈ O(D) the following statements are equivalent:

1. f(D ∩ R) ⊆ R.

2. f(z) = f(z) for all z ∈ D.

Exercise 26. For each of the following properties give an example for a holomorphic
function defined in some disk around 0 with that property or show that there can be no
such function.

1. f(1/n) = (−1)n/n for almost all n ∈ N.

2. f(1/n) = 1/(n2 − 1) for almost all n ∈ N \ {1}.

3. |f (n)(0)| ≥ (n!)2 for almost all n ∈ N0.

4. |f(1/n)| ≤ e−n for almost all n ∈ N and f 6= 0.
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3.3 The Open Mapping Theorem

Definition 3.10. Let X,Y be topological spaces. A map f : X → Y is called open iff for
every open set U ⊆ X the image f(U) is open in Y .

Lemma 3.11. Let D ⊆ C be a region and f ∈ O(D). Let z ∈ D and r > 0 such that
Br(z) ⊂ D and 2δ := infζ∈∂Br(z) |f(ζ) − f(z)| > 0. Then, Bδ(f(z)) ⊆ f(Br(z)).

Proof. Let a ∈ Bδ(f(z)). Then,

|f(ζ) − a| ≥ |f(ζ) − f(z)| − |a− f(z)| > δ ∀ζ ∈ ∂Br(z).

In particular, infζ∈∂Br(z) |f(ζ) − a| > |f(z) − a|. Thus, by Proposition 3.9 f − a must have
zeros in the region Br(z). That is, there exists ξ ∈ Br(z) such that f(ξ) = a.

Theorem 3.12 (Open Mapping Theorem). Let D ⊆ C be a region and f ∈ O(D) such
that f is not constant. Then f is an open map D → C.

Proof. Let U ⊆ D be open. Let z ∈ U . It is enough to show that f(U) contains a disc
centered around f(z). Since f is not constant, by the Identity Theorem (Theorem 3.4)
there is a radius r > 0 such that f(z) /∈ f(∂Br(z)) while Br(z) ⊆ U . Then 2δ :=
infζ∈∂Br(z) |f(ζ) − f(z)| > 0 and Lemma 3.11 can be applied, showing that Bδ(f(z)) ⊆
f(Br(z)) ⊆ f(U).

3.4 Zeros

Definition 3.13. Let D ⊆ C be a region, z0 ∈ D and f ∈ O(D) such that f(z0) = 0. We
say that f has a zero of order n at z0 iff there exists g ∈ O(D) such that g(z0) 6= 0 and
f(z) = (z − z0)ng(z) for all z ∈ D.

Proposition 3.14. Let D ⊆ C be a region, z0 ∈ D and f ∈ O(D) such that f(z0) = 0. If
f is not constant, then there exists a unique n ∈ N such that f has a zero of order n at z0.
Moreover, n = inf{k ∈ N : f (k)(z0) 6= 0}.

Proof. Exercise.

Proposition 3.15 (Fundamental Theorem of Algebra). Let n ∈ N and p(z) =
∑n
k=0 ckz

k

be a polynomial of degree n (i.e., cn 6= 0). Then, there are constants a1, . . . , an ∈ C such
that p factorizes as

p(z) = cn(z − a1) · · · (z − an).

Proof. Exercise.[Hint: First show the existence of one zero and factorize it, then proceed
recursively.]



32 Robert Oeckl – CA NOTES – 30/05/2022

Theorem 3.16. Let D ⊆ C be a region, f ∈ O(D) such that it has distinct zeros
a1, . . . , am ∈ D with orders n1, . . . , nm. Suppose γ is a closed path in D \ {a1, . . . , an}
such that Intγ ⊂ D. Then,

m∑
k=1

nkIndγ(ak) = 1
2πi

∫
γ

f ′(z)
f(z)

dz.

Proof. Knowing the zeros, we can factorize f as

f(z) = (z − a1)n1 · · · (z − am)nmg(z),

where g ∈ O(D) has no zeros in D. Using the product rule for the derivative we find for
z ∈ D \ {a1, . . . , an},

f ′(z)
f(z)

= g′(z)
g(z)

+
m∑
k=1

nk
z − ak

.

The term g′/g on the right hand side is a holomorphic function in D. So, by Theorem 2.28
its integral along γ vanishes. The second term yields the desired sum over the indices of
the ak.

Exercise 27. Let D ⊆ C be a region and a ∈ D. For a function f ∈ O(D) we denote by
na(f) the order of its zero at a. (If f(a) 6= 0 then na(f) = 0.) For all f, g ∈ O(D) show
the following:

1. na(fg) = na(f) + na(g).

2. na(f + g) ≥ min{na(f), na(g)} and equality if na(f) 6= na(g).

3.5 Holomorphic logarithms and roots
Definition 3.17. A region D ⊆ C is called homologically simply connected iff all holomor-
phic functions in D are integrable.

Remark 3.18. Theorem 2.28 together with Proposition 2.13 imply that all holomorphic
functions are integrable in a region D ⊆ C iff every closed path γ in D satisfies Intγ ⊂ D.
So this provides an alternative definition of homologically simple connectedness. In fact it
turns out that the adjective “homologically” is superfluous as the notion is equivalent to
simple connectedness. However, we will not prove this here.

Definition 3.19. Let D ⊆ C be a region and f ∈ O(D). Then, g ∈ O(D) is called a
holomorphic logarithm of f iff f = exp g.

Theorem 3.20. Let D ⊆ C be a homologically simply connected region and f ∈ O(D)
zero-free. Then, there exists a holomorphic logarithm of f in D.
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Proof. By the assumptions f ′/f ∈ O(D) and integrable. Let h ∈ O(D) be a primitive.
Define k := f exp(−h) ∈ O(D). As is easy to check, k′ = 0 so k = c for all z ∈ D for some
constant c ∈ C. This implies f = c exph and c 6= 0 since f is zero-free. Since exp takes all
complex values except zero, there is b ∈ C with c = exp(b). Then, g := h + b ∈ O(D) is
the looked for holomorphic logarithm with f = exp g.

Definition 3.21. Let D ⊆ C be a region, f ∈ O(D) and n ∈ N. Then, a (holomorphic)
nth root of f is a function g ∈ O(D) such that f = gn.

Theorem 3.22. Let D ⊆ C be a homologically simply connected region and f ∈ O(D)
zero-free. Then, there exists an nth root of f for every n ∈ N.

Proof. According to Theorem 3.20 there is a holomorphic logarithm g ∈ O(D) of f . An
nth root of f is given by

z 7→ exp
( 1
n
g(z)

)
∀z ∈ D.

Exercise 28. Let D,D′ ⊆ C be homologically simply connected regions. Suppose that
D′′ := D∩D′ is connected and non-empty. Show thatD′′ is homologically simply connected.

Exercise 29. Let D ⊆ C be a region, f ∈ O(D) such that f is not constant. Let a ∈ D.
Show the equivalence of the following statements:

1. There exists a neighborhood U ⊆ D of a such that f has a holomorphic square-root
in U .

2. f(a) 6= 0 or f(a) = 0 and the order of the zero is even.
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4 Singularities
4.1 Types of singularities
Definition 4.1. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}). Then, we say that f
has an isolated singularity at a. Moreover, a is called a removable singularity iff f can be
extended to a holomorphic function on all of D.

We have already seen criteria for identifying removable singularities in the Riemann
Continuation Theorem 3.3.

Definition 4.2. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}). We say that a is a
pole of f iff f diverges at a, i.e. if for any M > 0 there exists r > 0 such that |f(z)| > M
for all z ∈ Br(a) \ {a}. We say that a is an essential singularity of f iff a is not removable
and is not a pole.

We now consider poles.

Proposition 4.3. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}). Suppose that a is a
pole of f . Then, there exists a unique m ∈ N such that there is a g ∈ O(D) with g(a) 6= 0
and

f(z) = g(z)
(z − a)m

∀z ∈ D \ {a}.

Proof. Since f has a pole at a there exist r > 0 such that Br(a) ⊆ D and f(z) 6= 0
for all z ∈ Br(a) \ {a}. Thus we can define h ∈ O(Br(a) \ {a}) by h(z) := 1/f(z). But
limz→a h(z) = 0, so by Theorem 3.3, a is a removable singularity of h and h can be extended
to a holomorphic function on all of Br(a). By Proposition 3.14 there exists a unique m ∈ N
such that h(z) = (z − a)mk(z), where k ∈ O(Br(a)) and k(a) 6= 0. Moreover, k(z) 6= 0
for all z ∈ Br(a) so we can invert it, defining g ∈ O(Br(a)) by g(z) = 1/k(z). But notice
that g(z) = (z−a)mf(z) for all z ∈ Br(a) \ {a}, which obviously extends to a holomorphic
function on D \ {a}. So g really extends to a holomorphic function on all of D. Observe
also that g(a) 6= 0. This completes the proof.

Definition 4.4. Let D ⊆ C be a region, a ∈ D, f ∈ O(D \ {a}) such that a is a pole of f .
Then, the integer m ∈ N such that g(z) := (z−a)mf(z) extends to a holomorphic function
in D with g(a) 6= 0 is called the order of the pole. If m = 1 we also say that the pole is
simple.

Proposition 4.5. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}) with a pole at a of
order m. Then, there is a function g ∈ O(D) and there are constants b1, . . . , bm ∈ C with
bm 6= 0 such that

f(z) = g(z) +
m∑
n=1

bn
(z − a)n

∀z ∈ D \ {a}.
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Proof. Exercise.

The second term on the right hand side of the equation above is also called the singular
part of f at a.

We now turn to essential singularities. In some sense they are more “wild” than poles,
as shows the following Theorem.

Theorem 4.6 (Casorati, Weiserstrass). Let D ⊆ C be a region, a ∈ D and f ∈ O(D\{a}).
The following statements are equivalent:

1. The point a is an essential singularity of f .

2. For every neighborhood U ⊆ D of a the set f(U \ {a}) is dense in C.

3. There exists a sequence {zn}n∈N in D \{a} such that limn→∞ zn = a, but {f(zn)}n∈N
has no limit in C ∪ {∞}.

Proof. We start with the implication 1.⇒2. Assume the contrary of 2. Let U ⊆ D be a
neighborhood of a such that f(U \ {a}) is not dense in C. Thus, there exists p ∈ C and
r > 0 such that f(U \ {a}) ∩ Br(p) = ∅. This implies |f(z) − p| ≥ r for all z ∈ U \ {a}.
Define g ∈ O(U \ {a}) by g(z) := 1/(f(z) − p). Then, |g(z)| ≤ 1/r for all z ∈ U \ {a}
so by Theorem 3.3, g has a removable singularity at a. Thus, c := limz→a g(z) exists. If
c 6= 0, f(z) = p + 1/g(z) is bounded near a and thus has a removable singularity at a. If
c = 0, then limz→a |f(z)| = ∞ and f has a pole at a. In both cases, a is not an essential
singularity, contradicting 1. Exercise.Complete the proof.

Exercise 30. Find and classify the isolated singularities of the following functions and
specify the order in case of a pole:

1. z4

(z4 + 16)2 2. 1 − cos(z)
sin z

3. exp(1/z) 4. 1
cos(1/z)

Exercise 31. Let f be a function that is holomorphic in C except for poles. Show that
the set of poles is discrete and closed.

Exercise 32. Investigate how the different types of singularities behave with respect to
addition, multiplication, quotienting and composition (whenever the corresponding opera-
tions make sense)!

Exercise 33. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}). Show that if a is a
non-removable singularity of f , then exp ◦f ∈ O(D \ {a}) has an essential singularity at a.

Exercise 34. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}). Let P ∈ O(C) be a
non-constant polynomial. Show that f and P ◦ f have the same type of singularity at a.



Robert Oeckl – CA NOTES – 30/05/2022 37

4.2 Meromorphic functions
Definition 4.7. Let D ⊆ C be a region and A ⊂ D a discrete and relatively closed subset.
Then, f ∈ O(D \ A) is called meromorphic in D if all points a ∈ A are either removable
singularities or poles of f . The set of meromorphic functions in D is denoted by M(D).

Proposition 4.8. Let D ⊆ C be a region. Then, the set M(D) forms a vector space over
C and moreover forms a field. That is, sums, scalar multiples, products and quotients of
meromorphic functions are meromorphic. (Except the quotient by the zero function.)

Proof. Exercise.

Exercise 35. Show that the set of rational functions forms a proper subfield of M(C).

Theorem 4.9 (Argument Principle). Let D ⊆ C be a region, f ∈ M(D). Suppose Z ⊂ D
is the set of zeros of f and P ⊂ D is the set of poles of f . Suppose γ is a closed path in
D \ (Z ∪ P ) such that Intγ ⊂ D. Then,

∑
z∈Z

N(z)Indγ(z) −
∑
z∈P

N(z)Indγ(z) = 1
2πi

∫
γ

f ′(z)
f(z)

dz,

where N(z) is the order of the zero or pole z.

Proof. Exercise.[Hint: Generalize the proof of Theorem 3.16.]

Theorem 4.10 (Rouché’s Theorem). Let D ⊆ C be a region and f, g ∈ M(D). Let
Zf , Zg ⊂ D be the sets of zeros of f and g and Pf , Pg ⊂ D the sets of poles of f and g.
Let γ be a closed path such that |γ| ⊂ D \ (Pf ∪ Pg) and Intγ ⊂ D. Suppose that

|f(ζ) + g(ζ)| < |f(ζ)| + |g(ζ)| ∀ζ ∈ |γ|.

Then, ∑
z∈Zf

N(z)Indγ(z) −
∑
z∈Pf

N(z)Indγ(z) =
∑
z∈Zg

N(z)Indγ(z) −
∑
z∈Pg

N(z)Indγ(z),

where N(z) denotes the order of the zero or pole z.

Proof. First, note that the inequality also implies |γ| ∩ Zf = ∅ and |γ| ∩ Zg = ∅. Set
U := D \ (Zf ∪ Zg ∪ Pf ∪ Pg) and h(z) := f(z)/g(z) for all z ∈ U . Then, h ∈ O(U). Note
that the hypothesis is equivalent to the inequality

|h(z) + 1| < |h(z)| + 1 ∀z ∈ |γ|.

This inequality implies that h(z) cannot be a non-negative real number (since in that case
there would be equality). That is, h(z) ∈ C \ R+

0 for all z ∈ |γ|. But since C \ R+
0 is open,



38 Robert Oeckl – CA NOTES – 30/05/2022

there must a neighborhood V ⊆ U of |γ| such that h(z) ∈ C \ R+
0 for all z ∈ V . Now,

C \ R+
0 is star-shaped so that z 7→ 1/z is integrable there (Proposition 2.17), i.e., has a

primitive l ∈ O(C \ R+
0 ). (l is in fact a branch of the logarithm.) But l ◦ h ∈ O(V ) is a

primitive of h′/h ∈ O(V ), so the integral of h′/h along γ vanishes (by Proposition 2.13).
This means,

0 =
∫
γ

h′(z)
h(z)

dz =
∫
γ

f ′(z)
f(z)

dz −
∫
γ

g′(z)
g(z)

dz.

The result follows then from Theorem 4.9.

Theorem 4.11 (Hurwitz). Let D ⊆ C be a region and {fn}n∈N a sequence of functions
fn ∈ O(D) converging uniformly in every compact subset of D to f . Let a ∈ D and r > 0
such that Br(a) ⊂ D. Suppose that f(z) 6= 0 for all z ∈ ∂Br(a). Then, there exists n0 ∈ N
such that f and fn have the same number of zeros in Br(a) for all n ≥ n0.

Proof. Set δ := inf{|f(z)| : z ∈ ∂Br(a)}. By the assumptions δ > 0 and {fn}n∈N converges
uniformly on ∂Br(a). Thus, there exists n0 ∈ N such that |fn(z) − f(z)| < δ/2 for all
n ≥ n0 and all z ∈ ∂Br(a). But this implies,

|f(z) − fn(z)| < δ

2
< |f(z)| ≤ |f(z)| + |fn(z)| ∀n ≥ n0,∀z ∈ ∂Br(a).

Applying Rouché’s Theorem 4.10 yields the desired result.

Proposition 4.12. Let D ⊆ C be a region and {fn}n∈N a sequence of functions fn ∈ O(D)
converging uniformly in every compact subset of D to f . Suppose that for all n ∈ N, fn
has no zeros. Then, either f = 0 or f has no zeros.

Proof. Exercise.

Exercise 36. Let D,D′ ⊆ C be regions such that D′ ⊂ D. Consider the linear map
O(D) → O(D′) induced by the restriction of functions on D to D′. (a) Show either that
this map must be injective or that it cannot be injective. (b) Show either that this map
must be surjective or that it cannot be surjective.

Exercise 37. Let D ⊆ C be a bounded region. Define Õ(D) ⊆ O(D) to be the set of
holomorphic functions f on D such that f extends to a holomorphic function on some
open neighborhood of D. Likewise, define M̃(D) ⊆ M(D) to be the set of meromorphic
functions f on D such that f extends to a meromorphic function on some neighborhood
of D. (a) Show that Õ(D) is a proper subalgebra of O(D). Likewise, show that M̃(D) is
a proper subfield of M(D). (b) Show that M̃(D) is the quotient field of Õ(D). In other
words, show that for every element f ∈ M̃(D) there exist elements g, h ∈ Õ(D) such that
f = g/h. (c) Comment on the possible problems that would appear if one replaces in this
exercise Õ(D) with O(D) and M̃(D) with M(D).
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Exercise 38. Let D ⊆ C be a region such that B1(0) ⊂ D and f ∈ O(D). Suppose
|f(z)| < 1 for all z ∈ ∂B1(0). Show that f has precisely one fixed point in B1(0).

Exercise 39. Determine the number of zeros (counted with order) of the following func-
tions in the specified domain:

1. z5 + 1
3z

3 + 1
4z

2 + 1
3 in B1(0) and in B1/2(0).

2. z5 + 3z4 + 9z3 + 10 in B1(0) and B2(0).

3. 9z5 + 5z − 3 in B5(0) \B1/2(0).

4. z8 + z7 + 4z2 − 1 in B1(0) and B2(0).

4.3 Laurent Series
The representation of a holomorphic function with a pole as in Proposition 4.5 can be
written as an “extended” power series that starts not with the power 0, but with the
power −n. Indeed, we will see that even essential singularities can be captured by such an
“extended” power series, if we start at −∞. Such series are called Laurent series.

Let z ∈ C and 0 < r1 < r2. In the following we use the notation

Ar1,r2(z) := Br2(z) \Br1(z).

This type of region is called an (open) annulus. Note the special case of the punctured
disk A0,r(z) = Br(z) \ {z}.

Definition 4.13. Let {an}n∈Z be an indexed set of complex numbers. We say that∑n∈Z an
converges (absolutely) iff ∑∞

n=0 an and ∑∞
n=1 a−n both converge (absolutely). Let S be a

set and {fn}n∈Z be an indexed set of functions fn : S → C. We say that ∑n∈Z fn converges
uniformly iff ∑∞

n=0 fn and ∑∞
n=1 f−n both converge uniformly.

Proposition 4.14. Let {cn}n∈Z be an indexed set of complex numbers. Define r1, r2 ∈
[0,∞] via

r1 := lim sup
n→∞

|c−n|1/n and 1/r2 := lim sup
n→∞

|cn|1/n.

Iff r1 < r2 then the Laurent series

f(z) =
∑
n∈Z

cnz
n

converges absolutely for all z ∈ Ar1,r2(0) and uniformly on Aρ1,ρ2(0) where r1 < ρ1 < ρ2 <
r2. Moreover, it diverges for z ∈ C \Ar1,r2(0).

Proof. Exercise.[Hint: Split the series into the parts with positive and negative indices
and apply Lemma 1.18.]
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Proposition 4.15. Let D ⊆ C be a region, z0 ∈ C and 0 ≤ r1 < r2 such that Ar1,r2(z0) ⊂
D. Then, for all f ∈ O(D) we have,∫

∂Br1 (z0)
f =

∫
∂Br2 (z0)

f.

Moreover, for all z ∈ Ar1,r2(z0) we have,

f(z) = 1
2πi

∫
∂Br2 (z0)

f(ζ)
ζ − z

dζ − 1
2πi

∫
∂Br1 (z0)

f(ζ)
ζ − z

dζ

Proof. Exercise.

Theorem 4.16 (Laurent Decomposition). Let z0 ∈ C and 0 ≤ r1 < r2 ≤ ∞ and f ∈
O(Ar1,r2(z0)). Then, there exists a unique pair of holomorphic functions f+ ∈ O(Br2(z0))
and f− ∈ O(C \Br1(z0)) such that

f(z) = f+(z) + f−(z), ∀z ∈ Ar1,r2(z0) and lim
|z|→∞

f−(z) = 0

Proof. For any r1 < s < r2 define fs : C \ ∂Bs(z0) → C via

fs(z) := 1
2πi

∫
∂Bs(z0)

f(ζ)
ζ − z

dζ,

By Lemma 2.27, fs is holomorphic. Now define f+ : Br2(z0) → C as follows. For a given
z choose r1 < s < r2 such that |z − z0| < s and set f+(z) := fs(z). Proposition 4.15
ensures that this definition does not depend on the choice of s. Moreover, it is clear that
this defines a holomorphic function. Similarly, we define f− : C \ Br1(z0) → C as follows.
For a given z choose r1 < s < r2 such that s < |z − z0| and set f−(z) := −fs(z). Again,
this definition does not depend on the choice of s and f− is holomorphic.

Now let z ∈ Ar1,r2(z0) and choose s1, s2 such that r1 < s1 < |z − z0| < s2 < r2. Then,
by Proposition 4.15 we have,

f(z) = 1
2πi

∫
∂Bs2 (z0)

f(ζ)
ζ − z

dζ − 1
2πi

∫
∂Bs1 (z0)

f(ζ)
ζ − z

dζ = f+(z) + f−(z).

Fix r1 < s < r2 and choose ϵ > 0. Now if

|z| >
s‖f‖∂Bs(z0)

ϵ
+ s+ |z0|,

then we have |f−(z)| < ϵ by an application of the integral estimate of Proposition 2.6.
Thus lim|z|→∞ f−(z) = 0.
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To see uniqueness suppose there is another pair of holomorphic functions g+ ∈ O(Br2(z0))
and g− ∈ O(C \ Br1(z0)) with the same properties. Then, h(z) := f+(z) − g+(z) de-
fines a holomorphic function on Br2(z0). Moreover, for z ∈ Ar1,r2(z0) we also have
h(z) = g−(z) − f−(z). But the latter are even defined on C \ Br1(z0). So h extends
to an entire function. But, lim|z|→∞ h(z) = lim|z|→∞ g−(z) − lim|z|→∞ f−(z) = 0. So by
Liouville’s Theorem (Theorem 1.26) h must be constant and therefore can only be equal
to zero.

Definition 4.17. In the above Theorem, f+ is called the regular part of f while f− is
called the principal or singular part of f .

Theorem 4.18 (Laurent Series). Let z0 ∈ C and 0 ≤ r1 < r2 and f ∈ O(Ar1,r2(z0)).
Then, there exist a unique set of coefficients {cn}n∈Z such that

f(z) =
∑
n∈Z

cn(z − z0)n,

where the series converges absolutely for all z ∈ Ar1,r2(z0) and uniformly on As1,s2(z0),
when r1 < s1 < s2 < r2. Also, the coefficients are given by

cn = 1
2πi

∫
∂Br(z0)

f(ζ)
(ζ − z0)n+1 dζ,

where r1 < r < r2.

Proof. We use the decomposition f = f+ + f− of Theorem 4.16. Define g ∈ O(B1/r1(0) \
{0}) via

g(z) := f−
(1
z

+ z0

)
.

Since lim|z|→∞ f−(z) = 0 it follows that limz→0 g(z) = 0. In particular, g has a continuous
extension to B1/r1(0) and thus a holomorphic one by the Riemann Continuation Theorem
(Theorem 3.3). Consider its power series expansion

g(z) =
∞∑
n=1

bnz
n,

which converges absolutely in B1/r1(0) and uniformly in B1/s1(0) for any s1 > r1. Thus

f−(z) = g

( 1
z − z0

)
=

∞∑
n=1

bn(z − z0)−n

converges absolutely in C \ Br1(z0) and uniformly on C \ Bs1(z0) for any s1 > r1. On the
other hand, the power series expansion

f+(z) =
∞∑
n=0

cn(z − z0)n
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converges absolutely in Br2(z0) and uniformly on Bs2(z0) for any 0 < s2 < r2. Summing
both expansions and setting c−n := bn for all n ∈ N yields the Laurent series with the
desired properties.

Set r1 < r < r2. Using Lemma 2.10 together with convergence of the Laurent series
and interchangeability of limit and integral (Proposition 2.7) yields the desired formula for
the coefficients cn.

Proposition 4.19. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}). Let r > 0 such
that A0,r(a) ⊂ D. Let

f(z) =
∑
n∈Z

cn(z − a)n

be the Laurent series for f in A0,r(a). Then,

1. a is a removable singularity of f iff cn = 0 for all n < 0.

2. a is a pole of order m of f iff c−m 6= 0 and cn = 0 for all n < −m.

3. a is an essential singularity of f iff there exist infinitely many n < 0 such that cn 6= 0.

Proof. Exercise.

Exercise 40. Let f ∈ O(C \ {0, 1, 2}) be given by

f(z) := 1
z(z − 1)(z − 2)

.

Give the Laurent series expansion of f in the following regions: A0,1(0), A1,2(0), A2,∞(0).

Exercise 41. Give the Laurent series expansion of z 7→ exp(1/z).

4.4 Residues
Definition 4.20. Let a ∈ C and 0 < r, f ∈ O(Br(a) \ {a}) and

f(z) =
∑
n∈Z

cn(z − a)n

the Laurent series of f at a. Then, Res(f, a) := c−1 is called the residue of f at a.

Theorem 4.21 (Residue Theorem). Let D ⊆ C be a region, A ⊂ D a discrete and relatively
closed subset, and f ∈ O(D \ A). Let γ be a closed path with |γ| ⊂ D \ A and Intγ ⊂ D.
Then, ∑

a∈A
Res(f, a)Indγ(a) = 1

2πi

∫
γ
f(z) dz.
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Proof. Define Ã := Intγ ∩ A. This is finite since Intγ ∪ |γ| is compact. Thus, suppose
Ã = {a1, . . . , an}. Observe that the sum in the statement really only runs over Ã, since
the index of the other elements of A vanishes. Now, decompose f into a sum

f(z) = f1(z) + · · · + fn(z) + g(z) ∀z ∈ D \A,

where fk ∈ O(C\{ak}) and g ∈ O((D\A)∪Ã) as follows. Let f1 be the singular part f− of f
at a1 (according to Theorem 4.16). In particular Res(f, a1) = Res(f1, a1). Note that f−f1
has one singularity less than f (the one at a1) and moreover Res(f, ak) = Res(f − f1, ak)
for all k > 1. Now, take f2 to be the singular part of f − f1 at a2 etc. Finally, let
g := f − f1 − · · · − fn and notice that g has no singularities in Intγ left. Note that the
integral over g along γ vanishes by Theorem 2.28. Thus, the Theorem reduces to proving
the identity,

Res(h, a)Indγ(a) = 1
2πi

∫
γ
h(z) dz

for functions h ∈ O(C \ {a}) such that lim|z|→∞ h(z) = 0. Consider the Laurent series of
h around a,

h(z) =
−1∑

n=−∞
cn(z − a)n.

Since this converges uniformly on the compact set |γ|, we can interchange integration and
summation, ∫

γ
h(z) dz =

−1∑
n=−∞

cn

∫
γ
(z − a)n dz.

Now note that (z − a)n has a primitive if n ≤ −2, i.e., is then integrable in C \ {a}. Thus,
by Proposition 2.13 its integral vanishes. Hence,∫

γ
h(z) dz = c−1

∫
γ
(z − a)−1 dz = Res(h, a)2πiIndγ(a).

This completes the proof.

Exercise 42. Let D ⊆ C be a region and a ∈ D. Let g, h ∈ O(D) such that g(a) 6= 0 and
h(a) = 0, but h′(a) 6= 0. Show that f := g/h ∈ M(D) has a simple pole at a and,

Res(f, a) = g(a)
h′(a)

.

Exercise 43. Calculate the following integrals:

1.
∫ ∞

0

x2

x4 + x2 + 1
dx 2.

∫ ∞

0

cos(x) − 1
x2 dx

3.
∫ π

0

cos(2θ)
1 − 2a cos(θ) + a2 dθ, a2 < 1 4.

∫ π

0

1
(a+ cos(θ))2 , a > 1
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Exercise 44. Show that the following identities hold:

1.
∫ ∞

0

1
1 + x2 dx = π

2
2.

∫ ∞

0

1
(x2 + a2)2 dx = π

4a3 , a > 0
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5 Conformal mappings
5.1 Conformal mappings as holomorphic functions
Recall that we have the standard Euclidean scalar product on the complex plane, by viewing
C as a two-dimensional real vector space. That is, we have

〈z, z′〉 := aa′ + bb′ = <(zz′),

where z = a + ib and z′ = a′ + ib′. Recall also that |z| =
√

〈z, z〉. In geometric terms we
have,

〈z, z′〉 = |z||z′| cos θ,

where θ is the angle between z and z′, viewed as vectors in the complex plane.
We shall now be interested in mappings A : C → C that preserve angles between inter-

secting curves. First, we consider R-linear mappings. Then, for A to be angle-preserving
clearly is equivalent to the identity,

|z||z′|〈A(z), A(z′)〉 = |A(z)||A(z′)|〈z, z′〉 ∀z, z′ ∈ C.

(We also require of course that A not be zero.)
We write A as a real 2 × 2 matrix

A =
(
r s
t u

)
, acting as a+ ib 7→ ra+ sb+ i(ta+ ub).

Lemma 5.1. Let A : C → C be an R-linear mapping. Then, A preserves angles iff

A =
(
a −b
b a

)
, or A =

(
a b
b −a

)

where a, b ∈ R and a and b are not both equal to zero.

Proof. Exercise.

More generally, to make sense of the concept of angle-preservation for a map f : D → C,
where D is a region, it is necessary that f possesses a continuous total differential. Then,
f preserves angles iff its total differential f ′ preserves angles at every point of D.

Proposition 5.2. Let D ⊆ C be a region and f : D → C a function possessing a continuous
total differential in D. Then, f is angle-preserving iff f is holomorphic in D or anti-
holomorphic in D and its derivative never vanishes.

Proof. Exercise.
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A conformal mapping is a mapping that preserves both angles and orientation. Recall
that a linear map is orientation preserving iff its determinant is positive. More gener-
ally, a mapping is orientation preserving iff its total derivative has positive determinant
everywhere.

Proposition 5.3. Let D ⊆ C be a region and f : D → C a function possessing a continuous
total differential in D. Then, f is conformal iff f is holomorphic in D and its derivative
never vanishes.

Proof. Exercise.

5.2 Biholomorphic mappings
Definition 5.4. Let X be a topological space and S a set. A function f : X → S is called
locally injective at x ∈ X iff there is a neighborhood U ⊆ X of x such that f restricted to
U is injective. f is called locally injective iff it is locally injective at each x ∈ X.

Theorem 5.5. Let D ⊆ C be a region, f ∈ O(D), a ∈ D and p := f(a). Suppose that
f − p has a zero of order m at a. Then there exist ϵ > 0 and δ > 0 with Bδ(a) ⊂ D such
that for q ∈ Bϵ(p)\{p} the function f − q has exactly m distinct simple zeros for z ∈ Bδ(a)
and f − p has no further zeros in z ∈ Bδ(a).

Proof. Since f is not constant (otherwise f−p could not have a zero of finite order according
to Proposition 3.14), neither f − p nor f ′ are constant zero. So the zeros of both f − p and
f ′ are isolated. This implies that we can find δ > 0 with Bδ(a) ⊂ D such that f(z) − p 6= 0
and f ′(z) 6= 0 for all z ∈ Bδ(a) \ {a}. Now set ϵ := minζ∈∂Bδ(a){|f(ζ) − p|}. Then, if
q ∈ Bϵ(p),

|(f(ζ) − p) − (f(ζ) − q)| < ϵ ≤ |f(ζ) − p| ∀ζ ∈ ∂Bδ(a).

So, by Rouché’s Theorem (Theorem 4.10), f − p and f − q must have the same numbers
of zeros, counted with multiplicity, in Bδ(a), namely m. If q 6= p these are all simple by
Proposition 3.14 because f ′(z) 6= 0 for z ∈ Bδ(a) \ {a}.

Proposition 5.6. Let D ⊆ C be a region and f ∈ O(D). Then, f is locally injective at
a ∈ D iff f ′(a) 6= 0. Moreover, f is locally injective in D iff f ′ is nowhere zero in D.

Proof. Let a ∈ D and p := f(a). Suppose first that f ′(a) = 0. Then, either f is constant or
f − p has a zero of order m ≥ 2 at a. In the first case the lack of local injectivity is trivial.
In the second case consider an open neighborhood U ⊆ D of a. Applying Theorem 5.5,
there exists ϵ > 0 such that for q ∈ Bϵ(p) \ {p} the equation f(z) = q has at least two
distinct solutions for z ∈ U . In particular, f is not injective in U . Since U was arbitrary,
f is not locally injective at a.

Now suppose f ′(a) 6= 0. Then, f − p has a simple zero at a. Applying Theorem 5.5,
there exist ϵ > 0 and δ > 0 with Bδ(a) ⊂ D such that for all q ∈ Bϵ(p) the equation
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f(z) = q has exactly one solution in Bδ(a). By continuity of f , U := f−1(Bϵ(p)) ∩Bδ(a) is
an open neighborhood of a. Clearly, f is injective in U , showing that f is locally injective
at a.

Recalling Section 5.1 we see that the concept of conformality is equivalent to holomor-
phicity combined with local injectivity.

Definition 5.7. Let D,D′ ⊆ C be regions. A map f : D → C with f(D) = D′ is called
a biholomorphic map from D to D′ iff f is holomorphic and has a holomorphic inverse
f−1 : D′ → C. If such a map exists, D and D′ are said to be conformally equivalent.

Theorem 5.8. Let D ⊆ C be a region and f ∈ O(D). Then, f is a biholomorphic mapping
from D to f(D) iff f is injective.

Proof. Clearly, biholomorphicity implies injectivity. For the converse assume that f is
injective. By continuity, the image D′ := f(D) is connected. Moreover, by the Open Map-
ping Theorem 3.12, D′ is open. So D′ is a region as it cannot be empty. Since f is injective,
the inverse map f−1 : D′ → D exists. Again using the Open Mapping Theorem, f−1 is
continuous. Moreover, by Proposition 5.6 f ′ is nowhere zero. Applying Proposition 1.7 we
conclude that f−1 is everywhere complex differentiable, i.e., it is holomorphic.

Proposition 5.9. Let D ⊆ C be a region and {fn}n∈N a sequence of injective functions
fn ∈ O(D) converging uniformly in every compact subset of D to f . Then, either f is
constant or f is injective.

Proof. Suppose that f is not constant. Let a in D and set p := f(a) and pn := fn(a) for all
n ∈ N. By injectivity fn − pn never vanishes on D \ {a}. On the other hand, the sequence
{fn − pn}n∈N converges uniformly in any compact subset of D to f − p. Since f − p 6= 0,
Proposition 4.12 implies that f − p has no zeros in D \ {a}. In other words, f does not
take the value p at any point of D \ {a}. Since we chose a arbitrarily it follows that f is
injective.

In the following H := {z ∈ C : =(z) > 0} denotes the upper half-plane in C.

Exercise 45. Show that z 7→ −z2 restricted to H is a biholomorphic mapping. Onto which
region?

Exercise 46. Let D ⊆ C be a region, f ∈ O(D) such that f is not constant. Show that for
any a ∈ D there exists a neighborhood U ⊆ D of a such that there is m ∈ N and g ∈ O(U)
biholomorphic with the property f(z) = f(a) + (g(z))m for all z ∈ U .
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5.3 Conformal automorphisms of C and C×

Definition 5.10. Let D ⊆ C be a region. A biholomorphic mapping from D to D is called
a conformal automorphism of D. The group of conformal automorphisms of D is denoted
Aut(D).

As a first example we consider conformal automorphisms of C. The following ones are
obvious:

1. Ta : z 7→ z + a where a ∈ C is the translation by a.

2. Rθ : z 7→ eiθz where θ ∈ [0, 2π) is the rotation by the angle θ around the origin in
positive direction.

3. Sr : z 7→ rz where r ∈ R+ is the scaling by the factor r around the origin.

Exercise 47. Show that the group generated by translations, rotations and scalings of C
consists precisely of the biholomorphic transformations C → C of the form

z 7→ az + b with a ∈ C \ {0}, b ∈ C.

As we shall see soon there are in fact no further automorphisms of C. Another inter-
esting example is the punctured plane C× := C \ {0}. In addition to the rotations and
scalings already seen above, there is another elementary automorphism of C× given by

I : z 7→ 1
z
, called inversion.

We shall see that there are no further automorphisms of C× than those generated by
rotations, scalings and inversions.

Lemma 5.11. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}) be injective. Then,
either a is a pole of order one or it is a removable singularity and the continuation of f to
D is injective.

Proof. Suppose that a is a removable singularity and denote the continuation of f by
f̃ ∈ O(D). Assume that f̃ is not injective. Since f is injective this means there exists
z ∈ D \ {a} such that f̃(a) = f̃(z). Choose r > 0 such that r < |z − a|/2 and Br(a) ⊆ D
and Br(z) ⊆ D. By the Open Mapping Theorem (Theorem 3.12) f̃(Br(z)) and f̃(Br(a))
are open and so is their intersection U := f̃(Br(z)) ∩ f̃(Br(a)). But by assumption U is
not empty as it contains f̃(a). Since U is open there exists p ∈ U with p 6= f̃(a). Then
there must exist z1 ∈ Br(a)\{a} and z2 ∈ Br(z) such that f(z1) = p = f(z2) contradicting
the injectivity of f . Thus, f̃ must be injective.

Suppose now that a is not a removable singularity. Let r > 0 such that Br(a) ⊂ D
and define D′ := D \ Br(a). By the Open Mapping Theorem (Theorem 3.12) the sets
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f(D′) and f(Br(a) \ {a}) are both open and non-empty, but their intersection is empty
by injectivity. Thus, f(Br(a) \ {a}) cannot be dense in C. By the Casorati-Weierstrass
Theorem (Theorem 4.6) this implies that a is not an essential singularity. Hence, it must
be a pole. This implies that there is s > 0 such that Bs(a) ⊆ D and f(z) 6= 0 for all
z ∈ Bs(a) \ {a}. Define g ∈ O(Bs(a) \ {a}) by g(z) := 1/f(z). Note that g is injective
since f is. Also, a is a pole of f , so a is a removable singularity of g. This implies by the
above part of the proof that the continuation g ∈ O(Bs(a)) is still injective. In particular,
g is locally injective at a, so Proposition 5.6 implies that g′(a) 6= 0. On the other hand
g(a) = 0, so a is a zero of order one of g, implying that it is a pole of order one of f .

Theorem 5.12. Every injective holomorphic function f : C → C is an automorphism of
C and can be written in the form

z 7→ az + b for some a ∈ C×, b ∈ C.

Proof. Let

f(z) =
∞∑
n=0

cnz
n

be the power series expansion of f . Define the function g ∈ O(C×) by g(z) := f(1/z).
Then, g is injective and has the Laurent series expansion

g(z) =
∞∑
n=0

cnz
−n

in A0,∞(0). By Lemma 5.11, 0 is either a removable singularity of g or a pole of order one.
This implies cn = 0 for all n ≥ 2 by Proposition 4.19. By injectivity c1 6= 0, so f has the
stated form and is an automorphism of C.

Corollary 5.13. C is not conformally equivalent to any proper subset.

Theorem 5.14. Every injective holomorphic mapping f : C× → C× is an automorphism
of C× and takes either the form

z 7→ az or z 7→ a

z
for some a ∈ C×.

Proof. According to Lemma 5.11, 0 can either be a removable singularity of f or a pole of
order one. In the first case, the continuation f̃ ∈ O(C) is injective by the same Lemma.
Thus, f̃ is automorphism of C and f̃(z) = az + b for some a ∈ C× and b ∈ C by The-
orem 5.12. But must have f̃−1({0}) 6= ∅ while f−1({0}) = ∅, implying f̃(0) = 0. Thus,
b = 0. In the second case define the injective holomorphic function g : C× → C× by
g(z) := 1/f(z). Since f has a pole at 0, g has a removable singularity at 0. So we can
apply the first part of the proof to g showing that g(z) = ãz for some ã ∈ C×. Setting
a := 1/ã we find f(z) = a/z, completing the proof.
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Exercise 48. Show that C× is conformally equivalent to C \ {p} for any p ∈ C, but not
to any other subset of C.

5.4 Conformal automorphisms of D

We now consider the conformal automorphisms of the open unit disk D := B1(0). Among
the transformations we have seen so far, the rotation by an angle θ around the origin is
obviously an automorphism of D. A less obvious automorphism is given by

Dw : z 7→ z − w

wz − 1
, where w ∈ D.

Exercise 49. Verify the following properties of the transformation Dw: (a) it is an auto-
morphism of D, (b) it is self-inverse, i.e., composing the transformation with itself yields
the identity on D, (c) it interchanges the points 0 and w.

We shall see that the group generated by rotations Rθ and by transformations Dw is
already the full automorphism group of D.

Lemma 5.15 (Schwarz Lemma). Let f : D → D be a holomorphic function such that
f(0) = 0. Then,

|f(z)| ≤ |z| ∀z ∈ D and |f ′(0)| ≤ 1.

Moreover, if |f(z)| = |z| for some z ∈ D \ {0} or if |f ′(0)| = 1, then there is a ∈ C with
|a| = 1 such that f(z) = az for all z ∈ D.

Proof. Since f has a zero at 0, there is g ∈ O(D) such that f(z) = zg(z) and moreover,
f ′(0) = g(0). Since |f(z)| < 1 for all z ∈ D, we have for any 0 < r < 1,

‖g‖∂Br(0) <
1
r
.

On the other hand, applying Proposition 3.7 to Br(0) we have

|g(z)| ≤ ‖g‖∂Br(0) <
1
r

∀z ∈ Br(0).

Since r can be chosen arbitrarily close to 1, we get, for all z ∈ D, |g(z)| ≤ 1. This translates
to the first stated inequality if z 6= 0 and to the second stated inequality if z = 0. If either
|f(z)| = |z| for some z ∈ D \ {0} or if |f ′(0)| = 1, then |g(z)| = 1 for some z ∈ D.
Then, by Theorem 3.6, g is constant, i.e, there is a ∈ C such that g(z) = a for all z ∈ D.
Consequently, f(z) = az. Observe also that |a| = 1.

Proposition 5.16. Let f : D → D be biholomorphic and f(0) = 0. Then, f is a rotation,
i.e., there exists θ ∈ [0, 2π) such that f = Rθ.
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Proof. Applying Lemma 5.15 to both f and f−1 yields,

|f(z)| ≤ |z| and |f−1(z)| ≤ |z| ∀z ∈ D.

Replacing z by f(z) in the second inequality yields, |z| ≤ |f(z)| for all z ∈ D. Thus, we
actually find |f(z)| = |z| for all z ∈ D. By Lemma 5.15 this implies that there exists a ∈ C
with |a| = 1 and f(z) = az, i.e., f is a rotation.

Theorem 5.17. The group of automorphisms of D is generated by rotations Rθ and
transformations Dw. In particular, any automorphism of D can be written uniquely as a
composition Rθ ◦Dw for some θ ∈ [0, 2π) and some w ∈ D.

Proof. Let f ∈ Aut(D). Set w := f−1(0) and define g := f ◦ Dw. Then g ∈ Aut(D) with
the property that g(0) = 0. Applying Proposition 5.16 to g yields that g is a rotation.
That is, there exists θ ∈ [0, 2π) such that g = Rθ. Then, f = Rθ ◦Dw, since Dw ◦Dw = id.
To see uniqueness suppose that also f = Rθ′ ◦ Dw′ . Then f−1(0) = (Rθ′ ◦ Dw′)−1(0) =
D−1
w′ (0) = w′, so w′ = w. But composing with Dw yields then Rθ′ = Rθ which implies

θ′ = θ.

Exercise 50. Show that the set of automorphisms of D is identical to the set of transfor-
mations D → D of the form

z 7→ xz + y

yz + x
with x, y ∈ C and |x| > |y|.

Exercise 51. Let f : D → D be holomorphic and a ∈ D such that f(a) = 0. Show that

|f(z)| ≤ |z − a|
|az − 1|

∀z ∈ D.

Moreover, in case of equality for some z ∈ D \ {a}, f is automorphism of D.

5.5 Möbius Transformations
It turns out that all the biholomorphic transformations we have considered so far can be
written as rational maps that arise as quotients of polynomials of degree one. It turns out
that maps of this type are always biholomorphic and permit the understanding of a variety
of conformal equivalences and automorphism groups.

To each complex matrix

A =
(
a b
c d

)
with c 6= 0 or d 6= 0 we associate the rational function MA ∈ M(C) given by

MA(z) := az + b

cz + d
.
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Since
M ′
A(z) = detA

(cz + d)2

we see that MA is constant if detA = 0. In the following we shall restrict to the case
detA 6= 0. MA is then called a Möbius transformation or fractional linear transformation.
We denote the set of these meromorphic functions by Möb. Recall that GL2(C), the
group of general linear transformations in C2, is the group of complex 2 × 2-matrices with
non-zero determinant.

Proposition 5.18. The set of Möbius transformations Möb forms a group by composition.
Moreover, the map GL2(C) → Möb given by A 7→ MA is a group homomorphism, i.e., we
have

MAB = MA ◦MB ∀A,B ∈ GL2(C).

Proof. Exercise.

Exercise 52. Verify that the upper triangular matrices (with non-vanishing determi-
nant) form a subgroup of GL2(C). Show that the image of this subgroup under the map
GL2(C) → Möb is the group Aut(C). Identify the upper triangular matrices corresponding
to translations, rotations and dilations.

Exercise 53. Verify that the other Möbius transformations also define biholomorphic
mappings. Between which regions?

Recall that GL+
2 (R) is the group of orientation-preserving general linear transforma-

tions of R2, i.e., these are 2 × 2-matrices with real entries and positive determinant.

Proposition 5.19. The restriction of the map GL2(C) → Möb to the subgroup GL+
2 (R)

yields Möbius transformations that are conformal automorphisms of H. That is, we obtain
a group homomorphism GL+

2 (R) → Aut(H).

Proof. Exercise.

Proposition 5.20. Let D,D′ ⊆ C be regions such that D and D′ are conformally equiv-
alent. Then Aut(D) and Aut(D′) are isomorphic. In particular, every biholomorphic
mapping D → D′ yields such an isomorphism.

Proof. Let f : D → D′ be a biholomorphic mapping. Then, an isomorphism Aut(D) →
Aut(D′) is given by g 7→ f ◦ g ◦ f−1.

Exercise 54. Show that the Cayley map MC ∈ M(C) given by

C :=
(

1 −i
1 i

)

is a biholomorphic map from H to D.
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Proposition 5.21. Consider the group homomorphism GL+(R) → Aut(D) given by A 7→
MC ◦ MA ◦ M−1

C induced by the Cayley map MC : H → D. This group homomorphism is
surjective, i.e., every automorphism of D can be obtained in this way.

Proof. If C is the matrix of Exercise 54, then C−1 = 1
2

(
1 1
i −i

)
and M−1

C = MC−1 .

It is easy to verify by matrix multiplication that for A =
(
a b
c d

)
the indicated group

homomorphism yields the automorphism D → D given by

z 7→ xz + y

yz + x
,

where x := a+ d+ ib− ic and y := a− d− ib− ic. If a, b, c, d were arbitrary real numbers,
x, y would be arbitrary complex numbers. It is easy to verify that |x|2 − |y|2 = 4 detA.
Thus, the condition detA > 0 on (a, b, c, d) corresponds precisely to the condition |x| > |y|
on (x, y). Recalling Exercise 50, we recognize that we obtain all automorphisms of D.

Exercise 55. Let A,B ∈ GL2(C). Show that MA = MB iff there exists λ ∈ C \ {0} such
that B = λA.

PGL2(C) is the group of projective general linear transformations of C2. It is the
quotient GL2(C)/C∗, where C∗ is the subgroup of GL2(C) given by non-zero complex
multiples of the unit matrix.

Exercise 56. Show that PGL2(C) is isomorphic to SL2(C)/Z2, where Z2 is the subgroup
of SL2(C) consisting of {1,−1}.

Proposition 5.22. PGL2(C) ≈ Möb.

PGL+
2 (R) is the group of projective orientation-preserving general linear transforma-

tions of R2. It is the quotient GL+
2 (R)/R∗, where R∗ is the subgroup of GL+

2 (R) given by
non-zero real multiples of the unit matrix.

Exercise 57. Show that PGL+
2 (R) is isomorphic to SL2(R)/Z2, where Z2 is the subgroup

of SL2(R) consisting of {1,−1}.

Proposition 5.23. PGL+
2 (R) ≈ Aut(H) ≈ Aut(D).

5.6 Montel’s Theorem
Let X be a topological space. We denote by C(X) the set of complex valued continuous
functions on X.

Definition 5.24. A topological space is called separable iff it contains a countable dense
subset.
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Definition 5.25. Let X be a topological space, F ⊆ C(X). F is called pointwise bounded
iff for each a ∈ X there is a constant M > 0 such that |f(a)| < M for all f ∈ F . F is
called locally bounded iff for each a ∈ X there is a constant M > 0 and a neighborhood
U ⊆ X of a such that |f(x)| < M for all x ∈ U and for all f ∈ F .

Definition 5.26. Let X be a topological space. A subset F ⊆ C(X) is called equicontin-
uous at a ∈ X iff for every ϵ > 0 there exists a neighborhood U ⊆ X of a such that

|f(x) − f(y)| < ϵ ∀x, y ∈ U,∀ f ∈ F.

A subset F ⊆ C(X) is called locally equicontinuous iff F is equicontinuous at a for all
a ∈ X.

Definition 5.27. Let X be a topological space. A subset F ⊆ C(X) is called normal
iff every sequence of elements of F has a subsequence that converges uniformly on every
compact subset of X.

Theorem 5.28 (Arzela-Ascoli). Let X be a separable topological space and F ⊆ C(X).
Suppose that F is pointwise bounded and locally equicontinuous. Then, F is normal.

Proof. Let {fn}n∈N be a sequence of elements of F . We have to show that there exists
a subsequence that converges uniformly on any compact subset of X. We encode sub-
sequences of a sequence through infinite subsets of N in the obvious way. Let {xk}k∈N
be a sequence of points which is dense in X. Set N0 := N and construct iteratively
Nk ⊆ Nk−1 as follows. The sequence {fn(xk)}n∈Nk−1 is bounded by the assumption of
pointwise boundedness of F . Thus there exists a convergent subsequence given by an infi-
nite subset Nk ⊆ Nk−1. Proceeding in this way we obtain a sequence of decreasing infinite
subsets N0 ⊇ N1 ⊇ N2 ⊇ . . . . Now consider the sequence {nl}l∈N of strictly increasing
natural numbers nl obtained as follows: nl is the lth element of the set Nl. It is then clear
that the sequence {fnl

(xk)}l∈N converges for every k ∈ N.
Now let K ⊆ X be compact and choose ϵ > 0. Since F is locally equicontinuous, we

find for each a ∈ K an open neighborhood Ua ⊆ X such that |f(x) − f(y)| < ϵ for all
f ∈ F if x, y ∈ Ua. Since K is compact there are finitely many points a1, . . . , am ∈ K such
that Ua1 , . . . , Uam cover K. Since {xk}k∈N is dense in X there exists for each j ∈ 1, . . . ,m
an index kj such that xkj

∈ Uaj . Now, {fnl
(xkj

)}l∈N converges and is Cauchy for all
j ∈ {1, . . . ,m}. In particular, by taking a maximum if necessary we can find l0 ∈ N such
that |fni(xkj

) − fnl
(xkj

)| < ϵ for all i, l ≥ l0 and for all j ∈ {1, . . . ,m}.
Now fix p ∈ K. Then, there is j ∈ {1, . . . ,m} such that p ∈ Uaj . For i, l ≥ l0 we thus

obtain the estimate

|fni(p) − fnl
(p)| ≤ |fni(p) − fni(xkj

)|
+ |fni(xkj

) − fnl
(xkj

)| + |fnl
(xkj

) − fnl
(p)| < 3ϵ.

In particular, this implies that {fnl
}l∈N converges uniformly on K.
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Theorem 5.29 (Montel). Let D ⊆ C be a region and F ⊆ O(D). Suppose that F is locally
bounded. Then, F is normal.

Proof. We show that F is locally equicontinuous. The result follows then from the Arzela-
Ascoli Theorem 5.28. Let z0 ∈ D and choose ϵ > 0. Since F is locally bounded, there
exists a constant M > 0 and r > 0 with B2r(z0) ⊂ D and such that |f(z)| < M for all
z ∈ B2r(z0) and all f ∈ F . The Cauchy Integral Formula (Theorem 2.20) yields for all
f ∈ F and z, w ∈ B2r(z0)

f(z) − f(w) = 1
2πi

∫
∂B2r(z0)

(
f(ζ)
ζ − z

− f(ζ)
ζ − w

)
dζ

= z − w

2πi

∫
∂B2r(z0)

f(ζ)
(ζ − z)(ζ − w)

dζ.

If we restrict to z, w ∈ Br(z0) we have the estimate |(ζ−z)(ζ−w)| > r2 for all ζ ∈ ∂B2r(z0).
Combining this with the standard integral estimate (Proposition 2.6) we obtain,

|f(z) − f(w)| ≤ |z − w|
2‖f‖∂B2r(z0)

r
< |z − w|2M

r
.

Choosing δ := min
{
r, rϵ

4M
}

yields the estimate

|f(z) − f(w)| < ϵ ∀z, w ∈ Bδ(z0),

showing local equicontinuity. This completes the proof.

Exercise 58. Let X be a metric space and F ⊆ C(X). Suppose that F is normal. Show
that F is (a) locally bounded and (b) locally equicontinuous.

Exercise 59 (Vitali’s Theorem). Let D ⊆ C be a region and {fn}n∈N a locally bounded
sequence of holomorphic functions on D. Set A := {z ∈ D : limn→∞ fn(z) exists}. Suppose
that A has a limit point in D. Show that {fn}n∈N converges uniformly on compact subsets
of D.

5.7 The Riemann Mapping Theorem
Theorem 5.30 (Riemann Mapping Theorem). Every homologically simply connected re-
gion which is different from C is conformally equivalent to D.

Proof. Let D be the region in question. Fix z0 ∈ D arbitrarily. Let F ⊆ O(D) be the set
of holomorphic functions f ∈ O(D) which are injective, whose image is contained in D and
such that f(z0) = 0. Our strategy is to find an element of F which is a biholomorphism
D → D.

First we show that F is not empty. By assumption D 6= C, so we can choose a ∈
C \ D. The function f(z) := z − a is holomorphic and zero-free in D, so according to
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Theorem 3.22 there is a holomorphic square root g ∈ O(D) with g2 = f . If g(z1) = g(z2)
then (g(z1))2 = (g(z2))2 and so z1 = z2 since f is injective. Therefore also g is injective.
Moreover, if g(z1) = −g(z2) we can draw the same conclusion z1 = z2, but this time we get
a contradiction, since g is zero-free. Thus, if z ∈ C is in the image of g, then −z cannot be
in the image of g. Now since g is not constant the Open Mapping Theorem 3.12 ensures
that g(D) is open. In particular there exists w ∈ C and r > 0 such that Br(w) ⊂ g(D). But
applying the previous statement to all elements of Br(w) we obtain Br(−w) ∩ g(D) = ∅.
It is now easy to see that the function h ∈ O(D) defined by h(z) := r/(g(z) + w) is also
injective and satisfies h(D) ⊆ D. Setting v := h(z0), we have Dv ◦h ∈ F since Dv ∈ Aut(D)
and Dv(v) = 0.

Since D is open, there exists r > 0 such that Br(z0) ⊂ D. Using the Cauchy estimate
(Proposition 1.25) we find the bound |f ′(z0)| < 1/r for all f ∈ F . This implies that

M := sup{|f ′(z0)| : f ∈ F}

is well defined. On the other hand we will show that if f(D) 6= D for some f ∈ F , then there
exists g ∈ F such that |g′(z0)| > |f ′(z0)|. This implies that h ∈ F is a biholomorphism
D → D if |h′(z0)| = M . We will then show that such an h exists.

Consider some f ∈ F such that f(D) 6= D. Choose p ∈ D \ f(D). Since Dp ∈ Aut(D),
the composition Dp ◦ f is injective and Dp ◦ f(D) ⊂ D. Furthermore, Dp ◦ f is zero-free
since D−1

p (0) = {p}. Since D is homologically simply connected we can find a holomorphic
square root g ∈ O(D) with g2 = Dp ◦ f according to Theorem 3.22. In fact, it is clear that
g is injective and g(D) ⊆ D. Set w := g(z0). Then h := Dw ◦ g ∈ F . Consider now the
holomorphic map k : D → D given by k(z) = Dp((Dw(z))2). Then, f = k ◦ h and applying
the chain rule for derivatives we obtain

f ′(z0) = k′(h(z0))h′(z0) = k′(0)h′(z0).

Noting that k(0) = 0 we can apply the Schwarz Lemma 5.15. Since k is not a rotation,
this implies |k′(0)| < 1. Hence, |f ′(z0)| < |h′(z0)| since h′(z0) 6= 0 by injectivity of h.

The image of all functions in F is contained in the bounded set D, so in particular F
is locally bounded. According to Montel’s Theorem 5.29 this implies that F is normal.
Consider now a sequence {fn}n∈N of elements of F such that |f ′

n(z0)| → M as n → ∞.
Since F is normal, there is a subsequence {fnk

}k∈N which converges uniformly on any
compact subset of D to a function f ∈ O(D) by Proposition 3.1. By the same Proposition
we have convergence of the derivative and thus |f ′(z0)| = M as desired. It remains to show
that f ∈ F . From the limit process it is clear that f(z0) = 0 and f(D) ⊆ D. Since f
is not constant (in particular, f ′(z0) 6= 0) the Open Mapping Theorem 3.12 implies that
f(D) must be open and so we must have f(D) ⊆ D. The injectivity of f follows from
Proposition 5.9. Hence f ∈ F . This completes the proof.

Proposition 5.31. Let D ⊂ C be a homologically simply connected region, a ∈ D. Then,
there exists exactly one biholomorphism f : D → D such that f(a) = 0 and f ′(a) > 0.
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Proof. Exercise.

Exercise 60. Show that a homologically simply connected region cannot be conformally
equivalent to a region that is not homologically simply connected.
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6 Harmonic functions
6.1 Mean value and maximum
We coordinatize the complex plane by coordinates (x, y) ∈ R2 with z = x + iy ∈ C. The
Laplace operator on the complex plane is then given by

∆ := ∂2

∂x2 + ∂2

∂y2 .

Definition 6.1. Let U ⊆ C be an open set and f : U → R be twice continuously partially
differentiable. Then, f is called harmonic iff it satisfies the Laplace equation

∆f = 0.

Proposition 6.2. The real and the imaginary part of a holomorphic function are harmonic.

Proof. Exercise.

Proposition 6.3. Let U, V ⊆ C be open and f ∈ O(U) such that f(U) ⊆ V . If g : V → R
is harmonic, then g ◦ f : U → R is also harmonic.

Proof. Exercise.

Lemma 6.4. Let D = C or D = D and u : D → R a harmonic function. Then, there
exists a harmonic function v : D → R such that u+ iv ∈ O(D).

Proof. Define the continuously partially differentiable function v : D → R given by

v(x, y) :=
∫ y

0
ux(x, t) dt−

∫ x

0
uy(s, 0) ds ∀(x, y) ∈ D.

Differentiating by ∂/∂x and using that u is harmonic we get

vx(x, y) =
∫ y

0
uxx(x, t) dt− uy(x, 0)

= −
∫ y

0
uyy(x, t) dt− uy(x, 0)

= −uy(x, y) + uy(x, 0) − uy(x, 0)
= −uy(x, y).

Note that the interchange of differentiation and integration in the first step is permitted
since the integrand is continuously differentiable and the integration range compact. On
the other hand, differentiating by ∂/∂y we obtain

vy(x, y) = ux(x, y).

Thus, the pair (u, v) satisfies the Cauchy-Riemann equations so that u+ iv is holomorphic
according to Proposition 1.3.
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Theorem 6.5. Let D ⊆ C be a homologically simply connected region and u : D → R be
harmonic. Then, there exists a harmonic function v : D → R such that u+ iv : D → C is
holomorphic.

Proof. If D = C then Lemma 6.4 directly applies and we are done. Suppose therefore
that D 6= C. By the Riemann Mapping Theorem 5.30 there exists a biholomorphic map
f : D → D. By Proposition 6.3, u ◦ f−1 : D → R is harmonic. Applying Lemma 6.4, there
exists a harmonic function w : D → R such that u ◦ f−1 + iw : D → C is holomorphic.
Define v : D → R by v := w◦f . Then, v is harmonic by Proposition 6.3 and u+iv : D → C
is holomorphic.

Proposition 6.6. Harmonic functions are infinitely differentiable.

Proof. Exercise.

Theorem 6.7 (Mean Value Theorem). Let D ⊆ C be a region and u : D → R harmonic.
Suppose a ∈ D and r > 0 such that Br(a) ⊂ D. Then,

u(a) = 1
2π

∫ 2π

0
u
(
a+ reiθ

)
dθ.

Proof. Choose s > r such that Bs(a) ⊆ D. By Theorem 6.5 there exist a harmonic function
v : Bs(a) → R such that f := u + iv : Bs(a) → C is holomorphic. Applying the Cauchy
Integral Formula (Theorem 2.20) to f at the point a with path ∂Br(a) we obtain,

f(a) = 1
2πi

∫
∂Br(a)

f(ζ)
ζ − a

dζ = 1
2π

∫ 2π

0
f
(
a+ reiθ

)
dθ.

Taking the real part on both sides yields the desired result.

Definition 6.8. Let D ⊆ C be a region and u : D → R continuous. We say that u has
the mean value property iff for all a ∈ D and all r > 0 such that Br(a) ⊂ D we have

u(a) = 1
2π

∫ 2π

0
u
(
a+ reiθ

)
dθ.

It turns out that the mean value property implies harmonicity.

Theorem 6.9 (Maximum Principle). Let D ⊆ C be a region and u : D → R a continuous
function with the mean value property. Suppose that u has a maximum at some point
a ∈ D, i.e., that u(z) ≤ u(a) for all z ∈ D. Then u is constant.

Proof. Define
A := {z ∈ D : u(z) = u(a)}.
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Since u is continuous, A must be closed in D. We proceed to show that A is also open.
Let z0 ∈ A and r > 0 such that Br(z0) ⊆ D. Choose b ∈ Br(z0) and set s := |b− z0|. By
the mean value property

u(z0) = 1
2π

∫ 2π

0
u
(
z0 + seiθ

)
dθ.

The integrand is continuous and everywhere smaller or equal to u(z0). Hence, for the
equality to hold, we must have u

(
z0 + seiθ

)
= u(z0) for all θ ∈ [0, 2π). In particular,

u(b) = u(z0) = u(a) and hence b ∈ A. Since b was chosen arbitrarily we have Br(z0) ⊆ A,
showing that A is open. Since A is non-empty, closed in D and open, we must have A = D.
Thus, u(z) = u(a) for all z ∈ D and u is constant.

Proposition 6.10. Let D ⊂ C be a bounded region and u : D → R a continuous function
with the mean value property in D, satisfying u|∂D = 0. Then, u = 0.

Proof. Exercise.

Exercise 61. Show the following version of the maximum principle, which is more similar
to Theorem 3.6: Let D ⊆ C be a region and f : D → C a continuous function satisfying
the mean value property. Suppose that |f | has a maximum at some point a ∈ D, i.e.,
that |f(z)| ≤ |f(a)| for all z ∈ D. Then f is constant. [Hint: Consider the function
g(z) := <(f(z)/f(a)).]

6.2 The Dirichlet Problem
Definition 6.11. The function P : D → R given by

P (z) := <
(1 + z

1 − z

)
∀z ∈ D

is called the Poisson kernel. For 0 ≤ r < 1 and θ ∈ R it is also common to use the notation

Pr(θ) := P
(
reiθ

)
.

Proposition 6.12. The Poisson kernel P has the following properties:

1. P is harmonic.

2. For all z = reiθ ∈ D,

Pr(θ) = P (z) = 1 − |z|2

|1 − z|2
= 1 − r2

1 − 2r cos θ + r2 .

3. P (z) > 0 for all z ∈ D.
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4. Pr(−θ) = P (z) = P (z) = Pr(θ) for all z = reiθ ∈ D.

5. for all z = reiθ ∈ D,

Pr(θ) = P (z) = 1 +
∞∑
n=1

(zn + zn) =
∞∑

n=−∞
r|n|einθ.

6. For all 0 ≤ r < 1 we have

1
2πi

∫
∂Br(0)

P (ζ)
ζ

dζ = 1
2π

∫ π

−π
Pr(θ) dθ = 1.

7. For all 0 < r < 1 and 0 < |δ| < |θ| ≤ π we have Pr(θ) < Pr(δ).

8. For each 0 < δ < π and ϵ > 0 there exists 0 < ρ < 1 such that for all ρ < r < 1 and
δ < |θ| ≤ π we have |Pr(θ)| < ϵ.

Proof. 1. By definition, the Poisson kernel is the real part of a holomorphic function.
Thus, it is harmonic by 6.2. 2. Elementary calculation. 3. This follows immediately from
2. 4. This follows immediately from 2. 5. Exercise. 6. Note that for 0 ≤ r < 1 the
series representation given in 5. converges uniformly. So, we can exchange summation and
integration to get,

1
2π

∫ π

−π
Pr(θ) dθ =

∞∑
n=−∞

1
2π

∫ π

−π
einθ dθ = 1.

7. This follows easily from 2. 8. Fix 0 < δ < π and ϵ > 0. Then, Pr(δ) → 0 for r → 1−
using 2. Thus, there is 0 < ρ < 1 so that |Pr(δ)| < ϵ if ρ < r < 1. Using 7. completes the
proof of 8.

Theorem 6.13. Let b : ∂D → R be continuous. Then, there exists a unique continuous
function u : D → R such that u|∂D = b and u is harmonic in D. Moreover, for all 0 ≤ r < 1
and θ ∈ R,

u
(
reiθ

)
= 1

2π

∫ π

−π
Pr(θ − ϕ)b

(
eiϕ
)

dϕ.

Proof. Define u(z) for z ∈ D by the stated formula and u(z) := b(z) for z ∈ ∂D. We first
show that u is harmonic in D. We note that for z ∈ D,

u(z) = 1
2π

∫ π

−π
<
(

1 + ze−iϕ

1 − ze−iϕ

)
b
(
eiϕ
)

dϕ

= <
(

1
2π

∫ π

−π

eiϕ + z

eiϕ − z
b
(
eiϕ
)

dϕ
)
.
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Note that the integrand in the last expression is continuous as a function of (ϕ, z) ∈ R×D
and holomorphic as a function of z ∈ D for each value of ϕ ∈ R. That is, we can apply
Lemma 2.27 to conclude that the integral defines a holomorphic function in D. But by
Proposition 6.2, the real part of this function is harmonic.

We proceed to show that u is continuous in D. Since continuity in D follows from
harmonicity it suffices to consider points in the boundary of D. In particular, it is enough
to show the following: Given ψ ∈ [−π, π) and ϵ > 0, there exist δ > 0 and 0 < ρ < 1 such
that ∣∣∣u (reiθ

)
− b

(
eiψ
)∣∣∣ < ϵ ∀ρ < r ≤ 1,∀θ ∈ (ψ − δ, ψ + δ).

We proceed to find such δ and ρ given ψ and ϵ. By continuity of b, there exists δ > 0 such
that ∣∣∣b (eiθ

)
− b

(
eiψ
)∣∣∣ < ϵ

2
∀θ ∈ (ψ − 2δ, ψ + 2δ).

By Proposition 6.12.8, there exists 0 < ρ < 1 such that

Pr(θ) <
ϵ

4(‖b‖∂D + 1)
∀ρ < r < 1, ∀δ < |θ| ≤ π.

Now let θ ∈ (ψ − δ, ψ + δ) and ρ < r ≤ 1. Then,∣∣∣u (reiθ
)

− b
(
eiψ
)∣∣∣ =

∣∣∣∣ 1
2π

∫ π

−π
Pr(θ − ϕ)b

(
eiϕ
)

dϕ− b
(
eiψ
)∣∣∣∣

=
∣∣∣∣ 1
2π

∫ π

−π
Pr(θ − ϕ)

(
b
(
eiϕ
)

− b
(
eiψ
))

dϕ
∣∣∣∣

≤ 1
2π

∫ π

−π
Pr(θ − ϕ)

∣∣∣b (eiϕ
)

− b
(
eiψ
)∣∣∣ dϕ

= 1
2π

∫
|ϕ−ψ|<2δ

Pr(θ − ϕ)
∣∣∣b (eiϕ

)
− b

(
eiψ
)∣∣∣ dϕ

+ 1
2π

∫
|ϕ−ψ|≥2δ

Pr(θ − ϕ)
∣∣∣b (eiϕ

)
− b

(
eiψ
)∣∣∣ dϕ

≤ 1
2π

∫
|ϕ−ψ|<2δ

Pr(θ − ϕ) ϵ
2

dϕ

+ 1
2π

∫
|ϕ−ψ|≥2δ

ϵ

4(‖b‖∂D + 1)
2‖b‖∂D dϕ

<
1

2π

∫ π

−π
Pr(θ − ϕ) ϵ

2
dϕ+ 1

2π

∫ π

−π

ϵ

2
dϕ

= ϵ.

Here, we have used the properties of the Poisson kernel given in Proposition 6.12 parts 3.
and 6.

It remains to show uniqueness of the function u. Suppose there was another function
v : D → R with the required properties. Then, the difference u − v would be continuous
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on D and harmonic in D. Furthermore, (u− v)|∂D = 0, so by Proposition 6.10, u− v = 0,
i.e., u = v.

Definition 6.14. We call a region D ⊆ C disk-like iff there exists a conformal equivalence
D → D which extends to a homeomorphism D → D.

Remark 6.15. A disk-like region is in particular homologically simply connected and
bounded.

Theorem 6.16. Let D ⊂ C be a disk-like region. Let b : ∂D → R be continuous. Then,
there exists a unique continuous function u : D → R such that u|∂D = b and u is harmonic
in D.

Proof. Exercise.

Theorem 6.17. Let U ⊆ C be open and u : U → R be continuous with the mean value
property. Then, u is harmonic.

Proof. Let a ∈ U and r > 0 such that Br(a) ⊂ U . It is sufficient to show that u is
harmonic in Br(a). Since Br(a) is disk-like there exists by Theorem 6.16 a continuous
function v : Br(a) → R which is harmonic in Br(a) and coincides with u in ∂Br(a). But
the difference u − v : Br(a) → R is continuous, has the mean value property in Br(a)
and vanishes on the boundary ∂Br(a). Thus u = v also in Br(a) by Proposition 6.10. In
particular, u is harmonic in Br(a).
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7 The Riemann Sphere

7.1 Definition

Definition 7.1. A topological space is called locally compact iff every point has a compact
neighborhood.

Proposition 7.2 (One-Point Compactification). Let X be a Hausdorff topological space
that is locally compact. Consider the set X̂ := X∪{∞} equipped with the following topology:
A set U ⊆ X̂ is open iff U ⊆ X and U is open in X or if U = V ∪ {∞} where V ⊆ X such
that X \ V is compact in X. Then, X̂ is a compact Hausdorff space.

Proof. Exercise.

Proposition 7.3. Consider the topological space Ĉ with the subsets U0 := Ĉ \ {∞} and
U∞ := Ĉ \ {0}. Consider the maps ϕ0 : U0 → C given by ϕ0(z) := z for all z ∈ U0 and
ϕ∞ : U∞ → C given by ϕ∞(z) := 1/z for all z ∈ U∞ \{∞} and ϕ∞(∞) := 0. Then, ϕ0 and
ϕ∞ are homeomorphisms. Moreover, ϕ0 ◦ϕ−1

∞ |C\{0} is the biholomorphism C\{0} → C\{0}
given by z 7→ 1/z.

Proof. Exercise.

Remark 7.4. The topological space Ĉ together with the structures introduced in the
preceding Proposition is called the Riemann sphere. It is an example of a complex manifold.
The maps ϕ0, ϕ∞ are called charts.

Exercise 62. Let {zn}n∈N be a sequence of complex numbers. Show that limn→∞ zn = ∞
in Ĉ if and only if for each M > 0 there exists n0 ∈ N such that |zn| > M for all n ≥ n0.

Exercise 63. Consider the symmetric function d : Ĉ × Ĉ → R+
0 given by

d(z, z′) := 2|z − z′|√
(1 + |z|2)(1 + |z′|2)

∀z, z′ ∈ C

d(∞, z) := 2√
1 + |z|2

∀z ∈ C

d(∞,∞) := 0.

Show that d defines a metric on the Riemann sphere that is compatible with its topology.

Remark 7.5. The metric introduced above can be obtained from the stereographic pro-
jection of Ĉ identified with the unit disk to the complex plane.
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7.2 Functions on Ĉ

Exercise 64. Let D ⊆ Ĉ be a region and f : D → C be continuous. Let a ∈ D \ {0,∞}.
Show that f ◦ ϕ−1

0 is holomorphic/conformal at ϕ0(a) iff f ◦ ϕ−1
∞ is holomorphic/conformal

at ϕ∞(a).

Definition 7.6. Let D ⊆ Ĉ be a region and f : D → C be continuous. Let a ∈ D. If
a 6= ∞, we say that f is holomorphic/conformal at a iff f ◦ ϕ−1

0 is holomorphic/conformal
at ϕ0(a). If a 6= 0, we say that f is holomorphic/conformal at a iff f ◦ ϕ−1

∞ is holomor-
phic/conformal at ϕ∞(a). We say that f is holomorphic/conformal in D iff f is holomor-
phic/conformal at each point a ∈ D.

Exercise 65. Let D ⊆ Ĉ be a region and a ∈ D \ {0,∞}. Let f ∈ O(D \ {a}). Show that
the type and order of the singularity of f ◦ ϕ−1

0 at ϕ0(a) is the same as the type and order
of the singularity of f ◦ ϕ−1

∞ at ϕ∞(a).

Definition 7.7. Let D ⊆ Ĉ be a region, a ∈ D and f ∈ O(D \ {a}). If a 6= ∞, we say
that f has a removable singularity/a pole of order n/an essential singularity at a iff f ◦ϕ−1

0
has a removable singularity/a pole of order n/an essential singularity at ϕ0(a). If a 6= 0,
we say that f has a removable singularity/a pole of order n/an essential singularity at a
iff f ◦ ϕ−1

∞ has a removable singularity/a pole of order n/an essential singularity at ϕ∞(a).

Proposition 7.8. Let f ∈ O(Ĉ). Then, f is constant.

Proof. Exercise.

Definition 7.9. Let D ⊆ Ĉ be a region and A ⊂ D be a discrete and relatively closed
subset. A function f ∈ O(D \ A) is called meromorphic iff each point a ∈ A is either a
removable singularity or a pole of f .

Proposition 7.10. Let f ∈ M(Ĉ). Then, f is a rational function.

Proof. Exercise.[Hint: First assume that f has a pole only at ∞ and show that |f(z)| <
M |z|n for some constants M > 0 and n ∈ N. Conclude that f must be a polynomial. In
the general case show and use the fact that f can only have finitely many poles.]

7.3 Functions onto Ĉ and Aut(Ĉ)

Exercise 66. Let D ⊆ Ĉ be a region and f ∈ M(D). Let P ⊂ D be the set of poles of f
and Z ⊆ D the set of zeros of f . Define f̂ : D → Ĉ by f̂(z) := ϕ−1

0 (f(z)) if z ∈ D \ P and
f̂(z) := ∞ if z ∈ P . Show that f̂ is continuous and that ϕ0 ◦ f̂ |D\P as well as ϕ∞ ◦ f̂ |D\Z
are holomorphic.

Exercise 67. Let D ⊆ Ĉ be a region and f̂ : Ĉ → Ĉ be continuous. Let Z := {z ∈ Ĉ :
f̂(z) = 0} and P := {z ∈ Ĉ : f̂(z) = ∞}. Suppose that ϕ0 ◦ f̂ |D\P as well as ϕ∞ ◦ f̂ |D\Z
are holomorphic. Define f : D \ P → C by f := ϕ0 ◦ f̂ |D\P . If P 6= D, then f ∈ M(D).
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Definition 7.11. Let D ⊆ Ĉ be a region and f : D → Ĉ be continuous. Let a ∈ D. If
f(a) 6= ∞, we say that f is conformal at a iff ϕ0 ◦ f is conformal at a. If f(a) 6= 0, we say
that f is conformal at a iff ϕ∞ ◦ f is conformal at a. We say that f is conformal in D iff
f is conformal at each point a ∈ D.

Definition 7.12. A conformal mapping Ĉ → Ĉ that has a conformal inverse is called a
conformal automorphism of Ĉ.

Proposition 7.13. Möbius transformations are conformal automorphisms of Ĉ.

Proof. Exercise.

Theorem 7.14. Suppose that f : Ĉ → Ĉ is conformal and injective. Then, f is a Möbius
transformation.

Proof. (Sketch.) As in Exercise 67 we can think of f as a meromorphic function on Ĉ.
Thus, by Proposition 7.10, f is rational, i.e., a quotient p/q of polynomials. Without loss
of generality we may assume p and q not to have common divisors. Since f is injective, p
can only have one zero which must be simple. Similarly, q can only have one pole which
must be simple. Thus, f is a Möbius transformation.

Corollary 7.15. Aut(Ĉ) = Möb.

Theorem 7.16. Let (a, b, c) and (a′, b′, c′) be triples of distinct points in Ĉ. Then, there
exists exactly one Möbius transformation f such that f(a) = a′, f(b) = b′, f(c) = c′.

Proof. Exercise.
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