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Lagrangian field theory

Formulate field theory in terms of first order Lagrangian density
A(g, 0, x). For a spacetime region M the action of a field ¢ is
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Classical solutions in M are extremal points of this action. These are
obtained by setting to zero the first variation of the action,
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under the condition that the infinitesimal field X vanishes on M. This
yields the Euler-Lagrange equations,
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The symplectic form

The boundary term can be defined for an arbitrary hypersurface X.
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This 1-form is called the symplectic potential. Its exterior derivative is
the symplectic 2-form,
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We denote the space of solutions in M by Ly and the space of germs of
solutions on a hypersurface ~ by Ly.



Conservation of the symplectic form
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Lagrangian submanifolds

Let M be a region and ¢ € Lsy. Then ¢ may or may not be induced
from a solution in M. If ¢ arises from a solution in M and X, Y arise
from infinitesimal solutions in M, then,

(wam) (X, Y) = (dOam) ¢ (X, Y) = —=(ddSm) (X, Y) = 0.
This means, Ly induces an isotropic submanifold of Lsy.

It is natural to require that the symplectic form is non-degenerate. We
are then led to the converse statement: If given X we have

(wam) ¢ (X, Y) = 0 for all induced Y, then X itself must be induced. This
means, Ly induces a coisotropic submanifold of L.

Lpr induces a Lagrangian submanifold of Lg,.

[Kijowski, Tulczyjew 1979]



Geometric setting — manifolds

Fix dimension 4. Manifolds are oriented and may carry additional
structure: differentiable, metric, complex, etc.

region M
d-manifold with boundary.

hypersurface

d — 1-manifold with boundary,
with germ of d-manifold.

slice region X

d — 1-manifold with boundary,
with germ of d-manifold,
interpreted as “infinitely thin”
region.




Axiomatic classical field theory

[RO 2010]

per hypersurface X :

The space of germs of

Ly, wy solutions near . This is a
symplectic manifold
) Loy Lz ws).

Ly Per region M :

The space of solutions in
M. Forgetting the interior

oM yields a map Ly — L.
Under this map Ly is a
Lagrangian submanifold
Ly C Lom.




Axiomatic classical field theory

There are additional axioms related to gluing etc. like this one:
Ly

\

Ly, Ly

21 by

LM1 C—)LM 3[@




Axiomatic classical field theory
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BUT, this does not work for many non-compact regions.
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