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What is the positive formalism?

An axiomatic framework for formulating physical theories.

(PF)

Accommodates:
classical statistical mechanics

(PF+T+N+C)

the standard formulation of quantum theory

(PF+T+N+Q)

quantum field theory∗

(PF+LOC+Q)

generalized probabilistic theories

(PF+T+N)

a timeless formulation of quantum theory∗

(PF+Q)

Should accommodate:
quantum gravity

(PF+LOC+Q) ?
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Fundamental physics: Time-evolution frameworks
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The “modulus square” functor

Hilbert space formulation to mixed state formulation (PF+T+N+Q)
without operations

per system
Replace H by B := BR(H) ≈ ℜ(H ⊗ H ∗).

per time interval
Replace U : H → H by Ũ : B → B given by Ũ(𝜎) = U𝜎U†.

No replacement targeting quantum operations, no analog on the
Hilbert space side.
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+ causality
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simplified probability rule
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Spacetime and locality (PF+LOC)

Locality:
Real experiments happen in
spacetime and interact directly
only with adjacent experiments.

Divide spacetime into regions
and associate a probe to each
region.
Links are now superfluous as
they are dual to hypersurfaces.
Associate the null-probe to
regions where nothing
happens.
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Fundamental physics: Spacetime frameworks
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geometric setting – manifolds

Fix dimension d. Manifolds are oriented and may carry additional
structure: differentiable, metric, complex, etc.

M

Σ′

𝜕M
Σ̂

Σ

Σ

region M
d-manifold with boundary.

hypersurface Σ

d − 1-manifold with boundary,
with germ of d-manifold.

slice region Σ̂

d − 1-manifold with boundary,
with germ of d-manifold,
interpreted as “infinitely thin”
region.



Hypersurface decomposition

Σ

Σ1

Σ2

BΣ = BΣ1 ⊗ BΣ2

Spaces of boundary conditions
decompose as tensor products
under hypersurface
decomposition.



Slice regions

Σ

A hypersurface Σ gives rise to
an infinitesimally thin slice
region Σ̂ by thickening. Σ̂ has a
boundary 𝜕Σ̂ with two
components, each a copy of Σ. Σ̂

Σ

Σ



An inner product on boundary conditions

Σ̂

b1

b2

Putting boundary conditions on the two
sides of a slice region allows evaluation with
the null probe. This yields an inner product
BΣ × BΣ → R on the space of boundary
conditions.

Lb1, b2MΣ := ⟦l, b1 ⊗ b2⟧Σ̂

Different boundary conditions should encode different physics of
adjacent regions. This means that the inner product must be
non-degenerate. Due to the dual role of boundary conditions the inner
product should identify BΣ with its dual B∗

Σ. That is, it should be
symmetric and positive-definite.
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Composition of slice regions

The completeness property satisfied by the inner product translates
into a geometric composition property of slice regions.

Σ̂ Σ̂′

b1

b2
𝜉k 𝜉k

Σ̂

b1

b2

Lb1, b2MΣ̂ =
∑
k∈I

Lb1, 𝜉kMΣ̂ L𝜉k, b2MΣ̂
Here, {𝜉k}k∈I is an orthonormal basis of BΣ.



(PF+LOC) – axioms I

Manifolds need not be oriented.

B𝜕N

M

BΣ

Σ

𝜕N
𝜕M

B𝜕M

lM

N
P

P ∈ PN

(P1) per hypersurface Σ

A partially ordered vector
space BΣ.

B∅ = R

(P4) per region M
A partially ordered vector
space PM of linear maps
(probes) B𝜕M → R.
P+
M ⊂ PM are positive

maps. A unit lM ∈ P+
M.

The choice of an element of
PM for a region M is
indicated by a label.



(PF+LOC) – axioms II

→

BΣ1

BΣ2

BΣ⊗

Σ̂

b2

b1

(P2) per hypersurface decomposition
Σ = Σ1 ∪ Σ2
A positive vector space isomorphism
𝜏 : BΣ1 ⊗ BΣ2 → BΣ.

(P3x) per hypersurface Σ

The null probe gives rise to a
positive-definite sharply positive inner
product Lb1, b2MΣ := ⟦l, 𝜏(b1 ⊗ b2)⟧Σ̂.



(PF+LOC) – axioms III

(P5a) per disjoint composition of regions M = M1 ⊔M2

⟦A, 𝜏(b1 ⊗ b2)⟧M = ⟦A1, b1⟧M1⟦A2, b2⟧M2 . Write A = A1 ⋄A2. (l = l⋄l.)

(P5b) per self-composition of region M to M1 along Σ

⟦P1, b⟧M1 · cM,Σ =
∑

k⟦P, 𝜏(b ⊗ 𝜉k ⊗ 𝜉k)⟧M. Write P1 = ⋄P. (Have l = ⋄l.)

M
Σ

Σ1

𝜉k𝜉k

b

P

=
∑

k
Σ′

M1

Σ

Σ1

b

P1

{𝜉k}k∈I ON-basis of BΣ. cM,Σ gluing anomaly.



And now for something completely different…



Quantum theory: states and evolution

States describe system at an instant, are elements of a Hilbert space H .
Dynamics: Evolution operator U[t1,t2 ] : H → H
or transition amplitude ⟨𝜓2,U[t1,t2 ]𝜓1⟩.

x
𝜓1

𝜓2

t1

t2
t

U[t1,t2]
The transition amplitude and be
calculated through the path
integral [Feynman 1948].

In quantum field theory this is an integral over the space K[t1,t2 ] of field
configurations in the region [t1, t2] × R3.

⟨𝜓2,U[t1,t2 ]𝜓1⟩ =
∫
K[t1 ,t2 ]

D𝜙 𝜓1(𝜙 |t1)𝜓2(𝜙 |t2) eiS(𝜙)



Temporal composition

Composition of temporal evolutions:
in terms of operators: U[t1,t3 ] = U[t2,t3 ] ◦U[t1,t2 ]

in terms of matrix elements:
⟨𝜓3,U[t1,t3 ]𝜓1⟩ =

∑
i∈N⟨𝜓3,U[t2,t3 ]𝜁i⟩⟨𝜁i,U[t1,t2 ]𝜓1⟩

x
t1

t2

t
t3

This temporal composition property is
reflected in the path integral.



Composition in spacetime

The path integral has a spacetime composition property. This
suggests:

N

M

𝜕Nout

𝜕Nin

𝜕Min

𝜕Mout

UM

UN

𝜕 (M ∪N)out

𝜕 (M ∪N)in

UM∪N

UM∪N = UN ◦UM



TQFT

M. Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175–186



TQFT

The mathematical framework of Topological Quantum Field Theory
(TQFT) originating with works of Witten, Segal and Atiyah in the
1980s was inspired by quantum field theory and specifically by the
path integral. It has had an enormous impact in various branches of
mathematics, specifically low dimensional topology, knot theory,
monoidal category theory, quantum groups, operator algebras and
general algebraic topology.



TQFT and realistic QFT

It was initially thought to provide a path to a rigorous axiomatic
formulation of quantum field theory (QFT). This has not been
realized. Certain characteristics of TQFT do not fit well with
requirements from physics.

TQFT is limited to finite-dimensional vector spaces. QFT requires
infinite-dimensional vector spaces.
The directionality of cobordisms can be identified in quantum
mechanics with the time direction. This is not sensible in QFT.
The vector spaces need an inner product. This does not seem to
have a natural origin in TQFT.



A new hope – CQFT

Compositional Quantum Field Theory (CQFT), also known as
General Boundary Quantum Field Theory (GBQFT), is a new
axiomatic formulation being developed since 2003. Inspired by TQFT,
but avoiding some of its problems, it has been successfully applied to
realistic QFTs in a number of contexts. It also comes with a
quantization prescription for free QFT. It is used as the underlying
framework for loop quantum gravity (spin foam models). It is still
under development.



Amplitudes in spacetime regions



CQFT – axioms I

Assignment of algebraic structures to geometric ones.

H𝜕M

𝜌MM

HΣ

Σ

𝜕M

(T1) per hypersurface Σ

A complex vector space HΣ.
(state space)

H∅ = C.

(T4) per region M
A linear map H𝜕M → C.
(amplitude map)



CQFT – axioms II

→

HΣ1

HΣ2

HΣ⊗

Σ̂

𝜂

𝜓

(T1b) per hypersurface Σ

A conjugate linear involution 𝜄Σ : HΣ → HΣ.

(T2) per hypersurface decomposition
Σ = Σ1 ∪ Σ2
A partial isometry 𝜏 : HΣ1 ⊗ HΣ2 → HΣ.

(T3x) per hypersurface Σ

The amplitude map gives rise to a
positive-definite inner product
⟨𝜄Σ (𝜓), 𝜂⟩Σ := 𝜌Σ̂ ◦ 𝜏(𝜓 ⊗ 𝜂).

(T4a) per region M
𝜌M(𝜓) = 𝜌M(𝜄𝜕M(𝜓))



CQFT – axioms III

(T5a) per disjoint composition of regions M = M1 ⊔M2
𝜌M(𝜏(𝜓1 ⊗ 𝜓2)) = 𝜌M1 (𝜓1)𝜌M2 (𝜓2). We write 𝜌M = 𝜌M1 ⋄ 𝜌M2 .

(T5b) per self-composition of region M to M1 along Σ

𝜌M1 (𝜓) · cM,Σ =
∑

k 𝜌M(𝜏(𝜓 ⊗ 𝜁k ⊗ 𝜄Σ (𝜁k))). We write 𝜌M1 = ⋄𝜌M.

M

Σ

Σ1

𝜄Σ (𝜁k)𝜁k

𝜓

=
∑

k
Σ′

M1

Σ

Σ1

𝜓

{𝜁k}k∈I ON-basis of HΣ. cM,Σ gluing anomaly.



Assignments

in quantum theory

spacetime
object

amplitude
formalism −→ functor −→

positive
formalism

Σ

Hilbert space
HΣ

self-adjoint operators

ordered
vector space
BΣ

𝜕M

M

amplitude map
𝜌M : H𝜕M → C l(𝜎) = ∑

i𝜌(𝜁i)𝜌(𝜎𝜁i)

null probe
l : B𝜕M → R
(positive!)

𝜕M

M
P

probe
P : B𝜕M → R
(positive!)



Assignments in quantum theory

spacetime
object

amplitude
formalism −→ functor −→ positive

formalism

Σ Hilbert space
HΣ

self-adjoint operators
ordered
vector space
BΣ

𝜕M

M amplitude map
𝜌M : H𝜕M → C l(𝜎) = ∑

i𝜌(𝜁i)𝜌(𝜎𝜁i)
null probe
l : B𝜕M → R
(positive!)

𝜕M

M
P

probe
P : B𝜕M → R
(positive!)



The “modulus square” functor

Converts CQFT to (PF+LOC+Q) (without probes)

per hypersurface Σ

Replace HΣ by BΣ := BR(HΣ) ≈ ℜ(HΣ ⊗ HΣ).

per region M
Replace 𝜌M : H𝜕M → C by lM : B𝜕M = BR(H𝜕M) → R via

⟦l, 𝜎⟧M :=
∑
k

𝜌M(𝜁k)𝜌M(𝜎𝜁k) or ⟦l, 𝜓 ⊗ 𝜂⟧M = 𝜌M(𝜄𝜕M(𝜂))𝜌M(𝜓)

No replacement targeting probes, no analog on the Hilbert space side.


