
Scattering and boundary measurement

Robert Oeckl
robert@matmor.unam.mx

Office 4.08
Institut für Quantenoptik und Quanteninformation (IQOQI)

Österreichische Akademie de Wissenschaften (ÖAW)
Wien, Austria

Centro de Ciencias Matemáticas (CCM)
Universidad Nacional Autónoma de México (UNAM)

Morelia, Mexico

Lecture 18 – 19 May 2025



Scattering in QFT: S-matrix

Consider measurement only at asymptotic infinity, infinitely early and
infinitely late time, described by transition probabilities. This is how
the S-matrix in quantum field theoryworks to describe scattering
processes. This requires perturbation theory.
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At early and late
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The interesting
physics happens
at intermediate
times.



Probabilities from transition amplitudes

Consider a simple measurement:
At t1 we prepare a state 𝜓in.
At t2 we askwhether the system is in state 𝜓out.
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The conditional probability for this is P(𝜓out |𝜓in) = |⟨𝜓out,U𝜓in⟩|2
Assume: states normalized



Boundary measurement and probability
Consider a measurement on the boundary 𝜕M of a region M.
Probabilities in quantum theory are generally conditional probabilities.
They depend on two pieces of information. Here these are encoded in
terms of positive operators in B𝜕M that we call quantum boundary
conditions satisfying,

0 ≤ A ≤ S ≤ .

S represents preparation or knowledge
A represents observation or the question

Equivalently, the operators describe probes in the exterior X ofM.
The probability that the physics in M is described by A given that it is
described by S is: [RO 2005, 2016]

P(A|S) = ⟦l,A⟧M
⟦l,S⟧M

⟦l, 𝜎⟧M :=
∑
k∈I

𝜌M(𝜁k)𝜌M(𝜎𝜁k)

Here {𝜁k}k∈I is an ON-basis of H𝜕M.



Recovering transition probabilities
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M = [t1, t2] × R3. To compute the probability of measuring 𝜓2 at t2
given that we prepared 𝜓1 at t1 we set in B𝜕M = B1 ⊗ B2,

S = |𝜓1⟩⟨𝜓1 | ⊗ , A = |𝜓1⟩⟨𝜓1 | ⊗ |𝜓2⟩⟨𝜓2 |.

The resulting expression yields correctly

P(A|S) =
|𝜌[t1,t2 ] (𝜓1 ⊗ 𝜓∗

2) |
2

1 = |⟨𝜓2,U[t1,t2 ]𝜓1⟩|2.



Spatially asymptotic S-matrix

With the PFwe are no longer bound to geometries with an initial and
final hypersurface.

For scattering problems a hypercylinder geometry
makes more sense!

P(A|S) = ⟦l,A⟧
⟦l,S⟧

with 0 ≤ A ≤ S ≤ .

Consider the hypercylinder of
radius R and let R → ∞.
Asymptotically,HR ≈ Hin ⊗ H ∗

out
and the hypercylinder S-matrix
is equivalent to the usual
S-matrix.

[Colosi, RO 2007,2008]



Spatially asymptotic S-matrix

With the PFwe are no longer bound to geometries with an initial and
final hypersurface. For scattering problems a hypercylinder geometry
makes more sense!

P(A|S) = ⟦l,A⟧
⟦l,S⟧

with 0 ≤ A ≤ S ≤ .
Consider the hypercylinder of
radius R and let R → ∞.
Asymptotically,HR ≈ Hin ⊗ H ∗

out
and the hypercylinder S-matrix
is equivalent to the usual
S-matrix.

[Colosi, RO 2007,2008]



Spatially asymptotic S-matrix

With the PFwe are no longer bound to geometries with an initial and
final hypersurface.

For scattering problems a hypercylinder geometry
makes more sense!

beyond the S-matrix:
this works for spacetimes that
are not globally hyperbolic, e.g.
S-matrix in AdS [Dohse, RO 2013]
at finite R,HR contains
additional evanescent modes
that carry finite-size effects and
near field dynamics
[Colosi, RO 2021; RO 2021]



states as POVM

In many cases state spaces can be organized in terms of positive
operator valued measures (POVM):
Measure space X, positive measure 𝜇, family of positive operators
Q : X → B satisfying

∫
X Q(x)d𝜇(x) = (completeness)

Parametrize (mixed) states by positive functions f : X → R+
0 via

f ↦→ f̂ :=
∫
X
f(x)Q(x)d𝜇(x)

Simplest example: alternative inputs/outcomes indexed by discrete set
X with counting measure.

f̂ =
∑
k∈X

f(k)Q(k)

to select outcome j set f(k) = 𝛿j,k, get Q(j)

choose ON-basis {𝜁k}k∈X and set Q(k) = |𝜁k⟩⟨𝜁k |
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states as POVM – further examples
single particle in non-relativistic QM: X momentum space

f̂ =
∫
X
d3k |k⟩f(k)⟨k|

particle picture in QFT:M 1-particle momentum space
X =

∪∞
n=0Mn

f̂ =
∞∑
n=0

∫ d3k1
(2𝜋)32E1

· · · d3kn
(2𝜋)32En

|k1, . . . , kn⟩fn(k1, . . . , kn)⟨k1, . . . , kn |

coherent states (e.g. quantum optics): X classical phase space, K𝜉

coherent state associated to 𝜉 ∈ X.

f̂ =
∫
X
|K𝜉 ⟩f(𝜉)⟨K𝜉 |d𝜇(𝜉)



POVM on the boundary

Consider a regionM. Recall the POVM context (forH𝜕M): X, 𝜇,Q.
Choose subsets,

∅ ⊆ A ⊆ S ⊆ X

Consider the corresponding characteristic functions,

0 ≤ 𝜒A ≤ 𝜒S ≤ 1

and their quantizations

0 ≤ 𝜒A ≤ 𝜒S ≤ .

Then,
P(A|S) = ⟦l, 𝜒A⟧M

⟦l, 𝜒S⟧M
.


