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1 Topological and metric spaces

1.1 Basic Definitions

Definition 1.1 (Topology). Let S be a set. A subset T of the set P(S) of subsets of S is
called a topology iff it has the following properties:

e PeTand SeT.
o Let {U;}icr be a family of elements in 7. Then ;c;U; € T.
e Let U,V E€T. ThenUNV eT.

A set equipped with a topology is called a topological space. The elements of T are called
the open sets in S. A complement of an open set in S is called a closed set.

Definition 1.2. Let S be a topological space and x € S. Then a subset U C S is called a
neighborhood of x iff it contains an open set which in turn contains x.

Definition 1.3. Let S be a topological space and U a subset. The closure U of U is the

smallest closed set containing U. The interior U of U is the largest open set contained in
U. U is called dense in S iff U = S.

Definition 1.4 (base). Let 7 be a topology. A subset B of 7T is called a base of T iff
the elements of T are precisely the unions of elements of B. It is called a subbase iff the
elements of T are precisely the finite intersections of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of P(S). B is the base of a topology on
S iff it satisfies all of the following properties:

« DeB.
o For every x € S there is a set U € B such that x € U.

o Let U,V € B. Then there exists a family {Wytaca of elements of B such that
UNV =Upen Wa.

Proof. Exercise. O

Definition 1.6 (Filter). Let S be a set. A subset F of the set B(S) of subsets of S is
called a filter iff it has the following properties:

e ¢ Fand S e F.
e Let U,V e€F. ThenUNV € F.
e letU e FandUCV CS. ThenV € F.
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Definition 1.7. Let F be a filter. A subset B of F is called a base of F iff every element
of F contains an element of B.

Proposition 1.8. Let S be a set and B CB(S). Then B is the base of a filter on S iff it
satisfies the following properties:

o 0 ¢ B and B #0.
o Let U,V € B. Then there exists W € B such that W CUNV.
Proof. Exercise. O

Let S be a topological space and z € S. It is easy to see that the set of neighborhoods
of x forms a filter. It is called the filter of neighborhoods of x and denoted by N,. The
family of filters of neighborhoods in turn encodes the topology:

Proposition 1.9. Let S be a topological space and {N,}rcs the family of filters of neigh-
borhoods. Then a subset U of S is open iff for every x € U, there is a set W, € Ny such
that W, C U.

Proof. Exercise. O

Proposition 1.10. Let S be a set and {F,}rcs an assignment of a filter to every point
in S. Then this family of filters are the filters of neighborhoods of a topology on S iff they
satisfy the following properties:

1. For allx € S, every element of F, contains x.
2. Forallxz € S and U € F,, there exists W € F, such that U € F, for ally € W.

Proof. 1f {F,}res are the filters of neighborhoods of a topology it is clear that the prop-
erties are satisfied: 1. Every neighborhood of a point contains the point itself. 2. For a
neighborhood U of x take W to be an open neighborhood of z contained in U. Then W
is a neighborhood for each point in W.

Conversely, suppose {F, }.cs satisfies Properties 1 and 2. Given = we define a provi-
sional open neighborhood of = to be an element U € F, such that U € F, for all y € U.
This definition is not empty since at least S itself is a provisional open neighborhood of ev-
ery point z in this way. Moreover, for any y € U, by the same definition, U is a provisional
open neighborhood of y. Now take y ¢ U. Then, by Property 1, U is not a provisional
open neighborhood of y. We define a provisional open set as a set that is a provisional
open neighborhood for one (and thus any) of its points. We also declare the empty set to
be a provisional open set. Let 7 be the set of provisional open sets.

We proceed to verify that 7 satisfies the axioms of a topology. Property 1 of Defini-
tion ll:l] holds since S € T, and we have declared () € T. Let {U, }aer be a family in 7 and
consider their union U = U,e; Us. Assume U is not empty (otherwise U € T trivially)
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and pick ¢ € U. Thus, there is a € I such that x € U,. But then U, € F, and also
U € F,. This is true for any x € U. Hence, U € T. Consider now U,V € 7. Assume the
intersection U NV to be non-empty (otherwise U NV € T trivially) and pick a point z in
it. Then U € F, and V € F, and therefore U NV € F,. The same is true for any point in
UNV,hence UNV € 7T. We thus drop the adjective “provisional”.

It remains to show that {F,},cs are the filters of neighborhoods for the topology just
defined. It is already clear that any open neighborhood of a point x is contained in F.
We need to show that every element of F, contains an open neighborhood of z. Take
U € F,. We define V' to be the set of points y such that U € F,. This cannot be empty as
x € V. Moreover, Property 1 implies V' C U. Let y € V, then U € F, and we can apply
Property 2 to obtain a subset W C V with W € F,. But this implies V' € F,. Since the
same is true for any y € V we find that V is an open neighborhood of x. This completes
the proof. O

Definition 1.11 (Continuity). Let S, T be topological spaces. A map f:S — T is called
continuous at p € S iff f=H(N ) S Np. fis called continuous iff it is continuous at every
p € S. We denote the space of continuous maps from S to T' by C(S,T).

Proposition 1.12. Let S,T be topological spaces and f : S — T a map. Then, f is
continuous iff for every open set U € T the preimage f~1(U) in S is open.

Proof. Exercise. O

Proposition 1.13. Let S,T,U be topological spaces, f € C(S,T) and g € C(T,U). Then,
the composition go f : S — U is continuous.

Proof. Immediate. O

Definition 1.14. Let S,T be topological spaces. A bijection f : S — T is called a
homeomorphism iff f and f~! are both continuous. If such a homeomorphism exists S and
T are called homeomorphic.

Definition 1.15. Let 71, 7> be topologies on the set S. Then, 77 is called finer than 75
and 75 is called coarser than 77 iff all open sets of 75 are also open sets of 77.

Definition 1.16 (Induced Topology). Let S be a topological space and U a subset. Con-
sider the topology given on U by the intersection of each open set on S with U. This is
called the induced topology on U.

Definition 1.17 (Product Topology). Let S be the Cartesian product S = [],c; Sa of
a family of topological spaces. Consider subsets of S of the form [],c; U, where finitely
many U, are open sets in S, and the others coincide with the whole space U, = S,. These
subsets form the base of a topology on S which is called the product topology.
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Exercise 1. Show that alternatively, the product topology can be characterized as the
coarsest topology on S = [][,c; Sa such that all projections S — S, are continuous.

Proposition 1.18. Let S,T, X be topological spaces and f € C(S x T, X), where S x T
carries the product topology. Then the map f, : T — X defined by fr(y) = f(x,y) is
continuous for every x € S.

Proof. Fix z € S. Let U be an open set in X. We want to show that W := f,*(U) is open.
We do this by finding for any y € W an open neighborhood of y contained in W. If W is
empty we are done, hence assume that this is not so. Pick y € W. Then (z,y) € f~1(U)
with f~1(U) open by continuity of f. Since S x T carries the product topology there must
be open sets V, C S and V, C T with z € V,,, y € V,, and V, x V, C f~1(U). But clearly
Vy, € W and we are done. O

Definition 1.19 (Quotient Topology). Let S be a topological space and ~ an equivalence
relation on S. Then, the quotient topology on S/~ is the finest topology such that the
quotient map S — S/~ is continuous.

Definition 1.20. Let S,T be topological spaces and f : S — T. For a € S we say that f
is open at a iff for every neighborhood U of a the image f(U) is a neighborhood of f(a).
We say that f is open iff it is open at every a € S.

Proposition 1.21. Let S,T be topological spaces and f : S — T. f is open iff it maps
any open set to an open set.

Proof. Straightforward. O

Definition 1.22 (Ultrafilter). Let F be a filter. We call F an ultrafilter iff 7 cannot be
enlarged as a filter. That is, given a filter 7’ such that 7 C F’' we have F' = F.

Lemma 1.23. Let S be a set, F an ultrafilter on S and U C S such that UNV # 0 for
allV.e F. ThenU € F.

Proof. Let F be an ultrafilter on S and U C S such that U NV # () for all V € F. Then,

B:={UNV :V € F} forms the base of a filter 7’ such that 7 C F' and U € F'. But
since F is ultrafilter we have F = F' and hence U € F. O

Proposition 1.24 (Ultrafilter lemma). Let F be a filter. Then there exists an ultrafilter
F' such that F C F'.

Proof. Exercise.Use Zorn’s Lemma. ]
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1.2 Some properties of topological spaces

In a topological space it is useful if two distinct points can be distinguished by the topology.
A strong form of this distinguishability is the Hausdorff property.

Definition 1.25 (Hausdorff). Let S be a topological space. Assume that given any two
distinct points x,y € S we can find open sets U,V C S such that x € U and y € V and
UNV = (. Then, S is said to have the Hausdorff property. We also say that S is a
Hausdorff space.

Definition 1.26. A topological space S is called completely reqular iff given a closed subset
C C S and a point p € S\ C there exists a continuous function f : S — [0,1] such that

f(C) ={0} and f(p) = 1.
Definition 1.27. A topological space is called normal iff it is Hausdorff and if given two

disjoint closed sets A and B there exist disjoint open sets U, V such that A C U and
BCV.

Lemma 1.28. Let S be a normal topological space, U an open subset and C' a closed subset
such that C C U. Then, there exists an open subset U' and a closed subset C' such that
ccuUu cccu.

Proof. Exercise. O

Theorem 1.29 (Uryson’s Lemma). Let S be a normal topological space and A, B disjoint
closed subsets. Then, there exists a continuous function f : S — [0,1] such that f(A) = {0}

and f(B) = {1}.
Proof. Let Cy := A and Uy := S\ B. Applying Lemma we find an open subset Uy
and a closed subset C'y /5 such that

Co C Uy CCp CULL
Performing the same operation on the pairs Co C Uy, and C /5 C Uy we obtain
Co C Uy CC1yy CUp CCrpp C U3 € C3py C UL
We iterate this process, at step n replacing the pairs Cy_1)/2n C Upjan by C(r_1y/2n C
U(2k—1)/2"+1 - C(Qk—l)/2"+1 - Uk/Z" for all k € {1, e ,n}.

Now define
1 ifpe B
fp) =4, .
inf{z € (0,1]:pe U,} ifp¢ B

Obviously f(B) = {1} and also f(A) = {0}. To show that f is continuous it suffices to
show that f~1([0,a)) and f~1((b,1]) are open for 0 < a <1 and 0 < b < 1. But,

FH0 ) = Us, O = U (S\ Ca).

rz<a z>b
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Corollary 1.30. Every normal space is completely regular.

Definition 1.31. Let S be a topological space. S is called first-countable iff for each point
in S there exists a countable base of its filter of neighborhoods. S is called second-countable
iff the topology of S admits a countable base.

Definition 1.32. Let S be a topological space and U,V C S subsets. U is called dense in
Viff vV CU.

Definition 1.33 (separable). A topological space is called separable iff it contains a count-
able dense subset.

Proposition 1.34. A topological space that is second-countable is separable.

Proof. Exercise. O

Definition 1.35 (open cover). Let S be a topological space and U C S a subset. A family
of open sets {Uq}aca is called an open cover of U iff U C U,eq Ua-

Proposition 1.36. Let S be a second-countable topological space and U C S a subset.
Then, every open cover of U contains a countable subcover.

Proof. Exercise. O

Definition 1.37 (compact). Let S be a topological space and U C S a subset. U is called
compact iff every open cover of U contains a finite subcover.

Definition 1.38. Let S be a topological space and U C S a subset. Then, U is called
relatively compact in S iff the closure of U in S is compact.

Proposition 1.39. A closed subset of a compact space is compact. A compact subset of a
Hausdorff space is closed.

Proof. Exercise. O
Proposition 1.40. The image of a compact set under a continuous map is compact.
Proof. Exercise. O

Lemma 1.41. Let T} be a compact Hausdorff space, Ts be a Hausdorff space and f : Ty —
T5 a continuous bijective map. Then, f is a homeomorphism.

Proof. The image of a compact set under f is compact and hence closed in T5. But every
closed set in T is compact, so f is open and hence a homeomorphism. ]

Lemma 1.42. Let T be a Hausdorff topological space and C1, Co disjoint compact subsets
of T. Then, there are disjoint open subsets Uy, Uy of T such that C1 C Uy and Cy C Us.
In particular, if T is compact, then it is normal.
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Proof. We first show a weaker statement: Let C' be a compact subset of T"and p ¢ C'. Then
there exist disjoint open sets U and V such that p € U and C C V. Since T is Hausdorff,
for each point ¢ € C' there exist disjoint open sets U, and V; such that p € U, and ¢ € V.
The family of sets {V;}4cc defines an open covering of C. Since C' is compact, there is a
finite subset S C C' such that the family {V;},es already covers C. Define U := 5 U,
and V :=U,ecg V4. These are open sets with the desired properties.

We proceed to the prove the first statement of the lemma. By the previous demonstra-
tion, for each point p € C there are disjoint open sets U, and V), such that p € U, and
Cy C Vj,. The family of sets {Up}pec, defines an open covering of C. Since C is compact,
there is a finite subset S C C; such that the family {U,}ycs already covers C. Define
Ui :=Upes Up and Uz :=(e5 Vp

For the second statement of the lemma observe that if 1" is compact, then every closed
subset is compact. ]

Definition 1.43. A topological space is called locally compact iff every point has a compact
neighborhood.

Definition 1.44. A topological space is called o-compact iff it is locally compact and
admits a covering by countably many compact subsets.

Definition 1.45. Let T be a topological space. A compact exhaustion of T is a sequence
{Ui}ien of open and relatively compact subsets such that U; C Uy for all i € N and

UieN U=T.
Proposition 1.46. A topological space admits a compact exhaustion iff it is o-compact.

Proof. Suppose the topological space T is o-compact. Then there exists a sequence { K, }nen
of compact subsets such that J,,cy K, = 1. Since T' is locally compact, every point pos-
sesses an open and relatively compact neighborhood. (Take an open subneighborhood of a
compact neighborhood.) We cover K by such open and relatively compact neighborhoods
around every point. By compactness a finite subset of those already covers Kj. Their
union, which we call Uy, is open and relatively compact. We proceed inductively. Suppose
we have constructed the open and relatively compact set U,. Consider the compact set
U, UK, 1. Covering it with open and relatively compact neighborhoods and taking the
union of a finite subcover we obtain the open and relatively compact set U,11. It is then
clear that the sequence {U, },en obtained in this way provides a compact exhaustion of 7'
since U; C U;;1 foralli € Nand T = Unen Kn € Unen Un-

Conversely, suppose T is a topological space and {U,},en is a compact exhaustion
of T. Then, the sequence {U, },en provides a countable covering of T' by compact sets.
Also, given p € T there exists n € N such that p € U,. Then, the compact set U, is a
neighborhood of p. That is, T is locally compact. O

Proposition 1.47. Let T be a topological space, K CT a compact subset and {Uy, }nen a
compact ezhaustion of T'. Then, there exists n € N such that K C U,.
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Proof. Exercise. O

Exercise 2 (One-point compactification). Let S be a locally compact Hausdorff space.
Let S := SU{oo} to be the set S with an extra element oo adjoint. Define a subset U of S
to be open iff either U is an open subset of S or U is the complement of a compact subset
of S. Show that this makes S into a compact Hausdorff space.

1.3 Sequences and convergence

Definition 1.48 (Convergence of sequences). Let z := {z,},en be a sequence of points
in a topological space S. We say that = has an accumulation point (or limit point) p iff
for every neighborhood U of p we have x; € U for infinitely many k& € N. We say that z
converges to a point p iff for any neighborhood U of p there is a number n € N such that
forallk>n: x, € U.

Proposition 1.49. Let S, T be topological spaces and f : S — T. If f is continuous,
then for any p € S and sequence {xp}nen converging to p, the sequence {f(xy)}nen in
T converges to f(p). Conversely, if S is first-countable and for any p € S and sequence
{zn}nen converging to p, the sequence {f(xn)}nen in T converges to f(p), then f is
continuous.

Proof. Exercise. O

Proposition 1.50. Let S be Hausdorff space and {x, }nen @ sequence in S which converges
to a point p € S. Then, {xy}nen does not converge to any other point in S.

Proof. Exercise. O

Definition 1.51. Let S be a topological space and U C S a subset. Consider the set By
of sequences of elements of U. Then the set U’ consisting of the points to which some
element of By converges is called the sequential closure of U.

Proposition 1.52. Let S be a topological space and U C S a subset. Let x be a sequence
of points in U which has an accumulation point p € S. Then, p € U.

Proof. Suppose p ¢ U. Since U is closed S\ U is an open neighborhood of p. But
S\ U does not contain any point of x, so p cannot be accumulation point of x. This is a
contradiction. O

Corollary 1.53. Let S be a topological space and U a subset. Then, U CU CU.
Proof. Immediate. O

Proposition 1.54. Let S be a first-countable topological space and U a subset. Then,
U =T.
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Proof. Exercise. O

Definition 1.55. Let S be a topological space and U C S a subset. U is said to be limit
point compact iff every sequence in U has an accumulation point (limit point) in U. U
is called sequentially compact iff every sequence of elements of U contains a subsequence
converging to a point in U.

Proposition 1.56. Let S be a first-countable topological space and x = {xy }nen a sequence
in S with accumulation point p. Then, x has a subsequence that converges to p.

Proof. By first-countability choose a countable base {U), },en of the filter of neighborhoods
at p. Now consider the family {W),},en of open neighborhoods W, := (i_; Ur at p. It
is easy to see that this is again a countable neighborhood base at p. Moreover, it has the
property that W,, C W, if n > m. Now, Choose n; € N such that z,, € W;. Recursively,
choose nyy1 > ng such that x,, , € Wiyq. This is possible since Wy 1 contains infinitely
many points of z. Let V be a neighborhood of p. There exists some k& € N such that
Ui C V. By construction, then W,, C Wy, C Uy for all m > k and hence z,,, € V for all
m > k. Thus, the subsequence {x,,, }men converges to p. O

Proposition 1.57. Sequential compactness implies limit point compactness. In a first-
countable space the converse is also true.

Proof. Exercise. O

Proposition 1.58. A compact set is limit point compact.

Proof. Consider a sequence x in a compact set S. Suppose z does not have an accumulation
point. Then, for each point p € S we can choose an open neighborhood U, which contains
only finitely many points of . However, by compactness, S is covered by finitely many of

the sets U,. But their union can only contain a finite number of points of x, a contradiction.
O

1.4 Filters and convergence

Definition 1.59 (convergence of filters). Let S be a topological space and F a filter on
S. F is said to converge to p € S iff every neighborhood of p is contained in F, i.e.,
N, € F. Then, z is said to be a limit of . Also, p € S is called accumulation point of F

lffp € mUE}—U'

Proposition 1.60. Let S be a topological space and F a filter on S converging top € S.
Then, p is accumulation point of F.

Proof. Exercise. O
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Proposition 1.61. Set S be a topological space and F,F' filters on S such that F C F'. If
p € S is accumulation point of F', then it is also accumulation point of F. If F converges
top € S, then so does F'.

Proof. Immediate. O

Let z = {x, }nen be a sequence of points in a topological space S. We define the filter
F: associated with this sequence as follows: F, contains all the subsets U of S such that
U contains all x,,, except possibly finitely many.

Proposition 1.62. Let x := {x,}nen be a sequence of points in a topological space S.
Then x converges to a point p € S iff the associated filter F,, converges to p. Also, p € S
is accumulation point of x iff it is accumulation point of F.

Proof. Exercise. O

Proposition 1.63. Let S be a topological space and U C S a subset. Consider the set Ay
of filters containing U. Then, the closure U of U coincides with the set of points to which
some element in Ay converges.

Proof. If U = (), then Ay is empty and the proof is trivial. Assume the contrary. If z € U,
then the intersection of U with any neighbourhood of x is non-empty and thus generates a
filter that contains U as well as all neighborhoods of x and thus converges to z. If z ¢ U,
then there exists a neighborhood V' of x such that U NV = (). So no filter containing U
can contain V. O

Proposition 1.64. Let S,T be topological spaces and f : S — T. If f is continuous, then
for any p € S and filter F converging to p, the filter generated by f(F) in T converges
to f(p). Conversely, if for any p € S and filter F converging to p, the filter generated by
f(F) in T converges to f(p), then f is continuous.

Proof. Exercise. O

Proposition 1.65. Let S be a Hausdorff topological space, F a filter on S converging to
a point p € S. Then F does not converge to any other point in S.

Proof. Exercise. O

Proposition 1.66. Let S be a topological space and K C S a subset. Then, K is compact
iff every filter containing K has at least one accumulation point in K.

Proof. Let K C S be compact. We suppose that there is a filter F containing K that
has no accumulation point in K. For each U € F consider the open set Oy := S\ U.
By assumption, these open sets cover K. Since K is compact, there must be a finite
subset {Uy, ..., Uy} of elements of F such that {Oy,,...,Oy,} covers K. But this implies
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K NN, U; =0 and thus, in particular, also K N, U; = (), contradicting the fact that
F is a filter. Thus, any filter containing K must have an accumulation point in K.

Now suppose that K C S is not compact. Then, there exists a cover of K by open sets
{Ua}aca which does not admit any finite subcover. Now consider finite intersections of
the sets Cy, := K \ U,. These are non-empty and form the base of a filter containing K.
But this filter clearly has no accumulation point in K. Thus, if every filter containing K
is to possess an accumulation point, K must be compact. O

1.5 Metric and pseudometric spaces

Definition 1.67. Let S beasetandd: S xS — Ra' a map with the following properties:
o d(z,y) =d(y,z) Vz,y € S. (symmetry)
o d(z,z) <d(z,y)+d(y,z) Vz,y,z € S. (triangle inequality)
o d(z,x)=0 VxelsS.

Then d is called a pseudometric on S. S is also called a pseudometric space. Suppose d
also satisfies

e d(z,y) =0 = z =y Vaz,y € S. (definiteness)
Then d is called a metric on S and S is called a metric space.

Definition 1.68. Let S be a pseudometric space, z € S and r > 0. Then the set B,(x) :=
{y € S :d(z,y) < r} is called the open ball of radius r centered around z in S. The set
B,(z):={y €S :d(z,y) <r}is called the closed ball of radius r centered around z in S.

Proposition 1.69. Let S be a pseudometric space. Then, the open balls in S together with
the empty set form the basis of a topology on S. This topology is first-countable and such
that closed balls are closed. Moreover, the topology is Hausdorff iff S is metric.

Proof. Exercise. O

Definition 1.70. A topological space is called (pseudo)metrizable iff there exists a (pseudo)metric
such that the open balls given by the (pseudo)metric are a basis of its topology.

Proposition 1.71. In a pseudometric space any open ball can be obtained as the countable
union of closed balls. Similarly, any closed ball can be obtained as the countable intersection
of open balls.

Proof. Exercise. O
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Proposition 1.72. Let S be a set equipped with two pseudometrics d* and d?. Then, the
topology generated by d? is finer than the topology generated by d' iff for all x € S and
r1 > 0 there exists ro > 0 such that B (z) C B} (z). In particular, d' and d* generate the
same topology iff the condition holds both ways.

Proof. Exercise. O

Proposition 1.73 (epsilon-delta criterion). Let S, T be pseudometric spaces and f : S — T
a map. Then, f is continuous at x € S iff for every e > 0 there exists 6 > 0 such that

f(Bs(x)) € Be(f(x)).

Proof. Exercise. O

1.6 Elementary properties of pseudometric spaces

Proposition 1.74. Every metric space is normal.

Proof. Let A, B be disjoint closed sets in the metric space S. For each x € A choose ¢, > 0
such that B, () N B = () and for each y € B choose ¢, > 0 such that B, (y) N A = 0.
Then, for any pair (z,y) with z € A and y € B we have B, /5(z) N B, j2(y) = 0. Consider
the open sets U := Uyca Be,/2(®) and V := U,ecp B, 2(y). Then, UNV =0, but AC U
and B C V. So S is normal. ]

Proposition 1.75. Let S be a pseudometric space and x := {x,}neny a Sequence in S.
Then = converges to p € S iff for any € > 0 there exists an ng € N such that d(x,,p) < €
for all n > ny.

Proof. Immediate. O

Definition 1.76. Let S be a pseudometric space and x := {x,, }nen a sequence in S. Then
x is called a Cauchy sequence iff for all € > 0 there exists an ng € N such that d(x,, x,) < €
for all n,m > nyg.

Exercise 3. Give an example of a set S, a sequence z in S and two metrics d' and d? on
S that generate the same topology, but such that x is Cauchy with respect to d', but not
with respect to d?.

Proposition 1.77. Any converging sequence in a pseudometric space is a Cauchy sequence.
Proof. Exercise. O

Proposition 1.78. Suppose x is a Cauchy sequence in a pseudometric space. If p is
accumulation point of x then x converges to p.

Proof. Exercise. O
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Definition 1.79. Let S be a pseudometric space and U C S a subset. If every Cauchy
sequence in U converges to a point in U, then U is called complete.

Proposition 1.80. A complete subset of a metric space is closed. A closed subset of a
complete pseudometric space is complete.

Proof. Exercise. O

Exercise 4. Give an example of a complete subset of a pseudometric space that is not
closed.

Definition 1.81 (Totally boundedness). Let S be a pseudometric space. A subset U C S
is called totally bounded iff for any r > 0 the set U admits a cover by finitely many open
balls of radius r.

Proposition 1.82. A subset of a pseudometric space is compact iff it is complete and
totally bounded.

Proof. We first show that compactness implies totally boundedness and completeness. Let
U be a compact subset. Then, for r > 0 cover U by open balls of radius r centered at
every point of U. Since U is compact, finitely many balls will cover it. Hence, U is totally
bounded. Now, consider a Cauchy sequence x in U. Since U is compact x must have an
accumulation point p € U (Proposition [1.58) and hence (Proposition ) converge to p.
Thus, U is complete.

We proceed to show that completeness together with totally boundedness imply com-
pactness. Let U be a complete and totally bounded subset. Assume U is not compact
and choose a covering {Uq }aca of U that does not admit a finite subcover. On the other
hand, U is totally bounded and admits a covering by finitely many open balls of radius
1/2. Hence, there must be at least one such ball By such that C := B; NU is not covered
by finitely many U,. Choose a point x; in Cj. Observe that C itself is totally bounded.
Inductively, cover C), by finitely many open balls of radius 2-("*1 . For at least one of
those, call it B,11, Cr41 := Bp+1 NC,, is not covered by finitely many U,. Choose a point
Zp41 in Cpyq. This process yields a Cauchy sequence x := {xj }ren. Since U is complete,
the sequence converges to a point p € U. There must be a € A such that p € U,. Since
U, is open, there exists r > 0 such that B,(p) C U,. This implies, C,, C U, for all n € N
such that 277! < r. However, this is a contradiction to the C, not being finitely covered.
Hence, U must be compact. ]

Proposition 1.83. The notions of compactness, limit point compactness and sequential
compactness are equivalent in a pseudometric space.

Proof. Exercise. O

Proposition 1.84. A totally bounded pseudometric space is second-countable.
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Proof. Exercise. O

Proposition 1.85. The notions of separability and second-countability are equivalent in a
pseudometric space.

Proof. Exercise. O

Theorem 1.86 (Baire’s Theorem). Let S be a complete metric space and {Up}tneny a
sequence of open and dense subsets of S. Then, the intersection (,cy Un is dense in S.

Proof. Set U := (,enUn.- Let V be an arbitrary open set in S. It suffices to show
that V.NU # (. To this end we construct a sequence {x,}nen of elements of S and a
sequence {e, }nen of positive numbers. Choose z1 € U3 NV and then 0 < ¢; < 1 such that
B, (1) € UiNV. Now, consecutively choose ;11 € Upy1N B, j2(7n) and 0 < €p1 < 27"
such that B, ., (2nt1) € Upg1 N Be,(2n). The sequence {z,},en is Cauchy since by
construction d(zy,xn,+1) < 27" for all n € N. So by completeness it converges to some

point x € S. Indeed, z € B, (z1) C V. On the other hand, z € B, (zy,) C U, for alln € N
and hence x € U. This completes the proof. O

Proposition 1.87. Let S be equipped with a pseudometric d. Thenp ~q <= d(p,q) =0
forp,q € S defines an equivalence relation on S. The prescription d([p], [q]) := d(p,q) for
p,q € S is well-defined and yields a metric d on the quotient space S/~. The topology
induced by this metric on S/~ is the quotient topology with respect to that induced by d on
S. Moreover, S/~ is complete iff S is complete.

Proof. Exercise. O

1.7 Completion of metric spaces

Often it is desirable to work with a complete metric space when one is only given a non-
complete metric space. To this end one can construct the completion of a metric space.
This is detailed in the following exercise.

Exercise 5. Let S be a metric space.

o Let z:= {z,}nen and y := {yn }nen be Cauchy sequences in S. Show that the limit
limy, 00 d(zp, yp) exists.

o Let T be the set of Cauchy sequences in . Define the function d:TxT — ]Rar by
d(z,y) := limy, 00 d(zp, yn). Show that d defines a pseudometric on 7.

e Show that T is complete.

e Define S as the metric quotient 7'/~ as in Proposition . Then, S is complete.
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o Show that there is a natural isometric embedding (i.e., a map that preserves the
metric) ig : S — S. Furthermore, show that this is a bijection iff S is complete.

Definition 1.88. The metric space S constructed above is called the completion of the
metric space S.

Proposition 1.89 (Universal property of completion). Let S be a metric space, T a
complete metric space and f : S — T an isometric map. Then, there is a unique isometric
map f: S — T such that f = f oig. Furthermore, the closure of f(S) in T is equal to

f(S).

Proof. Exercise. O
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2 Vector spaces with additional structure

In the following K denotes a field which might be either R or C.

Definition 2.1. Let V be a vector space over K. A subset A of V is called balanced iff for
all v € A and all A € K with [A| < 1 the vector \v is contained in A. A subset A of V is
called convez iff for all x,y € A and ¢ € [0, 1] the vector (1 —t)z + ty is in A. Let A be
a subset of V. Consider the smallest subset of V' which is convex and which contains A.
This is called the convex hull of A, denoted conv(A).

Proposition 2.2. (a) Intersections of balanced sets are balanced. (b) The sum of two
balanced sets is balanced. (c) A scalar multiple of a balanced set is balanced.

Proof. Exercise. O

Proposition 2.3. Let V be vector space and A a subset. Then

conv(4) = {ZM% neN e,z €4, A= 1} .

i=1 i=1
Proof. Exercise. O

We denote the space of linear maps between a vector space V and a vector space W by
L(V,W).

2.1 Topological vector spaces

Definition 2.4. A set V that is equipped both with a vector space structure over K and
a topology is called a topological vector space (tvs) iff the vector addition +: V x V — V
and the scalar multiplication - : K x V' — V are both continuous. (Here the topology on
K is the standard one.)

Proposition 2.5. Let V be a tvs, A € K\ 0, w € V. The map V — V : v — v is
an automorphism of V' as a tvs. In particular, the topology T of V is invariant under
rescalings: XT = T. What is more, it is invariant under translations: T +w = T. In

terms of filters of neighborhoods, AN, = Ny, and Ny +w = Ny for allv e V.

Proof. 1t is clear that non-zero scalar multiplication is a vector space automorphism. To
see that scalar multiplication with A and translation by w are continuous use Proposi-
tion . The inverse maps are of the same type hence also continuous. Thus, we have
homeomorphisms. The scale- and translation invariance of the topology follows. O

Note that this implies that the topology of a tvs is completely determined by the filter
of neighborhoods of one of its points, say 0.
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Definition 2.6. Let V be a tvs and U a subset. U is called bounded iff for every neigh-
borhood W of 0 there exists A € RT such that U C A\W.

Remark: Changing the allowed range of A in the definition of boundedness from R to
K leads to an equivalent definition, i.e., is not weaker. However, the choice of R over K
is more convenient in certain applications.

Proposition 2.7. Let V be a tvs. Then:
1. Every point set is bounded.
2. Every neighborhood of 0 contains a balanced subneighborhood of 0.

3. Let U be a neighborhood of 0. Then there exists a subneighborhood W of 0 such that
W4+WwWCU.

Proof. We start by demonstrating Property 1. Let z € V and U some open neighborhood
of 0. Then Z := {(\,y) € Kx V : \y € U} is open by continuity of multiplication. Also
(0,x) € Z so that by the product topology there exists an € > 0 and an open neighborhood
W of z in V such that B.(0) x W C Z. In particular, there exists p > 0 such that ux € U,
ie., {z} C u~ U as desired.

We proceed to Property 2. Let U be an open neighborhood of 0. By continuity
Z = {(\z) € KxV : Xx € U} is open. By the product topology, there are open
neighborhoods X of 0 € K and W of 0 € V such that X x W C Z. Thus, X -W C U. Now
X contains an open ball of some radius € > 0 around 0 in K. Set Y := B(0) - W. This is
an (open) neighborhood of 0 in V, it is contained in U and it is balanced.

We end with Property 3. Let U be an open neighborhood of 0. By continuity Z :=
{(z,y) € VXV : z+y € U} is open. By the product topology, there are open neighborhoods
W71 and Wy of 0 such that W7 x Wy C Z. This means Wi + Wy C U. Now define
W .= Wi N Ws. OJ

Proposition 2.8. Let V be a vector space and F a filter on V. Then F is the filter of
neighborhoods of 0 for a compatible topology on V iff 0 is contained in every element of F
and A\F = F for all X € K\ {0} and F satisfies the properties of Proposition @

Proof. 1t is already clear that the properties in question are necessary for F to be the filter
of neighborhoods of 0 of V. It remains to show that they are sufficient. If F is to be the
filter of neighborhoods of 0 then, by translation invariance, F, := F + x must be the filter
of neighborhoods of the point . We show that the family of filters {F,},cy does indeed
define a topology on V. To this end we will use Proposition . Property 1 is satisfied by
assumption. It remains to show Property 2. By translation invariance it will be enough to
consider x = 0. Suppose U € F. Using Property 3 of Proposition @ there is W € F such
that W + W C U. We claim that Property 2 of Proposition is now satisfied with this
choice of W. Indeed, let y € W then y + W € Fy and y + W C U so U € F, as required.
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We proceed to show that the topology defined in this way is compatible with the vector
space structure. Take an open set U C V' and consider its preimage Z = {(z,y) € V x V :
x +y € U} under vector addition. Take some point (z,y) € Z. U — x — y is an open
neighborhood of 0. By Property 3 of Proposition there is an open neighborhood W of
0 such that W+ W C U —z —y, ie, (x+ W)+ (y+ W) CU. But z + W is an open
neighborhood of x and y + W is an open neighborhood of y so (z + W) x (y + W) is an
open neighborhood of (z,y) in V x V contained in Z. Hence vector addition is continuous.

We proceed to show continuity of scalar multiplication. Consider an open set U C V
and consider its preimage Z = {(A\,z) € K x V : Az € U} under scalar multiplication.
Take some point (A\,z) € Z. U — Az is an open neighborhood of 0 in V. By Property 3
of Proposition @ there is an open neighborhood W of 0 such that W + W = U — Ax.
By Property 2 of Proposition ﬂ there exists a balanced subneighborhood X of W. By
Property 1 of Proposition @ (boundedness of points) there exists € > 0 such that ex € X.
Now define Y := (e+ |A|)"' X. Note that scalar multiples of (open) neighborhoods of 0 are
(open) neighborhoods of 0 by assumption. Hence Y is open since X is. Thus B¢(A) x (z+Y)
an open neighborhood of (A, z) in K x V. We claim that it is contained in Z. First observe
that since X is balanced, B¢(0) -z € X. Similarly, we have Bc()\) - Y C By y(0) - Y =
B1(0) - X C X. Thus we have B.(0) -2+ B(A) Y C X+ X CW4+W CU — Az. But
this implies B¢(\) - (x +Y) C U as required. O

Proposition 2.9. (a) The interior of a balanced set is balanced. (b) The closure of a
balanced set is balanced.

Proof. Let U be balanced and let A € K with 0 < |A] < 1. It is then enough to observe
that for (a) AU = AU C U and for (b) A\U =AU C U. O

Proposition 2.10. In a tvs every neighborhood of 0 contains a closed and balanced sub-
neighborhood.

Proof. Let U be a neighborhood of 0. By Proposition @.3 there exists a subneighborhood
W C U such that W + W C U. By Proposition @.2 there exists a balanced subneigh-
borhood X C W. Let Y := X. Then, Y is obviously a closed neighborhood of 0. Also
Y is balanced by Proposition @ Finally, let y € Y = X. Any neighborhood of y must
intersect X. In particular, y + X is such a neighborhood. Thus, there exist x € X, 2z € X
suchthat r=y+z,ie,y=2—2€ X - X=X+XCU. So,Y CU. [

Proposition 2.11. (a) Subsets of bounded sets are bounded. (b) Finite unions of bounded
sets are bounded. (c) The closure of a bounded set is bounded. (d) The sum of two bounded
sets is bounded. (e) A scalar multiple of a bounded set is bounded.

Proof. Exercise. O

Definition 2.12. Let V be a tvs and C' C V a subset. Then, C is called totally bounded iff
for each neighborhood U of 0 in V' there exists a finite subset F' C C' such that C C F+U.
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Proposition 2.13. (a) Subsets of totally bounded sets are totally bounded. (b) Finite
unions of totally bounded sets are totally bounded. (c) The closure of a totally bounded set
is totally bounded. (d) The sum of two totally bounded sets is totally bounded. (e) A scalar
multiple of a totally bounded set is totally bounded.

Proof. Exercise. O
Proposition 2.14. Compact sets are totally bounded. Totally bounded sets are bounded.
Proof. Exercise. O

Let A, B be topological vector spaces. We denote the space of maps from A to B that
are linear and continuous by CL(A, B).

Definition 2.15. Let A, B be tvs. A linear map f : A — B is called bounded iff there
exists a neighborhood U of 0 in A such that f(U) is bounded. A linear map f: A — B is
called compact iff there exists a neighborhood U of 0 in A such that f(U) is compact.

Let A, B be tvs. We denote the space of maps from A to B that are linear and bounded
by BL(A, B). We denote the space of maps from A to B that are linear and compact by
KL(A, B).

Proposition 2.16. Let A, B be tvs and f € L(A, B). (a) f is continuous iff the preimage
of any neighborhood of 0 in B is a neighborhood of 0 in A. (b) If f is continuous it maps
bounded sets to bounded sets. (c) If f is bounded then f is continuous, i.e., BL(A, B) C
CL(A, B). (d) If f is compact then f is bounded.

Proof. Exercise. O

A useful property for a topological space is the Hausdorff property, i.e., the possibility
to separate points by open sets. It is not the case that a tvs is automatically Hausdorff.
However, the way in which a tvs may be non-Hausdorff is severely restricted. Indeed, we
shall see int the following that a tvs may be split into a part that is Hausdorff and another
one that is maximally non-Hausdorff in the sense of carrying the trivial topology.

Proposition 2.17. Let V be a tvs and C C V a vector subspace. Then, the closure C of
C is also a vector subspace of V.

Proof. Exercise.[Hint: Use Proposition ] O

Proposition 2.18. Let V' be a tvs. The closure of {0} in V' coincides with the intersection
of all neighborhoods of 0. Moreover, V is Hausdorff iff {0} = {0}.

Proof. Exercise. O

Proposition 2.19. Let V be a tvs and C C V a vector subspace.
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1. The quotient space V/C' is a tvs.
2. V/C' is Hausdorff iff C is closed in V.

3. The quotient map q : V. — V/C is linear, continuous and open. Moreover, the
quotient topology on V/C' is the only topology such that q is continuous and open.

4. The image of a base of the filter of neighborhoods of 0 in V is a base of the filter of
neighborhoods of 0 in V/C.

Proof. Exercise. O

Thus, for a tvs V the exact sequence
0—-{0} =V -=V/{0}=0

describes how V is composed of a Hausdorff piece V/{0} and a piece {0} with trivial
topology. We can express this decomposition also in terms of a direct sum, as we shall see
in the following.

A (vector) subspace of a tvs is a tvs with the subset topology. Let A and B be tvs.
Then the direct sum A & B is a tvs with the product topology. Note that as subsets of
A ® B, both A and B are closed.

Definition 2.20. Let V be a tvs and A a subspace. Then another subspace B of A in V is
called a topological complement iff V= A® B as tvs (i.e., as vector spaces and as topological
spaces). A is called topologically complemented if such a topological complement B exists.

Note that algebraic complements (i.e., complements merely with respect to the vector
space structure) always exist (using the Axiom of Choice). However, an algebraic comple-
ment is not necessarily a topological one. Indeed, there are examples of subspaces of tvs
that have no topological complement.

Proposition 2.21 (Structure Theorem for tvs). Let V' be a tvs and B an algebraic com-
plement of {0} in V.. Then B is also a topological complement of {0} in V. Moreover, B

is canonically isomorphic to V/{0} as a tvs.

Proof. Exercise. O

We conclude that every tvs is a direct sum of a Hausdorff tvs and a tvs with the trivial
topology.
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2.2 DMetrizable and pseudometrizable vector spaces

In this section we consider (pseudo)metrizable vector spaces (mvs), i.e., tvs that admit a
(pseudo)metric compatible with the topology.

Definition 2.22. A pseudometric on a vector space V is called translation-invariant iff
dlx + a,y + a) = d(z,y) for all z,y,a € V. A translation-invariant pseudometric on a
vector space V is called balanced iff its open balls around the origin are balanced.

As we shall see it will be possible to limit ourselves to balanced translation-invariant
pseudometrics on mvs. Moreover, these can be conveniently described by pseudo-seminorms.

Definition 2.23. Let V be a vector space over K. Then a map V — RJ : x — ||z is
called a pseudo-seminorm iff it satisfies the following properties:

1. [|0]| = 0.
2. For all A € K, |A| <1 implies | Az|| < ||z| for all z € V.
3. Forallz,y e V : |l +y| < |lz] + |yl
|| || is called a pseudo-norm iff it satisfies in addition the following property.
4. ||z|| = 0 implies = = 0.

Proposition 2.24. There is a one-to-one correspondence between pseudo-seminorms and
balanced translation invariant pseudometrics on a vector space via d(x,y) := ||z —y||. This
specializes to a correspondence between pseudo-norms and balanced translation invariant
metrics.

Proof. Exercise. O

Proposition 2.25. Let V be a vector space. The topology generated by a pseudo-seminorm
on V' is compatible with the vector space structure iff for every x € V and € > 0 there exists
A € R such that x € AB(0).

Proof. Assume we are given a pseudo-seminorm on V' that induces a compatible topol-
ogy. It is easy to see that the stated property of the pseudo-seminorm then follows from
Property 1 in Proposition @ (boundedness of points).

Conversely, suppose we are given a pseudo-seminorm on V with the stated property.
We show that the filter Ay of neighborhoods of 0 defined by the pseudo-seminorm has
the properties required by Proposition and hence defines a compatible topology on
V. Firstly, it is already clear that every U € AN contains 0. We proceed to show that
Ny is scale invariant. It is enough to show that for € > 0 and A € K\ {0} the scaled
ball AB(0) is open. Choose a point Az € AB¢(0). Take 6 > 0 such that ||z]] < € — 4.
Then Bs(0) + z € B((0). Choose n € N such that 27" < |A|. Observe that the triangle
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inequality implies By—ng(0) C 27" B;(0) (for arbitrary 6 and n in fact). Hence By-ng(Ax) =
By-n5(0) + Ax € ABs(0) + Az € AB(0) showing that AB¢(0) is open.

It now remains to show the properties of Ny listed in Proposition @ As for Property 3,
we may take U to be an open ball of radius € around 0 for some ¢ > 0. Define W :=
B/5(0) Then W + W C U follows from the triangle inequality. Concerning Property 2
we simple notice that open balls are balanced by construction. The only property that is
not automatic for a pseudo-seminorm and does require the stated condition is Property 1
(boundedness of points). The equivalence of the two is easy to see. O

Theorem 2.26. A tvs V is pseudometrizable iff it is first-countable, i.e., iff there exists
a countable base for the filter of neighborhoods of 0. Moreover, if V is pseudometrizable it
admits a compatible pseudo-seminorm.

Proof. 1t is clear that pseudometrizability implies the existence of a countable base of
No. For example, the sequence of balls {B,(0)},en provides such a base. Conversely,
suppose that {U,}nen is a base of the filter of neighborhoods of 0 such that all U,, are
balanced and Uy, 41 + Uy 41 C U,. (Given an arbitrary countable base of Ny we can always
produce another one with the desired properties.) Now for each finite subset H of N define
U == e Unand Ay := 3>, cy 27" Note that each Uy is a balanced neighborhood of
0. Define now the function V — R{ : z +— ||z|| by

x| := i%f{)\H\x e Uy}

if x € Uy for some H and ||z|| = 1 otherwise. We proceed to show that || - || defines a
pseudo-seminorm and generates the topology of V.

Fix x € V and A € K with |A\| < 1. Since Uy is balanced for each H, Az is contained at
least in the same sets Uy as x. Because the definition of ||- || uses an infimum, ||Az|| < ||z
This confirms Property 1 of Definition .

To show the triangle inequality (Property 3 of Definition ) we first note that for
finite subsets H, K of N with the property Ay + Ax < 1 there is another unique finite
subset L of N such that A\, = Ag + Ag. Furthermore, Uy + Ug C Uy, in this situation.
Now, fix x,y € V. If ||z||+||y|| > 1 the triangle inequality is trivial. Otherwise, we can find
e > 0 such that ||z|| + ||y|| + 2¢ < 1. We now fix finite subsets H, K of N such that x € Up,
y € Ug while Ay < ||z|]| + € and Ag < ||y|| + €. Let L be the finite subset of N such that
AL = Ag + Ax. Then x +y € U, and hence ||z + y|| < A, = Ay + Ak < ||z]| + ||y]| + 2.
Since the resulting inequality holds for any € > 0 we must have ||z + y|| < ||z]| + |ly|| as
desired.

It remains to show that the pseudo-seminorm generates the topology of the tvs. Since
the topology generated by the pseudo-seminorm as well as that of the tvs are translation
invariant, it is enough to show that the open balls around 0 of the pseudo-seminorm form
a base of the filter of neighborhoods of 0 in the topology of the tvs. Let n € N. Clearly
By—n(0) C U,, € By—(n-1)(0). But this shows that {By-«(0)},en generates the same filter
as {Uy }nen. This completes the proof. O
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Exercise 6. Show that for a tvs with a balanced translation-invariant pseudometric the
concepts of totally boundedness of Definitions and coincide.

Proposition 2.27. Let V' be a mvs with pseudo-seminorm. Let r > 0 and 0 < p < 1.
Then, B,r(0) C uB,(0).

Proof. Exercise. O

Proposition 2.28. Let V., W be muvs with compatible metrics and f € L(V,W). (a) f is
continuous iff for all € > 0 there exists § > 0 such that f(BY (0)) € BY(0). (b) f is bounded
iff there exists 6 > 0 such that for all € > 0 there is > 0 such that f(uBY (0)) C BY(0).

Proof. Exercise. O

Proposition 2.29. Let V' be a mvs and C a subspace. Then, the quotient space V/C is a
mus.

Proof. Exercise. O

2.3 Locally convex tvs

Definition 2.30. A tvs is called locally conver iff every neighborhood of 0 contains a
convex neighborhood of 0.

Definition 2.31. Let V be a vector space over K. Then a map V — R{ : x — ||z is
called a seminorm iff it satisfies the following properties:

L. |[Az|| = |A|||z]| for all A e K,z € V.
2. Forall z,y € V : |lz +yl < ||z + |lyl|. (triangle inequality)

A seminorm is called a norm iff it satisfies in addition the following property:
3. ||z =0 = z=0.

Proposition 2.32. A seminorm induces a balanced translation-invariant pseudometric via
d(z,y) == ||z — y||. Moreover, the open balls of this metric are convex.

Proof. Exercise. O

Proposition 2.33. Let V' be a vector space and {||-||a}aca a set of seminorms on V. For
any finite subset I C A and any € > 0 define

Ure i ={x eV |z|o <eVael}

Then, the sets Uy ¢ form the base of the filter of neighborhoods of 0 in a topology on V' that
makes it into a locally convex tvs. If A is countable, then V is pseudometrizable. Moreover,
the topology is Hausdorff iff for any x € V '\ {0} there exists o € A such that ||x|o > 0.
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Proof. Let I,I' C A be finite and €,¢’ > 0. Set I” := I UI' and €’ := min(e, ¢’). Then,
Upren € Ure NUp . So the Ur, really form the basis of a filter /. We proceed to
verify that F satisfies the properties required by Proposition @ Clearly, 0 € U for all
U € F since [|0]]o = 0 and so 0 € Uy, for all I C A finite and € > 0. Also A\F = F
since AUy = Uy |y for all I C A finite and € > 0 by linearity of seminorms. As for
property 1 of Proposition @ consider x € V, I C A finite and € > 0 arbitrary. Set
w = maxaer{||z|a}. Then, z € “THULE. Property 2 of Proposition @ is satisfied since
open balls of a seminorm are balanced and the sets Uy . are finite intersections of such open
balls and hence also balanced. Property 3 of Proposition is sufficient to satisfy for a
base. Observe then, Uy /5 + Uy 2 C Uy for all I C A finite and € > 0 due to the triangle
inequality. Thus, the so defined topology makes V into a tvs.

Observe that the sets Uy, are convex, being finite intersections of open balls which
are convex by Proposition . Thus, V is locally convex. If A is countable, then there
is an enumeration Iy, I, ... of the finite subsets of A. It is easy to see that Ur;1/n With
je€{l,...} and n € N provides then a countable basis of the filter of neighborhoods of 0.
That is, V is pseudometrizable. Concerning the Hausdorff property suppose that for any
x € V'\ {0} there exists a € A such that ||z, > 0. Then, for this = we have z ¢ Uiay o -
So V' is Hausdorff. Conversely, suppose V' is Hausdorff. Given « € V'\ {0} there exist thus
I C A finite and € > 0 such that z ¢ Ur.. In particular, there exists o € I such that
|z||o > €>0. O

Exercise 7. In the context of Proposition show that the topology is the coarsest such
that all seminorms || - || are continuous.

Definition 2.34. Let V be a tvs and W C V' a neighborhood of 0. The map || ||w : V —
Ry defined as
|z||w == inf{A € R{ : 2 € AW}

is called the Minkowski functional associated to W.
Proposition 2.35. Let V be a tvs and W C V' a neighborhood of 0.
1. |px|lw = pllz|lw for allp € R and z € V.
2. If W is balanced, then ||cx|lw = |c|||x||w for allc € K and x € V.
8. If W is conver, then ||z +yllw < ||z[|lw + llyllw for all z,y € V.
4. If V is Hausdorff and W is bounded, then ||x|w = 0 implies x = 0.
Proof. Exercise. O

Theorem 2.36. Let V be a tvs. Then, V_is locally convex iff there exists a set of seminorms
inducing its topology as in Proposition . Also, V is locally convex and pseudometrizable
iff there exists a countable such set.
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Proof. Given a locally convex tvs V', let {Uy}aca be a base of the filter of neighborhoods
such that U, is balanced and convex for all @ € A. (Exercise.How can this be achieved?)
In case that V is pseudometrizable we choose the base such that A is countable. Let ||-||, be

the Minkowski functional associated to U,. Then, by Proposition R.35, | - ||« is & seminorm
for each o € A. We claim that the topology generated by the seminorms is precisely the
topology of V. Exercise.Complete the proof. O

Exercise 8. Let V be a locally convex tvs and W a balanced and convex neighborhood
of 0. Show that the Minkowski functional associated to W is continuous on V.

Exercise 9. Let V' be a vector space and {||- ||, }nen a sequence of seminorms on V. Define
the function ¢ : V — ]R(J{ via

oo

q(x) = Z 9=n Han

= ezl + 1

(a) Show that ¢ is a pseudo-seminorm on V. (b) Show that the topology generated on V'
by ¢ is the same as that generated by the sequence {|| - ||} nen-

2.4 Normed and seminormed vector spaces

Definition 2.37. A tvs is called locally bounded iff it contains a bounded neighborhood of
0.

Proposition 2.38. A locally bounded tvs is pseudometrizable.

Proof. Let V be a locally bounded tvs and U a bounded and balanced neighborhood of
0 in V. The sequence {U,}nen with U, = %U is the base of a filter 7 on V. Take a
neighborhood W of 0. By boundedness of U there exists A € RT such that U C AW.
Choosing n € N with n > A we find U, C W, ie., W € F. Hence F is the filter of
neighborhoods of 0 and we have presented a countable base for it. By Theorem , Vis
pseudometrizable. O

Proposition 2.39. Let A, B be a tvs and f € CL(A, B). If A or B is locally bounded then
f is bounded. Hence, CL(A, B) = BL(A, B) in this case.

Proof. Exercise. O

Definition 2.40. A tvs V is called (semi)normable iff the topology of V' is induced by a
(semi)norm.

Theorem 2.41. A tvs V is seminormable iff V is locally bounded and locally conver.
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Proof. Suppose V is a seminormed vector space. Then, every ball is bounded and also
convex, so in particular, V is locally bounded and locally convex.

Conversely, suppose V is a tvs that is locally bounded and locally convex. Take a
bounded neighborhood U; of 0 and a convex subneighborhood Us of U;. Now take a
balanced subneighborhood Us of Uz and its convex hull W = conv(Us). Then W is a
balanced, convex and bounded (since W C Us C Uj) neighborhood of 0 in V. Thus, by
Proposition P.35 the Minkowski functional | - llw defines a seminorm on V. It remains to
show that the topology generated by this seminorm coincides with the topology of V. Let
U be an open set in the topology of V and « € U. The ball B;(0) defined by the seminorm
is bounded since B1(0) € W and W is bounded. Hence there exists A\ € R such that
B1(0) C AU — ), i.e., A\™1B1(0) C U — 2. But A'B1(0) = By-1(0) by linearity and thus
By-1(x) C U. Hence, U is open in the seminorm topology as well. Conversely, consider
a ball B(0) defined by the seminorm for some € > 0 and take x € B.(0). Choose § > 0
such that [|z|lw < € —§. Observe that 3W C B;(0) and thus by linearity gW C B;s(0). It
follows that $W + a2 C B.(0). But $W +  is a neighborhood of z so it follows that B.(0)
is open. This completes the proof. O

Exercise 10. Let V be locally convex tvs with its topology generated by a finite family
of seminorms. Show that V is seminormable.

Proposition 2.42. Let V be a seminormed vector space and U CV a subset. Then, U is
bounded iff there exists c € RT such that ||z|| < ¢ for all z € U.

Proof. Exercise. O

Proposition 2.43. Let A, B be seminormed vector spaces and f € L(A, B). f is bounded
iff there exists ¢ € RT such that || f(z)|| < c||z|| for all x € A.

Proof. Exercise. O

Proposition 2.44. Let V be a tvs and C a vector subspace. If V is locally convex, then
so is V/C. If V is locally bounded, then so is V/C.

Proof. Exercise. O

2.5 Inner product spaces
As before K stands for a field that is either R or C.

Definition 2.45. Let V be a vector space over K and (-,-) : V x V — K a map. ()
is called a bilinear (if K = R) or sesquilinear (if K = C) form iff it satisfies the following
properties:

o (u+v,w) = (u,w)~+ (v,w) and
(u, v+ w) = (u,v) + (u, w) for all u,v,w € V.
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o (Au,v) = Mu,v) and (u, \w) = Mu,v) forall \ € Kand v € V.

(-,-) is called symmetric (if K = R) or hermitian (if K = C) iff it satisfies in addition the
following property:
o (u,v) = (v,u) for all u,v € V.
(+,-) is called positive iff it satisfies in addition the following property:
o (v,v)>0forallveV.
(+,-) is called definite iff it satisfies in addition the following property:
o If (v,v) =0thenv=0foralvelV.

A map with all these properties is also called a scalar product or an inner product. V
equipped with such a structure is called an inner product space or a pre-Hilbert space.

Theorem 2.46 (Schwarz Inequality). Let V' be a vector space over K with a scalar product
(,-): V xV =K. Then, the following inequality is satisfied:

{0, w)[* < (v, ) (w,w) Vo,we V.
Proof. By definiteness « := (v,v) # 0 and we set § := —(w,v). By positivity we have,
0 < {(Bv + aw, Bv + aw).

Using bilinearity and symmetry (if K = R) or sesquilinearity and hermiticity (if K = C)
on the right hand side this yields,

0< \(v,v>|2<w,w> - (v,v)|<v,w>\2.

(Exercise.Show this.) Since (v,v) # 0 we can divide by it and arrive at the required
inequality. O

Proposition 2.47. Let V' be a vector space over K with a scalar product (-,-) : VxV — K.
Then, V is a normed vector space with norm given by ||v|| := \/(v,v).

Proof. Exercise.Hint: To prove the triangle inequality, show that |Jv4wl|? < (|[v||+||w]])?
can be derived from the Schwarz inequality (Theorem ) O

Proposition 2.48. Let V' be an inner product space. Then, Yv,w € V,
(,w) = 2 (lo+w|? = lv-wl?) i K=R,

<v,w> =

N N N

(llo+wl? = lo = w]? +iflo + iw|? = ilo - iw[?) i K=C
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Proof. Exercise. O

Proposition 2.49. Let V be an inner product space. Then, its scalar product V xV — K
s continuous in the norm topology.

Proof. Exercise. O

Theorem 2.50. Let V be a normed vector space. Then, there exists a scalar product on
V inducing the norm iff the parallelogram equality holds,

[v+wl? + [l = w||* = 2||o|* + 2[lw|®  Vo,w e V.
Proof. Exercise. O

Example 2.51. The spaces R"” and C" are inner product spaces via
n
(v,w) := Z%‘Wi,
i=1

where v;, w; are the coefficients with respect to the standard basis.
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3 First examples and properties

3.1 Elementary topologies on function spaces

If V is a vector space over K and S is some set, then the set of maps S — V naturally forms
a vector space over K. This is probably the most important source of topological vector
spaces in functional analysis. Usually, the spaces S and V carry additional structure (e.g.
topologies) and the maps in question may be restricted, e.g. to be continuous etc. The
topology given to this vector space of maps usually depends on these additional structures.

Example 3.1. Let S be a set and F(S,K) be the set of functions on S with values in K.
Consider the set of seminorms {py}zcs on F(S,K) defined by p,(f) := |f(x)|. This gives
F(S,K) the structure of a locally convex tvs. The topology defined in this way is also
called the topology of pointwise convergence.

Exercise 11. Show that this topology is the coarsest topology making all evaluation maps,
i.e., maps of the type f — f(x), continuous. Show also that a sequence in F'(S, K) converges
with respect to this topology iff it converges pointwise.

Example 3.2. Let S be a set and B(S,K) be the set of bounded functions on S with
values in K. Then, B(S,K) is a normed vector space with the supremum norm:

If]l :==sup|f(z)] V[ e B(S K).
zeS

The topology defined in this way is also called the topology of uniform convergence.

Exercise 12. Show that a sequence in B(S,K) converges with respect to this topology iff
it converges uniformly on all of S.

Exercise 13. (a) Show that on B(S,K) the topology of uniform convergence is finer than
the topology of pointwise convergence. (b) Under which circumstances are both topologies
equal?

Example 3.3. Let S be a topological space and K the set of compact subsets of S. For
K € R define on C(95,K) the seminorm

[fllx = sup |f(z)] VfeC(S,K).
zeK

The topology defined in this way on C(S,K) is called the topology of compact convergence.

Exercise 14. Show that a sequence in C(S,K) converges with respect to this topology iff
it converges compactly, i.e., uniformly in any compact subset.

Exercise 15. (a) Show that on C(S,K) the topology of compact convergence is finer than
the topology of pointwise convergence. (b) Show that on the space Cy,(.S,K) of bounded
continuous maps the topology of uniform convergence is finer than the topology of compact
convergence. (c¢) Give a sufficient condition for them to be equal.
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Definition 3.4. Let S be a set, V' a tvs. Let G a non-empty set of non-empty subsets of
S with the property that for X, Y in & there exists Z € & such that X UY C Z. Let B
be a base of the filter of neighborhoods of 0 in V. Then, for X € & and U € B the sets

M(X,U):={feF(SV): f(X)CU}

define a base of the filter of neighborhoods of 0 for a translation invariant topology on
F(S,V). This is called the &-topology on F(S,V).

Proposition 3.5. Let S be a set, V a tvs and & C B(S) as in Definition . Let
A C F(S,V) be a vector subspace. Then, A is a tvs with the the &-topology iff f(X) is
bounded for all f € A and X € .

Proof. Exercise. O

Exercise 16. (a) Let S be a set and & be the set of finite subsets of S. Show that the
S-topology on F(S,K) is the topology of pointwise convergence. (b) Let S be a topological
space and R the set of compact subsets of S. Show that the R-topology on C(S,K) is the
topology of compact convergence. (c) Let S be a set and & a set of subsets of S such that
S € 6. Show that the G-topology on B(S,K) is the topology of uniform convergence.

3.2 Completeness

In the absence of a pseudometric we can use the vector space structure of a tvs to com-
plement the information contained in the topology in order to define a Cauchy property
which in turn will be used to define an associated notion of completeness.

Definition 3.6. A sequence {z,}nen in a tvs V is called a Cauchy sequence iff for every
neighborhood U of 0 in V there is a number N > 0 such that x, —x,, € U for alln,m > N.

Proposition 3.7. Let V be a muvs with translation-invariant pseudometric. Then, the
Cauchy property for sequences in tvs coincide with the previuosly defined one in pseudo-
metric spaces. That is, Definition @ coincides then with Definition .

Proof. Straightforward. O

This Proposition implies that there is no conflict with our previous definition of a
Cauchy sequence in pseudometric spaces if we restrict ourselves to translation-invariant
pseudometrics. Moreover, it implies that for this purpose it does not matter which pseu-
dometric we use, as long as it is translation-invariant. This latter condition is indeed
essential.

Exercise 17. Give an example of an mvs with two compatible metrics d', d> and a sequence
x, such that z is Cauchy with respect to d', but not with respect to d2.
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In the following, whenever we talk about a Cauchy sequence in a tvs (possibly with
additional) structure, we mean a Cauchy sequence according to Definition @

For a topologically sensible notion of completeness, we need something more general
than Cauchy sequences: Cauchy filters.

Definition 3.8. A filter F on a tvs V is called a Cauchy filter iff for every neighborhood
U of 0 in V there is an element W € F such that W — W C U.

Proposition 3.9. A sequence is Cauchy iff the associated filter is Cauchy.
Proof. Exercise. O

Proposition 3.10. Let V be a tvs, F a Cauchy filter on V. If p € V is accumulation
point of F, then F converges to p.

Proof. Let U be a neighborhood of 0 in V. Then, there exists a neighborhood W of 0 in U
such that W+ W C U. Since F is a Cauchy filter there exists F' € F such that F—F C W.
On the other hand, p is accumulation point of F so there exists ¢ € F'N (p + W). Then,
we have ' —q¢ C W and thus F C g+ W Cp+ W 4+ W C p+ U. This shows that every
neighborhood of p is contained in F, i.e., F converges to p. O

Proposition 3.11. A converging filter is Cauchy.
Proof. Exercise. O

Definition 3.12. A subset U of a tvs is called complete iff every Cauchy filter containing
U converges to a point in U. It is called sequentially complete iff every Cauchy sequence
in U converges to a point in U.

Since completeness is an important and convenient concept in functional analysis, the
complete versions of Hausdorff tvs have special names. In particular, a complete metrizable
locally convex tvs is called a Fréchet space, a complete normable tvs is called a Banach
space, and a complete inner product space is called a Hilbert space.

Obviously, completeness implies sequential completeness, but not necessarily the other
way round. Note that for a mvs with_translation-invariant pseudometric, completeness in
the sense of metric spaces (Definition ) is now called sequential completeness. However,
we will see that in this context it is equivalent to completeness in the sense of the above
definition.

Proposition 3.13. Let V be a mvs. Then, V is complete (in the sense of tvs) iff it is
sequentially complete.

Proof. We have to show that sequential completeness implies completeness. (The opposite
direction is obvious.) We use a translation-invariant pseudometric on V. Suppose F is a
Cauchy filter on V. That is, for any € > 0 there exists U € F such that U — U C B(0).
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Now, for each n € N choose consecutively U, € F such that U, — U, C By/,(0) and
U, C Up—1 if n > 1 (possibly by using the intersection property). Thus, for every N € N
we have that for all n,m > N : U, — U, C By/y(0). Now for each n € N choose an element
T, € U,. These form a Cauchy sequence and by sequential completeness converge to a
point z € V. Given n observe that for all y € U, : d(y,z) < d(y,z,) + d(zp,2) < = + 1,
hence U, C By/,(7) and thus By, (x) € F. Since this is true for all n € N, F contains
arbitrarily small neighborhoods of x and hence all of them, i.e., converges to x. O

Proposition 3.14. (a) Let V be a Hausdorff tvs and A be a complete subset. Then A is
closed. (b) Let V be a tvs and A be a closed subset of a complete subset B. Then A is
complete.

Proof. Exercise. O
We proceed to show the analogue of Proposition .

Lemma 3.15. Let V be a tvs, C C V totally bounded and F an ultrafilter containing C'.
Then F is Cauchy.

Proof. Let U be a neighborhood of 0 in V. Choose another neighborhood W of 0 such
that W is balanced and W + W C U. Since C is totally bounded there is a finite subset
F = {z1,...,zn} of V such that C C F + W. This implies in turn that there is k €
{1,...,n} such that (zx + W) N X # 0 for all X € F. To see that this is true suppose
the contrary. Then for each i € {1,...,n} there is X; € F such that (z; + W) N X; = 0.
But, then ) = C NN, X; € F, a contradiction. Thus, since F is ultrafilter we must have
a:k—i—We]:byLemma. But (zx + W) —(2p+W) =W -W =W +W CU by
construction. So F is a Cauchy filter. O

Proposition 3.16. Let V be a tvs and C C 'V a compact subset. Then, C is complete and
totally bounded.

Proof. Exercise. O

Proposition 3.17. Let V be a tvs and C C V' a subset. If C is totally bounded and
complete then it is compact.

Proof. Let F be a filter containing C. By Proposition M there exists an ultrafilter F’
such that 7 C F'. Since C' is totally bounded, Lemma 3.15 implies that ' is Cauchy. Since
C' is complete, F' must converge to some point p € C. By Proposition , this means
that p is accumulation point of 7'. By Proposition M this implies that p is accumulation
point of F. Since F was arbitrary, Proposition m implies that C' is compact. O

Proposition 3.18. Let V be a complete mvs and C' a vector subspace. Then V/C is
complete.
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Proof. Exercise. O

Exercise 18. Which of the topologies defined above are complete? Which become com-
plete under additional assumptions on the space S?

3.3 Finite dimensional tvs

Theorem 3.19. Let V be a Hausdorff tvs of dimension n € N. Then, any isomorphism of
vector spaces from K™ to V' is also an isomorphism of tvs. Moreover, any linear map from
V' to any tvs is continuous.

Proof. We first show that any linear map from K" to any tvs W is continuous. Define the
map g : K* x W" — W given by

g(( A1,y An), (V1,0 0n)) 1= Ao + -+ + A

This map can be obtained by taking products and compositions of vector addition and
scalar multiplication, which are continuous. Hence it is continuous. On the other hand,
any linear map f : K® — W takes the form f(A1,..., ) = g((A1,..., A\n), (v1,...,v,)) for
some fixed set of vectors {v1,...,v,} in W and is thus continuous by Proposition @

We proceed to show that any linear map V' — K" is continuous. We do this by induction
in n starting with n = 1. For n = 1 any such non-zero map takes the form g : Aey — A for
some e; € V' \ {0}. (If g = 0 continuity is trivial.) For r > 0 consider the element re; € V.
Since V' is Hausdorff there exists an open neighborhood U of 0 in V' that does not contain
re1. Moreover, we can choose U to be balanced. But then it is clear that U C g~1(B,(0)).
That is, g1 (B,(0)) is a neighborhood of 0 in V. Since open balls centered at 0 form a
base of neighborhoods of 0 in K this implies that the preimage of any neighborhood of 0
in K is a neighborhood of 0 in V. By Proposition .a this implies that ¢ is continuous.

We now assume that we have proofed the statement in dimension n — 1. Let V be
a Hausdorff tvs of dimension n. Consider now some non-zero linear map h : V — K.
We factorize h as h = h o p into the projection p : V — V/ker h and the linear map
h: V/ker h — K. ker h is a vector subspace of V' of dimension n — 1. In particular, it is a
Hausdorff tvs and hence by the first part of the proof and the assumption of the induction
isomorphic as a tvs to K®~!. Thus, it is complete and by Proposition .a closed as a
subspace of V. Therefore, by Proposition the quotient tvs V/ker h is Hausdorff. Since
V/ker h is also one-dimensional it is isomorphic as a tvs to K as we have shown above.
Thus, h is continuous. Since the projection p is continuous by definition, the composition
h = h o p must be continuous. Hence, any linear map V' — K is continuous. But a linear
map V — K" can be written as a composition of the continuous map V — V™ given by
v+ (v,...,v) with the product of n linear (and hence continuous) maps V' — K. Thus, it
must be continuous.
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We have thus shown that for any n a Hausdorff tvs V' of dimension n is isomorphic to
K™ as a tvs via any vector space isomorphism. Thus, by the first part of the proof any
linear map V' — W, where W is an arbitrary tvs must be continuous. ]

Proposition 3.20. Let X be a Hausdorff tvs. Then, any finite dimensional subspace of
X is complete and closed.

Proof. Let A C X be a subspace of dimension n. By Theorem , A as a tvs is isomorphic
to K™. In particular, A is complete and thus closed in X by Proposition . ]

Proposition 3.21. Let X be a Hausdorff tvs, C a closed subspace of X and F a finite-
dimensional subspace of X. Then, F + C is closed in X.

Proof. Since C is closed X/C is a Hausdorff tvs. Let p : X — X/C be the continu-
ous projection. Then, p(F') is finite-dimensional, hence complete and closed in X/C by
Proposition . Thus, F + C = p~L(p(F)) is closed. O

Proposition 3.22. Let C' be a bounded subset of K™ with the standard topology. Then C
1s totally bounded.

Proof. Exercise. O

Theorem 3.23 (Riesz). Let V' be a Hausdorff tvs. Then, V is locally compact iff it is
finite dimensional.

Proof. If V is a finite dimensional Hausdorff tvs, then its is isomorphic to K" for some n
by Theorem . But closed balls around 0 are compact neighborhoods of 0 in K", i.e.,
K™ is locally compact.

Now assume that V is a locally compact Hausdorff tvs. Let K be a compact and
balanced neighborhood of 0. We can always find this since given a compact neighbor-
hood by Proposition we can find a balanced and closed subneighborhood which by
Proposition must then also be compact. Now let U be an open subneighborhood
of %K . By compactness of K, there exists a finite set of points {z1,...,2,} such that
K C Ui~ (z;+U). Let W be the finite dimensional subspace of V' spanned by {z1,...,zp}.
By Theorem ‘ W is isomorphic to K™ for some m € N and hence complete and closed
in V by Proposition . So by Proposition the quotient space V/W is a Hausdorff
tvs. Let m: V — V/W be the projection. Observe that, K CW +U C W + %K Thus,
m(K) C m(3K), or equivalently 7(2K) C m(K). Iterating, we find 7(2"K) C n(K) for all
k € N and hence 7(V) = 7(K) since V = |32, 2K as K is balanced. Since 7 is continuous
m(K)=mn(V)=V/W is compact. But since V/W is Hausdorff any one dimensional sub-
space of it is isomorphic to K by Theorem and hence complete and closed and would
have to be compact. But K is not compact, so V/W cannot have any one-dimensional
subspace, i.e., must have dimension zero. Thus, W =V and V is finite dimensional. [
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Exercise 19. (a) Show that a finite dimensional tvs is always locally compact, even if it is
not Hausdorff. (b) Give an example of an infinite dimensional tvs that is locally compact.

3.4 Equicontinuity

Definition 3.24. Let S be a topological space, T a tvs and F' C C(S,T'). Then, F is called
equicontinuous at a € S iff for all neighborhoods W of 0 in T there exists a neighborhood
U of a in S such that f(U) C f(a)+ W for all f € F. Moreover, F is called equicontinuous
iff F' is equicontinuous for all a € S.

Exercise 20. Let S be a topological space and F' C C(S,K). (a) Show that F' is bounded
in C(5,K) with the topology of pointwise convergence iff for each = € S there exists ¢ > 0
such that |f(z)| < ¢ for all f € F. (b) Show that F' is bounded in C(S,K) with the
topology of compact convergence iff for each K C S compact there exists ¢ > 0 such that
|f(z)| < cforall z € K and for all f € F.

Lemma 3.25. Let S be a topological space and F C C(S,K) equicontinuous. Then, F is
bounded with respect to the topology of pointwise convergence iff it is bounded with respect
to the topology of compact convergence.

Proof. Exercise. O

Lemma 3.26. Let S be a topological space and F C C(S,K) equicontinuous. Then, the
closures of F in the topology of pointwise convergence and in the topology of compact
convergence are equicontinuous.

Proof. Exercise. O

Proposition 3.27. Let S be a topological space and F C C(S,K) equicontinuous. If F is
closed then it is complete, both in the topology of pointwise convergence and in the topology
of compact convergence.

Proof. We first consider the topology of pointwise convergence. Let F be a Cauchy filter
containing F'. For each x € S induce a filter F, generated by e, (F) on K through the
evaluation map e, : C(S,K) — K given by e,(f) := f(z). Then each F, is a Cauchy
filter on K and thus convergent to a uniquely defined g(x) € K. This defines a function
g : S - K. We proceed to show that g is continuous. Fix a € S and ¢ > 0. By
equicontinuity, there exists a neighborhood U of a such that f(U) C B(f(a)) forall f € F
and hence |f(x) — f(y)| < 2¢ for all x,y € U and f € F. Fix x,y € U. Then, there exists
f € F such that |f(z) — g(z)| < e and |f(y) — g(y)| < €. Hence,

l9(z) —g(y)| < lg(x) = f(x)| +[f (@) = fFW + [f(y) —9(y)] <4e,

showing that ¢ is continuous. Thus, F converges to g and g € F if F is closed.
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We proceed to consider the topology of compact convergence. Let F be a Cauchy filter
containing F' (now with respect to compact convergence). Then, F is also a Cauchy filter
with respect to pointwise convergence and the previous part of the proof shows that there
exists a function g € C(S,K) to which F converges pointwise. But since F is Cauchy with
respect to compact convergence it must converge to g also compactly. Then, if F' is closed
we have g € F' and F' is complete. O

Theorem 3.28 (generalized Arzela-Ascoli). Let S be a topological space. Let F C C(S,K)
be equicontinuous and bounded in the topology of pointwise convergence. Then, F' is rela-
tively compact in C(S,K) with the topology of compact convergence.

Proof. We consider the topology of compact convergence on C(S,K). By Lemma M
F is bounded in this topology. The closure F of F is bounded by Proposition P
equicontinuous by Lemma @,and complete by Proposition . Due to Proposition M
it suffices to show that F is totally bounded. Let U be a neighborhood of 0 in C(S,K).
Then, there exists K C S compact and € > 0 such that Uk 3. C U, where

Uks:={f € C(S,K):|f(x)] <0 Vxe K}

By equicontinuity we can choose for each a € K a neighborhood W of a such that |f(x) —
f(a)] < eforall z € W and all f € F. By compactness of K there is a finite set of points
{ai,...,a,} such that the associated neighborhoods {W7,..., W} cover K. Now consider
the continuous linear map p : C(S,K) — K" given by p(f) := (f(a1),..., f(ay)). Since F
is bounded, p(F) is bounded in K" (due to Proposition %b) and hence totally bounded
(Proposition @) Thus, there exists a finite subset {f1,..., fm} C F such that p(F) is
covered by balls of radius € centered at the points p(f1),...,p(fm). In particular, for any
f € F there is then k € {1,...,m} such that |f(a;) — fx(a;)| < € for all i € {1,...,n}.
Specifying also x € K there is i € {1,...,n} such that z € W;. We obtain the estimate

[f (@) = fr(@)] < [f (@) = flai)] + | fai) = fulai)| + [fr(ai) = fr(2)] < 3e.

Since € K was arbitrary this implies f € fx + Uxsc C frx + U. We conclude that F

is covered by the set {fi,..., fm} + U. Since U was an arbitrary neighborhood of 0 this
means that F is totally bounded. O

Proposition 3.29. Let S be a locally compact space. Let F C C(S,K) be totally bounded
in the topology of compact convergence. Then, F is equicontinuous.

Proof. Exercise. O

3.5 The Hahn-Banach Theorem

Theorem 3.30 (Hahn-Banach). Let V' be a vector space over K, p be a seminorm on 'V,
A CV a vector subspace. Let f: A — K be a linear map such that |f(x)| < p(x) for all
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z € A. Then, there exists a linear map f:V = K, extending f (i.e., f(z) = f(z) for all
x € A) and such that |f(z)| < p(z) for allz € V.

Proof. We first consider the case K = R. Suppose that A is a proper subspace of V. Let
v € V'\ A and define B to be the subspace of V' spanned by A and v. In a first step we
show that there exists a linear map f : B — R such that f(z) = f(z) for all z € A and
|f(y)| < p(y) for all y € B. Since any vector y € B can be uniquely written as y = x+ v for
some x € A and some X\ € R, we have f(y) = f(z)+ Af(v), i.e, f is completely determined
by its value on v. For all z,2’ € A we have

f@) + f(a') = f(z +2') <ple+2") <p(z—v) +p(a’ +v)

and thus,
f(x) = plx —v) < pla’ +v) = f(2).

In particular, defining a to be the supremum for x € A on the left and b to be the infimum
for y € A on the right we get

a = sup{f(z) —p(z —v)} < inf {p(z’ +v) = f(@)} =b.

z€A

Now choose ¢ € [a,b] arbitrary. We claim that by setting f(v) := ¢, f is bounded by p as
required. For z € A and A > 0 we get

flz+ M) = A(f()ﬁ%) +c> <Ap (Aflx—kv) =p(z+ M)
flz =) = A(f()\_ll“) —C> <Ap ()\_IZL'—U> =p(x— ).

Thus, we get f(z) < p(z) for all z € B. Replacing 2 by —z and using that p(—z) = p(z)
we obtain also —f(z) < p(z) and thus |f(z)| < p(z) as required.

We proceed to the second step of the proof, showing that the desired linear form f
exists on V. We will make use of Zorn’s Lemma. Consider the set of pairs (W, f ) of vector
subspaces A C W C V with linear forms f : W — R that extend f and are bounded by
D. These pairs are partially ordered by extension, i.e., (W, f) < (W', f) if W C W’ and
f'lw = f. Moreover, for any totally ordered subset of pairs {(W, fi)}ier there is an upper
bound glven by (Wr, fr) where Wy := U;c; Wi and fr(z) := fi(z) for x € W;. Thus, by
Zorn’s Lemma there exists a maximal pair (W, f). Since the first part of the proof has
shown that for any proper vector subspace of V' we can construct an extension, i.e., a pair
that is strictly greater with respect to the ordering, we must have W = V. This concludes
the proof in the case K = R.

We turn to the case K = C. Let f.(z) := Rf(x) for all z € A be the real part of the
linear form f : A — C. Since the complex vector spaces A and V are also real vector
spaces and p reduces to a real seminorm, we can apply the real version of the proof to f,.



42 Robert Oeckl — FA NOTES — 10/06/2024

to get a real linear map fr : V = R extending f, and being bounded by p. We claim that
f:V — C given by
f(z) = fr(@) —if,(ix) VoeV

is then a solution to the complex problem. We first verify that f is complex linear. Let
x €V and XA € C. Then, A = a + ib with a,b € R and

fOw) = af(@) + bf (i)
= afy(x) — aify(iz) + bf(iz) + bify(x)
= (a+1b) (fr(x) = ifu(ix) )
=M (x).

We proceed to verify that f(z) = f(z) for all z € A. For all z € A,

f(z) =Rf(z) - iRf (i) = Rf(z) - iR(1f (2)) = Rf (z) +13(f () = ().

It remains to show that f is bounded by p. Let z € V. Choose A € C with |A| = 1 such
that Af(z) € R. Then,

f@)| = @) =
This completes the proof. ]

Corollary 3.31. Let V be a seminormed vector space, ¢ > 0, A CV a vector subspace and
[+ A— K alinear form satisfying | f(x)| < c||z|| for all x € A. Then, there exists a linear
form f:V — K that coincides with f on A and satisfies | f(z)| < c||z|| for all z € V.

Proof. Immediate. O

Theorem 3.32. Let V be a locally convex tvs, A CV a vector subspace and f : A — K
a continuous linear form. Then, there exists a continuous linear form f :V — K that
coincides with f on A.

Proof. Since f is continuous on A, the set U := {z € A : |f(x)| < 1} is a neighborhood of
0 in A. Since A carries the subset topology, there exists a neighborhood U of 0 in V such
that U N A C U. By local convexity, there exists a convex and balanced subneighborhood
W C U of 0 in V._The associated Minkowski functional ||- ||y is a seminorm on V according
to Proposition and we have |f(z)| < ||z|lw for all x € A. Thus, we may apply the
Hahn-Banach Theorem m to obtain a linear form f : V — K that coincides with f on
the subspace A and is bounded by | - |y. Since || - ||y is continuous this implies that f is
continuous. O
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Corollary 3.33. Let V be a locally convex Hausdorff tvs. Then, CL(V,K) separates points
in V. That is, for any pair x,y € V such that x # y, there exists f € CL(V,K) such that

flx) # f(y).

Proof. Exercise. O

Proposition 3.34. Let X be a locally convexr Hausdorff tvs. Then, any finite dimensional
subspace of X admits a closed complement.

Proof. We proceed by induction in dimension. Let A C X be a subspace of dimension
1 and v € A\ {0}. Define the linear map A : A — K by A(v) = 1. Then, the Hahn-
Banach Theorem in the form of Theorem @ ensures that A extends to a continuous map
A : X — K. Then, clearly ker \ is a closed complement of A in X. Now suppose we have
shown that for any subspace of dimension n a closed complement exists in X. Let N be a
subspace of X of dimension n + 1. Choose an n-dimensional subspace M C N. This has a
closed complement C' by assumption. Moreover, C' is a locally convex Hausdorff tvs in its
own right. Let A= NNC. Then, A is a one-dimensional subspace of C' and we can apply
the initial part of the proof to conclude that it has a closed complement D in C. But D is
closed also in X since C' is closed in X and it is a complement of V. O

3.6 More examples of function spaces

Definition 3.35. Let T" be a locally compact space. A continuous function f : T — K is
said to vanish at infinity iff for any € > 0 the subset {x € T': [f(x)| > €} is compact in T
The set of such functions is denoted by Co(T, K).

Exercise 21. Let T be a locally compact space. Show that Cy(T,K) is complete in the
topology of uniform convergence, but not in general complete in the topology of compact
convergence.

Definition 3.36. Let U be a non-empty open subset of R". For a multi-index [ € N} we
denote the corresponding partial derivative of a function f : R™ — K by

I In

Dlf = 8l .0 ¥
Oz ...0xy
Let k € Ny. If all partial derivatives with || := {; + --- 4+ [, < k for a function f exist
and are continuous, we say that f is k£ times continuously differentiable. We denote the
vector space of k times continuously differentiable functions on U with values in K by
CF(U,K). We say a function f : U — K is infinitely differentiable or smooth if it is k times
continuously differentiable for any k € Ny. The corresponding vector space is denoted by
C>(U,K).
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Definition 3.37. Let U be a non-empty open and bounded subset of R"® and k € Ny.
We denote by CF(U,K) the set of continuous functions f : U — K that are k times
continuously differentiable on U, and such that any partial derivative D!f with |I| <
k extends continuously to U. Similarly, we denote by C*°(U,K) the set of continuous
functions f : U — K, smooth in U and such that any partial derivative extends continuously
to U.

Example 3.38. Let U be a non-empty open and bounded subset of R". Let [ € Nj and
define the seminorm p; : C*(U,K) — R{ via

p(f) = sup|(D'f) ()]
zcU
for k € Ny with k£ > |l| or for k = co. For any k € Ny the set of seminorms {p; : | €
2|l < k} makes C*(U,K) into a normable vector space. Similarly, the set of seminorms
{p1 : 1 € Nj'} makes C°(U,K) into a locally convex mvs.

Exercise 22. Let U be a non-empty open and bounded subset of R". Show that C*°(U, K)
with the topology defined above is complete, but not normable.

Proposition 3.39. Let T be a o-compact space. Then, C(T,K) with the topology of
compact convergence is metrizable.

Proof. Exercise. O

Example 3.40. Let U be a non-empty open subset of R” and k € Ny U {oo}. Let W be
an open and bounded subset of R™ such that W C U and let | € N? such that || < k.
Define the seminorm py7, : C*(U,K) — R via

i, (f) = ESVI;\(le) (2)].

The set of these seminorms makes C*(U, K) into a locally convex tvs.

Exercise 23. Let U C R" be non-empty and open and let k& € Ny U {oo}. Show that
CF(U,K) is complete and metrizable, but not normable.

Exercise 24. Let 0 < k < m < oo. (a) Let U C R™ be non-empty, open and bounded.
Show that the inclusion map C™(U,K) — C*(U,K) is injective and continuous, but does
not in general have closed image. (b) Let U C R™ be non-empty and open. Show that the
inclusion map C™(U, K) — CF(U,KK) is injective and continuous, but is in general neither
bounded nor has closed image.

Exercise 25. Let U C R™ be non-empty, open and bounded, let £ € Ny U {oo}. Show
that the inclusion map C*(U,K) — Ck(U, K) is injective and continuous. Show also that
its image is in general not closed.
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Exercise 26. Let k € Ny U {oc}. For f € CYR,K) consider the operator D(f) :=
f'. (a) Show that D : C*1(]0,1],K) — C¥([0,1],K) is continuous. (b) Show that D :
CH1(R,K) — C*¥(R, K) is continuous.

Exercise 27. Let k € Ny U {oo}. For f € C(R,K) consider the operator
y
W= [ f(@)d

(a) Show that I : C¥([0, 1], K) — C*+1(]0, 1], KK) is continuous. (b) Show that I : C¥(R,K) —
CF1(R,K) is continuous.

Definition 3.41. Let D be a non-empty, open and connected subset of C. We denote by
O(D) the vector space of holomorphic functions on D. If D is also bounded we denote by
O(D) the vector space of complex continuous functions on D that are holomorphic in D.

Exercise 28. (a) Show that O(D) is complete with the topology of uniform convergence.
(b) Show that O(D) is complete with the topology of compact convergence.

Theorem 3.42 (Montel). Let D C C be non-empty, open and connected and F C O(D).
Then, the following are equivalent:

1. F is relatively compact.
2. F is totally bounded.
3. F is bounded.

Proof. 1.=2. F is compact and hence totally bounded by Proposition . Since F'is a
subset of F it must also be totally bounded. 2.=3. This follows from Proposition .
3.=1. Since D is locally compact, it is easy to see that boundedness is equivalent to
the following property: For each point z € D there exists a neighborhood U C D and a
constant M > 0 such that |f(z)| < M for all z € U and all f € F. It can then be shown
that F' is equicontinuous [Notes on Complex Analysis, Theorem 5.28]. The Arzela-Ascoli
Theorem then ensures that F' is relatively compact. O

Definition 3.43. Let X be a measurable space, u a measure on X and p > 0. Define
LP(X, p,K) :={f: X — Kmeasurable : ||’ integrable}.
Also define

L(X, 1, K) :={f : X - K measurable : | f| bounded almost everywhere}.

We recall the following facts from real analysis.
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Example 3.44. The set £P(X, u, K) for p € (0,00] is a vector space.
Lo ||+ floo s £2°(X, 1, K) — R{ given by
|| flloo := inf{||g|lsup : g = fa.e. and g : X — K bounded measurable}
defines a seminorm on £>*°(X, u, K), making it into a complete seminormed space.

2. If 1 <p < oo, then | - ||, : £LP(X, u, K) — R given by

i = ([ 1s0)"

defines a seminorm on £P(X, i, K), making it into a complete seminormed space.

3. If p <1, then s, : LP(X, 1, K) — R given by

o) = [ 107
X
defines a pseudo-seminorm on £P(X, i, K), making it into a complete pseudometriz-

able space.

Example 3.45. For any p € (0, 00|, the closure N := {0} of zero in £P(X, i, K) is the set
of measurable functions that vanish almost everywhere. The quotient space LP (X, u, K) :=
LP(X, u,K)/N is a complete mvs. It carries a norm (i.e., is a Banach space) for p > 1 and
a pseudo-norm otherwise. In the case p = 2 the norm comes from an inner product making
the space into a Hilbert space.

3.7 The Banach-Steinhaus Theorem

Definition 3.46. Let S be a topological space. A subset C C S is called nowhere dense iff
its closure C' does not contain any non-empty open set. A subset C' C S is called meager
iff it is the countable union of nowhere dense subsets.

Proposition 3.47. Let X and Y be tvs and A C CL(X,Y). Then A is equicontinuous iff
for any neighborhood W of 0 in Y there exists a neighborhood V of 0 in X such that

fV)CW VfeA.
Proof. Immediate. O

Theorem 3.48 (Banach-Steinhaus). Let X and Y be tvs and A C CL(X,Y). Forx € X
define A(z) := {f(z) : f € A} CY. Define BC X as

B :={zx € X : A(z) is bounded}.

If B is not meager in X, then B = X and A is equicontinuous.
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Proof. We suppose that B is not meager. Let U be an arbitrary neighborhood of 0 in Y.
Choose a closed and balanced subneighborhood W of 0. Set

E:= () f'(w)

feA

and note that E is closed and balanced, being an intersection of closed and balanced sets.
If x € B, then A(x) is bounded, there exists n € N such that A(x) C nW and hence
x € nE. Therefore,

oo
BC |JnE.
n=1
If all sets nE were meager, their countable union would be meager and also the subset B.
Since by assumption B is not meager, there must be at least one n € N such that nF is
not meager. But since the topology of X is scale invariant, this implies that E itself is not
o o o
meager. Thus, the interior £ = FE is not empty. Also, F is balanced since F is balanced
[e]
and thus must contain 0. In particular, F/, being open, is therefore a neighborhood of 0
and so is F itself. Thus,
f(E)CW CU VfeA.

This means that A is equicontinuous at 0 and hence equicontinuous by linearity (Propo-
sition ) Let now = € X arbitrary. Since z is bounded, there exists A > 0 such that
x € AE. But then, f(x) € f(AE) C AU for all f € A. That is, A(xz) C AU, i.e., A(z) is
bounded and x € B. Since x was arbitrary, B = X. O

Proposition 3.49. Let S be a complete metric space and C' C S a meager subset. Then,
C does not contain any non-empty open set. In particular, C # S.

Proof. Since C' is meager, there exists a sequence {C), }nen of nowhere dense subsets of S
such that C' = (,,cy Cn. Define U, := S C, for all n € N. Then, each U, is open and
dense in S. Thus, by Baire’s Theorem 1.86 the intersection Mpen Un is dense in S. Thus,
its complement |J,,cp C, cannot contain any non-empty open set. The same is true for the
subset C' C U,,ery Chn- O]

Corollary 3.50. Let X be a complete Hausdorff mvs, Y be a tvs and A C CL(X,Y).
Suppose that A(z) = {f(x) : f € A} C Y is bounded for all x € X. Then, A is

equicontinuous.
Proof. Exercise. O

Corollary 3.51. Let X be a Banach space, Y a normed vector space and A C CL(X,Y).
Suppose that

sup || f(z)|| < o0 Vz e X.

feA
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Then, there exists M > 0 such that
If(2)|| < M||z|| Vze X,Vfe A.

Proof. Exercise. O

3.8 The Open Mapping Theorem

Theorem 3.52 (Open Mapping Theorem). Let X be a complete Hausdorff mvs, Y a
Hausdorff tvs, f € CL(X,Y) and f(X) not meager in Y. Then, Y is a complete Hausdorff
mus and f is open and surjective.

Proof. Suppose U is a neighborhood of 0 in X. Let V' C U be a balanced subneighborhood
of 0. Since every point of X is bounded we have

X = U nV and hence f(X)= U nf(V).

neN neN

But f(X) is not meager, so nf(V) is not meager for at least one n € N. But then scale

invariance of the topology of Y implies that f(V') itself is not meager. Thus, f(V) is not
empty, is open and balanced (since V' is balanced) and thus forms a neighborhood of 0 in
Y. Consequently, f(V) is also a neighborhood of 0 in Y and so is f(U).

Consider now a compatible pseudonorm on X. Let U be a neighborhood of 0 in X.
There exists then r > 0 such that B,.(0) C U. Let y; € f(B,/2(0)). We proceed to construct

sequences {Yn}nen and {x,}nen by induction. Supposed we are given y, € f(B,/2:(0)).
By the first part of the proof f(B, j5n+1(0)) is a neighborhood of 0 in Y. Thus,

J (B2 (0) 1 (g + F(Bryna(0)) # 0.

In particular, we can choose z,, € B,.jon(0) such that

f(zn) € yn + (B j2n+1(0)).

Now set Yn+1 := yn — f(zn). Then, ynt1 € f(B,/2n+1(0)) as the latter is balanced.

Since in the pseudonorm |z, | < r/2" for all n € N, the partial sums {>°/'"; p }men
form a Cauchy sequence. (Use the triangle inequality). Since X is complete, they converge
to some z € X with ||z|| <, i.e., z € B,(0). On the other hand

f (Z mn) Z f(xn) = Z = Yn+1) = Y1 — Ym+1.
n=1 n=1

Since f is continuous the limit m — oo exists and yields

f(SU) =Yy — Y Where Yy = nllgnoo Y-
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Note that our notation for the limit y implies uniqueness which indeed follows from the
fact that Y is Hausdorff.

We proceed to show that y = 0. Suppose the contrary. Again using that Y is Hausdorff
there exists a closed neighborhood C' of 0 in Y that does not contain y. Its preimage
f71(C) is a neighborhood of 0 in X by continuity and must contain a ball B, /27 (0) for

some n € N. But then f(B,/on(0)) € C and f(B,/on(0)) € C since C is closed. But

yr € f(By/2n(0)) € C for all k > n. So no y; for & > n is contained in the open
neighborhood Y \ C of y, contradicting convergence of the sequence to y. We have thus
established f(x) = y1. But since z € B,(0) and y1 € f(B,/2(0)) was arbitrary we may
conclude that f(B,/2(0)) C f(B-(0)) € f(U). By the first part of the proof f(B, /5(0)) is
a neighborhood of 0 in Y. So we may conclude that f(U) is also a neighborhood of 0 in
Y. This establishes that f is open at 0 and hence open everywhere by linearity.

Since f is open the image f(X) must be open in Y. On the other hand f(X) is a
vector subspace of Y. But the only open vector subspace of a tvs is the space itself. Hence,
f(X) =Y, 1ie., fis surjective.

Let now C := ker f. Since f is surjective, Y is naturally isomorphic to the quotient
space X/C as a vector space. Since f is continuous and open Y is also homeomorphic to
X/C by Proposition @3 and hence isomorphic as a tvs. But then Propositions @ and
E imply that Y is metrizable and complete. O

Corollary 3.53. Let X, Y be complete Hausdorff mvs and f € CL(X,Y) surjective. Then,
f 1is open.

Proof. Exercise. O
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4 Algebras, Operators and Dual Spaces

4.1 The Stone-Weierstrafl Theorem

Definition 4.1. A vector space A over the field K is called an algebra over K iff it is
equipped with an associative bilinear map - : Ax A — A. This map is called multiplication.

Definition 4.2. Let A be an algebra over K. A is called a commutative algebra iff a-b = b-a
for all a,b € A. An element ¢ € A is called a unitiff e-a =a-e =a foralla € A and e # 0.
Iff A is equipped with a unit it is called a unital algebra. Assume now A to be unital and
consider a € A. Then, b € A is called an inverse of a iff b-a=a-b=-e. An element a € A
possessing an inverse is called invertible.

It is immediately verified that a unit and an inverse are unique.

Definition 4.3. Let A be an algebra over K equipped with a topology. Then A is called a
topological algebra iff vector addition, scalar multiplication and algebra multiplication are
continuous.

Proposition 4.4. Let S be a topological space. Then, C(S,K) with the topology of compact
convergence is a unital topological algebra.

Proof. Exercise. O

Lemma 4.5. Let ¢ > 0. The absolute value function |-|: R — R given by x — |x| can be
approzimated uniformly on [—c,c] by polynomials with vanishing constant term.

Proof. Exercise. O

Lemma 4.6. Let ¢ > 0 and ¢ > 0. Then, there exist polynomials Ppin and Ppnax of n

variables and without constant term such that for all ay, ..., a, € [—c, ],
| Pmin (a1, . .., an) —min{ai,...,an}| <,
| Pmax(a1, . ..,a,) —max{ay,...,a,}| <e.
Furthermore, Pyin(a,...,a) = a and Pyax(a,...,a) = a.

Proof. 1t suffices to show the statement for n = 2. Since the minimum and maximum
functions can be evaluated iteratively, the general statement follows then by iteration and
a multi-e argument. We notice that

a1 +ay |ag — a9l
2 2

art+az lar — as]
2 2 '

max{ay,az} =

min{aj,az} =
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By Lemma @ there exists a polynomial P without constant terms such that |P(z) —|z|| <
2¢ for all z € [—2¢,2¢]. 1t is easily verified that

a; +ay  Play —a2)

Pmax(ala a2) = B + 5 s
a1 +ax Pla; —ag
Pmin(ala a2) = 9 - ( B )
have the desired properties. O

Definition 4.7. Let S be a set and A C F(S,K). We say that A separates points iff for
each pair z,y € S such that x # y there exists f € A such that f(z) # f(y). We say that
A vanishes nowhere iff for each = € S there exists f € A such that f(z) # 0.

Lemma 4.8. Let S be a topological space and A C C(S,K) a subalgebra. Suppose that A
separates points and vanishes nowhere. Then, for any pair x,y € S with x # y and any
pair a,b € K there exists a function f € A such that f(x) = a and f(y) = b.

Proof. Exercise. O

Theorem 4.9 (real Stone-Weierstrafl). Let K be a compact Hausdorff space and A C
C(K,R) a subalgebra. Suppose that A separates points and vanishes nowhere. Then, A is
dense in C(K,R) with respect to the topology of uniform convergence.

Proof. Given f € C(K,R), and ¢ > 0 we have to show that there is £k € A such that
k € B(f), ie.,
flz)—e<k(z)< f(z)+e VreK.

Fix x € K. For each y € K we choose a function g,, € A such that f(z) = g, ()
and f(y) = guy(y). This is possible by Lemma {.§. By continuity there exists an open
neighborhood Uy for each y € K such that g, ,(z) < f(z) + €/4 for all z € U,. Since K
is compact there are finitely many points y1,...,y, € K such that the associated open
neighborhoods Uy, ...,U,, cover K. Let

gz = min{gz’,yp e agx,yn}'

Since K is compact there exists ¢ > 0 such that |g,,,(2)] < ¢ for all z € K and all
i € {1,...,n}. Then, by Lemma @ there exists a polynomial P, such that h, :=
Puin(9ayrs- - s Goyn) € A satisfies |hy(2) — g2(2)] < €/4 for all z € K and hy(z) = g,(x).
Thus, hy(z) = f(x) and hy(z) < f(2) +€/2 for all z € K.

Choose now for each x € K a function h, € A as above. Then, by continuity, for
each z € K there exists an open neighborhood U, such that f(z) — ¢/2 < hy(z) for all
z € U,. By compactness of K there exists a finite set of points x1,...,z, € K such that
the associated neighborhoods Uy, ,...,U,,, cover K. Let

h:=max{hg,,..., hs,, }.
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Since K is compact there exists ¢ > 0 such that |hg,(2)] < ¢ for all z € K and all ¢ €
{1,...,m}. By Lemma @ there exists a polynomial Py such that k := Ppax(hay, .-, ha,,) €
A satisfies |k(z) —h(z)| < €/2 for all z € K. Then, f(z) —e < k(z) < f(2)+eforall z € K.
This completes the proof. O

Theorem 4.10 (complex Stone-Weierstrafl). Let K be a compact Hausdorff space and
A C C(K,C) a subalgebra. Suppose that A separates points, vanishes nowhere and is
invariant under complex conjugation. Then, A is dense in C(K,C) with respect to the
topology of uniform convergence.

Proof. Let Ag be the real subalgebra of A given by the functions with values in R. Note
that if f € A, then Rf € Ag since Rf = (f + f)/2. Likewise if f € A, then Sf € Ag since
Sf = —R(if). It is then clear that Ar separates points and vanishes nowhere. Applying
the real version of the Stone-Weierstral Theorem {1.9 we find that Ag is dense in C(K,R).
But then A = Ag +iAg is dense in C(K,C) = C(K,R) +i C(K,R). O

Theorem 4.11. Let S be a Hausdorff space and A C C(S,K) a subalgebra. Suppose that
A separates points, vanishes nowhere and is invariant under complex conjugation if K = C.
Then, A is dense in C(S,K) with respect to the topology of compact convergence.

Proof. Recall that the sets of the form
Uke:={f€C(SK):|f(x)] <eVxe K},

where K C S is compact and € > 0 form a basis of neighborhoods of 0 in C(S,K). Given
f e C(S,K), K C S compact and € > 0 we have to show that there is g € A such that
g € f+ Uke Let Ag be the image of A under the projection p : C(S,K) — C(K,K).
Then, Ag is an algebra that separates points, vanishes nowhere and is invariant under
complex conjugation if K = C. By the ordinary Stone-Weierstral Theorem @ or ,
Ag is dense in C(K, K) with respect to the topology of uniform convergence. Hence, there
exists g € A such that p(g) € Bc(p(f)). But this is equivalent to g € f + Uk.. O

Theorem 4.12. Let S be a locally compact Hausdorff space and A C Cy(S,K) a subal-
gebra. Suppose that A separates points, vanishes nowhere and is invariant under complex
conjugation if K = C. Then, A is dense in Co(S,K) with respect to the topology of uniform
convergence.

Proof. Exercise.Hint: Let S = S U {oo} be the one-point compactification of S (compare
Exercise E) Show that Cy(S, K) can be identified with the closed subalgebra C|OO:0(§ ,K) C
C(S,K) of those continuous functions on S that vanish at co. Denote by A the correspond-
ing extension of A to S. Now modify Theorem @ in such a way that A is assumed to
vanish nowhere except at co to show that A is dense in C‘OOZO(S’ , K). O
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4.2 Operators

Proposition 4.13. Let X, Y, Z be tvs. Let f € CL(X,Y) and g € CL(Y,Z). If f or g is
bounded, then go f is bounded. If f or g is compact, then g o f is compact.
Proof. Exercise. O

Definition 4.14. Let X, Y be normed vector spaces. Then, the operator norm on CL(X,Y")
is given by

|71l := sup {||f(@)|| : = € Bi(0) € X }.
Proposition 4.15. Let X be a normed vector space and Y a Banach space. Then,
CL(X,Y) with the operator norm is a Banach space.

Proof. Let {fn}nen be a Cauchy sequence in CL(X,Y"). This means,
Ve>0:3dN >0:Yn,m > N :|fn — fml <e
But by the definition of the operator norm this is equivalent to
Ve>0:3IN >0:Vn,m >N Ve e X :|fu(z)— fm(2)| <ellz]. (1)

Since Y is complete, so each of the Cauchy sequences {f,(z)}n,en converges to a vector
f(z) € Y. This defines a map f: X — Y. f is linear since we have for all z,y € X and
A p €K,

fOa 4 py) = lim fo(Az + py) = Hm (Afo(2) + 1fn(y))
= A lim fo(z) +p lim fo(y) = Af(2) + pf(y)-
Equation (E]) implies now
Ve>0:3IN >0:Yn> N :Vr e X | fulx) — f(x)] <€z
This implies that f is continuous and is equivalent to
Ve>0:IN>0:Yn> N :||f, — f|l <e

That is, { fn}nen converges to f. O
Exercise 29. Let X, Y be tvs. Let & be the set of bounded subsets of X. (a) Show that
CL(X,Y) is a tvs with the &-topology. (b) Suppose further that X is locally bounded
and Y is complete and Hausdorff. Show that then CL(X,Y') is complete. (c) Show that

if X and Y are normed vector spaces the G-topology coincides with the operator norm
topology.

Example 4.16. Let X be a tvs. Then, CL(X, X) is an algebra over K and Proposition
implies that the subsets BL(X, X) and KL(X, X) of CL(X, X) are bi-ideals.

Exercise 30. Let X be a normed vector space. Show that CL(X, X) with the operator
norm and multiplication given by composition is a topological algebra. Moreover, show
that ||[A o B < ||A||||B]| for all A, B € CL(X, X).
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4.3 Dual spaces

Definition 4.17. Let X be a tvs over K. Then, the space L(X,K) of linear maps X — K
is called the algebraic dual of X and denoted by X*. The space CL(X,K) of continuous
linear maps X — K is called the (topological) dual of X and denoted by X*.

Definition 4.18. Let X be a tvs. Then, the weak™ topology on X* is the coarsest topology
on X* such that the evaluation maps & : X* — K given by &(f) := f(z) are continuous
for all z € X.

Exercise 31. Let X be a tvs. Show that the weak® topology on X* makes it into a
locally convex tvs and indeed coincides with the topology of pointwise convergence under
the inclusion CL(X,K) C C(X,K). Moreover, show that CL(X,K) is closed in C(X,K).

Proposition 4.19. Let X be a tvs, F' C CL(X,K) equicontinuous. Then, F is bounded in
the weak* topology.

Proof. Exercise. O

Proposition 4.20. Let X be a normed vector space. Then, the operator norm topology on
X* is finer than the weak® topology.

Proof. Exercise. O

Indeed, we shall see that the following Banach-Alaoglu Theorem has as a striking
consequence a considerable strengthening of the above statement.

Theorem 4.21 (Banach-Alaoglu). Let X be a tvs, U a neighborhood of 0 in X and V a
bounded and closed set in K. Then, the set

MU, V) ={feX*: f(U) CV}.
is compact with respect to the weak* topology.

Proof. We first show that M (U, V) is closed. To this end observe that

MU, V)= (] M({z},V) where M({z},V):={f€X": f(x) e V}.
zeU

Each set M ({z}, V) is closed since it is the preimage of the closed set V' under the contin-
uous evaluation map # : X* — K. Thus, M (U, V), being an intersection of closed sets is
closed.

Next we show that M (U, V) is equicontinuous and bounded. Let W be a neighborhood
of 0 in K. Since V is bounded there exists A > 0 such that V C AW, i.e., A~V C W. But
by linearity M (U,V) = M(A~'U,A"1V). This means that f(A\"1U) C A=V C W for all
f € M(U,V), showing equicontinuity. By Proposition it is also bounded.
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Thus, the assumptions of the Arzela-Ascoli Theorem are satisfied and we obtain
that M (U, V) is relatively compact with respect to the topology of compact convergence.
But since M (U,V) is closed in the topology of pointwise convergence it is also closed
in the topology of compact convergence which is finer. Hence, M (U, V) is compact in
the topology of compact convergence. But since the topology of pointwise convergence is
coarser, M (U, V') must also be compact in this topology. O

Corollary 4.22. Let X be a normed vector space and B C X* the closed unit ball with
respect to the operator norm. Then B is compact in the weak® topology.

Proof. Exercise. O

Remark 4.23. Let X be a normed space. Then, X* with the operator norm topology is
complete, i.e., a Banach space (due to Proposition )

Given a normed vector space X, we shall in the following always equip X* with the
operator norm if not mentioned otherwise.

Definition 4.24. Let X be a normed vector space. The bidual space of X, denoted by
X** is the dual space of the dual space X*. Let z € X.

Proposition 4.25. Let X be a normed vector space. Given x € X the evaluation map
z: X* — K given by #(y) := y(x) for all y € X* is an element of X**. Moreover, the
canonical linear map ix : X — X** given by x — T is isometric.

Proof. The continuity of & follows from Proposition . Thus, it is an element of X**.
We proceed to show that iy is isometric. Denote by Bx+ the closed unit ball in X*. Then,
forall z € X,

12| = sup |2(f)] = sup |f(z)] < sup [[fl]=]] = [l

On the other hand, given € X choose with the help of the Hahn-Banach Theorem
(Corollary B.31) g € X* such that g(z) = ||z| and ||g| = 1. Then,

12l = sup |2(f)] = [2(9)] = lg(=)| = =[]
fEBxx

O]

Definition 4.26. A Banach space X is called reflexive iff the canonical linear map ix :
X — X** is surjective.
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4.4 Adjoint operators

Definition 4.27. Let X, Y be tvsand f € CL(X,Y). The adjoint operator f* € L(Y™*, X*)
is defined by

(f(9)(x) :==g(f(z)) VreX,geY™

Remark 4.28. It is immediately verified that the image of f* is indeed contained in X*
and not merely in X*.

Proposition 4.29. Let X, Y be tvs and f € CL(X,Y). Then, f* € CL(Y*, X*) if we
equip X* and Y™* with the weak® topology.

Proof. Exercise. O

Proposition 4.30. Let X, Y be normed vector spaces and f € CL(X,Y). Then, f* €
CL(Y™*, X*) if we equip X* and Y™ with the operator norm topology. Moreover, equipping
also CL(X,Y) and CL(Y™*, X*) with the operator norm we get ||f*|| = ||f|| for oall f €
CL(X,Y). That is, * : CL(X,Y) — CL(Y™, X*) is a linear isometry.

Proof. Exercise.Hint: Use the Hahn-Banach Theorem in the form of Corollary to

show that [|f*[| > [|f]- O
Lemma 4.31. Let X, Y be normed vector spaces and f € CL(X,Y). Then, f** oix =
iy 0 f

Proof. Exercise. O

Proposition 4.32. Let X, Y be normed vector spaces and f € CL(X,Y). Equip X* and
Y™ with the operator norm topology. Then, compactness of f implies compactness of f*.
Supposing in addition that Y is complete, also compactness of f* implies compactness of

1.

Proof. Suppose first that f is compact. Then, C' := f(B1(0)) is compact. Let By« be the
open unit ball in Y*. Then, By+ is equicontinuous and the restriction of By~ to C C Y
is bounded in C(C,K) (with the topology of pointwise convergence). Thus, by the Arzela-
Ascoli Theorem By* restricted to C is totally bounded in C(C, K) (with the topology
of uniform convergence). In particular, for any € > 0 there exists a finite set F' C By~ such
that for any g € By~ there is g € F with |g(y) — §(y)| < € for all y € C. But then also
lf*(9)(z) — f*(g)(x)] < e for all x € B1(0) C X. This in turn implies || f*(g) — f*(9)]| <e.
That is, f*(By-) is totally bounded and hence relatively compact. Hence, f* is compact.

Conversely, suppose that f* is compact. Then, by the same argument as above f** :
X* — Y™ is compact. That is, there is a neighborhood U** of 0 in X™** such that f**(U**)
is compact in Y**. Since ix is continuous U := iy L(U**) is a neighborhood of 0 in X. Using
Lemma {.31] we get f**(U**) DO f*™ oix(U) =iy o f(U). In particular, this means that
iy o f(U) is totally bounded. Since iy is isometric, f(U) is also totally bounded. So, F(U)
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is totally bounded and also complete given completeness of Y, hence compact. Thus, f is
compact. ]

Proposition 4.33. Let X, Y be Hausdorff tvs, A € CL(X,Y). Then, there are canonical
isomorphisms of vector spaces,

1. (Y/AX)) - ker(4%),

2. Y*/ker(A7) > (A(X)) .

Moreover, supposing in addition that Y is locally convex, if we equip dual space with the
weak™ topology, these isomorphisms become isomorphisms of tvs. Similarly, If X andY are
normed vector spaces and we equip dual spaces with the operator norm, the isomorphisms
become isometries.

R N\ %

Proof. Let ¢ : Y — Y/A(X) be the quotient map. The adjoint of ¢ is ¢* : (Y/A(X)) —
Y*. Since q is surjective, ¢* is injective. We claim that the image of ¢* is ker(A*) C Y*

proving 1. Let f € (Y/A(X))*. Then, A*(¢*(f)) = foqo A =0 since already go A = 0.
Now suppose f € ker(A*) C Y*. Then, fo A =0, ie., flax) = 0. Since f is continuous,

we must actually have f |m = 0. But this means there is a well defined g : Y/A(X) - K
such that f = goq. Moreover, the continuity of f implies continuity of g by the definition

of the quotient topology on Y/A(X). This completes the proof of 1.

Consider the inclusion i : A(X) — Y. The adjoint of i is ¢* : Y* — (A(X)>*
Since 17 is injective, i* is surjective. We claim that the kernel of i* is precisely ker(A*)
so that quotienting it leads the isomorphism 2. Indeed, let f € Y*. f € ker(A4*) iff
0 = A*(f) = fo A. But this is equivalent to f|4x) = 0. Since f is continuous this is

in turn equivalent to f|m = 0. But this is in turn equivalent to 0 = f oi = i*(f),
completing the proof of 2.
Exercise.Complete the topological part of the proof. O

4.5 Approximating Compact Operators

Definition 4.34. Let X,Y be tvs. We denote the space of continuous linear maps X — Y
with finite dimensional image by CLg,(X,Y).

Proposition 4.35. Let X,Y be tvs such that Y is Hausdorff. Then, CLg,(X,Y) C
KL(X,Y).

Proof. Exercise. O

Proposition 4.36. Let X be a normed vector space, Y a Banach space. Then, CLgy(X,Y) C
KL(X,Y) with respect to the operator norm topology.
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Proof. Let f € CLgy(X,Y) and € > 0. Then, there exists g € CLg, (X, Y') such that Hf -
gll < e. In particular, (f — ¢)(B1(0)) € B(0). This implies f(B1(0)) C ¢g(B1(0)) + Be(0).
But ¢(B1(0)) is a bounded subset of the finite dimensional subspace g(X) and hence totally
bounded. Thus, there exists a finite subset F' C g(B1(0)) such that g(B1(0)) C F + B(0).
But then, f(B1(0)) C F + Be(0) + B:(0) C F + B.(0). That is, f(B1(0)) is covered by
a finite number of balls of radius 2e. Since ¢ was arbitrary this means that f(B1(0)) is
totally bounded and hence relatively compact. O

Proposition 4.37. Let X,Y be normed vector spaces. Suppose there exists a bounded
sequence {sp tnen of operators s, € CLg,(Y,Y') such that lim, o0 $p(y) =y for ally €Y.
Then, KL(X,Y) C CLgn(X,Y) with respect to the operator norm topology.

Proof. Exercise.Hint: For f € KL(X,Y) and € > 0 show that there exists n € N such
that ||s, o f — f|| <e. O

4.6 Fredholm Operators

Proposition 4.38. Let X be a Hausdorff tvs and T € KL(X, X). Then, the kernel of
S:=1-T e CL(X, X) is finite-dimensional.

Proof. Note that T acts as the identity on the subspace ker .S. Denote this induced operator
by T : ker S — ker S. Since T is compact so is T. Thus, there exists a neighborhood of 0
in ker S that is compact. In particular, ker S is locally compact. By Theorem , ker S
is finite dimensional. O

Proposition 4.39. Let X, Y be Banach spaces and f € CL(X,Y) injective. Then, f(X)
is closed iff there exists ¢ > 0 such that || f(z)|| > c||z| for all z € X.

Proof. Suppose first that f(X) is closed. Then, f(X) is complete since Y is complete.
Thus, by Corollary , f is open as a map X — f(X). In particular, f(B1(0)) is an open
neighborhood of 0 in f(X). Thus, there exists ¢ > 0 such that B.(0) C f(B1(0)) C f(X).
By injectivity of f this implies that ||f(x)| > ¢ for all x € X with ||| > 1. This implies
in turn || f(x)|| > ¢||z|| for all z € X.

Conversely, assume that there is ¢ > 0 such that || f(z)| > c[|z| for all z € X. Let
y € f(X). Then there exists a sequence {xy, }nen in X such that {f(x,)}nen converges to
y. In particular, {f(z,)}nen is a Cauchy sequence. But as is easy to see the assumption
then implies that {x,},en is also a Cauchy sequence. Since X is complete this sequence
converges, say to z € X. But since f is continuous we must have

y=Jim f(a) = f (Jim zn) = f(2).

n—oo

In particular, y € f(X), i.e., f(X) is closed. O
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Proposition 4.40. Let X be a Banach space and T € KL(X,X). Then, the image of
S :=1-T € CL(X,X) is closed and has finite codimension, i.e., X/S(X) is finite
dimensional.

Proof. We first show that S(X) is a closed subspace of X. Since S is continuous ker S
is a closed subspace of X. The quotient map ¢ : X — X/ker(S) is thus a continuous
and open linear map between Banach spaces. S factorizes through ¢ via S = S o g,
where S : X/ker(S) — X is linear, continuous and injective. We equip X/ ker(S) with
the quotient norm. By Propositions and ﬂ this space is a Banach space. By
Proposition the image of S (and thus that of S) is closed iff there exists a constant
¢ > 0 such that [|S(y)|| > cl|ly|| for all y € S/ker(S). Hence, we have to demonstrate
the existence of such a constant. Suppose it does not exist. Then, there is a sequence
{Yn}nen of elements of X/ker(S) with ||y,| = 1 and such that lim, o S(y,) = 0. Now
choose a preimages z, of the y, in X with 1 < |z,]| < 2. Then, {z,}nen is bounded
so that {T(x,)}nen is compact. In particular, there is a subsequence {xj}ren so that
{T(xk)}ren converges, say to z € X. Since on the other hand limy_,, S(z) = 0 we find
with S+7 = 1 that limy_, 2x = 2z. So by continuity of S we get S(z) = 0, i.e., z € ker(S5)
and hence z € kerq. By continuity of ¢ this implies, limy_ ||¢(xx)|| = 0, contradicting
llg(zk)|| = |lyk|| = 1 for all k& € N. This completes the proof of the existence of ¢ and hence
of the closedness of the image of S.

The compactness of T implies the compactness of T* by Proposition %Thus, by
Proposition , 9% = 1*—T™* has finite dimensional kernel. But Proposition #.33.1 implies
then that the codimension of S(X) in X, i.e., the dimension of X/S(X) is also finite. Since
we have seen above that S(X) = S(X), this completes the proof. O

Definition 4.41. Let X, Y be normed vector spaces and A € CL(X,Y). A is called a
Fredholm operator iff the kernel of A is finite dimensional and its image is closed and of
finite codimension. Then, we define the index of a A to be

ind A = dim(ker A) — dim(Y/A(Y)).
We denote by FL(X,Y') the set of Fredholm operators.

Lemma 4.42 (Riesz). Let X be a normed vector space and C a closed subspace. Then,
for any 1 > € > 0 there exists x € X \ C with ||z|| = 1 such that for all y € C,

[z =yl =1 —e

Proof. Choose zp € X \ C arbitrary. Now choose yg € C such that

70 — voll < llzo — yll—
o = Yol = o = Yl

for all y € C'. We claim that
. _To— Yo
10 — yoll
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has the desired property. Indeed, for all y € C,

e — gl = 20 = 4o — (lzo = yol)yll < llzo = voll(X —¢€)
0 = ol — lmo—woll

O

Proposition 4.43. Let X,Y be Banach space. Then, the subset CLiny(X,Y) of continu-
ously invertible maps is open in CL(X,Y).

Proof. Let f : X — Y be linear and continuous and with continuous inverse f~!. By
Proposition |1.39 there is a constant ¢ > 0 such that | f(x)]| > c||z|| for all z € X. Now
consider g € CL(X,Y) such that ||f — g|| < ¢/2. We claim that ¢ has a continuous inverse.
First, observe

lg@)Il = [lf @) = [[f(z) = g()]| = cll=] — gl!xll = gllwll Ve e X. (2)

This implies that g is injective and moreover has closed image by Proposition . Suppose
now that g(z) # Y. By Lemma there exists then yo € Y\ g(X) with ||yo|| = 1 such
that ||yo — y|| > 1/2 for all y € g(X). Let xg := f~'(yo). Then,

1

1
5 = 5170l = Slzoll > 117 (o) — glao)| 2

a contradiction. Thus, g(X) =Y and g is invertible. But g~! is continuous since (a) now

implies g~ (y)]| < (2/¢)|ly] for all y € Y. 0

Proposition 4.44. Let X, Y be Banach spaces. Then, FL(X,Y) is open in CL(X,Y).
Moreover, ind : FL(X,Y) — Z is continuous.

Proof. Let §: X — Y be Fredholm. Since ker S is finite dimensional, there exists a closed
complement C' C X by Proposition . Then, S|c : C — Y is injective and has closed
image S(C) = S(X). Also, let D C 'Y be a complement of S(X). Since S is Fredholm,
D is finite-dimensional and thus also closed. Note that C' ® D is a Banach space. It will
be convenient to equip it with the norm ||z + y|| := ||z| + |ly|| for z € C, y € D. Define
the map S : C® D — Y by S(z,y) := S(z) +y. S is the product of two continuously
invertible maps and hence continuously invertible. By Proposition @ there is thus r > 0

such that B, (S5) C CLiny(C ® D,Y). Let T € CL(X,Y) such that ||T"— S|| < r. Define
T:C@&D—Y asT(zv,y) :=T(z)+y. Then,

IT =8l = swp ||IT() = S()]| = sup |T(x) - S(x)] < [T - S,
lz+yll<1 flzlI<1

where z € C and y € D. In particular, |T — S|| < r, so T has a continuous inverse.
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Note that ker T’NC = {0}, so there is a subspace N C X such that X = C@N@kerT. In
particular, ker T is finite-dimensional. Since T" is homeomorphism, T'(C) = T(C) is closed
and thus complete. On the other hand T'(N) being finite-dimensional is also complete.
Thus T(X) = T(N) @ T(C) is also complete and thus closed in Y. Also, T(C)+ D =Y,
so in particular 7°(C) has finite codimension and so does T'(X). Thus, T is Fredholm.

Exercise.Complete the proof by showing ind 7" = ind S. O

Corollary 4.45. Let X be a Banach space and T € KL(X,X). Then, S :=1—-T €
FL(X, X). Moreover, ind S = 0.

Proof. Exercise.Hint: For the second assertion consider the family of operators S; :=
1 —tT for t € [0,1] and use the continuity of ind. O

Proposition 4.46 (Fredholm alternative). Let X be a Banach spaces, T € KL(X, X) and
A € K\ {0}. Then, either the equation

A —Tx=y

has one unique solution x € X for each y € X, or it has no solution for some y € X and
infinitely many solutions for all other y € X.

Proof. Exercise. O

4.7 Eigenvalues and Eigenvectors

Definition 4.47. Let X be a tvs and A € CL(X, X). Then, A € K is called an eigenvalue
of A iff there exists z € X \ {0} such that Az — Az = 0. Then =z is called an eigenvector for
the eigenvalue A. Moreover, the vector space of eigenvectors for the eigenvalue A is called
the eigenspace of .

Proposition 4.48. Let X be a Banach space and T € KL(X, X). Then, A € K\ {0} s
an eigenvalue of T iff A1 — T does not have a continuous inverse.

Proof. Exercise. O

Lemma 4.49. Let X be a Banach space, T € KL(X,X) and ¢ > 0. Then, the set of
eigenvalues A such that |\ > c is finite.

Proof. Suppose the assertion is not true. Thus, there exists a sequence {\, }nen of distinct
eigenvalues of 1" such that |A,| > ¢ for all n € N. Let {v, }nen be a sequence of associated
eigenvectors. Observe that the set of these eigenvectors is linearly independent. For all n €
N let A, be the vector space spanned by {v1,...,v,}. Thus {4, },en is a strictly ascending
sequence of finite-dimensional subspaces of X. Set y; := v1/|lv1]. Using Lemma we
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choose for each n € N a vector yp4+1 € Apt1 such that ||yp+1]| = 1 and ||yny1 — yl| > 1/2
for all y € A,,. Now let n > m > 1. Then,

HTyn - Tym” = ||)\nyn - ()\nyn —Typ + Tym)H
_ 1 1
= |>‘nwyn - |)‘n| 1()‘nyn — Ty, "‘Tym)H > ‘)‘n|§ > 50'
We have used here that \,y, — Ty, € An,—1 and that Ty,, € A, € A,_1. This shows that

the image of the bounded set {y;, }neny under T is not totally bounded. But this contradicts
the compactness of T'. ]

Definition 4.50. Let X be a Banach space and A € CL(X, X). Then, the set c(A4) :=
{A € K: A1 — A is not continuously invertible} is called the spectrum of A.

Theorem 4.51. Let X be a Banach space and T € KL(X, X).
1. If X is infinite-dimensional, then 0 € o(T).
2. The set o(T') is bounded.
3. The set o(T) is countable.
4. o(T) has at most one accumulation point, 0.

Proof. Exercise. O
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5 Banach Algebras

5.1 Invertibility and the Spectrum

Suppose X is a Banach space. Then we are often interested in (continuous) operators on
this space, i.e, elements of the space CL(X, X ). We have already seen that this is again
a Banach space. However, operators can also be composed with each other, which gives
us more structure, namely that of an algebra. It is often useful to study this abstractly,
i.e., forgetting about the original space on which the operators X act. This leads us to the
concept of a Banach algebra. In the following of this section we work exclusively over the
field C of complex numbers.

Definition 5.1 (Banach Algebra). A is called a Banach algebra iff it is a complete normable
topological algebra.

Proposition 5.2. Let A be a complete normable tvs and an algebra. Then, A is a Banach
algebra iff there exists a compatible norm on A such that ||a-b|| < ||al| - ||b]] for all a,b € A.
Moreover, if A is unital then it is a Banach algebra iff there exists a compatible norm that
satisfies in addition |e|| = 1.

Proof. Suppose that A admits a norm generating the topology and satisfying ||a - b|| <
l|la]| - ||b]| for all a,b € A. Fix a,b € A and let ¢ > 0. Choose ¢ > 0 such that

(la] + |[b])6 + 62 < e.

Then,

[(a+z)-(b+y)—a-b=la-y+z-b+z- y|<la-yl+[z- 0 +]z-yl
< llall - [lyll + {l] - ol + Il - [lyll < e

if ,y € Bs(0), showing continuity of multiplication.

Now suppose that A is a Banach algebra. Let || - ||’ be a norm generating the topology.
By continuity there exists ¢ > 0 such that ||a-b||" <1 for all a,b € Bs(0). But this implies
lla- b < 672 al” - ||b]|’ for all a,b € A. It is then easy to see that ||a| := 6=2|a|’ for all
a € A defines a norm that is topologically equivalent and satisfies ||a - b|| < ||a|| - ||b]| for all
a,be A

Now suppose that A is a unital Banach algebra. Let || - ||" be a norm generating the
topology. As we have just seen there exists a constant ¢ > 0 such that ||a-b||" < ¢||a||" - ||b]|’
for all a,b € A. We claim that

lal| == sup |la-b| Vaec A
[l <1
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defines a topologically equivalent norm with the desired properties. It is easy to see that
|| - || is a seminorm. Now note that

lall = sup [la-b|" <c sup [laf"-[|b]" = clla]" Va € A.
l[ll’<1 [[oll'<1

On the other hand we have

ol /
fall = sup fla-of > 1l Lol g e
bl <1 [lell lell
This shows that || - || is indeed a norm and generates the same topology as || - ||'._The proof
of the property |la - b|| < ||a| - ||b|| for all a,b € A now proceeds as in Exercise B(. Finally,
it is easy to see that ||e|| = 1. O

We have already seen the prototypical example of a Banach algebra in Exercise @: The
algebra of continuous linear operators CL(X, X) on a Banach space X.

Exercise 32. Let T be a compact topological space. Show that C(T', C) with the supremum
norm is a unital commutative Banach algebra.

Exercise 33. Consider the space ['(Z), i.e., the space of complex sequences {a, }ncz with
lla|l := > ,ez lan| < co. 1. Show that this is a Banach space. 2. Define a multiplication
by convolution, i.e., (a % b), := > ez arbyp—i. Show that this is well defined and yields a
commutative Banach algebra.

Proposition 5.3. Let A be a unital Banach algebra and a € A. If ||le — al| < 1 then a is
invertible. Moreover, in this case

> 1
-1 -1
a = z_:(e — a)n and H(I H S m
n=0
Proof. Exercise. O

Proposition 5.4. Let A be a unital Banach algebra. Denote the subset of invertible

elements of A by I4. Then, I4 is open. Moreover, the map Iy — I : a — a~! is

continuous.

Proof. Consider an invertible element a € I4 and choose € > 0. Set
SRR () ST T AT —2}
§:= mm{QHa [ ,2€HCL I .
Take b € Bs(a). Then b= a(e +a~'(b—a)). But

la™" (b = @)l < lla™[[Ib = all < [la="(l6 <

N =
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So by Proposition @ the element e +a~!(b— a) is invertible. Consequently, b is a product
of invertible elements and hence itself invertible. Therefore, Bﬁ) C I4 and I4 is open.

Furthermore, using the same inequality we find by Proposition that
letatp—a) )< — <2,
1—Jla=*(b—a)]

This implies
15~ < lla™Mlll(e +a~ (b —a)) ! < 2[la™ .

Hence,
la™ =7 = la™ (0 — a)p™ || < lla {1671 — all < 2lla™ %6 <.
This shows the continuity of the inversion map, completing the proof. O

Definition 5.5. Let A be a unital Banach algebra and a € A. Then, the set o4(a) :=
{\ € C: Xe — a not invertible} is called the spectrum of a.

Proposition 5.6. Let A be a unital Banach algebra and a € A. Then the spectrum o 4(a)
of a is a compact subset of C. Moreover, || < ||la|| if A € ca(a).

Proof. Consider A € C such that [A| > ||a|. Then, [[A"tal| = [A\7||la]| < 1. So, e — A" la is
invertible by Proposition . Equivalently, Ae — a is invertible and hence A ¢ o4(a). This
proves the second statement and also implies that o4(a) is bounded.

It remains to show that o4(a) is closed. Take A & g4(a). Set € := [[(Ae —a)~![|~L. We
claim that for all X € B¢()) the element N'e — a is invertible. Note that |[(A — \')(Ae —
a) Y = A= N[|(Ae —a)7|| < €][(Ae —a)7t|| = 1. So by Proposition é the element
e— (A= X)(Ae—a)~!is invertible. But the product of invertible elements is invertible and
so is hence Ne —a = (Ae —a)(e — (A — X )(\e — a) 1), proving the claim. Thus, C\ o4(a)
is open and o 4(a) is closed, completing the proof. O

Lemma 5.7. Let A be a unital algebra and a,b € A. Suppose that a -b and b - a are
invertible. Then, a and b are separately invertible.

Proof. Exercise. O

Theorem 5.8 (Spectral Mapping Theorem). Let A be a unital Banach algebra, p a complex
polynomial in one variable and a € A. Then, ca(p(a)) = p(ca(a)).

Proof. If p is a constant the statement is trivially satisfied. We thus assume in the following
that p has degree at least 1.

We first prove that p(ca(a)) C oa(p(a)). Let A € C. Then the polynomial in ¢ given
by p(t) — p(A) can be decomposed as p(t) — p(A) = q(t)(t — ) for some polynomial ¢g. In
particular, p(a) — p(\) = g(a)(a — A) in A. Suppose p(\) ¢ o4(p(a)). Then the left hand
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side is invertible and so must be the right hand side. By Lemma @ each of the factors
must be invertible. In particular, a — X is invertible and so A ¢ o4(a). We have thus shown
that A € 04(a) implies p(A) € oa(p(a)).

We proceed to prove that o4(p(a)) C p(ca(a)). Let p € C and factorize the polynomial
in ¢ given by p(t) — u, i.e., p(t) —p =c(t —y1) -+ (t —vn), where ¢ # 0. We apply this to a
to get p(a) —p=cla—v1) - (a—y,). Now if u € o4(p(a)), then the left hand side is not
invertible. Hence, at least one factor a — v must be non-invertible on the right hand side.
So, Vi € oa(a) and also p = p(yk). Thus, u € p(ca(a)). This completes the proof. O

Definition 5.9. Let A be a Banach algebra and a € A. We define the spectral radius of a
as
.= inf ||a"]|"/".
ra(a) i= inf [la"]
Lemma 5.10. Let {cy,}nen be a sequence of non-negative real numbers such that cpim <

CnCm for all n,m € N. Then {c}/n}neN converges to inf,cy c},,/n

Proof. Define ¢y := 1. For fixed m decompose any positive integer n = k(n)m + r(n) such
that r(n), k(n) € Ny and r(n) < m. Then,

n I/n 1/n k(n)/n 1/n
C}L/ < ck(n)mcr(n) < CWS )/ Cr(n)’

Since r(n) is bounded and k(n)/n converges to 1/m for large n the right hand side tends

to c%,{m for large n. This implies,

lim sup /™ < ¢/™,
n—o0

Since m was arbitrary we conclude,

lim sup c,l/ ™ < inf 0711/ " < liminf 6711/ ",
n—00 neN n—00

This completes the proof. ]

Proposition 5.11. Let A be a Banach algebra and a € A. Then,

lim ||anH1/n n||1/n

exists and is equal to  inf |ja
n—00 neN

Proof. 1f a is nilpotent (i.e., a™ = 0 for some n) the statement is trivial. Assume otherwise
and set ¢, := ||a”||. Applying Lemma yields the result. O

Lemma 5.12. Let A be a unital Banach algebra, ¢ : A — C linear and continuous, a € A.
Then the map f : C\ oa(a) — C given by f(z) = ((a — ze)™1) is holomorphic in all its
domain.
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Proof. Let z € C\ o4(a). Since o4(a) is closed, there exists r > 0 such that £ — (a — (2 +
€)e)~! is well defined if ¢ € B,(0). For ¢ € B,(0) we thus have

(a—(z+8&e) ™t —(a—ze)™!

= (a—ze)(a—(z+&)e) H(a—ze)!
—(a—(z+8e)(a—(z+&)e) Ha—ze)

=(a—ze—a+ (z+8e)(a—(z+&)e) Ha— ze)™?

=&fla—(z+8e) a—ze) ™t

In the first equality we have used the commutativity of the subalgebra of A that is generated
by polynomials in a. Supposing £ # 0 we divide by £ and apply 1 on both sides yielding,

fz+&) - f(2)
§

Since inversion in A is continuous (Proposition @), the right hand side of this equality is
continuous in £ and we may take the limit,

- fz+8 - f(2)
l€[—0 §

=4 ((a= (z+8e)(a—2e)7").

=1 ((a —ze) Y(a — ze)_1> .

This shows that f is complex differentiable at z. Since z was arbitrary in C\ o4(a), this
implies that f is holomorphic in C\ c4(a). O
Theorem 5.13. Let A be a unital Banach algebra and a € A. Then

rala) = . sup( | | Al
coala

In particular, oa(a) # 0.

Proof. Choose A\ € C such that |A| > ra(a). Then there exists n € N such that |\ >
|a™||*/™ and hence [A\"| > [|a™|. By Proposition we know that A" ¢ o4(a™). By
Theorem with p(t) = t" this implies A ¢ o4(a). This shows |\ < r4(a) for all
A E UA( )

Applying Proposition @ to e — a/z yields the power series expansion

(a — ze) E —atz 1

for |z| > ||al|. Given a continuous linear functional ¢ : A — C we obtain the Laurent series

w((a—ze ) Z —p(a™) 2L
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However, the left hand side is holomorphic in C \ o4(a) due to Lemma . Thus, the
inner radius of convergence of the Laurent series is at most p := supy¢, , (a) |A|, supposing
that o4(a) # 0. This is equivalent to the statement

lim sup [¢) (a™)] /" < p.
n—oo

i (1))
suplo () )] <>

Define now the subset B C A given by

Bt (4)(4) )
o\ p 1
Identifying A as a Banach_space isometrically with the corresponding subspace of A**
according to Proposition @jallows to view B as a subset of CL(A*,C). We may thus

apply the Banach-Steinhaus Theorem in the form of Corollary m to conclude that there
is a constant M > 0 such that for all n € N,

(2]

This in turn implies, for all n € N,
a n
IG:)

lim sup o™ < p.
n—oo

Given p > p we obtain
1/n

<P
i

This in turn implies

< M.

From this we conclude,

Due to the existence of the ordinary limit (Proposition ) together with the fact that
u > p was arbitrary we obtain,

ra(a) = lim_[la"[Y" < p.

This completes the proof that r4(a) = p.
Exercise.Complete the proof by showing that o4(a) # (. O

Theorem 5.14 (Gelfand-Mazur). Let A be a unital Banach algebra such that all its non-
zero elements are invertible. Then A is isomorphic to C as a Banach algebra.

Proof. Exercise. O
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5.2 The Gelfand Transform

Suppose we have some topological space T. Then, this space gives rise to a commutative
algebra, namely the algebra of continuous functions on 7' (with complex values say). A
natural question arises thus: If we are given a commutative algebra, is the algebra of
continuous functions on some topological space? We might refine the question, considering
more specific spaces such as Hausdorff spaces, manifolds etc. On the other hand we could
also consider other classes of functions, e.g., differentiable ones etc. The Gelfand transform
goes towards answering this question in the context of unital commutative Banach algebras
on the one hand and compact Hausdorff spaces on the other.

5.2.1 Ideals

Definition 5.15. Let A be an algebra. An ideal in A is a vector subspace J of A such
that aJ C J and Ja C J for all a € A. An ideal is called proper iff it is not equal to A.
An ideal is called mazimal iff it is proper and it is not contained in any other proper ideal.

The special significance of maximal ideals for our present purposes is revealed by the
following Exercise. This also provides a preview of what we are going to show.

Exercise 34. Consider the Banach algebra C(T,C) of Exercise @ Assume in addition
that T is Hausdorff. 1. Show that for any non-empty subset U of T" the set {f € C(T,C) :
f(U) = 0} forms a proper closed ideal. 2. Show that the maximal ideals are in one-to-one
correspondence to points of T'.

Proposition 5.16. Let A be a Banach algebra. Then, the closure of an ideal is an ideal.

Proof. Let J be an ideal. We already know that J is a vector subspace. It remains to
show the property aJ C J and Ja C J for all a € A. Consider b € J. Then, there is a
sequence {by, }nen with b, € J converging to b. Take now a € A and consider the sequences
{abp }nen and {bpa}nen. Since J is an ideal the elements of these sequences are all in J.
And since multiplication by a fixed element is continuous the sequences converge to ab and
ba respectively. So ba € J and ab € J. This completes the proof. O

Proposition 5.17. Let A be a unital Banach algebra.
1. If a € A is invertible it is not contained in any proper ideal.
2. Mazimal ideals are closed.
3. Any proper ideal is contained in a maximal ideal.

Proof. Suppose J is an ideal containing an invertible element a € A. Then, a la =e € J
and thus J = A. This proves 1. Suppose J is a proper ideal. Then, J is an ideal by
Proposition . On the other hand, by 1. the intersection of the set I4 of invertible
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elements of A with J is empty. But by Proposition @ this set is open, so Iy N.J = 0.
Since e € I4, J # A, i.e., J is proper. So we get an inclusion of proper ideals, J C J. If

J is maximal we must therefore have J = J. This proves 2. The proof of 3 is a standard
application of Zorn’s Lemma. ]

Proposition 5.18. Let A be a Banach algebra and J a closed proper ideal. Then, A/J is a
Banach algebra with the quotient norm. If A is unital then so is A/J. If A is commutative
then so is A/J.

Proof. Exercise. O

Definition 5.19. Let A be a Banach algebra. The set of maximal ideals of A is called the
mazximal ideal space and denoted by M 4. The set of maximal ideals with codimension 1 is
denoted by M}l.

Proposition 5.20. Let A be a commutative unital Banach algebra. Then, maximal ideals
have codimension 1. In particular, Ma = M}l

Proof. Let J be a maximal ideal. By Proposition .2, J is closed. Hence, by Propo-
sition , A/J is a unital commutative Banach algebra. We show that every non-zero
element of A/J is invertible. For a € A\ J set J, := {ab+c:b € Aand c € J}. It is
easy to see that J, is an ideal and J C J, as well as J, # J. Since J is maximal we find
Jo, = A. But his means there is a b € A such that [a][b] = [¢] in A/J, i.e., [a] is invertible
in A/J. But every non-zero element of A/J arises as [a] with a € A\ J, so they are all
invertible. By the Theorem of Gelfand-Mazur we find that A/J is isomorphic to C
and hence 1-dimensional. So, J must have codimension 1. O

5.2.2 Characters

Definition 5.21. Let A be a Banach algebra. An algebra homomorphism ¢ : A — C is
called a character of A.

Proposition 5.22. Let A be a Banach algebra. Then, any character ¢ : A — C is
continuous. Moreover, ||| < 1. If A is also unital and ¢ # 0 then ¢p(e) =1 and ||¢|| = 1.

Proof. Consider an algebra homomorphism ¢ : A — C. Suppose |¢(a)| > ||a|| for some
a € A. Then we can find A € C such that ¢(Aa) = 1 while |[Aa| < 1. Set b:= >, (\a)™.
Then b = Aa + Aab and we obtain the contradiction ¢(b) = ¢(Aa) + ¢(Aa)p(b) = 1+ ¢(b).
Thus, |¢(a)| < ||a|| for all a € A and ¢ must be continuous. Also, [|¢]] < 1.

Now assume in addition that A is unital and ¢ # 0. Then there exists a € A such that
¢(a) # 0. We deduce ¢(e) = 1 since ¢(a) = ¢(ea) = ¢p(e)p(a) and thus [|¢]| > 1. O

Definition 5.23. Let A be a Banach algebra. The set of non-zero characters on A is called
the character space or Gelfand space of A, denoted by I' 4. We view I'4 as a subset of A*,
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but equipped with the weak* topology. Define the map A — C(I'4,C) given by a — a
where a(¢) := ¢(a). This map is called the Gelfand transform.

Proposition 5.24. Let A be a unital Banach algebra. Then, I' 4 is a compact Hausdorff
space.

Proof. Since A* is Hausdorff with the weak™ topology so is its subset I'4. Let ¢ € I'4.
By Proposition , ¢ is contained in the unit ball B1(0) C A*. But by Corollary ,
B;(0) is compact in the weak* topology so I'4 is relatively compact. It remains to show
that T'4 is closed in the weak™ topology. Suppose ¢ €| T 4. Pick two arbitrary elements
a,b € A. We know that the Gelfand transforms a, 13, ab are continuous functions on A*
with the weak* topology. Hence, choosing an arbitrary € > 0 we can find ¢’ € I' 4 such that
|¢/(a) — ¢(a)| < e and |¢'(b) — #(b)| < € and |¢/(ab) — ¢(ab)| < e. Exercise.Explain! Then,
16/(a)6 (b) — 6(a)p(b)] < e(l6(a)| +|6(b)|+€). But, ¢ is a character, so ¢'(a)g (b) = & (ab).
Thus, |p(a)p(b) — ¢(ab)| < (1 + |p(a)| + |p(b)| + €). Since e was arbitrary we conclude
that ¢(a)p(b) = ¢(ab). This argument holds for any a,b so ¢ is a character. We have thus
shown that either Ty =T 4 or Ty =T4 U {0}. To exclude the second possibility we need
the unitality of A. Consider the subset E := {¢ € A* : ¢(e) = 1} C A*. This subset is
closed in the weak™ topology since it is the preimage of the closed set {1} C C under the
Gelfand transform é of the unit e of A. Now, 'y C E, but {0} ¢ E, so {0} ¢ T4. O

We are now ready to link the character space with the maximal ideal space introduced
earlier. They are (essentially) the same!

Theorem 5.25. Let A be a Banach algebra. There is a natural map v : Ty — M} given
by ¢ — ker ¢. If A is unital, this map is bijective.

Proof. Consider ¢ € I'4. Suppose a € ker ¢. Then, for any b € A we have ab € ker ¢ and
ba € ker ¢ since ¢p(ab) = ¢(a)p(b) = 0 and ¢(ba) = ¢(b)p(a) = 0. Thus, ker ¢ is an ideal. It
is proper since ¢ # 0. Now choose a € A such that ¢(a) # 0. For arbitrary b € A there is
then a A € C such that ¢(b) = ¢(Aa), ie., p(b— Aa) =0 and b — Aa € ker ¢. In particular,
b € Aa + ker ¢. So ker ¢ has codimension 1 in A and must be maximal. This shows that =
is well defined.

Suppose now that A is unital and that J is a maximal ideal of codimension 1. Note
that we can write any element a of A uniquely as a = Ae +b where A € Cand b € J. In
order for J = ker ¢ for some ¢ € I'4 we must then have ¢(Ae +b) = Ap(e) + ¢(b) = A.
This determines ¢ uniquely. Hence, 7 is injective. On the other hand, this formula defines
a non-zero linear map ¢ : A — C. It is easily checked that it is multiplicative and thus a
character. Hence, 7y is surjective. O

Proposition 5.26. Let A be a unital Banach algebra and a € A. Then, {¢(a) : p € T4} C
oala). If A is commutative, then even {¢(a): ¢ € Ta} = oa(a). In particular, T 4 # 0.
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Proof. Suppose A = ¢(a) for some ¢ € I'y. Then, ¢p(Ae —a) = 0, i.e., Ae — a € ker ¢.
But by Theorem , ker ¢ is a maximal ideal which by Proposition .1 cannot contain
an invertible element. So Ae — a is not invertible and A € o4(a). This proves the first
statement.

Suppose now that A is commutative and let A € o4(a). Define J := {b(Ae—a) : b € A}.
It is easy to see that J defines an ideal. It is proper, since Ae — a is not invertible.
So, by Proposition .3 it is contained in a maximal ideal J’. This maximal ideal has
codimension 1 by Proposition and induces by Theorem a non-zero character ¢
with ker ¢ = J'. Hence, ¢p(Ae —a) = 0 and ¢(a) = \. This completes the proof. O

When I'4 is compact, then the set of continuous functions of I' 4 forms a unital com-
mutative Banach algebra by Exercise B2. We then have the following Theorem.

Theorem 5.27 (Gelfand Representation Theorem). Let A be a unital Banach algebra.
The Gelfand transform A — C(I'4,C) is a continuous unital algebra homomorphism. The
image of A under the Gelfand transform, denoted A, is a normed subalgebra of C(T'4,C).
Moreover, ||a|| < ra(a) < |la|| and o4(a) € oa(a) for all a € A. If A is commutative we
have the sharper statements ||a|| = ra(a) and o 4(a) = oa(a).

Proof. The property of being a unital algebra homomorphism is clear. For a € A we have
|a|l = supger, |¢(a)]. By Proposition E combined with Theorem we then find
la]] < ra(a) and in the commutative case ||a|| = r4(a). On the other hand Proposition

combined with Theorem implies 74 (a) < |lal|. Thus, the Gelfand transform is bounded
by 1 and hence continuous. Since the Gelfand transform is a unital algebra homomorphism,
invertible elements are mapped to invertible elements, so 0 4(a@) € 04(a). Let a € A and
consider A € C. If ¢(a) = X for some ¢ € I'4 then A\é — a vanishes on this ¢ and cannot be
invertible in A, i.e., A € o ;(a). Using Proposition we conclude o ;(a) 2 04(a) in the
commutative case. O

Proposition 5.28. Let A be a unital commutative Banach algebra. Suppose that ||a®|| =
lal|? for alla € A. Then, the Gelfand transform A — C(T 4, C) is isometric. In particular,

it is injective and its image A is a Banach algebra.

Proof. Under the assumption lim,,_,« [|a”||'/", which exists by Proposition , is equal
to |la|| for all @ € A. By the same Proposition then r4(a) = ||a||. So by Theorem 5.21,
lla|| = ra(a) = ||al|. Isometry implies of course injectivity. Moreover, it implies that the
image is complete since the domain is complete. So A is a Banach algebra. O

Exercise 35. Let A = C(T,C) be the Banach algebra of Exercises @ and @ Show that
I'y = T as topological spaces in a natural way and that the Gelfand transform is the
identity under this identification.
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6 Hilbert Spaces

6.1 The Fréchet-Riesz Representation Theorem

Definition 6.1. Let X be an inner product space. A pair of vectors z,y € X is called
orthogonal iff (x,y) = 0. We write x L y. A pair of subsets A, B C X is called orthogonal
iff x L y for all x € A and y € B. Moreover, if A C X is some subset we define its
orthogonal complement to be

At ={yeX:z LyVeec A}
Exercise 36. Let X be an inner product space.
1. Let z,y € X. If & L y then ||z||> + [|y|®> = ||z + y||*.
2. Let A C X be a subset. Then At is a closed subspace of X.
3. AC (AH)*

W

. A+ = (span A)J_.

. An At C {0}

at

Proposition 6.2. Let H be a Hilbert space, F' C H a closed and convex subset and x € H.
Then, there exists a unique element & € F' such that

i — 2| = inf |jy — .
&=l = inf 1y~

Proof. Define a := infycp ||y—x||. Let {yn}nen be a sequence in F' such that lim,, o ||yn —
z|| = a. Let € > 0 and choose ng € N such that ||y, — z||> < a® + € for all n > ng. Now let
n, m > ng. Then, using the parallelogram equality of Theorem m we find

1y = yml1? = 2llyn — 2> + 2llym — 2 = lyn + Y — 22

Yn + Ym
2

2
=2|lyn — xHQ + 2[|ym — tz -4

< 2(a® +€) +2(a* + €) — 4a® = 4e

This shows that {y, }nen is a Cauchy sequence which must converge to some vector Z € F
with the desired properties since F' is complete.

It remains to show that Z is unique. Suppose #,Z’ € F both satisfy the condition.
Then, by a similar use of the parallelogram equation as above,

~ ~/ 2
T < 242 + 242 — 4a® = 0.

1z =@ = 207 = 2]* + 2" - 2]* - 4| =

— T

That is, ' = &, completing the proof. O
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Lemma 6.3. Let H be a Hilbert space, ' C H a closed and convex subset, x € H and
T € F. Then, the following are equivalent:

1|2 — x|l = infyer [ly — ||
2. Rz —y,z—x)<0VyeF
Proof. Suppose 2. holds. Then, for any y € ' we have
ly —«l* = Iy = %) + (& — 2)|
= lly — &> +2R(y — 7,& — 2) + |7 —«|* > [|& - =|*.

Conversely, suppose 1. holds. Fix y € F and consider the continuous map [0,1] — F
given by t — vy := (1 — t)Z + ty. Then,
|17 — 2] < llye — 2> = Ity — ) + (& — 2)|?
=|ly — Z))? + 2Ry — 7, — z) + || — x|

Subtracting ||# — z||? and dividing for ¢ € (0, 1] by ¢ leads to,
1 » o
Sty = 21" 2 Rz —y, & — 2).

This implies 2. O

Lemma 6.4. Let H be a Hilbert space, F C H a closed subspace, v € H and & € F. Then,
the following are equivalent:

1|7 =z = infyep [ly — |
2. (y,z—x)=0Vy € F
Proof. Exercise. O

Proposition 6.5. Let H be a Hilbert space, ' C H a closed proper subspace. Then,
FL#£1{0}.

Proof. Since F' is proper, there exists x € H\ F'. By Proposition @ there exists an element
Z € F such that ||z — z|| = infyep ||y — z||. By Lemma @, (y,z —z) =0 forall y € F.
That is, & — 2 € F*. O

Theorem 6.6 (Fréchet-Riesz Representation Theorem). Let H be a Hilbert space. Then,
the map ® : H — H* given by (®(x))(y) := (y,z) for all z,y € H is anti-linear, bijective
and isometric.
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Proof. The anti-linearity of ® follows from the properties of the scalar product. Observe
that for all 2 € H, |[®(z)| = supyy =1 (y,2)| < ||z[| because of the Schwarz inequality
(Theorem ) On the other hand, (®(x))(z/|z|]) = ||z| for all x € H \ {0}. Hence,
|®(x)|| = ||z| for all z € H, i.e., ® is isometric. It remains to show that ® is surjective.
Let f € H*\ {0}. Then ker f is a closed proper subspace of H and by Proposition
there exists a vector v € (ker f) \ {0}. Observe that for all x € H,

— ‘;Egv € ker f.
Hence,
@) @)\ f@)
(o) = (o= G50+ Fy ) = Foy
In particular, setting
T
- ll?
we see that ®(w) = f. O

Corollary 6.7. Let H be a Hilbert space. Then, H* is also a Hilbert space. Moreover, H
1s reflexive, i.e., H** is naturally isomorphic to H.

Proof. By Theorem @ the spaces H and H* are isometric. This implies in particular,
that H* is complete and that its norm satisfies the parallelogram equality, i.e., that it is a
Hilbert space. Indeed, it is easily verified that the inner product is given by

(P(x),®(y)) g+ = (y, )y Vz,y € H.

Consider the canonical linear map i : H — H™. It is easily verified that iz = W o &,
where ¥ : H* — H™*" is the corresponding map of Theorem . Thus, iy is a linear
bijective isometry, i.e., an isomorphism of Hilbert spaces. O

6.2 Orthogonal Projectors

Theorem 6.8. Let H be a Hilbert space and F C H a closed subspace such that F # {0}.
Then, there exists a unique operator Pp € CL(H, H) with the following properties:

2. ker Pp = F+.
Moreover, Pr also has the following properties:

3. Pp(H)=F.
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4. Ppo Pp = Pp.

5. ||Pr| = 1.

6. Givenx € H, Pp(x) is the unique element of F' such that | Pp(x)—z|| = infyer |ly—z||.
7. Given x € H, Pp(x) is the unique element of F such that x — Pp(x) € F*.

Proof. We define Pr to be the map x +— & given by Proposition 6.2. Then, clearly Pr(H) =
F and Pp(z) =z if x € F and thus Pro Pr = Pp. By Lemma we have Pp(z) —x € F*
for all z € H. Since F is a subspace we have

(M Pr(z1) — Mz1) + (A2 Pr(z2) — Aox2) € F*
for x1,z9 € H and A1, Ay € K arbitrary. Rewriting this we get,
()\1PF(171) + )\2PF($2)) — ()\1%‘1 + )\2$2) € FL.

But Lemma @ also implies that if given 2 € H we have z — x € F- for some z € F, then
z = Pp(x). Thus,
)\1PF(.7}1) + )\QPF(I‘Q) = PF()\lxl =+ )\21’2).

That is, Pr is linear. Using again that © — Pp(z) € F* we have x — Pp(z) L Pr(z) and
hence the Pythagoras equality (Exercise @1)

lz = Pp()|* + [|Pp(2)|* = z|® Va € H.

This implies | Pr(z)|| < ||z|| for all x € H. In particular, Pr is continuous. On the other
hand ||Pp(x)|| = ||z| if # € F. Therefore, |Pr| = 1. Now suppose = € ker Pr. Then,
(y,z) = —(y, Pr(z) —x) = 0 for all y € F and hence x € F*. That is, ker Pp C F*.
Conversely, suppose now x € F-. Then, (y, Pr(z)) = (y, Pr(z) —z) = 0 for all y € F.
Thus, Pr(z) € F-. But we know already that Pp(z) € F. Since, F N F+ = {0} we get
Pr(z) =0, i.e., x € ker Pp. Then, FL C ker Pr. Thus, ker P = F-. This concludes the
proof the the existence of Pr with properties 1, 2, 3, 4, 5, 6 and 7.

Suppose now there is another operator Qr € CL(H, H) which also has the properties
1 and 2. We proceed to show that Qr = Pr. Let € H arbitrary. Since Pp(z) —x € F*,
property 2 of Qp implies Qr(x) = Qp(Pp(x)). On the other hand Pr(z) € F so by
property 1 of Qr we have Qp(Pr(z)) = Pp(z). Hence Qp(x) = Pp(x). Since x was
arbitrary we have Qr = Pr, completing the proof. O

Definition 6.9. Given a Hilbert space H and a closed subspace F', the operator Pr €
CL(H, H) constructed in Theorem is called the orthogonal projector onto the subspace
F.
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Corollary 6.10. Let H be a Hilbert space and F a closed subspace. Let Pgp be the
associated orthogonal projector. Then 1 — Pp is the orthogonal projector onto F-. That
iS, PFL =1- PF.

Proof. Let x € F+. Then, (1 — Pp)(x) = z since ker Pr = F* by Theorem @.1. That
is, (1 — Pp)|pL = 1p1. On the other hand, suppose (1 — Pr)(z) = 0. By Theorem (.§.1.
and 3. this is equivalent to x € F. That is, ker(1 — Pr) = F. Applying Theorem to
F+ yields the conclusion Pp. = 1 — Pr due to the uniqueness of Pp. . O

Corollary 6.11. Let H be a Hilbert space and F a closed subspace. Then, F = (F*)*.
Proof. Exercise. O

Definition 6.12. Let H; and Hs be inner product spaces. Then, Hy &9 Hy denotes the
direct sum as a vector space with the inner product

(x1 + 22,91 + y2) := (x1,y1) + (T2,92) V1,22 € Hi,Vy1,y2 € Ho.

Proposition 6.13. Let Hy and Hy be inner product spaces. Then, the topology of Hy@o Ho
agrees with the topology of the direct sum of Hy and Hy as tvs. That is, it agrees with the
product topology of Hy x Ho. In particular, if Hi and Hs are complete, then Hi ®9 Hy is
complete.

Proof. Exercise. O
Corollary 6.14. Let H be a Hilbert space and F a closed subspace. Then, H = F @9 F*.

Proof. Exercise. O

6.3 Orthonormal Bases

Definition 6.15. Let H be a Hilbert space and S C H a subset such that |[s|| = 1 for all
s € S and such that (s,t) # 0 for s,t € S implies s = ¢t. Then, S is called an orthonormal
system in H. Suppose furthermore that S is maximal, i.e., that for any orthonormal system
T in H such that S C T we have S =T. Then, S is called an orthonormal basis of H.

Proposition 6.16. Let H be a Hilbert space and S an orthonormal system in H. Then,
S is linearly independent.

Proof. Exercise. O

Proposition 6.17 (Gram-Schmidt). Let H be a Hilbert space and {x,}ner be a linearly
independent subset, indexed by the countable set I. Then, there exists an orthonormal
system {sptner, also indexed by I and such that span{s, : n € I} = span{z, : n € I}.
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Proof. If I is finite we identify it with {1,...,m} for some m € N. Otherwise we identify
I with N. We construct the set {s,}ner iteratively. Set s; := z1/||z1]. (Note that
xn, # 0 for any n € I be the assumption of linear independence.) We now suppose

that {s1,...,sk} is an orthonormal system and that span{si,...,sx} = span{x1,...,zx}.
Set X} := span{zi,...,z}. By linear independence yyy1 = xp11 — Px,(zx+1) # 0.
Set sgt11 = Yr+1/l|yk+1]|. Clearly, sg+1 L Xk, ie., {s1,...,Sg+1} is an orthonormal
system. Moreover, span{si,...,sg+1} = span{zi,...,xx+1}. If I is finite this process
terminates, leading to the desired result. If I is infinite, it is clear that this process leads
to span{s, : n € N} = span{z,, : n € N}. O

Proposition 6.18 (Bessel’s inequality). Let H be a Hilbert space, m € N and {s1,...,Sm}
an orthonormal system in H. Then, for all x € H,

m
E: (@, sn)[* < [lo]|?

Proof. Define y :=x—3 " (x,sy)sn. Then,y L s, foralln € {1,...,m}. Thus, applying
Pythagoras we obtain

2
=1 = llyl* +

m
Eﬂ?Snn

m
=yl + > [, sa)l?
n=1

This implies the inequality. O

Lemma 6.19. Let H be a Hilbert space, S C H an orthonormal system and x € H. Then,
Sy :={s e S:(x,s) # 0} is countable.

Proof. Exercise.Hint: Use Bessel’s Inequality (Proposition ) O

Proposition 6.20 (Generalized Bessel’s inequality). Let H be a Hilbert space, S C H an
orthonormal system and x € H. Then

>l s) < .

sES

Proof. By Lemma , the subset Sx ={s € S:(x,s) # 0} is countable. If S, is finite
we are done due to Prop051t10n . Otherwise let o : N — S, be a bijection. Then, by
Proposition

m
E: {2, sa@m)? < llz]|?

For any m € N. Thus, we may take the limit m — oo on the left hand side, showing that
the series converges absolutely and satisfies the inequality. O
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Definition 6.21. Let X be a tvs and {z;};cr an indexed set of elements of X. We say
that the series > ;o7 x; converges unconditionally to x € X iff Iy := {i € I : x; # 0} is
countable and for any bijection a : N — I the sum » 2 | 24, converges to z.

Proposition 6.22. Let H be a Hilbert space and S C H an orthonormal system. Then,
P(z) = Y cq(z,s)s converges unconditionally. Moreover, P : x — P(z) defines an
orthogonal projector onto span S.

Proof. Fix x € H. We proceed to show that ) cq(x,s)s converges unconditionally. The
set S can be replaced by the set S, := {s € S : (x,s) # 0}, which is countable due to
Lemma p.19. If S, is even finite we are done. Otherwise, let a : N — S, be a bijection.
Then, given € > 0 by Proposition (.2( there is ng € N such that

o0

Z ’<‘T78a(n)>’2 < 62‘

n=ng+1
For m > k > ng this implies using Pythagoras,

2 2

m k m
> (@ Sam)Sam) = D_(; = 22 (@ 5am)sam)
n=1 n=1 n=k+1
= Z |<x78a(n)>|2 <62'
n=k+1

So the sequence {37 1(Z,5q(n))Sa(n) }men i Cauchy and must converge to some ele-
ment y, € H since H is complete. Now let  : N — S, be another bijection. Then,
> o1 (T, 88(n))Sp(m) = yp for some yg € H. We need to show that ys = yo. Let mg € N
such that {a(n) : n < ng} C {B(n) : n < mp}. Then, for m > my we have (again using
Pythagoras)

m ng 2 0
Z T, 85(n))58(n) — (T Sa@m))Samy| < Y. (=, sa(n)>\2 < €.
n=1 n=1 n=no+1
Taking the limit m — oo we find
ng
Ys — Z<ZE‘, Sa(n)>5a(n) <e
n=1

But on the other hand we have,

no

Ya — Z <.CC, Sa(n)>5a(n)

n=1

< €.
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Thus, ||yg — yal| < 2e. Since € was arbitrary this shows yg = y, proving the unconditional
convergence.

It is now clear that z — P(z) yields a well defined map P : H — H. From the definition
it is also clear that P(H) C span S. Let s € S. Then,

(x — P(x),s) = (x,s) — (P(x),s) = (z,s) — (z,s) = 0.

That is, z — P(z) € S+ = span St By Theorem @.7 this implies that P is the orthogonal
projector onto span S. ]

Proposition 6.23. Let H be a Hilbert space and S C H an orthonormal system. Then,
the following are equivalent:

1. S is an orthonormal basis.
. Suppose x € H and x L S. Then, x = 0.

. H =span§.

. (x,y) = Zs€S<x75><87y> vay €H.

2

3

4. =) .cqlx,s)s VreH.

5

6. [l2]I* = Xses Iz, 8)[* Vo € H.

Proof. 1.=2.: If there exists € S+ \ {0} then S U {z/||x||} would be an orthonormal
system strictly containing S, contradicting the maximality of S. 2.=3.: Note that H =
{0}t = (SL@: (spamSJ')L = spanS. 3.=4.: 1(z) = Pos(w) = Yes(w,s)s by
Proposition . 4.=5.: Apply (-,y). Since the inner product is continuous in the left
argument, its application commutes with the limit taken in the sum. 5.=-6.: Insert y = x.
6.=1.: Suppose S was not an orthonormal basis. Then there exists y € H \ {0} such that
y € St. But then ||y|? = X.cs |y, s)|? = 0, a contradiction. O

Proposition 6.24. Let H be a Hilbert space. Then, H admits an orthonormal basis.
Proof. Exercise.Hint: Use Zorn’s Lemma. ]

Proposition 6.25. Let H be a Hilbert space and S C H an orthonormal basis of H. Then,
S is countable iff H is separable.

Proof. Suppose S is countable. Let QS denote the set of linear combinations of elements
of S with coefficients in Q. Then, QS is countable and also dense in H by using Proposi-
tion .37 showing that H is separable. Conversely, suppose that H is separable. Observe
that ||s — t|| = V/2 for s,t € S such that s # t. Thus, the open balls B\/Q/2(s) for different
s € S are disjoint. Since H is separable there must be a countable subset of H with at
least one element in each of these balls. In particular, S must be countable. O
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In the following, we denote by |S| the cardinality of a set S.

Proposition 6.26. Let H be a Hilbert space and S, T C H orthonormal basis of H. Then,
S| = |T7.

Proof. If S or T is finite this is clear from linear algebra. Thus, suppose that |S| > |N|
and |T'| > |N|. For s € S define T := {t € T : (s,t) # 0}. By Lemma , ITs| < |NJ.
Proposition @.2 implies that T' C J,cq Ts. Hence, |T'| < |S|- |N| = |S|. Using the same
argument with S and 7" interchanged yields |S| < |T'|. Therefore, |S| = |T|. O

Proposition 6.27. Let Hy be a Hilbert space with orthonormal basis S1 C Hy and Hs a
Hilbert space with orthonormal basis So C Ho. Then, Hy is isometrically isomorphic to Ho

iff [S1] = |92
Proof. Exercise. O

Exercise 37. Let S be a set. Define £2(S) to be the set of maps f : S — K such that
S seg | f(s)* converges absolutely. (a) Show that ¢2(S) forms a Hilbert space with the

inner product (f,g) := Y .cq f(s)g(s). (b) Let H be a Hilbert space with orthonormal
basis S C H. Show that H is isomorphic to £2(S) as a Hilbert space.

Example 6.28. Recall the Banach spaces of Example , where X is a measurable space
with measure p. The space L2(X, u, K) is a Hilbert space with inner product

(o= [ 13

Exercise 38. Let S! be the unit circle with the algebra of Borel sets and p the Lebesgue
measure on S'. Parametrize S' with an angle ¢ € [0, 27) in the standard way. Show that
{¢ > €"?/\/27} ez is an orthonormal basis of L2(S*, u, C).

Exercise 39. Equip the closed interval [—1,1] with the algebra of Borel sets and the

Lebesgue measure p. Consider the set of monomials {z"},en as functions [-1,1] — C in

L2([-1,1],4,C). (a) Show that the set {2"},ey is linearly independent and dense. (b)

Suppose an orthonormal basis {s, }nen of functions s, € L2([—1,1],u,C) is constructed

using the algorithm of Gram-Schmidt (Proposition applied to {z"},en. Define p, :=
2/(2n + 1)s,. Show that

(n 4+ Dppyi1(z) = (2n + Dapy(z) — npp—1(x) Vo € [-1,1],Vn € N\ {1}.

6.4 Operators on Hilbert Spaces

Definition 6.29. Let H, H> be Hilbert spaces and ®; : H; — H" the associated anti-linear
bijective isometries from Theorem @ Let A € CL(H;, Hp) and A* : Hy — Hf its adjoint
according to Definition . We say that A* € CL(Hg, Hy) given by A* := (Pl_l 0 A* o @y
is the adjoint operator of A in the sense of Hilbert spaces.



84 Robert Oeckl — FA NOTES — 10/06/2024

In the following of this section, adjoint will always refer to the adjoint in the sense of
Hilbert spaces.

Proposition 6.30. Let Hy, Hy be Hilbert spaces and A € CL(Hy, H). Then, A* is the
adjoint of A iff
(Az,y)m, = (x, A"y)n, Yz € Hi,y € Ha.

Proof. Exercise. O

In the following, we will omit subscripts indicating to which Hilbert space a given inner
product belongs as long as no confusion can arise.

Proposition 6.31. Let Hy, Hy, Hs be Hilbert spaces, A, B € CL(H;, Ha), C € CL(Ho, H3),
A e K.
1. (A+ B)* = A* + B*.

2. (AA)* = NA*.

SN

1A= (Al
6. [|Ao A*|| = [|A* 0 Al = [|A].
7. ker A = (A*(Hz))* and ker A* = (A(Hy))*.
Proof. Exercise. O

Definition 6.32. Let Hy, Hy be Hilbert spaces and A € CL(Hy, Hz). Then, A is called
unitary iff A is an isometric isomorphism.

Remark 6.33. It is clear that A € CL(H;, H2) is unitary iff
<Ax,Ay> = <$,y> vwayEHl'
Equivalently, A*oc A =1p, or Ao A* = 1p,.

Definition 6.34. Let H be a Hilbert space and A € CL(H, H). A is called self-adjoint iff
A= A*. Ais called normal iff Axo A= Ao A*.

Proposition 6.35. Let H be a Hilbert space and A € CL(H, H) self-adjoint. Then,

|A]l = sup |[(Az,z).
lel<1
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Proof. Set M := sup|<1 [(Az,z)|. Since [(Az,z)| < ||Az||||z] < | All||z|?, it is clear that
|A|| > M. We proceed to show that ||A|| < M. Given z,y € H arbitrary we have

(Alx +y), 2 +y) — (Alz —y),z —y) = 2(Az,y) + 2(Ay, )
= 2(Az,y) + 2(y, Ax) = 4R(Ax,y).
Thus,
AR(Az,y) < [(Alz +y), =+ y)| + [(Alz — y), 2 — y)|
< M(llz+yl? +llz = yl*) = 2M (|2]* + 1yl
The validity of this for all x,y € H in turn implies
R(Az,y) < Mllz|[lly| Vz,y € H.
Replacing = with Az for a suitable A € K with |A\| = 1 yields
[(Az,y)| < Mllz[[[lyll Ve,y € H.
Inserting now y = Az we can infer
[Az|| < M||z|Ve € H,
and hence ||A|| < M, concluding the proof. O

Proposition 6.36. Let H be a complex Hilbert space and A € CL(H,H). Then, the
following are equivalent:

1. A is self-adjoint.
2. (Az,z) € R for allxz € H.

Proof. 1.=2.: For all x € H we have (Az,x) = (z, Az) = (Az,z). 2.=1.: Let 2,y € H
and A € C. Then,

(A(z + \y), = + \y) = (Az, z) + MAz,y) + MAy, z) + |N*(Ay, y).

By assumption, the left-hand side as well as the first and the last term on the right-hand
side are real. Thus, we may equate the right hand side with its complex conjugate yielding,

MAz,y) + MAy, z) = My, Az) + Mz, Ay).

Since A € C is arbitrary, the terms proportional to A and those proportional to A have to
be equal separately, showing that A must be self-adjoint. O
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Corollary 6.37. Let H be a complex Hilbert space and A € CL(H, H) such that (Az,x) =0
forallx € H. Then, A=0.

Proof. By Proposition , A is self-adjoint. Then, by Proposition , ||A]| = 0. O

Exercise 40. Give a counter example to the above statement for the case of a real Hilbert
space.

Proposition 6.38. Let H be a Hilbert space and A € CL(H, H) normal. Then,
|Az| = [|[A*z| Vz € H.
Proof. For all x € H we have,
0= ((A*o A— Ao A"z, x) = (Ax, Az) — (A*z, A*z) = || Az||®> — || A*z|?.
O

Proposition 6.39. Let H be a Hilbert space and A € CL(H, H) with A # 0 a projection
operator, i.e., Ao A= A. Then, the following are equivalent:

1. A is an orthogonal projector.
2. |A| =1.

3. A is self-adjoint.

4. A is normal.

5. (Az,x) >0 for allz € H.

Proof. 1.=2.: This follows from Theorem @.5. 2.=1.: Letx ekerA,y € F:= A(H) and
A € K. Then,

IMyl* = 1Az + A)lI* < flz + Ayll? = [l2]® + 2R(z, Ay) + [yl

Since A € K is arbitrary we may conclude (x,y) = 0. That is, ker A C F-. On the other
hand set F := (1 — A)(H) and note that F C ker A. But since 1 = A 4 (1 — A) we must
have F + F = H. Given F C F1 this implies F' = F+ and hence ker A = FL. Observe
also that F' is closed since A is a projector and hence F' = ker(1 — A). By Theorem @, A
is an orthogonal projector. 1.=-3.: Using Theorem (.§.2 and @.7, observe for z,y € H:

(Az,y) = (Az, Ay — (Ay — y)) = (Az, Ay) = (Az — (Az — ), Ay) = (z, Ay).

3.=4.: Immediate. 4.=1.: Combining Proposition with Proposition we have
ker A = ker A* = (A(H))*. Note also that A(H) is closed since A is a projector. Thus, by
Theorem (.8, A is an orthogonal projection. 3.=-5.: For x € H observe

(Az,z) = (Ao Az, z) = (Azx, Azx) = ||Az|]* > 0.
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5.=1.: Let x € ker A and y € F:= A(H). Then,
0< (Al +y),z+y) = (yz+y) = llyl* + (y,2).

Since z can be scaled arbitrarily, we must have (y,z) = 0. Thus, ker A C F+. As above
we may conclude that A is an orthogonal projector. O

Exercise 41. Let X be a normed vector space and Y _a separable Hilbert space. Show
that KL(X,Y) = CLg,(X,Y). [Hint: Use Proposition and show that the assumptions
of Proposition can be satisfied.]

Exercise 42. Let w € C(]0, 1], R) and consider the map (-, -),, : C([0,1],C) x C(]0,1],C) —
C given by
1
(.9hui= [ f@gf@w(a)da.
1. Give necessary and sufficient conditions for (-, -),, to be a scalar product.

2. When is the norm induced by (:,-),, equivalent to the norm induced by the usual
scalar product

)= [ L e)a@)da?

Exercise 43. Let S be a set and H C F(5,K) a subspace of the functions on S with
values in K. Suppose that an inner product is given on H that makes it into a Hilbert
space. Let K : S x § — K and define K, : S — K by K;(y) := K(y,z). Then, K is called
a reproducing kernel iff K, € H for all x € S and f(x) = (f,K,) forallx € S and f € H.
Show the following:

1. If a reproducing kernel exists, it is unique.

2. A reproducing kernel exists iff the topology of H is finer than the topology of pointwise
convergence.

3. If K is a reproducing kernel, then span({K; }zcs) is dense in H.

4. Let H be the two-dimensional subspace of L2([0, 1], K) consisting of functions of the
form xz — ax 4+ b. Determine its reproducing kernel.
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7 C*-Algebras

7.1 The commutative Gelfand-Naimark Theorem

In the same sense as Banach algebras may be seen as an abstraction of the space of contin-
uous operators on a Banach space, we can abstract the concept of continuous operators on
a Hilbert space. Of course, a Hilbert space is in particular a Banach space. So the algebras
we are looking for are in particular Banach algebras. The additional structure of interest
coming from Hilbert spaces is that of an adjoint. As in the section about Banach algebras
we work in the following exclusively over the field of complex numbers.

Definition 7.1. Let A be an algebra over C. Consider a map * : A — A with the following
properties:

e (a+b)*=a"+0b"forall a,b € A.
(Aa)* = Xa* for all A € C and a € A.
(ab)* = b*a* for all a,b € A.

o (a*)*=aforallac A
Then, * is called an (anti-linear anti-multiplicative) involution.

Definition 7.2. Let A be a Banach algebra with involution * : A — A such that ||a*a| =
lla|[?. Then, A is called a C*-algebra. For an element a € A, the element a* is called its
adjoint. If a* = a, then a is called self-adjoint. If a*a = aa™, then a is called normal.

Exercise 44. Let A be a C*-algebra. (a) Show that |la*|| = ||a|| and |laa*|| = ||a||? for all
a € A. (b) If e € Ais a unit, show that e* =e. (c) If a € A is invertible, show that a* is
also invertible.

Exercise 45. Let A be a unital C*-algebra and a € A. Show that o4(a*) = g4(a).

Exercise 46. Let X be a Hilbert space. (a) Show that CL(X, X) is a unital C*-algebra.
(b) Show that KL(X, X) is a C*-ideal in CL(X, X).

Exercise 47. Let A be a C*-algebra and a € A. Show that there is a unique way to write
a = b+ ic so that b and c are self-adjoint.

Exercise 48. Let T be a compact topological space. Show that the Banach algebra C(T, C)
of Exercise B is a C*-algebra, where the involution is given by complex conjugation.

Proposition 7.3. Let A be a C*-algebra and a € A normal. Then, |a®|| = |la|* and
ra(a) = [laf|-
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Proof. We have |a?||? = ||(a?)*(a?)|| = ||(a*a)*(a*a)| = |la*a||* = (]|a]|?)?. This implies the
first statement. Also, this implies Ha2]C I = |la 2" for all k € N and hence lim,,_s @™/ =

||la|| if the limit exists. But by Proposition the limit exists and is equal to r4(a). O
Proposition 7.4. Let A be a C*-algebra and a € A self-adjoint. Then, o4(a) C R.

Proof. Take a+if € o4(a), where o, 5 € R. Thus, for any A € R we have a +i(f+ ) €
o4(a +iXe). By Proposition p.6 we have |a +i(8 + A)| < |la + iXe||. We deduce

2+ B+NE=la+i(B+N))?
< |la +ide|?
= [[(a + ire)*(a + ire)
= [[(a —iXe)(a + iXe)]]
= [la® + N%¢|
< fla®|| +A?

Subtracting A? on both sides we are left with a? 4+ 32 + 28X < ||a?||. Since this is satisfied
for all A € R we conclude 8 = 0. O

Proposition 7.5. Let A be a unital C*-algebra. Then, the Gelfand transform A —
C(T4,C) is a continuous unital C*-algebra homomorphism. Moreover, its image is dense
in C(T'4,C).

Proof. By Theorem , the Gelfand transform is a continuous unital algebra homomor-
phism. We proceed to show that it respects the *-structure. Let a € A be self-adjoint.
Then, combining Proposition with Proposition @ we get a(¢) = ¢(a) € oa(a) C R
for all ¢ € ['4. So a is real-valued, i.e., self-adjoint. In particular, a* = @*. Using the
decomposition of Exercise U7 this follows for general elements of A. (Explain!)

It remains to show that the image A of the Gelfand transform is dense. It is clear that
A separates points of I'4 by construction, vanishes nowhere (as it contains a unit) and is
invariant under complex conjugation (as it is the image of a *-algebra homomorphism).
Thus, the Stone-Weierstrass Theorem ensures that A is dense in C(I'4, C). O]

Theorem 7.6 (Gelfand-Naimark). Let A be a unital commutative C*-algebra. Then, the
Gelfand transform A — C(I'4,C) is an isometric isomorphism of unital commutative C*-
algebras.

Proof. Using Proposition @ it remains to show that the Gelfand transform is isometric.
Surjectivity then follows from the fact that the isometric image of a complete set is com-
plete and hence closed. Since A is commutative all its elements are normal. Then, by
Proposition @, la?|| = ||a||?> and we can apply Proposition to conclude isometry. [
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The Gelfand-Naimark Theorem @ (in view of Exercise @) gives rise to a one-to-one
correspondence between compact Hausdorff spaces and unital commutative C*-algebras.

Theorem 7.7. The category of compact Hausdorff spaces is naturally equivalent to the
category of unital commutative C*-algebras.

Proof. Exercise. O
Before we proceed we need a few more results about C*-algebras.

Proposition 7.8. Let A be a unital C*-algebra and a € A normal. Define B to be the unital
C*-subalgebra of A generated by a. Then, B is commutative and the Gelfand transform a
of a defines a homeomorphism onto its image, I'p — op(a) which we denote by a.

Proof. B consists of possibly infinite linear combinations of elements of the form (a*)™a"

where n,m € Ny (and @ = (a*)? = e). In particular, B is commutative. Consider the
Gelfand transform a : I'g — C of a in B. Suppose a(¢) = a(¢) for ¢,1p € I'g. Then,
¢(a) = (a), but also

¢(a*) = a*(¢) = a(9) = a(y) = a*(y) = Y(a*),
using Proposition @ Thus, ¢ is equal to 1 on monomials (a*)™a™ by multiplicativity
and hence on all of B by linearity and continuity. This shows that @ is injective. By
Proposition M the image of a is op(a). Thus, a is a continuous bijective map a : I'p —
op(a). With Lemma it is even a homeomorphism. O

Proposition 7.9. Let A be a unital C*-algebra and a € A. Let B be a unital C*-subalgebra
containing a. Then, og(a) = oa(a).

Proof. 1t is clear that o4(a) C op(a). It remains to show that if b := Ae — a for any A € C
has an inverse in A then this inverse is also contained in B.

Assume first that a (and hence b) is normal. We show that b~! is even contained
in the unital C*-subalgebra C' of B that is generated by b. Suppose that b~! is not
contained in C' and hence 0 € o¢(b). Choose m > ||b~1| and define a continuous function
f :oc(b) — C such that f(0) =m and |f(z)z| < 1 for all x € o¢(b). Using Theorem I’E
and Proposition there is a unique element ¢ € C such that ¢ = fo b. Observe also that
b=iob, where i: oc(b) — C is the inclusion map z — z and hence & = (f -4) o b. Using
Theorem we find

m < | fl = llell = llebb™ | < [leb o~ = I1f - all 1o~ | < (1o~ ]-

This contradicts m > |[b=1||. So 0 ¢ o¢(b) and b~! € C as was to be demonstrated. This
concludes the proof for the case that a is normal.

Consider now the general case. If b is not invertible in B then by Lemma @ at least
one of the two elements b*b or bb* is not invertible in B. Suppose b*b is not invertible in B



92 Robert Oeckl — FA NOTES — 10/06/2024

(the other case proceeds analogously). b*b is self-adjoint and in particular normal so the
version of the proposition already proofed applies and o 4(b*b) = o (b*b). In particular, b*b
is not invertible in A and hence b cannot be invertible in A. This completes the proof. [

7.2 Spectral decomposition of normal operators

Proposition 7.10 (Spectral Theorem for Normal Elements). Let A be a unital C*-algebra
and a € A normal. Then, there exists an isometric homomorphism of unital *-algebras
¢:C(oal(a),C) — A such that ¢p(1) = a.

Proof. Exercise.Hint: Combine Proposition @ with Theorem @ O

Of course, an important application of this is the case when A is the algebra of contin-
uous operators on some Hilbert space and a is a normal operator.

In the context of this proposition we also use the notation f(a) := ¢(f) for f €
C(oa(a),C). We use the same notation if f is defined on a larger subset of the complex
plane.

Corollary 7.11 (Continuous Spectral Mapping Theorem). Let A be a unital C*-algebra,
a € Anormaland f : T — C continuous such that cx(a) CT. Then, ca(f(a)) = f(oa(a)).

Proof. Exercise. O

Corollary 7.12. Let A be a unital C*-algebra and a € A normal. Furthermore, let
fioala) > Candg: f(ca(a)) = C continuous. Then (go f)(a) = g(f(a)).

Proof. Exercise. O

Definition 7.13. Let A be a unital C*-algebra. If u € A is invertible and satisfies u* = u ™!
we call u unitary. If p € A is self-adjoint and satisfies p> = p we call it an orthogonal
projector. (Exercise.Justify this terminology!)

Exercise. Let A be a unital C*-algebra.

1. Let u € A be unitary. What can you say about o 4(u)?

2. Let p € A be an orthogonal projector. Show that o4 (p) C {0,1}.
3. Let a € A be normal and c4(a) C R. Show that a is self-adjoint.

Proposition 7.14. Let A be a unital C*-algebra and a € A normal. Suppose the spectrum
of a is the disjoint union of two non-empty subsets ca(a) = s1 U sa. Then, there exist
ay,az € A normal, such that c4(a1) = s1 and o4(az) = s2 and a = a; + ay. Moreover,
aias = asa; = 0 and a commutes both with a1 and as.

Proof. Exercise. O
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Proposition 7.15. Let H be a Hilbert space, A := CL(H, H) and k € KL(H, H) normal.
Then, there exists an orthogonal projector py € A for each \ € o4(k) such that pypy =0

if X\ # XN and
k= Z Apyn and e= Z Dx-
Ao 4 (k) A€o 4 (k)
Proof. Exercise. (Explain also in which sense the sums converge!) O

7.3 Positive elements and states

We now move towards a characterization of noncommutative C*-algebras. We are going
to show that any unital C*-algebra is isomorphic to a C*-subalgebra of the algebra of
continuous operators on some Hilbert space.

Definition 7.16. Let A be a unital C*-algebra. A self-adjoint element a € A is called
positive iff o 4(a) C [0, 00).

Exercise 49. Let T be a compact Hausdorff space and consider the C*-algebra C(T, C).
Show that the self-adjoint elements are precisely the real valued functions and the positive
elements are the functions with non-negative values.

Proposition 7.17. Let A be a unital C*-algebra and a,b € A positive. Then, a + b is
positive.

Proof. Suppose A € g4(a +b). Since a and b are self-adjoint so is a + b. In particular,
oala+b) C R and A is real. Set o := ||a|| and § := ||b||. Then, (a+ 5) =\ € oa((a +
B)e — (a+b)) and thus |(a+ 8) — A\ < ra((a+ B)e — (a + b)) by Theorem . But the
element (a+ f)e — (a+b) is normal (and even self-adjoint), so Proposition [7.3 applies and
we have 74((a + Ble — (a + b)) = |[[(a + B)e — (a + b)|| < ||owe — al| + ||fe — b||. Again
using Proposition we find ||ae — a|| = ra(ae — a) and ||fe — b|| = ra(Be — b). But
o4(a) C [0.a] by positivity and Proposition@. Thus, oa(ae —a) C [0,a]. Hence, by
Theorem , TA(ae —a) < . In the same way we find r4(Be — b) < 5. We have thus
demonstrated the inequality |(a + ) — A| < o+ B. This implies A > 0, completing the
proof. O

Proposition 7.18. Let A be a unital C*-algebra and a € A self-adjoint. Then, there exist
positive elements ay,a_ € A such that a = ay —a—_ and a;a_ = a_ar = 0.

Proof. Exercise. Hint: Consider the unital C*-subalgebra generated by a. O

Proposition 7.19. Let A be a unital C*-algebra and a € A. Then, a is positive iff there
exrists b € A such that a = b*b.

Proof. Exercise. O
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Lemma 7.20. Let A be a unital C*-algebra and a € A positive and such that ||al| < 1.
Then, e — a is positive and ||e — al| < 1.

Proof. Exercise. O

A similar role to that played by the characters in the theory of commutative C*-algebras
is now played by states.

Definition 7.21. Let A be a unital C*-algebra. A continuous linear functional w : A — C s
called positive iff w(a) > 0 for all positive elements a € A. A positive functional w: A — C
is called a state iff it is normalized, i.e., iff ||w|| = 1. The set X 4 of states of A is called the
state space of A.

Exercise 50. Let A be a unital C*-algebra. Show that I'y C X 4, i.e., each character is in
particular a state.

Proposition 7.22. Let A be a unital C*-algebra and w a positive functional on A. Then
w(a*) =w(a) for all a in A. In particular, w(a) € R if a is self-adjoint.

Proof. Exercise. O

Proposition 7.23. Let A be a unital C*-algebra and w a positive functional on A. Consider
the map [-,+]w : A x A — C given by [a,b], = w(b*a). It has the following properties:

1. [, +]w is a sesquilinear form on A.
2. la,bl, = [b,a], for all a,b € A.
3. la,aly, >0 for alla € A.

Proof. Exercise. O

This shows that we almost have a scalar product, only the definiteness condition is
missing. Nevertheless we have the Cauchy-Schwarz inequality.

Proposition 7.24. Let A be a unital C*-algebra and w a non-zero positive functional on
A. The following is true:

1. |[a,b]u|* < [a,aly[b, blw for all a,b € A.
2. Let a € A. Then, [a,a], =0 iff [a,b], =0 for all b € A.
3. [ab,abl, < ||al?[b, bl for all a,b € A.
Proof. Exercise. O

Proposition 7.25. Let A be a unital C*-algebra and w : A — C continuous and linear.
Then, w is a positive functional iff |w| = w(e).
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Proof. Suppose that w is a positive functional. Given ¢ > 0 there exists a € A with ||a]| =1
such that |Jw(a)||? > ||w||*> — €. Using the Cauchy-Schwarz inequality (Proposition .1)
with b = e we find

lw(@)]? < w(a*a)w(e) < l|wllla*allw(e) = l|lwlw(e).

Combining this with the first inequality we get [|w||? — € < ||w/|lw(e). Since € was arbitrary
this implies ||w|| < w(e). On the other hand, the inequality w(e) < ||w]| is clear.

Conversely, suppose now that w is a continuous linear functional with the property
|lw|| = w(e). Without loss of generality we normalize w such that w(e) = 1 = [|w]|]. We
first show that w(a) € R if a € A is self-adjoint. Assume the contrary, i.e., assume there
exists a € A such that w(a) = z + iy with z,y € R and y # 0. Set b := a — xe. Then, b is
self-adjoint and w(b) = iy. For A € R we get,

lw(b+1iXe)|? = [iy + dw(e)? = y° + 2 y + A2
One the other hand,
lw(b+iXe)|? < |lw|?]|b + ixel|* = ||(b +ixe)*(b 4+ iXe)|| < ||b]|? + A%
The resulting inequality is equivalent to,
y? + 22y < bl

which obviously cannot be fulfilled for arbitrary A € R (recall that y # 0), giving a
contradiction. This shows that w(a) € R if a € A is self-adjoint.

We proceed to show that w(a) > 0if a € A is positive. Assume the contrary, i.e., assume
there is a € A positive such that w(a) < 0. (Note that w(a) € R by the previous part of

the proof.) By suitable normalization we can achieve ||a|| < 1 as well. By Lemma we
have |le — a|| <1 and thus |w(e — a)| < 1 since ||w|| = 1. On the other hand, |w(e —a)| =
|1 —w(a)| > 1, a contradiction. This shows that w must be positive. O

Proposition 7.26. Let A be a unital C*-algebra and a € A positive. Then, there exists a
state w € ¥4 such that w(a) = ||al|.

Proof. Since a is positive we have o4(a) C [0,00). Moreover, a is normal, so by Proposi-
tion E we have 74(a) = ||a]|. Thus, ||a|| € oa(a). Let B be the unital C*-subalgebra of A
generated by a. By Proposition [7.9 we have op(a) = 04(a) and in particular ||a| € op(a).
By Proposition é, a induces a homeomorphism I'g — op(a). In particular, there exists
a character ¢ € I'p such that ||a|| = a(¢) = ¢(a). Recall that ¢(e) = 1 and ||¢| = 1 by
Proposition . By the Hahn-Banach Theorem (Corollary ) there exists an extension
of ¢ to a linear functional w : A — C such that w|p = ¢ and ||w|| = 1. Note in particular
that w(e) = 1 = ||w||. So by Proposition , weXa. O
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7.4 The GNS construction

Proposition 7.27. Let A be a unital C*-algebra and w a state on A. Define I, := {a €
A :a,al, =0} C A. Then, 1, is a left ideal of the algebra A. In particular, the quotient
vector space A/, is an inner product space with the induced sesquilinear form.

Proof. Exercise. O

Definition 7.28. Let A be a unital C*-algebra and w a state on A. We call the completion
of the inner product space A/I, the Hilbert space associated with the state w and denote
it by H,. We denote its scalar product by (-, ), : H, x H, — C.

A consequence of the fact that A/, is a left ideal is that we have a representation of
A on this space and its completion from the left.

Definition 7.29. Let A be a unital C*-algebra and H a Hilbert space. A homomorphism
of unital *-algebras A — CL(H, H) is called a representation of A. A representation that
is injective is called faithful. A representation that is surjective is called full.

Proposition 7.30. Let A, B be unital C*-algebras and ¢ : A — B a homomorphism of
unital *-algebras.

1. ||gp(a)|| < |la]| for all a € A. In particular, ¢ is continuous.
2. If ¢ is injective then it is isometric.
Proof. Exercise. O

Theorem 7.31. Let A be a unital C*-algebra and w a state on A. Then, there is a natural
representation m,, : A — CL(Hy, H,). Moreover,

|70 (a)||? > w(a*a) Va € A,
and ||m,|| = 1.

Proof. Define the linear maps 7,(a) : A/I, — A/I, by left multiplication, i.e., 7,(a) :
[b] — [ab]. That 7, (a) is well defined follows from Proposition (I, is a left ideal).
By definition we have then 7, (ab) = 7. (a) o 7, (b) and 7,(e) = 147,. Furthermore,
|7w(a)|| < |la|| due to Proposition .3 and hence 7, (a) is continuous. So we have
a homomorphism of unital algebras 7, : A — CL(A/L,,A/I,). Also, 7, preserves the
*-structure because,

(Ful @B, [ = [a*b, = w(c*a™d) = b, acl, = (b], Fu(a)[c])o

Since 7, (a) is continuous it extends to a continuous operator m,(a) : H, — H, on the
completion H,, of A/I,, with the same properties. In particular, 7, is a homomorphism
of unital *-algebras.
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Due to the bound ||7,(a)|] < |la|| and hence |7, (a)|| < |la|| (or due to Proposi-
tion .1) we find ||7,|| < 1. Observe also that w(e) = 1 By Proposition and
hence ||, (a)||? > [ae, ael,/[e, €]w = w(a*a). In particular, ||m,| > ||7w(e)|| > 1. Thus,

|mol| = 1. O]

The construction leading to the Hilbert spaces H,, and this representation is called the
GNS-construction (Gelfand-Naimark-Segal).

Definition 7.32. Let A be a unital C*-algebra, H a Hilbert space and ¢ : A — CL(H, H)
a representation. A vector ¥ € H is called a cyclic vector iff {¢(a)y : a € A} is dense in
H. The representation is then called a cyclic representation.

Proposition 7.33. Let A be a unital C*-algebra and w a state on A. Then, there is a
cyclic vector v € H,, with the property w(a) = (my(a), ), for all a € A.

Proof. Exercise. O

A deficiency of the representation of Theorem is that it is neither faithful nor full
in general. Lack of faithfulness can be remedied. The idea is that we take the direct sum
of the representations 7, for all normalized states w.

Proposition 7.34. Let {H,}acr be a family of Hilbert spaces. Consider collections 1 of
elements o € Hy with a € I such that sup ;Y pey [¥all? < oo where J ranges over all
finite subsets of I.  Then, the set H of such collections v is naturally a Hilbert space and
we have isometric embeddings H, — H for all a € 1.

Proof. Exercise. O

Definition 7.35. The Hilbert space H constructed in the preceding Proposition is called
the direct sum of the Hilbert spaces H, and is denoted @ ,c; Ha-

Proposition 7.36. Let A be a unital C*-algebra, {Hy}acr a family of Hilbert spaces and
¢ : A — CL(Hy, Hy) a representation for each o € I. Then, there exists a representation
¢: A— CL(H, H) such that ||¢p(a)|| = supyer ||@ala)| for alla € A, where H := @ c; Ha-

Proof. Exercise. O

We are now ready to put everything together.

Theorem 7.37 (Gelfand-Naimark). Let A be a unital C*-algebra. Then, there exists a
Hilbert space H and a faithful representation m: A — CL(H, H).

Proof. Exercise. O

This result concludes our characterization of the structure of C*-algebras: Each C*-
algebra arises as a C*-subalgebra of the algebra of continuous operators on some Hilbert
space.
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Exercise 51. Let A be a unital C*-algebra, H;, Hs Hilbert spaces, ¢1 : A — CL(H1, Hy)
and ¢y : A — CL(Ha, Hs) cyclic representations. Suppose that (¢1(a)i1,1¥1)1 = (p2(a)iha, 12)2
for all @ € A, where 11,12 are the cyclic vectors in H; and Hj respectively. Show that
there exists a unitary operator (i.e., an invertible linear isometry) W : H; — Hs such that
¢d(a) = W*p(a)W for all a € A.
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