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1 Topological and metric spaces
1.1 Basic Definitions
Definition 1.1 (Topology). Let S be a set. A subset T of the set P(S) of subsets of S is
called a topology iff it has the following properties:

• ∅ ∈ T and S ∈ T .

• Let {Ui}i∈I be a family of elements in T . Then ∪
i∈I Ui ∈ T .

• Let U, V ∈ T . Then U ∩ V ∈ T .

A set equipped with a topology is called a topological space. The elements of T are called
the open sets in S. A complement of an open set in S is called a closed set.

Definition 1.2. Let S be a topological space and x ∈ S. Then a subset U ⊆ S is called a
neighborhood of x iff it contains an open set which in turn contains x.

Definition 1.3. Let S be a topological space and U a subset. The closure U of U is the
smallest closed set containing U . The interior

◦
U of U is the largest open set contained in

U . U is called dense in S iff U = S.

Definition 1.4 (base). Let T be a topology. A subset B of T is called a base of T iff
the elements of T are precisely the unions of elements of B. It is called a subbase iff the
elements of T are precisely the finite intersections of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of P(S). B is the base of a topology on
S iff it satisfies all of the following properties:

• ∅ ∈ B.

• For every x ∈ S there is a set U ∈ B such that x ∈ U .

• Let U, V ∈ B. Then there exists a family {Wα}α∈A of elements of B such that
U ∩ V =

∪
α∈A Wα.

Proof. Exercise.

Definition 1.6 (Filter). Let S be a set. A subset F of the set P(S) of subsets of S is
called a filter iff it has the following properties:

• ∅ /∈ F and S ∈ F .

• Let U, V ∈ F . Then U ∩ V ∈ F .

• Let U ∈ F and U ⊆ V ⊆ S. Then V ∈ F .



4 Robert Oeckl – FA NOTES – 19/02/2024

Definition 1.7. Let F be a filter. A subset B of F is called a base of F iff every element
of F contains an element of B.

Proposition 1.8. Let S be a set and B ⊆ P(S). Then B is the base of a filter on S iff it
satisfies the following properties:

• ∅ /∈ B and B 6= ∅.

• Let U, V ∈ B. Then there exists W ∈ B such that W ⊆ U ∩ V .

Proof. Exercise.

Let S be a topological space and x ∈ S. It is easy to see that the set of neighborhoods
of x forms a filter. It is called the filter of neighborhoods of x and denoted by Nx. The
family of filters of neighborhoods in turn encodes the topology:

Proposition 1.9. Let S be a topological space and {Nx}x∈S the family of filters of neigh-
borhoods. Then a subset U of S is open iff for every x ∈ U , there is a set Wx ∈ Nx such
that Wx ⊆ U .

Proof. Exercise.

Proposition 1.10. Let S be a set and {Fx}x∈S an assignment of a filter to every point
in S. Then this family of filters are the filters of neighborhoods of a topology on S iff they
satisfy the following properties:

1. For all x ∈ S, every element of Fx contains x.

2. For all x ∈ S and U ∈ Fx, there exists W ∈ Fx such that U ∈ Fy for all y ∈ W .

Proof. If {Fx}x∈S are the filters of neighborhoods of a topology it is clear that the prop-
erties are satisfied: 1. Every neighborhood of a point contains the point itself. 2. For a
neighborhood U of x take W to be an open neighborhood of x contained in U . Then W
is a neighborhood for each point in W .

Conversely, suppose {Fx}x∈S satisfies Properties 1 and 2. Given x we define a provi-
sional open neighborhood of x to be an element U ∈ Fx such that U ∈ Fy for all y ∈ U .
This definition is not empty since at least S itself is a provisional open neighborhood of ev-
ery point x in this way. Moreover, for any y ∈ U , by the same definition, U is a provisional
open neighborhood of y. Now take y /∈ U . Then, by Property 1, U is not a provisional
open neighborhood of y. We define a provisional open set as a set that is a provisional
open neighborhood for one (and thus any) of its points. We also declare the empty set to
be a provisional open set. Let T be the set of provisional open sets.

We proceed to verify that T satisfies the axioms of a topology. Property 1 of Defini-
tion 1.1 holds since S ∈ T , and we have declared ∅ ∈ T . Let {Uα}α∈I be a family in T and
consider their union U =

∪
α∈I Uα. Assume U is not empty (otherwise U ∈ T trivially)
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and pick x ∈ U . Thus, there is α ∈ I such that x ∈ Uα. But then Uα ∈ Fx and also
U ∈ Fx. This is true for any x ∈ U . Hence, U ∈ T . Consider now U, V ∈ T . Assume the
intersection U ∩ V to be non-empty (otherwise U ∩ V ∈ T trivially) and pick a point x in
it. Then U ∈ Fx and V ∈ Fx and therefore U ∩ V ∈ Fx. The same is true for any point in
U ∩ V , hence U ∩ V ∈ T . We thus drop the adjective “provisional”.

It remains to show that {Fx}x∈S are the filters of neighborhoods for the topology just
defined. It is already clear that any open neighborhood of a point x is contained in Fx.
We need to show that every element of Fx contains an open neighborhood of x. Take
U ∈ Fx. We define V to be the set of points y such that U ∈ Fy. This cannot be empty as
x ∈ V . Moreover, Property 1 implies V ⊆ U . Let y ∈ V , then U ∈ Fy and we can apply
Property 2 to obtain a subset W ⊆ V with W ∈ Fy. But this implies V ∈ Fy. Since the
same is true for any y ∈ V we find that V is an open neighborhood of x. This completes
the proof.

Definition 1.11 (Continuity). Let S, T be topological spaces. A map f : S → T is called
continuous at p ∈ S iff f−1(Nf(p)) ⊆ Np. f is called continuous iff it is continuous at every
p ∈ S. We denote the space of continuous maps from S to T by C(S, T ).

Proposition 1.12. Let S, T be topological spaces and f : S → T a map. Then, f is
continuous iff for every open set U ∈ T the preimage f−1(U) in S is open.

Proof. Exercise.

Proposition 1.13. Let S, T, U be topological spaces, f ∈ C(S, T ) and g ∈ C(T, U). Then,
the composition g ◦ f : S → U is continuous.

Proof. Immediate.

Definition 1.14. Let S, T be topological spaces. A bijection f : S → T is called a
homeomorphism iff f and f−1 are both continuous. If such a homeomorphism exists S and
T are called homeomorphic.

Definition 1.15. Let T1, T2 be topologies on the set S. Then, T1 is called finer than T2
and T2 is called coarser than T1 iff all open sets of T2 are also open sets of T1.

Definition 1.16 (Induced Topology). Let S be a topological space and U a subset. Con-
sider the topology given on U by the intersection of each open set on S with U . This is
called the induced topology on U .

Definition 1.17 (Product Topology). Let S be the Cartesian product S =
∏

α∈I Sα of
a family of topological spaces. Consider subsets of S of the form ∏

α∈I Uα where finitely
many Uα are open sets in Sα and the others coincide with the whole space Uα = Sα. These
subsets form the base of a topology on S which is called the product topology.
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Exercise 1. Show that alternatively, the product topology can be characterized as the
coarsest topology on S =

∏
α∈I Sα such that all projections S ↠ Sα are continuous.

Proposition 1.18. Let S, T, X be topological spaces and f ∈ C(S × T, X), where S × T
carries the product topology. Then the map fx : T → X defined by fx(y) = f(x, y) is
continuous for every x ∈ S.

Proof. Fix x ∈ S. Let U be an open set in X. We want to show that W := f−1
x (U) is open.

We do this by finding for any y ∈ W an open neighborhood of y contained in W . If W is
empty we are done, hence assume that this is not so. Pick y ∈ W . Then (x, y) ∈ f−1(U)
with f−1(U) open by continuity of f . Since S × T carries the product topology there must
be open sets Vx ⊆ S and Vy ⊆ T with x ∈ Vx, y ∈ Vy and Vx × Vy ⊆ f−1(U). But clearly
Vy ⊆ W and we are done.

Definition 1.19 (Quotient Topology). Let S be a topological space and ∼ an equivalence
relation on S. Then, the quotient topology on S/∼ is the finest topology such that the
quotient map S ↠ S/∼ is continuous.

Definition 1.20. Let S, T be topological spaces and f : S → T . For a ∈ S we say that f
is open at a iff for every neighborhood U of a the image f(U) is a neighborhood of f(a).
We say that f is open iff it is open at every a ∈ S.

Proposition 1.21. Let S, T be topological spaces and f : S → T . f is open iff it maps
any open set to an open set.

Proof. Straightforward.

Definition 1.22 (Ultrafilter). Let F be a filter. We call F an ultrafilter iff F cannot be
enlarged as a filter. That is, given a filter F ′ such that F ⊆ F ′ we have F ′ = F .

Lemma 1.23. Let S be a set, F an ultrafilter on S and U ⊆ S such that U ∩ V 6= ∅ for
all V ∈ F . Then U ∈ F .

Proof. Let F be an ultrafilter on S and U ⊆ S such that U ∩ V 6= ∅ for all V ∈ F . Then,
B := {U ∩ V : V ∈ F} forms the base of a filter F ′ such that F ⊆ F ′ and U ∈ F ′. But
since F is ultrafilter we have F = F ′ and hence U ∈ F .

Proposition 1.24 (Ultrafilter lemma). Let F be a filter. Then there exists an ultrafilter
F ′ such that F ⊆ F ′.

Proof. Exercise.Use Zorn’s Lemma.
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1.2 Some properties of topological spaces
In a topological space it is useful if two distinct points can be distinguished by the topology.
A strong form of this distinguishability is the Hausdorff property.
Definition 1.25 (Hausdorff). Let S be a topological space. Assume that given any two
distinct points x, y ∈ S we can find open sets U, V ⊂ S such that x ∈ U and y ∈ V and
U ∩ V = ∅. Then, S is said to have the Hausdorff property. We also say that S is a
Hausdorff space.
Definition 1.26. A topological space S is called completely regular iff given a closed subset
C ⊆ S and a point p ∈ S \ C there exists a continuous function f : S → [0, 1] such that
f(C) = {0} and f(p) = 1.
Definition 1.27. A topological space is called normal iff it is Hausdorff and if given two
disjoint closed sets A and B there exist disjoint open sets U , V such that A ⊆ U and
B ⊆ V .
Lemma 1.28. Let S be a normal topological space, U an open subset and C a closed subset
such that C ⊆ U . Then, there exists an open subset U ′ and a closed subset C ′ such that
C ⊆ U ′ ⊆ C ′ ⊆ U .
Proof. Exercise.

Theorem 1.29 (Uryson’s Lemma). Let S be a normal topological space and A, B disjoint
closed subsets. Then, there exists a continuous function f : S → [0, 1] such that f(A) = {0}
and f(B) = {1}.
Proof. Let C0 := A and U1 := S \ B. Applying Lemma 1.28 we find an open subset U1/2
and a closed subset C1/2 such that

C0 ⊆ U1/2 ⊆ C1/2 ⊆ U1.

Performing the same operation on the pairs C0 ⊆ U1/2 and C1/2 ⊆ U1 we obtain

C0 ⊆ U1/4 ⊆ C1/4 ⊆ U1/2 ⊆ C1/2 ⊆ U3/4 ⊆ C3/4 ⊆ U1.

We iterate this process, at step n replacing the pairs C(k−1)/2n ⊆ Uk/2n by C(k−1)/2n ⊆
U(2k−1)/2n+1 ⊆ C(2k−1)/2n+1 ⊆ Uk/2n for all k ∈ {1, . . . , n}.

Now define

f(p) :=
{

1 if p ∈ B

inf{x ∈ (0, 1] : p ∈ Ux} if p /∈ B

Obviously f(B) = {1} and also f(A) = {0}. To show that f is continuous it suffices to
show that f−1([0, a)) and f−1((b, 1]) are open for 0 < a ≤ 1 and 0 ≤ b < 1. But,

f−1([0, a)) =
∪

x<a

Ux, f−1((b, 1]) =
∪
x>b

(S \ Cx).
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Corollary 1.30. Every normal space is completely regular.

Definition 1.31. Let S be a topological space. S is called first-countable iff for each point
in S there exists a countable base of its filter of neighborhoods. S is called second-countable
iff the topology of S admits a countable base.

Definition 1.32. Let S be a topological space and U, V ⊆ S subsets. U is called dense in
V iff V ⊆ U .

Definition 1.33 (separable). A topological space is called separable iff it contains a count-
able dense subset.

Proposition 1.34. A topological space that is second-countable is separable.

Proof. Exercise.

Definition 1.35 (open cover). Let S be a topological space and U ⊆ S a subset. A family
of open sets {Uα}α∈A is called an open cover of U iff U ⊆

∪
α∈A Uα.

Proposition 1.36. Let S be a second-countable topological space and U ⊆ S a subset.
Then, every open cover of U contains a countable subcover.

Proof. Exercise.

Definition 1.37 (compact). Let S be a topological space and U ⊆ S a subset. U is called
compact iff every open cover of U contains a finite subcover.

Definition 1.38. Let S be a topological space and U ⊆ S a subset. Then, U is called
relatively compact in S iff the closure of U in S is compact.

Proposition 1.39. A closed subset of a compact space is compact. A compact subset of a
Hausdorff space is closed.

Proof. Exercise.

Proposition 1.40. The image of a compact set under a continuous map is compact.

Proof. Exercise.

Lemma 1.41. Let T1 be a compact Hausdorff space, T2 be a Hausdorff space and f : T1 →
T2 a continuous bijective map. Then, f is a homeomorphism.

Proof. The image of a compact set under f is compact and hence closed in T2. But every
closed set in T1 is compact, so f is open and hence a homeomorphism.

Lemma 1.42. Let T be a Hausdorff topological space and C1, C2 disjoint compact subsets
of T . Then, there are disjoint open subsets U1, U2 of T such that C1 ⊆ U1 and C2 ⊆ U2.
In particular, if T is compact, then it is normal.
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Proof. We first show a weaker statement: Let C be a compact subset of T and p /∈ C. Then
there exist disjoint open sets U and V such that p ∈ U and C ⊆ V . Since T is Hausdorff,
for each point q ∈ C there exist disjoint open sets Uq and Vq such that p ∈ Uq and q ∈ Vq.
The family of sets {Vq}q∈C defines an open covering of C. Since C is compact, there is a
finite subset S ⊆ C such that the family {Vq}q∈S already covers C. Define U :=

∩
q∈S Uq

and V :=
∪

q∈S Vq. These are open sets with the desired properties.
We proceed to the prove the first statement of the lemma. By the previous demonstra-

tion, for each point p ∈ C1 there are disjoint open sets Up and Vp such that p ∈ Up and
C2 ⊆ Vp. The family of sets {Up}p∈C1 defines an open covering of C1. Since C1 is compact,
there is a finite subset S ⊆ C1 such that the family {Up}p∈S already covers C1. Define
U1 :=

∪
p∈S Up and U2 :=

∩
p∈S Vp.

For the second statement of the lemma observe that if T is compact, then every closed
subset is compact.

Definition 1.43. A topological space is called locally compact iff every point has a compact
neighborhood.

Definition 1.44. A topological space is called σ-compact iff it is locally compact and
admits a covering by countably many compact subsets.

Definition 1.45. Let T be a topological space. A compact exhaustion of T is a sequence
{Ui}i∈N of open and relatively compact subsets such that Ui ⊆ Ui+1 for all i ∈ N and∪

i∈N Ui = T .

Proposition 1.46. A topological space admits a compact exhaustion iff it is σ-compact.

Proof. Suppose the topological space T is σ-compact. Then there exists a sequence {Kn}n∈N
of compact subsets such that ∪

n∈N Kn = T . Since T is locally compact, every point pos-
sesses an open and relatively compact neighborhood. (Take an open subneighborhood of a
compact neighborhood.) We cover K1 by such open and relatively compact neighborhoods
around every point. By compactness a finite subset of those already covers K1. Their
union, which we call U1, is open and relatively compact. We proceed inductively. Suppose
we have constructed the open and relatively compact set Un. Consider the compact set
Un ∪ Kn+1. Covering it with open and relatively compact neighborhoods and taking the
union of a finite subcover we obtain the open and relatively compact set Un+1. It is then
clear that the sequence {Un}n∈N obtained in this way provides a compact exhaustion of T
since Ui ⊆ Ui+1 for all i ∈ N and T =

∪
n∈N Kn ⊆

∪
n∈N Un.

Conversely, suppose T is a topological space and {Un}n∈N is a compact exhaustion
of T . Then, the sequence {Un}n∈N provides a countable covering of T by compact sets.
Also, given p ∈ T there exists n ∈ N such that p ∈ Un. Then, the compact set Un is a
neighborhood of p. That is, T is locally compact.

Proposition 1.47. Let T be a topological space, K ⊆ T a compact subset and {Un}n∈N a
compact exhaustion of T . Then, there exists n ∈ N such that K ⊆ Un.
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Proof. Exercise.

Exercise 2 (One-point compactification). Let S be a locally compact Hausdorff space.
Let S̃ := S ∪ {∞} to be the set S with an extra element ∞ adjoint. Define a subset U of S̃
to be open iff either U is an open subset of S or U is the complement of a compact subset
of S. Show that this makes S̃ into a compact Hausdorff space.

1.3 Sequences and convergence
Definition 1.48 (Convergence of sequences). Let x := {xn}n∈N be a sequence of points
in a topological space S. We say that x has an accumulation point (or limit point) p iff
for every neighborhood U of p we have xk ∈ U for infinitely many k ∈ N. We say that x
converges to a point p iff for any neighborhood U of p there is a number n ∈ N such that
for all k ≥ n : xk ∈ U .

Proposition 1.49. Let S, T be topological spaces and f : S → T . If f is continuous,
then for any p ∈ S and sequence {xn}n∈N converging to p, the sequence {f(xn)}n∈N in
T converges to f(p). Conversely, if S is first-countable and for any p ∈ S and sequence
{xn}n∈N converging to p, the sequence {f(xn)}n∈N in T converges to f(p), then f is
continuous.

Proof. Exercise.

Proposition 1.50. Let S be Hausdorff space and {xn}n∈N a sequence in S which converges
to a point p ∈ S. Then, {xn}n∈N does not converge to any other point in S.

Proof. Exercise.

Definition 1.51. Let S be a topological space and U ⊆ S a subset. Consider the set BU

of sequences of elements of U . Then the set U
s consisting of the points to which some

element of BU converges is called the sequential closure of U .

Proposition 1.52. Let S be a topological space and U ⊆ S a subset. Let x be a sequence
of points in U which has an accumulation point p ∈ S. Then, p ∈ U .

Proof. Suppose p /∈ U . Since U is closed S \ U is an open neighborhood of p. But
S \ U does not contain any point of x, so p cannot be accumulation point of x. This is a
contradiction.

Corollary 1.53. Let S be a topological space and U a subset. Then, U ⊆ U
s ⊆ U .

Proof. Immediate.

Proposition 1.54. Let S be a first-countable topological space and U a subset. Then,
U

s = U .
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Proof. Exercise.

Definition 1.55. Let S be a topological space and U ⊆ S a subset. U is said to be limit
point compact iff every sequence in U has an accumulation point (limit point) in U . U
is called sequentially compact iff every sequence of elements of U contains a subsequence
converging to a point in U .

Proposition 1.56. Let S be a first-countable topological space and x = {xn}n∈N a sequence
in S with accumulation point p. Then, x has a subsequence that converges to p.

Proof. By first-countability choose a countable base {Un}n∈N of the filter of neighborhoods
at p. Now consider the family {Wn}n∈N of open neighborhoods Wn :=

∩n
k=1 Uk at p. It

is easy to see that this is again a countable neighborhood base at p. Moreover, it has the
property that Wn ⊆ Wm if n ≥ m. Now, Choose n1 ∈ N such that xn1 ∈ W1. Recursively,
choose nk+1 > nk such that xnk+1 ∈ Wk+1. This is possible since Wk+1 contains infinitely
many points of x. Let V be a neighborhood of p. There exists some k ∈ N such that
Uk ⊆ V . By construction, then Wm ⊆ Wk ⊆ Uk for all m ≥ k and hence xnm ∈ V for all
m ≥ k. Thus, the subsequence {xnm}m∈N converges to p.

Proposition 1.57. Sequential compactness implies limit point compactness. In a first-
countable space the converse is also true.

Proof. Exercise.

Proposition 1.58. A compact set is limit point compact.

Proof. Consider a sequence x in a compact set S. Suppose x does not have an accumulation
point. Then, for each point p ∈ S we can choose an open neighborhood Up which contains
only finitely many points of x. However, by compactness, S is covered by finitely many of
the sets Up. But their union can only contain a finite number of points of x, a contradiction.

1.4 Filters and convergence
Definition 1.59 (convergence of filters). Let S be a topological space and F a filter on
S. F is said to converge to p ∈ S iff every neighborhood of p is contained in F , i.e.,
Np ⊆ F . Then, x is said to be a limit of x. Also, p ∈ S is called accumulation point of F
iff p ∈

∩
U∈F U .

Proposition 1.60. Let S be a topological space and F a filter on S converging to p ∈ S.
Then, p is accumulation point of F .

Proof. Exercise.



12 Robert Oeckl – FA NOTES – 19/02/2024

Proposition 1.61. Set S be a topological space and F , F ′ filters on S such that F ⊆ F ′. If
p ∈ S is accumulation point of F ′, then it is also accumulation point of F . If F converges
to p ∈ S, then so does F ′.

Proof. Immediate.

Let x = {xn}n∈N be a sequence of points in a topological space S. We define the filter
Fx associated with this sequence as follows: Fx contains all the subsets U of S such that
U contains all xn, except possibly finitely many.

Proposition 1.62. Let x := {xn}n∈N be a sequence of points in a topological space S.
Then x converges to a point p ∈ S iff the associated filter Fx converges to p. Also, p ∈ S
is accumulation point of x iff it is accumulation point of Fx.

Proof. Exercise.

Proposition 1.63. Let S be a topological space and U ⊆ S a subset. Consider the set AU

of filters containing U . Then, the closure U of U coincides with the set of points to which
some element in AU converges.

Proof. If U = ∅, then AU is empty and the proof is trivial. Assume the contrary. If x ∈ U ,
then the intersection of U with any neighbourhood of x is non-empty and thus generates a
filter that contains U as well as all neighborhoods of x and thus converges to x. If x /∈ U ,
then there exists a neighborhood V of x such that U ∩ V = ∅. So no filter containing U
can contain V .

Proposition 1.64. Let S, T be topological spaces and f : S → T . If f is continuous, then
for any p ∈ S and filter F converging to p, the filter generated by f(F) in T converges
to f(p). Conversely, if for any p ∈ S and filter F converging to p, the filter generated by
f(F) in T converges to f(p), then f is continuous.

Proof. Exercise.

Proposition 1.65. Let S be a Hausdorff topological space, F a filter on S converging to
a point p ∈ S. Then F does not converge to any other point in S.

Proof. Exercise.

Proposition 1.66. Let S be a topological space and K ⊆ S a subset. Then, K is compact
iff every filter containing K has at least one accumulation point in K.

Proof. Let K ⊆ S be compact. We suppose that there is a filter F containing K that
has no accumulation point in K. For each U ∈ F consider the open set OU := S \ U .
By assumption, these open sets cover K. Since K is compact, there must be a finite
subset {U1, . . . , Un} of elements of F such that {OU1 , . . . , OUn} covers K. But this implies
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K ∩
∩n

i=1 Ui = ∅ and thus, in particular, also K ∩
∩n

i=1 Ui = ∅, contradicting the fact that
F is a filter. Thus, any filter containing K must have an accumulation point in K.

Now suppose that K ⊆ S is not compact. Then, there exists a cover of K by open sets
{Uα}α∈A which does not admit any finite subcover. Now consider finite intersections of
the sets Cα := K \ Uα. These are non-empty and form the base of a filter containing K.
But this filter clearly has no accumulation point in K. Thus, if every filter containing K
is to possess an accumulation point, K must be compact.

1.5 Metric and pseudometric spaces

Definition 1.67. Let S be a set and d : S × S → R+
0 a map with the following properties:

• d(x, y) = d(y, x) ∀x, y ∈ S. (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ S. (triangle inequality)

• d(x, x) = 0 ∀x ∈ S.

Then d is called a pseudometric on S. S is also called a pseudometric space. Suppose d
also satisfies

• d(x, y) = 0 =⇒ x = y ∀x, y ∈ S. (definiteness)

Then d is called a metric on S and S is called a metric space.

Definition 1.68. Let S be a pseudometric space, x ∈ S and r > 0. Then the set Br(x) :=
{y ∈ S : d(x, y) < r} is called the open ball of radius r centered around x in S. The set
Br(x) := {y ∈ S : d(x, y) ≤ r} is called the closed ball of radius r centered around x in S.

Proposition 1.69. Let S be a pseudometric space. Then, the open balls in S together with
the empty set form the basis of a topology on S. This topology is first-countable and such
that closed balls are closed. Moreover, the topology is Hausdorff iff S is metric.

Proof. Exercise.

Definition 1.70. A topological space is called (pseudo)metrizable iff there exists a (pseudo)metric
such that the open balls given by the (pseudo)metric are a basis of its topology.

Proposition 1.71. In a pseudometric space any open ball can be obtained as the countable
union of closed balls. Similarly, any closed ball can be obtained as the countable intersection
of open balls.

Proof. Exercise.
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Proposition 1.72. Let S be a set equipped with two pseudometrics d1 and d2. Then, the
topology generated by d2 is finer than the topology generated by d1 iff for all x ∈ S and
r1 > 0 there exists r2 > 0 such that B2

r2(x) ⊆ B1
r1(x). In particular, d1 and d2 generate the

same topology iff the condition holds both ways.

Proof. Exercise.

Proposition 1.73 (epsilon-delta criterion). Let S, T be pseudometric spaces and f : S → T
a map. Then, f is continuous at x ∈ S iff for every ϵ > 0 there exists δ > 0 such that
f(Bδ(x)) ⊆ Bϵ(f(x)).

Proof. Exercise.

1.6 Elementary properties of pseudometric spaces
Proposition 1.74. Every metric space is normal.

Proof. Let A, B be disjoint closed sets in the metric space S. For each x ∈ A choose ϵx > 0
such that Bϵx(x) ∩ B = ∅ and for each y ∈ B choose ϵy > 0 such that Bϵy (y) ∩ A = ∅.
Then, for any pair (x, y) with x ∈ A and y ∈ B we have Bϵx/2(x) ∩ Bϵy/2(y) = ∅. Consider
the open sets U :=

∪
x∈A Bϵx/2(x) and V :=

∪
y∈B Bϵy/2(y). Then, U ∩ V = ∅, but A ⊆ U

and B ⊆ V . So S is normal.

Proposition 1.75. Let S be a pseudometric space and x := {xn}n∈N a sequence in S.
Then x converges to p ∈ S iff for any ϵ > 0 there exists an n0 ∈ N such that d(xn, p) < ϵ
for all n ≥ n0.

Proof. Immediate.

Definition 1.76. Let S be a pseudometric space and x := {xn}n∈N a sequence in S. Then
x is called a Cauchy sequence iff for all ϵ > 0 there exists an n0 ∈ N such that d(xn, xm) < ϵ
for all n, m ≥ n0.

Exercise 3. Give an example of a set S, a sequence x in S and two metrics d1 and d2 on
S that generate the same topology, but such that x is Cauchy with respect to d1, but not
with respect to d2.

Proposition 1.77. Any converging sequence in a pseudometric space is a Cauchy sequence.

Proof. Exercise.

Proposition 1.78. Suppose x is a Cauchy sequence in a pseudometric space. If p is
accumulation point of x then x converges to p.

Proof. Exercise.
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Definition 1.79. Let S be a pseudometric space and U ⊆ S a subset. If every Cauchy
sequence in U converges to a point in U , then U is called complete.

Proposition 1.80. A complete subset of a metric space is closed. A closed subset of a
complete pseudometric space is complete.

Proof. Exercise.

Exercise 4. Give an example of a complete subset of a pseudometric space that is not
closed.

Definition 1.81 (Totally boundedness). Let S be a pseudometric space. A subset U ⊆ S
is called totally bounded iff for any r > 0 the set U admits a cover by finitely many open
balls of radius r.

Proposition 1.82. A subset of a pseudometric space is compact iff it is complete and
totally bounded.

Proof. We first show that compactness implies totally boundedness and completeness. Let
U be a compact subset. Then, for r > 0 cover U by open balls of radius r centered at
every point of U . Since U is compact, finitely many balls will cover it. Hence, U is totally
bounded. Now, consider a Cauchy sequence x in U . Since U is compact x must have an
accumulation point p ∈ U (Proposition 1.58) and hence (Proposition 1.78) converge to p.
Thus, U is complete.

We proceed to show that completeness together with totally boundedness imply com-
pactness. Let U be a complete and totally bounded subset. Assume U is not compact
and choose a covering {Uα}α∈A of U that does not admit a finite subcover. On the other
hand, U is totally bounded and admits a covering by finitely many open balls of radius
1/2. Hence, there must be at least one such ball B1 such that C1 := B1 ∩ U is not covered
by finitely many Uα. Choose a point x1 in C1. Observe that C1 itself is totally bounded.
Inductively, cover Cn by finitely many open balls of radius 2−(n+1). For at least one of
those, call it Bn+1, Cn+1 := Bn+1 ∩ Cn is not covered by finitely many Uα. Choose a point
xn+1 in Cn+1. This process yields a Cauchy sequence x := {xk}k∈N. Since U is complete,
the sequence converges to a point p ∈ U . There must be α ∈ A such that p ∈ Uα. Since
Uα is open, there exists r > 0 such that Br(p) ⊆ Uα. This implies, Cn ⊆ Uα for all n ∈ N
such that 2−n+1 < r. However, this is a contradiction to the Cn not being finitely covered.
Hence, U must be compact.

Proposition 1.83. The notions of compactness, limit point compactness and sequential
compactness are equivalent in a pseudometric space.

Proof. Exercise.

Proposition 1.84. A totally bounded pseudometric space is second-countable.
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Proof. Exercise.

Proposition 1.85. The notions of separability and second-countability are equivalent in a
pseudometric space.

Proof. Exercise.

Theorem 1.86 (Baire’s Theorem). Let S be a complete metric space and {Un}n∈N a
sequence of open and dense subsets of S. Then, the intersection ∩

n∈N Un is dense in S.

Proof. Set U :=
∩

n∈N Un. Let V be an arbitrary open set in S. It suffices to show
that V ∩ U 6= ∅. To this end we construct a sequence {xn}n∈N of elements of S and a
sequence {ϵn}n∈N of positive numbers. Choose x1 ∈ U1 ∩ V and then 0 < ϵ1 ≤ 1 such that
Bϵ1(x1) ⊆ U1 ∩V . Now, consecutively choose xn+1 ∈ Un+1 ∩Bϵn/2(xn) and 0 < ϵn+1 < 2−n

such that Bϵn+1(xn+1) ⊆ Un+1 ∩ Bϵn(xn). The sequence {xn}n∈N is Cauchy since by
construction d(xn, xn+1) < 2−n for all n ∈ N. So by completeness it converges to some
point x ∈ S. Indeed, x ∈ Bϵ1(x1) ⊆ V . On the other hand, x ∈ Bϵn(xn) ⊆ Un for all n ∈ N
and hence x ∈ U . This completes the proof.

Proposition 1.87. Let S be equipped with a pseudometric d. Then p ∼ q ⇐⇒ d(p, q) = 0
for p, q ∈ S defines an equivalence relation on S. The prescription d̃([p], [q]) := d(p, q) for
p, q ∈ S is well-defined and yields a metric d̃ on the quotient space S/∼. The topology
induced by this metric on S/∼ is the quotient topology with respect to that induced by d on
S. Moreover, S/∼ is complete iff S is complete.

Proof. Exercise.

1.7 Completion of metric spaces
Often it is desirable to work with a complete metric space when one is only given a non-
complete metric space. To this end one can construct the completion of a metric space.
This is detailed in the following exercise.

Exercise 5. Let S be a metric space.

• Let x := {xn}n∈N and y := {yn}n∈N be Cauchy sequences in S. Show that the limit
limn→∞ d(xn, yn) exists.

• Let T be the set of Cauchy sequences in S. Define the function d̃ : T × T → R+
0 by

d̃(x, y) := limn→∞ d(xn, yn). Show that d̃ defines a pseudometric on T .

• Show that T is complete.

• Define S as the metric quotient T/∼ as in Proposition 1.87. Then, S is complete.
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• Show that there is a natural isometric embedding (i.e., a map that preserves the
metric) iS : S → S. Furthermore, show that this is a bijection iff S is complete.

Definition 1.88. The metric space S constructed above is called the completion of the
metric space S.

Proposition 1.89 (Universal property of completion). Let S be a metric space, T a
complete metric space and f : S → T an isometric map. Then, there is a unique isometric
map f : S → T such that f = f ◦ iS. Furthermore, the closure of f(S) in T is equal to
f(S).

Proof. Exercise.
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2 Vector spaces with additional structure
In the following K denotes a field which might be either R or C.

Definition 2.1. Let V be a vector space over K. A subset A of V is called balanced iff for
all v ∈ A and all λ ∈ K with |λ| ≤ 1 the vector λv is contained in A. A subset A of V is
called convex iff for all x, y ∈ A and t ∈ [0, 1] the vector (1 − t)x + ty is in A. Let A be
a subset of V . Consider the smallest subset of V which is convex and which contains A.
This is called the convex hull of A, denoted conv(A).

Proposition 2.2. (a) Intersections of balanced sets are balanced. (b) The sum of two
balanced sets is balanced. (c) A scalar multiple of a balanced set is balanced.

Proof. Exercise.

Proposition 2.3. Let V be vector space and A a subset. Then

conv(A) =
{

n∑
i=1

λixi : n ∈ N, λi ∈ [0, 1], xi ∈ A,
n∑

i=1
λi = 1

}
.

Proof. Exercise.

We denote the space of linear maps between a vector space V and a vector space W by
L(V, W ).

2.1 Topological vector spaces
Definition 2.4. A set V that is equipped both with a vector space structure over K and
a topology is called a topological vector space (tvs) iff the vector addition + : V × V → V
and the scalar multiplication · : K × V → V are both continuous. (Here the topology on
K is the standard one.)

Proposition 2.5. Let V be a tvs, λ ∈ K \ 0, w ∈ V . The maps V → V : v 7→ λv and
V → V : v 7→ v + w are automorphisms of V as a tvs. In particular, the topology T of V is
invariant under rescalings and translations: λT = T and T + w = T . In terms of filters
of neighborhoods, λNv = Nλv and Nv + w = Nv+w for all v ∈ V .

Proof. It is clear that non-zero scalar multiplication and translation are vector space auto-
morphisms. To see that they are also continuous use Proposition 1.18. The inverse maps
are of the same type hence also continuous. Thus, we have homeomorphisms. The scale-
and translation invariance of the topology follows.

Note that this implies that the topology of a tvs is completely determined by the filter
of neighborhoods of one of its points, say 0.
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Definition 2.6. Let V be a tvs and U a subset. U is called bounded iff for every neigh-
borhood W of 0 there exists λ ∈ R+ such that U ⊆ λW .

Remark: Changing the allowed range of λ in the definition of boundedness from R+ to
K leads to an equivalent definition, i.e., is not weaker. However, the choice of R+ over K
is more convenient in certain applications.

Proposition 2.7. Let V be a tvs. Then:

1. Every point set is bounded.

2. Every neighborhood of 0 contains a balanced subneighborhood of 0.

3. Let U be a neighborhood of 0. Then there exists a subneighborhood W of 0 such that
W + W ⊆ U .

Proof. We start by demonstrating Property 1. Let x ∈ V and U some open neighborhood
of 0. Then Z := {(λ, y) ∈ K × V : λy ∈ U} is open by continuity of multiplication. Also
(0, x) ∈ Z so that by the product topology there exists an ϵ > 0 and an open neighborhood
W of x in V such that Bϵ(0) × W ⊆ Z. In particular, there exists µ > 0 such that µx ∈ U ,
i.e., {x} ⊆ µ−1U as desired.

We proceed to Property 2. Let U be an open neighborhood of 0. By continuity
Z := {(λ, x) ∈ K × V : λx ∈ U} is open. By the product topology, there are open
neighborhoods X of 0 ∈ K and W of 0 ∈ V such that X × W ⊆ Z. Thus, X · W ⊆ U . Now
X contains an open ball of some radius ϵ > 0 around 0 in K. Set Y := Bϵ(0) · W . This is
an (open) neighborhood of 0 in V , it is contained in U and it is balanced.

We end with Property 3. Let U be an open neighborhood of 0. By continuity Z :=
{(x, y) ∈ V ×V : x+y ∈ U} is open. By the product topology, there are open neighborhoods
W1 and W2 of 0 such that W1 × W2 ⊆ Z. This means W1 + W2 ⊆ U . Now define
W := W1 ∩ W2.

Proposition 2.8. Let V be a vector space and F a filter on V . Then F is the filter of
neighborhoods of 0 for a compatible topology on V iff 0 is contained in every element of F
and λF = F for all λ ∈ K \ {0} and F satisfies the properties of Proposition 2.7.

Proof. It is already clear that the properties in question are necessary for F to be the filter
of neighborhoods of 0 of V . It remains to show that they are sufficient. If F is to be the
filter of neighborhoods of 0 then, by translation invariance, Fx := F + x must be the filter
of neighborhoods of the point x. We show that the family of filters {Fx}x∈V does indeed
define a topology on V . To this end we will use Proposition 1.10. Property 1 is satisfied by
assumption. It remains to show Property 2. By translation invariance it will be enough to
consider x = 0. Suppose U ∈ F . Using Property 3 of Proposition 2.7 there is W ∈ F such
that W + W ⊆ U . We claim that Property 2 of Proposition 1.10 is now satisfied with this
choice of W . Indeed, let y ∈ W then y + W ∈ Fy and y + W ⊆ U so U ∈ Fy as required.
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We proceed to show that the topology defined in this way is compatible with the vector
space structure. Take an open set U ⊆ V and consider its preimage Z = {(x, y) ∈ V × V :
x + y ∈ U} under vector addition. Take some point (x, y) ∈ Z. U − x − y is an open
neighborhood of 0. By Property 3 of Proposition 2.7 there is an open neighborhood W of
0 such that W + W ⊆ U − x − y, i.e., (x + W ) + (y + W ) ⊆ U . But x + W is an open
neighborhood of x and y + W is an open neighborhood of y so (x + W ) × (y + W ) is an
open neighborhood of (x, y) in V × V contained in Z. Hence vector addition is continuous.

We proceed to show continuity of scalar multiplication. Consider an open set U ⊆ V
and consider its preimage Z = {(λ, x) ∈ K × V : λx ∈ U} under scalar multiplication.
Take some point (λ, x) ∈ Z. U − λx is an open neighborhood of 0 in V . By Property 3
of Proposition 2.7 there is an open neighborhood W of 0 such that W + W = U − λx.
By Property 2 of Proposition 2.7 there exists a balanced subneighborhood X of W . By
Property 1 of Proposition 2.7 (boundedness of points) there exists ϵ > 0 such that ϵx ∈ X.
Now define Y := (ϵ + |λ|)−1X. Note that scalar multiples of (open) neighborhoods of 0 are
(open) neighborhoods of 0 by assumption. Hence Y is open since X is. Thus Bϵ(λ)×(x+Y )
an open neighborhood of (λ, x) in K× V . We claim that it is contained in Z. First observe
that since X is balanced, Bϵ(0) · x ⊆ X. Similarly, we have Bϵ(λ) · Y ⊆ Bϵ+|λ|(0) · Y =
B1(0) · X ⊆ X. Thus we have Bϵ(0) · x + Bϵ(λ) · Y ⊆ X + X ⊆ W + W ⊆ U − λx. But
this implies Bϵ(λ) · (x + Y ) ⊆ U as required.

Proposition 2.9. (a) The interior of a balanced set is balanced. (b) The closure of a
balanced set is balanced.

Proof. Let U be balanced and let λ ∈ K with 0 < |λ| ≤ 1. It is then enough to observe
that for (a) λ

◦
U =

◦
λU ⊆

◦
U and for (b) λ U = λU ⊆ U .

Proposition 2.10. In a tvs every neighborhood of 0 contains a closed and balanced sub-
neighborhood.

Proof. Let U be a neighborhood of 0. By Proposition 2.7.3 there exists a subneighborhood
W ⊆ U such that W + W ⊂ U . By Proposition 2.7.2 there exists a balanced subneigh-
borhood X ⊆ W . Let Y := X. Then, Y is obviously a closed neighborhood of 0. Also
Y is balanced by Proposition 2.9. Finally, let y ∈ Y = X. Any neighborhood of y must
intersect X. In particular, y + X is such a neighborhood. Thus, there exist x ∈ X, z ∈ X
such that x = y + z, i.e., y = x − z ∈ X − X = X + X ⊆ U . So, Y ⊆ U .

Proposition 2.11. (a) Subsets of bounded sets are bounded. (b) Finite unions of bounded
sets are bounded. (c) The closure of a bounded set is bounded. (d) The sum of two bounded
sets is bounded. (e) A scalar multiple of a bounded set is bounded.

Proof. Exercise.

Definition 2.12. Let V be a tvs and C ⊆ V a subset. Then, C is called totally bounded iff
for each neighborhood U of 0 in V there exists a finite subset F ⊆ C such that C ⊆ F + U .
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Proposition 2.13. (a) Subsets of totally bounded sets are totally bounded. (b) Finite
unions of totally bounded sets are totally bounded. (c) The closure of a totally bounded set
is totally bounded. (d) The sum of two totally bounded sets is totally bounded. (e) A scalar
multiple of a totally bounded set is totally bounded.

Proof. Exercise.

Proposition 2.14. Compact sets are totally bounded. Totally bounded sets are bounded.

Proof. Exercise.

Let A, B be topological vector spaces. We denote the space of maps from A to B that
are linear and continuous by CL(A, B).

Definition 2.15. Let A, B be tvs. A linear map f : A → B is called bounded iff there
exists a neighborhood U of 0 in A such that f(U) is bounded. A linear map f : A → B is
called compact iff there exists a neighborhood U of 0 in A such that f(U) is compact.

Let A, B be tvs. We denote the space of maps from A to B that are linear and bounded
by BL(A, B). We denote the space of maps from A to B that are linear and compact by
KL(A, B).

Proposition 2.16. Let A, B be tvs and f ∈ L(A, B). (a) f is continuous iff the preimage
of any neighborhood of 0 in B is a neighborhood of 0 in A. (b) If f is continuous it maps
bounded sets to bounded sets. (c) If f is bounded then f is continuous, i.e., BL(A, B) ⊆
CL(A, B). (d) If f is compact then f is bounded.

Proof. Exercise.

A useful property for a topological space is the Hausdorff property, i.e., the possibility
to separate points by open sets. It is not the case that a tvs is automatically Hausdorff.
However, the way in which a tvs may be non-Hausdorff is severely restricted. Indeed, we
shall see int the following that a tvs may be split into a part that is Hausdorff and another
one that is maximally non-Hausdorff in the sense of carrying the trivial topology.

Proposition 2.17. Let V be a tvs and C ⊆ V a vector subspace. Then, the closure C of
C is also a vector subspace of V .

Proof. Exercise.[Hint: Use Proposition 1.63.]

Proposition 2.18. Let V be a tvs. The closure of {0} in V coincides with the intersection
of all neighborhoods of 0. Moreover, V is Hausdorff iff {0} = {0}.

Proof. Exercise.

Proposition 2.19. Let V be a tvs and C ⊆ V a vector subspace.
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1. The quotient space V/C is a tvs.

2. V/C is Hausdorff iff C is closed in V .

3. The quotient map q : V → V/C is linear, continuous and open. Moreover, the
quotient topology on V/C is the only topology such that q is continuous and open.

4. The image of a base of the filter of neighborhoods of 0 in V is a base of the filter of
neighborhoods of 0 in V/C.

Proof. Exercise.

Thus, for a tvs V the exact sequence

0 → {0} → V → V/{0} → 0

describes how V is composed of a Hausdorff piece V/{0} and a piece {0} with trivial
topology. We can express this decomposition also in terms of a direct sum, as we shall see
in the following.

A (vector) subspace of a tvs is a tvs with the subset topology. Let A and B be tvs.
Then the direct sum A ⊕ B is a tvs with the product topology. Note that as subsets of
A ⊕ B, both A and B are closed.

Definition 2.20. Let V be a tvs and A a subspace. Then another subspace B of A in V is
called a topological complement iff V = A⊕B as tvs (i.e., as vector spaces and as topological
spaces). A is called topologically complemented if such a topological complement B exists.

Note that algebraic complements (i.e., complements merely with respect to the vector
space structure) always exist (using the Axiom of Choice). However, an algebraic comple-
ment is not necessarily a topological one. Indeed, there are examples of subspaces of tvs
that have no topological complement.

Proposition 2.21 (Structure Theorem for tvs). Let V be a tvs and B an algebraic com-
plement of {0} in V . Then B is also a topological complement of {0} in V . Moreover, B
is canonically isomorphic to V/{0} as a tvs.

Proof. Exercise.

We conclude that every tvs is a direct sum of a Hausdorff tvs and a tvs with the trivial
topology.
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2.2 Metrizable and pseudometrizable vector spaces
In this section we consider (pseudo)metrizable vector spaces (mvs), i.e., tvs that admit a
(pseudo)metric compatible with the topology.

Definition 2.22. A pseudometric on a vector space V is called translation-invariant iff
d(x + a, y + a) = d(x, y) for all x, y, a ∈ V . A translation-invariant pseudometric on a
vector space V is called balanced iff its open balls around the origin are balanced.

As we shall see it will be possible to limit ourselves to balanced translation-invariant
pseudometrics on mvs. Moreover, these can be conveniently described by pseudo-seminorms.

Definition 2.23. Let V be a vector space over K. Then a map V → R+
0 : x 7→ ‖x‖ is

called a pseudo-seminorm iff it satisfies the following properties:

1. ‖0‖ = 0.

2. For all λ ∈ K, |λ| ≤ 1 implies ‖λx‖ ≤ ‖x‖ for all x ∈ V .

3. For all x, y ∈ V : ‖x + y‖ ≤ ‖x‖ + ‖y‖.

‖ · ‖ is called a pseudo-norm iff it satisfies in addition the following property.

4. ‖x‖ = 0 implies x = 0.

Proposition 2.24. There is a one-to-one correspondence between pseudo-seminorms and
balanced translation invariant pseudometrics on a vector space via d(x, y) := ‖x − y‖. This
specializes to a correspondence between pseudo-norms and balanced translation invariant
metrics.

Proof. Exercise.

Proposition 2.25. Let V be a vector space. The topology generated by a pseudo-seminorm
on V is compatible with the vector space structure iff for every x ∈ V and ϵ > 0 there exists
λ ∈ R+ such that x ∈ λBϵ(0).

Proof. Assume we are given a pseudo-seminorm on V that induces a compatible topol-
ogy. It is easy to see that the stated property of the pseudo-seminorm then follows from
Property 1 in Proposition 2.7 (boundedness of points).

Conversely, suppose we are given a pseudo-seminorm on V with the stated property.
We show that the filter N0 of neighborhoods of 0 defined by the pseudo-seminorm has
the properties required by Proposition 2.8 and hence defines a compatible topology on
V . Firstly, it is already clear that every U ∈ N0 contains 0. We proceed to show that
N0 is scale invariant. It is enough to show that for ϵ > 0 and λ ∈ K \ {0} the scaled
ball λBϵ(0) is open. Choose a point λx ∈ λBϵ(0). Take δ > 0 such that ‖x‖ < ϵ − δ.
Then Bδ(0) + x ⊆ Bϵ(0). Choose n ∈ N such that 2−n ≤ |λ|. Observe that the triangle
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inequality implies B2−nδ(0) ⊆ 2−nBδ(0) (for arbitrary δ and n in fact). Hence B2−nδ(λx) =
B2−nδ(0) + λx ⊆ λBδ(0) + λx ⊆ λBϵ(0) showing that λBϵ(0) is open.

It now remains to show the properties of N0 listed in Proposition 2.7. As for Property 3,
we may take U to be an open ball of radius ϵ around 0 for some ϵ > 0. Define W :=
Bϵ/2(0) Then W + W ⊆ U follows from the triangle inequality. Concerning Property 2
we simple notice that open balls are balanced by construction. The only property that is
not automatic for a pseudo-seminorm and does require the stated condition is Property 1
(boundedness of points). The equivalence of the two is easy to see.

Theorem 2.26. A tvs V is pseudometrizable iff it is first-countable, i.e., iff there exists
a countable base for the filter of neighborhoods of 0. Moreover, if V is pseudometrizable it
admits a compatible pseudo-seminorm.
Proof. It is clear that pseudometrizability implies the existence of a countable base of
N0. For example, the sequence of balls {B1/n(0)}n∈N provides such a base. Conversely,
suppose that {Un}n∈N is a base of the filter of neighborhoods of 0 such that all Un are
balanced and Un+1 + Un+1 ⊆ Un. (Given an arbitrary countable base of N0 we can always
produce another one with the desired properties.) Now for each finite subset H of N define
UH :=

∑
n∈H Un and λH :=

∑
n∈H 2−n. Note that each UH is a balanced neighborhood of

0. Define now the function V → R+
0 : x 7→ ‖x‖ by

‖x‖ := inf
H

{λH |x ∈ UH}

if x ∈ UH for some H and ‖x‖ = 1 otherwise. We proceed to show that ‖ · ‖ defines a
pseudo-seminorm and generates the topology of V .

Fix x ∈ V and λ ∈ K with |λ| ≤ 1. Since UH is balanced for each H, λx is contained at
least in the same sets UH as x. Because the definition of ‖ ·‖ uses an infimum, ‖λx‖ ≤ ‖x‖.
This confirms Property 1 of Definition 2.23.

To show the triangle inequality (Property 3 of Definition 2.23) we first note that for
finite subsets H, K of N with the property λH + λK < 1 there is another unique finite
subset L of N such that λL = λH + λK . Furthermore, UH + UK ⊆ UL in this situation.
Now, fix x, y ∈ V . If ‖x‖+‖y‖ ≥ 1 the triangle inequality is trivial. Otherwise, we can find
ϵ > 0 such that ‖x‖ + ‖y‖ + 2ϵ < 1. We now fix finite subsets H, K of N such that x ∈ UH ,
y ∈ UK while λH < ‖x‖ + ϵ and λK < ‖y‖ + ϵ. Let L be the finite subset of N such that
λL = λH + λK . Then x + y ∈ UL and hence ‖x + y‖ ≤ λL = λH + λK < ‖x‖ + ‖y‖ + 2ϵ.
Since the resulting inequality holds for any ϵ > 0 we must have ‖x + y‖ ≤ ‖x‖ + ‖y‖ as
desired.

It remains to show that the pseudo-seminorm generates the topology of the tvs. Since
the topology generated by the pseudo-seminorm as well as that of the tvs are translation
invariant, it is enough to show that the open balls around 0 of the pseudo-seminorm form
a base of the filter of neighborhoods of 0 in the topology of the tvs. Let n ∈ N. Clearly
B2−n(0) ⊆ Un ⊆ B2−(n−1)(0). But this shows that {B2−n(0)}n∈N generates the same filter
as {Un}n∈N. This completes the proof.
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Exercise 6. Show that for a tvs with a balanced translation-invariant pseudometric the
concepts of totally boundedness of Definitions 1.81 and 2.12 coincide.

Proposition 2.27. Let V be a mvs with pseudo-seminorm. Let r > 0 and 0 < µ ≤ 1.
Then, Bµr(0) ⊆ µBr(0).

Proof. Exercise.

Proposition 2.28. Let V , W be mvs with compatible metrics and f ∈ L(V, W ). (a) f is
continuous iff for all ϵ > 0 there exists δ > 0 such that f(BV

δ (0)) ⊆ BW
ϵ (0). (b) f is bounded

iff there exists δ > 0 such that for all ϵ > 0 there is µ > 0 such that f(µBV
δ (0)) ⊆ BW

ϵ (0).

Proof. Exercise.

Proposition 2.29. Let V be a mvs and C a subspace. Then, the quotient space V/C is a
mvs.

Proof. Exercise.

2.3 Locally convex tvs
Definition 2.30. A tvs is called locally convex iff every neighborhood of 0 contains a
convex neighborhood of 0.

Definition 2.31. Let V be a vector space over K. Then a map V → R+
0 : x 7→ ‖x‖ is

called a seminorm iff it satisfies the following properties:

1. ‖λx‖ = |λ|‖x‖ for all λ ∈ K, x ∈ V .

2. For all x, y ∈ V : ‖x + y‖ ≤ ‖x‖ + ‖y‖. (triangle inequality)

A seminorm is called a norm iff it satisfies in addition the following property:

3. ‖x‖ = 0 =⇒ x = 0.

Proposition 2.32. A seminorm induces a balanced translation-invariant pseudometric via
d(x, y) := ‖x − y‖. Moreover, the open balls of this metric are convex.

Proof. Exercise.

Proposition 2.33. Let V be a vector space and {‖ · ‖α}α∈A a set of seminorms on V . For
any finite subset I ⊆ A and any ϵ > 0 define

UI,ϵ := {x ∈ V : ‖x‖α < ϵ ∀α ∈ I}.

Then, the sets UI,ϵ form the base of the filter of neighborhoods of 0 in a topology on V that
makes it into a locally convex tvs. If A is countable, then V is pseudometrizable. Moreover,
the topology is Hausdorff iff for any x ∈ V \ {0} there exists α ∈ A such that ‖x‖α > 0.
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Proof. Let I, I ′ ⊆ A be finite and ϵ, ϵ′ > 0. Set I ′′ := I ∪ I ′ and ϵ′′ := min(ϵ, ϵ′). Then,
UI′′,ϵ′′ ⊆ UI,ϵ ∩ UI′,ϵ′ . So the UI,ϵ really form the basis of a filter F . We proceed to
verify that F satisfies the properties required by Proposition 2.8. Clearly, 0 ∈ U for all
U ∈ F since ‖0‖α = 0 and so 0 ∈ UI,ϵ for all I ⊆ A finite and ϵ > 0. Also λF = F
since λUI,ϵ = UI,|λ|ϵ for all I ⊆ A finite and ϵ > 0 by linearity of seminorms. As for
property 1 of Proposition 2.7 consider x ∈ V , I ⊆ A finite and ϵ > 0 arbitrary. Set
µ := maxα∈I{‖x‖α}. Then, x ∈ µ+1

ϵ UI,ϵ. Property 2 of Proposition 2.7 is satisfied since
open balls of a seminorm are balanced and the sets UI,ϵ are finite intersections of such open
balls and hence also balanced. Property 3 of Proposition 2.7 is sufficient to satisfy for a
base. Observe then, UI,ϵ/2 + UI,ϵ/2 ⊆ UI,ϵ for all I ⊆ A finite and ϵ > 0 due to the triangle
inequality. Thus, the so defined topology makes V into a tvs.

Observe that the sets UI,ϵ are convex, being finite intersections of open balls which
are convex by Proposition 2.32. Thus, V is locally convex. If A is countable, then there
is an enumeration I1, I2, . . . of the finite subsets of A. It is easy to see that UIj ,1/n with
j ∈ {1, . . . } and n ∈ N provides then a countable basis of the filter of neighborhoods of 0.
That is, V is pseudometrizable. Concerning the Hausdorff property suppose that for any
x ∈ V \ {0} there exists α ∈ A such that ‖x‖α > 0. Then, for this x we have x /∈ U{α},‖x‖α

.
So V is Hausdorff. Conversely, suppose V is Hausdorff. Given x ∈ V \ {0} there exist thus
I ⊆ A finite and ϵ > 0 such that x /∈ UI,ϵ. In particular, there exists α ∈ I such that
‖x‖α ≥ ϵ > 0.

Exercise 7. In the context of Proposition 2.33 show that the topology is the coarsest such
that all seminorms ‖ · ‖α are continuous.

Definition 2.34. Let V be a tvs and W ⊆ V a neighborhood of 0. The map ‖ · ‖W : V →
R+

0 defined as
‖x‖W := inf{λ ∈ R+

0 : x ∈ λW}

is called the Minkowski functional associated to W .

Proposition 2.35. Let V be a tvs and W ⊆ V a neighborhood of 0.

1. ‖µx‖W = µ‖x‖W for all µ ∈ R+
0 and x ∈ V .

2. If W is balanced, then ‖cx‖W = |c|‖x‖W for all c ∈ K and x ∈ V .

3. If W is convex, then ‖x + y‖W ≤ ‖x‖W + ‖y‖W for all x, y ∈ V .

4. If V is Hausdorff and W is bounded, then ‖x‖W = 0 implies x = 0.

Proof. Exercise.

Theorem 2.36. Let V be a tvs. Then, V is locally convex iff there exists a set of seminorms
inducing its topology as in Proposition 2.33. Also, V is locally convex and pseudometrizable
iff there exists a countable such set.
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Proof. Given a locally convex tvs V , let {Uα}α∈A be a base of the filter of neighborhoods
such that Uα is balanced and convex for all α ∈ A. (Exercise.How can this be achieved?)
In case that V is pseudometrizable we choose the base such that A is countable. Let ‖·‖α be
the Minkowski functional associated to Uα. Then, by Proposition 2.35, ‖ ·‖α is a seminorm
for each α ∈ A. We claim that the topology generated by the seminorms is precisely the
topology of V . Exercise.Complete the proof.

Exercise 8. Let V be a locally convex tvs and W a balanced and convex neighborhood
of 0. Show that the Minkowski functional associated to W is continuous on V .

Exercise 9. Let V be a vector space and {‖·‖n}n∈N a sequence of seminorms on V . Define
the function q : V → R+

0 via

q(x) :=
∞∑

n=1
2−n ‖x‖n

‖x‖n + 1
.

(a) Show that q is a pseudo-seminorm on V . (b) Show that the topology generated on V
by q is the same as that generated by the sequence {‖ · ‖n}n∈N.

2.4 Normed and seminormed vector spaces

Definition 2.37. A tvs is called locally bounded iff it contains a bounded neighborhood of
0.

Proposition 2.38. A locally bounded tvs is pseudometrizable.

Proof. Let V be a locally bounded tvs and U a bounded and balanced neighborhood of
0 in V . The sequence {Un}n∈N with Un := 1

nU is the base of a filter F on V . Take a
neighborhood W of 0. By boundedness of U there exists λ ∈ R+ such that U ⊆ λW .
Choosing n ∈ N with n ≥ λ we find Un ⊆ W , i.e., W ∈ F . Hence F is the filter of
neighborhoods of 0 and we have presented a countable base for it. By Theorem 2.26, V is
pseudometrizable.

Proposition 2.39. Let A, B be a tvs and f ∈ CL(A, B). If A or B is locally bounded then
f is bounded. Hence, CL(A, B) = BL(A, B) in this case.

Proof. Exercise.

Definition 2.40. A tvs V is called (semi)normable iff the topology of V is induced by a
(semi)norm.

Theorem 2.41. A tvs V is seminormable iff V is locally bounded and locally convex.
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Proof. Suppose V is a seminormed vector space. Then, every ball is bounded and also
convex, so in particular, V is locally bounded and locally convex.

Conversely, suppose V is a tvs that is locally bounded and locally convex. Take a
bounded neighborhood U1 of 0 and a convex subneighborhood U2 of U1. Now take a
balanced subneighborhood U3 of U2 and its convex hull W = conv(U3). Then W is a
balanced, convex and bounded (since W ⊆ U2 ⊆ U1) neighborhood of 0 in V . Thus, by
Proposition 2.35 the Minkowski functional ‖ · ‖W defines a seminorm on V . It remains to
show that the topology generated by this seminorm coincides with the topology of V . Let
U be an open set in the topology of V and x ∈ U . The ball B1(0) defined by the seminorm
is bounded since B1(0) ⊆ W and W is bounded. Hence there exists λ ∈ R+ such that
B1(0) ⊆ λ(U − x), i.e., λ−1B1(0) ⊆ U − x. But λ−1B1(0) = Bλ−1(0) by linearity and thus
Bλ−1(x) ⊆ U . Hence, U is open in the seminorm topology as well. Conversely, consider
a ball Bϵ(0) defined by the seminorm for some ϵ > 0 and take x ∈ Bϵ(0). Choose δ > 0
such that ‖x‖W < ϵ − δ. Observe that 1

2W ⊆ B1(0) and thus by linearity δ
2W ⊆ Bδ(0). It

follows that δ
2W + x ⊆ Bϵ(0). But δ

2W + x is a neighborhood of x so it follows that Bϵ(0)
is open. This completes the proof.

Exercise 10. Let V be locally convex tvs with its topology generated by a finite family
of seminorms. Show that V is seminormable.

Proposition 2.42. Let V be a seminormed vector space and U ⊆ V a subset. Then, U is
bounded iff there exists c ∈ R+ such that ‖x‖ ≤ c for all x ∈ U .

Proof. Exercise.

Proposition 2.43. Let A, B be seminormed vector spaces and f ∈ L(A, B). f is bounded
iff there exists c ∈ R+ such that ‖f(x)‖ ≤ c ‖x‖ for all x ∈ A.

Proof. Exercise.

Proposition 2.44. Let V be a tvs and C a vector subspace. If V is locally convex, then
so is V/C. If V is locally bounded, then so is V/C.

Proof. Exercise.

2.5 Inner product spaces
As before K stands for a field that is either R or C.

Definition 2.45. Let V be a vector space over K and 〈·, ·〉 : V × V → K a map. 〈·, ·〉
is called a bilinear (if K = R) or sesquilinear (if K = C) form iff it satisfies the following
properties:

• 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉 and
〈u, v + w〉 = 〈u, v〉 + 〈u, w〉 for all u, v, w ∈ V .
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• 〈λu, v〉 = λ〈u, v〉 and 〈u, λv〉 = λ〈u, v〉 for all λ ∈ K and v ∈ V .

〈·, ·〉 is called symmetric (if K = R) or hermitian (if K = C) iff it satisfies in addition the
following property:

• 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

〈·, ·〉 is called positive iff it satisfies in addition the following property:

• 〈v, v〉 ≥ 0 for all v ∈ V .

〈·, ·〉 is called definite iff it satisfies in addition the following property:

• If 〈v, v〉 = 0 then v = 0 for all v ∈ V .

A map with all these properties is also called a scalar product or an inner product. V
equipped with such a structure is called an inner product space or a pre-Hilbert space.

Theorem 2.46 (Schwarz Inequality). Let V be a vector space over K with a scalar product
〈·, ·〉 : V × V → K. Then, the following inequality is satisfied:

|〈v, w〉|2 ≤ 〈v, v〉〈w, w〉 ∀v, w ∈ V.

Proof. By definiteness α := 〈v, v〉 6= 0 and we set β := −〈w, v〉. By positivity we have,

0 ≤ 〈βv + αw, βv + αw〉.

Using bilinearity and symmetry (if K = R) or sesquilinearity and hermiticity (if K = C)
on the right hand side this yields,

0 ≤ |〈v, v〉|2〈w, w〉 − 〈v, v〉|〈v, w〉|2.

(Exercise.Show this.) Since 〈v, v〉 6= 0 we can divide by it and arrive at the required
inequality.

Proposition 2.47. Let V be a vector space over K with a scalar product 〈·, ·〉 : V ×V → K.
Then, V is a normed vector space with norm given by ‖v‖ :=

√
〈v, v〉.

Proof. Exercise.Hint: To prove the triangle inequality, show that ‖v+w‖2 ≤ (‖v‖+‖w‖)2

can be derived from the Schwarz inequality (Theorem 2.46).

Proposition 2.48. Let V be an inner product space. Then, ∀v, w ∈ V ,

〈v, w〉 = 1
4

(
‖v + w‖2 − ‖v − w‖2

)
if K = R,

〈v, w〉 = 1
4

(
‖v + w‖2 − ‖v − w‖2 + i‖v + iw‖2 − i‖v − iw‖2

)
if K = C
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Proof. Exercise.

Proposition 2.49. Let V be an inner product space. Then, its scalar product V × V → K
is continuous.

Proof. Exercise.

Theorem 2.50. Let V be a normed vector space. Then, there exists a scalar product on
V inducing the norm iff the parallelogram equality holds,

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2 ∀v, w ∈ V.

Proof. Exercise.

Example 2.51. The spaces Rn and Cn are inner product spaces via

〈v, w〉 :=
n∑

i=1
viwi,

where vi, wi are the coefficients with respect to the standard basis.
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